Multi-Resource Generalized Processor Sharing for Packet Processing

Wei Wang, Ben Liang, Baochun Li Department of Electrical and Computer Engineering University of Toronto June 4, 2013

Middleboxes (MBs) are ubiquitous in today's networks

The sheer number is on par with the L2/L3 infrastructures

Perform a wide range of critical network functionalities

WAN optimization, intrusion detection and prevention, etc.

Multi-Resource Packet Processing in MBs

Performing different network functionalities requires different amounts of MB resources

Basic Forwarding: Bandwidth intensive

IP Security Encryption: CPU intensive

Ghodsi et al SIGCOMM12

How to let flows fairly share multiple resources for packet processing?

What do we mean by fairness?

Fair queueing can be defined via a set of highly desired scheduling properties

Predictable service isolation

For each backlogged flow, the received service is *at least* at the level when *every resource* is *equally* allocated (or in proportion to the flow's weight)

What do we mean by fairness? (Cont'd)

Service isolation cannot be compromised by some strategic behaviours

- A flow may cheat by asking for the amount of resources that are not needed
- E.g., asking for more bandwidth by adding dummy payload to inflate the packet size

Truthfulness (Strategy-proofness)

No flow can receive better service (*i.e.*, finish faster) by misreporting the amount of resources it requires

What do we mean by fairness? (Cont'd)

Work conservation

No resource that could be used to serve a busy flow is wasted in idle

Multi-Resource Fair Queueing

Simple fairness notion leads to unfairness in the multiresource setting [Ghodsi12]

- Per-resource fairness
- **Bottleneck** fairness

A promising insight is suggested in [Ghodsi12]

Dominant Resource Fairness (DRF)

Flows should receive roughly the same service on their most congested resources (DRFQ)

Open Questions

Is there a general guideline to design multi-resource fair queueing?

What's the benchmark for multi-resource fair queueing?

Any GPS-like fair queueing benchmark?

Can the techniques developed for the single-resource fair queueing be leveraged in the multi-resource setting?

Our Contribution

Dominant Resource GPS (DRGPS)

An *idealized fluid fair queueing benchmark* that achieves all desired scheduling properties

Clarify the design objective for practical queueing algorithms

Techniques developed for single-resource fair queueing algorithms can be leveraged in the multi-resource setting

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Saturday, 29 June, 13

Resource Model

Assume packets can be served in arbitrarily small increments on *every* resource

location

are consumed simultaneously, at the same rate

<100% CPU, 50% Link>

Dominant Resource & Dominant Share

For a packet, its *dominant resource* is the one that requires the most packet processing time

E.g., Packet P1 has <CPU time, Transmission Time> = <1, 0.5> CPU is the dominant resource of P1

The *dominant share* is the fraction of dominant resource allocated to process the packet

DRGPS

Dominant Resource Fairness (DRF)

At any given time, every backlogged flow is allocated the same dominant share

Max-min fair on the dominant resource

DRGPS achieves the DRF allocation at all times!

DRGPS: An Example

TABLE I

RESOURCE PROFILES OF PACKETS IN TWO FLOWS.

Packet	Flow	Arrival Time	$\langle CPU, Link \rangle$
P1	Flow 1	0	$\langle 4,2 \rangle$
Q1	Flow 2	1	$\langle 1,1 \rangle$
Q2	Flow 2	2	$\langle 1,3 \rangle$

Properties of DRGPS

DRGPS achieves all desired scheduling properties

- Predictable service isolation
- Truthfulness
- Work conservation

DRGPS therefore serves as an *idealized* fluid fair queueing benchmark in the multi-resource setting

Cannot be implemented because packets are assumed to be infinitely divisible

Packet-Based Multi-Resource Fair Queueing

DRGPS offers a design guideline

Leverage the design techniques developed for the traditional single-resource fair queueing

- Schedule packets by emulating DRGPS
 - WFQ, WF²Q, FQS can have direct extensions to multiple resources
- Approximate DRGPS without strict emulation
 - Estimate the work progress (virtual time) of DRGPS, e.g., SCFQ, SFQ, etc.
 - DRFQ [Ghodsi12] is a multi-resource SFQ extension
- Serve flows in a simple round-robin fashion
 - Deficit Round Robin (DRR), Smoothed Round Robin (SRR), Stratified Round Robin (StRR)

Schedule packets by emulating DRGPS

Emulating DRGPS in Real-Time

DRGPS can be accurately emulated by stamping two service tags upon packet arrival

Virtual time v(t)

Tracks the work progress of DRGPS

Virtual starting time

The virtual time when the packet arrives the system

Virtual finishing time

The virtual time when packet finishes service under the DRGPS system

Emulating DRGPS in Real-Time (Cont'd)

Proposition 4: Under DRGPS, for every flow *i*, its virtual starting and finishing times satisfy the following relationship:

$$S_{i}^{k} = \max\{F_{i}^{k-1}, v(a_{i}^{k})\},$$

$$F_{i}^{k} = \tau_{i,r_{i}^{k*}}^{k} / w_{i} + S_{i}^{k},$$
(14)

where $F_i^0 = 0$ for all flow *i*.

Emulating DRGPS in Real-Time (Cont'd)

- Upon a packet arrival, both the starting time and the finishing time are stamped to the packet
- With the service tags, the scheduling results of DRGPS can be fully recovered
 - Just like how GPS is emulated in the single-resource setting

Schedule Packets by Emulating DRGPS

A referencing DRGPS system is maintained in background

Many scheduling choices are available

- Packet that *finishes service the earliest* in the reference DRGPS system is scheduled first, e.g., WFQ, PGPS
- Packets that *starts service the earliest* in the reference DRGPS system is scheduled first, e.g., FQS
- Imposing some admission control policy, e.g., WF²Q

A Case Study: Dominant Resource WF²Q

Dominant Resource WF²Q (DRWF²Q)

A referencing DRGPS system is maintained in background

Whenever there is a scheduling opportunity

- Packets that already started their service under the referencing DRGPS system are *eligible* for scheduling
- Among them, the one that finishes the earliest will be scheduled

A Running Example

Flow 1 sends P1, P2, ...

Each packet requires <1 CPU time, 2 Transmission Time>

Flow 2 sends Q1, Q2, ...

Each packet requires <3 CPU time, 1 Transmission Time>

A Running Example

Fairness Measure

Relative fairness bound (RFB)

$$R = \sup_{t_1, t_2; i, j \in \mathcal{B}(t_1, t_2)} \left| \frac{T_i(t_1, t_2)}{w_i} - \frac{T_j(t_1, t_2)}{w_j} \right|$$

DRGPS has RFB = 0

Proposition 6: Under DRWF²Q, for any two flows *i* and *j* that are backlogged in (t_1, t_2) , we have

$$\frac{T_i(t_1, t_2)}{w_i} - \frac{T_j(t_1, t_2)}{w_j} \le 4 \max\left\{\frac{\tau_i^{\max}}{w_i}, \frac{\tau_j^{\max}}{w_j}\right\}.$$
 (23)

Corollary 1 (RFB): The RFB of DRWF²Q is

$$R = 4 \max_{i} \left\{ \frac{\tau_i^{\max}}{w_i} \right\}$$

Conclusion

DRGPS generalizes GPS to the multi-resource setting in MBs

- Offers perfect service isolation that is immune to any strategic behaviours and is work conserving as well
- Serves as a perfect multi-resource fair queueing benchmark to which all practical alternatives should approximate
- With DRGPS, techniques developed for traditional fair queueing can be leveraged to the multi-resource setting
- We design DRWF²Q as a case study and analyze its fairness performance

Thanks!

http://iqua.ece.toronto.edu/~weiwang/

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Saturday, 29 June, 13