
Multi-Resource Generalized Processor Sharing
for Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
June 4, 2013

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Background

Middleboxes (MBs) are ubiquitous in today’s networks

The sheer number is on par with the L2/L3 infrastructures

Perform a wide range of critical network functionalities

WAN optimization, intrusion detection and prevention, etc.

2

Private
Network

Public
Network

Middleboxes
(Packet filter,

NAT)

Servers

Users

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Multi-Resource Packet Processing in MBs

Performing different network functionalities requires different
amounts of MB resources

Basic Forwarding: Bandwidth intensive
IP Security Encryption: CPU intensive

3

Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).

2

Ghodsi et al SIGCOMM12

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How to let "ows fairly
share multiple resources
for packet processing?

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

What do we mean by fairness?

Fair queueing can be de#ned via a set of highly desired
scheduling properties

Predictable service isolation

For each backlogged !ow, the received service is at least at the level
when every resource is equally allocated (or in proportion to the !ow's
weight)

5

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

What do we mean by fairness? (Cont’d)

Service isolation cannot be compromised by some strategic
behaviours

A !ow may cheat by asking for the amount of resources that are not
needed
E.g., asking for more bandwidth by adding dummy payload to in!ate
the packet size

Truthfulness (Strategy-proofness)

No !ow can receive better service (i.e., "nish faster) by misreporting
the amount of resources it requires

6

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

What do we mean by fairness? (Cont’d)

Work conservation

No resource that could be used to serve a busy !ow is wasted in idle

7

Work
Conservation

Truthfulness

Predictable
Service Isolation

Fair queueing{ Fairness

Efficiency

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Multi-Resource Fair Queueing

Simple fairness notion leads to unfairness in the multi-
resource setting [Ghodsi12]

Per-resource fairness
Bottleneck fairness

A promising insight is suggested in [Ghodsi12]

Dominant Resource Fairness (DRF)
Flows should receive roughly the same service on their most
congested resources (DRFQ)

8

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Open Questions

Is there a general guideline to design multi-resource fair
queueing?

What’s the benchmark for multi-resource fair queueing?

Any GPS-like fair queueing benchmark?

Can the techniques developed for the single-resource fair
queueing be leveraged in the multi-resource setting?

9

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Our Contribution

Dominant Resource GPS (DRGPS)

An idealized !uid fair queueing benchmark that achieves all desired
scheduling properties

Clarify the design objective for practical queueing algorithms

Techniques developed for single-resource fair queueing
algorithms can be leveraged in the multi-resource setting

10

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

DRGPS

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Resource Model

Resources are scheduled in serial for packet processing

E.g., CPU "rst, followed by the link bandwidth

12

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

P3 P4... ...

Fig. 2. Packets may consume different amount of resources, and may have
different throughput on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link
100%
0%

Time0 2

P2

1

P3

3

3

...

...

Fig. 3. Throughput mismatch between CPU and link bandwidth in Fig. 2
makes it impossible to fully utilize the link resource, even if 100% bandwidth
is allocated for packet transmission. The overall packet throughput is 1.

that needs encryption before transmission, more time is needed
for CPU to process than NIC to transmit. As illustrated in
Fig. 2, when using 100% resource, the packet throughput on
CPU is only half the throughput on the link bandwidth. Such
a throughput mismatch makes it impossible to fully utilize the
link resource. We see in Fig. 3 that even if 100% bandwidth
is allocated for packet transmission, the link remains idle for
50% time, and the flow’s overall throughput is bottlenecked
by the throughput on CPU (1 in this example). This implies
that allocating full link bandwidth for packet transmission
is unnecessary. Instead, if we only allocate 50% bandwidth
and assume that packets can be served in arbitrarily small
increments on the link resource, we will have a scheduling
outcome shown in Fig. 4. We see that the flow’s overall
throughput remains 1 and is the same as that in Fig. 3.

Generally speaking, having a throughput mismatch on
different resources leads to allocation waste, as the flow’s
overall throughput is bottlenecked by the minimum one on
all resources. As a result, resources should be allocated in
a way such that packets are processed at the same “rate”
(throughput). This can be exactly realized in the fluid flow
model, where packets receive the service in infinitesimally
small increments on all resources. Formally, for a packet, let
⌧r be the processing time on resource r when 100% resource
r is allocated to process that packet. The full throughput on

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link

50%
0%

Time0 21

3

3

...

...P2 P3

100%

Fig. 4. Reducing the link bandwidth allocation to 50% will not reduce the
flow’s overall throughput. In this case, packets are processed at the same rate,
1 per time, on both CPU and link resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link

50%
0%

Time0 21

3

3

...

...P2 P3

100%

Fig. 5. An equivalent view of Fig. 4, where we assume that both CPU and
link bandwidth are scheduled at the same time.

resource r is then 1/⌧r. Now let fr be the fraction (share)
of resource r allocated. The corresponding throughput on
resource r is fr/⌧r. A non-wasteful allocation should have
a uniform throughput across all resources, i.e.,

fr/⌧r = fr0/⌧r0 (1)

for all r and r0. In the previous example, let resource 1 and 2
be CPU and link bandwidth, respectively. We have h⌧1, ⌧2i =
h1, 0.5i (see Fig. 2). The allocation h100% CPU, 50% Linki
in Fig. 4 is non-wasteful with a uniform throughput (1 in this
case) on both CPU and link bandwidth.

Since resources are processed at a uniform rate under a
non-wasteful allocation, it is equivalent to assuming that all
of them are scheduled in parallel. Fig. 5 shows an equivalent
representation of Fig. 4, where both CPU and link bandwidth
are scheduled simultaneously. With such a parallel resource
consumption model, it is sufficient to focus on throughput
allocation on all resources at any given time. This significantly
simplifies the description of DRF-GPS, which we present in
the next subsection.

C. Idealized DRF-GPS Queueing

DRF-GPS implements the exact DRF allocation in the fluid
flow model, at all time. In particular, for a packet, its dominant
resource is simply the one that needs the most time to process
when using 100% resource, i.e., the one with the maximum
processing time ⌧r. In Fig. 2, both P1 and P2’s dominant
resource is CPU. The dominant share is then defined as the
fraction of the dominant resource allocated, and is 100% for
P1, P2, and P3 in Fig. 5. At any given time, DRF-GPS seeks
to “equalize” the dominant share of packets across all flows
(assuming flows are all equally weighted), leading to an exact
DRF allocation in the fluid flow model.

As an example, consider two equally weighted flows requir-
ing both CPU and link bandwidth. Flow 1 has one packet P1
to serve at time 0, while flow 2 has two, Q1 and Q2, arriving
at time 1 and 2, respectively. P1’s resource profile is h4, 2i.
That is, it takes 4 unit time for CPU to process P1, and 2 for
NIC, both working with full utilization. The resource profiles
of Q1 and Q2 are h1, 1i and h1, 3i, respectively. Table I makes
a brief summary.

The resulted DRF-GPS allocation over time is given in
Table II and is also depicted in Fig. 6. At time 0, only P1
is ready for service. Based on its resource profile, DRF-
GPS allocates 100% CPU and 50% link bandwidth (i.e.,

well justified under the multi-resource setting. As for RFB,
we show that, counter-intuitively, a packet service discipline
may achieve better fairness performance in the multi-resource
setting than its single-resource counterpart.

More importantly, we see that MRGPS guides the de-
sign of practical packet-by-packet service disciplines. With
it, techniques and insights that have been developed for fair
queueing (e.g., [11] Ch. 9) could be borrowed into multi-
resource scheduling design. We present our findings via both
high-level discussions and concrete case studies. We show that,
by emulating MRGPS, well-known fair queueing algorithms
such as WFQ [8], [9], WF2Q [12], and FQS [13] will have im-
mediate multi-resource extensions. Focusing on multi-resource
WF2Q only, we analyze its performance and derive novel
bounds on its fairness, measured by the multi-resource RFB.
Many practical considerations are also discussed in this paper.
Based on the insights derived from MRGPS, it is possible to
leverage the substantial effort that has been put forth on fair
queueing to the new, yet critical, multi-resource environment
in today’s networks.

The remainder of this paper is organized as follows. We
clarify the design objectives of fair queueing in Sec. II by
proposing three desired scheduling properties. In Sec. III,
we review the basic idea of DRF, propose the fluid model,
and present the detailed design of MRGPS. In Sec. IV, we
propose fairness measures and share our visions on the design
of packet-based queueing schemes. We give a detailed case
study on multi-resource WF2Q in Sec. V and discuss some
practical issues in Sec. VI. Sec. VII briefly surveys the relevant
literature, and Sec. VIII concludes the paper.

II. FAIR QUEUEING AND ITS DESIGN OBJECTIVES

For a queueing discipline, one central issue to be addressed
is the notion of fairness. In essence, what queueing algorithm
is deemed to be fair? Despite the pioneering work of Ghodsi
et al. [6], the answer to this question remains fuzzy in the
middlebox environment, where traffic flows require multiple
hardware resources. In this section, we briefly review those
desired scheduling properties that are uniformly required in
the fair queueing literature [7], [8]. We extend them to
the multi-resource environment and define multi-resource fair
scheduling.

An essential property of fair queueing is to offer predictable
service isolation. In single-resource queueing, for example,
when link bandwidth is the only resource to schedule, each of
the n backlogged flows should receive 1/n bandwidth share.
Weighted fairness generalizes this property, such that each
flow i is assigned a weight wi and will receive wi/

P
j wj

bandwidth share.
Property 1: Suppose there are n flows that are backlogged.

A multi-resource queueing scheme offers Predictable Service

Isolation if for each flow i, the received service is at least at
the level when every resource is equally allocated. Further,
when flow i is assigned a weight wi, then the received service
is at least at the level when every resource is allocated in

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

P3 P4... ...

Fig. 1. Packets may consume different amounts of resources, and may have
different processing rates on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

3

3

...

...

(a) h100% CPU, 100% Linki.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link

50%
0%

Time0 21

3

3

...

...P2

100%

(b) h100% CPU, 50% Linki.

Fig. 2. Different resource allocations may lead to the same service for a
flow. (a) Throughput mismatch between CPU and link bandwidth in Fig. 1
makes it impossible to fully utilize the allocated link bandwidth. The received
service is 1 packet per time unit. (b) Reducing the bandwidth allocation to
50% will not reduce the received service.

proportion to the weight, i.e., flow i receives wi/
P

j wj

allocated share on each resource.
Note that, under multi-resource fair queueing, having the

same service share does not imply the same resource alloca-
tion, as resources that are allocated might not be fully utilized.
To see this, consider a flow whose traffic needs encryption
before transmission, and hence more time is needed for the
CPU to process a packet than the link to transmit it. As shown
in Fig. 1, when 100% of each resource is applied, the CPU
processing time is twice the link transmission time. Consider
two allocations, one allocating h100% CPU, 100% Linki, the
other allocating h100% CPU, 50% Linki. As illustrated in
Figs. 2a and 2b, under two different allocations, the flow
receives the same service of 1 packet per unit time. For this
reason, to offer service isolation, it is not always necessary to
equally divide every resource among all traffic flows.

In fact, a naive scheduling scheme that equally divides
all resources among traffic flows (referred to as per-resource
fairness in [6]) is vulnerable to strategic behaviours. As noted
by Ghodsi et al. [6], by artificially inflating their demand for
resources they do not need, some flows may receive better
service, at the cost of other flows. To discourage such strategic
behaviours, we further require truthfulness in a scheduling
scheme.

Property 2: A multi-resource queueing scheme is Truthful

if no flow can receive better service (i.e., finish faster) by
misreporting the amount of resources it requires.

Both service isolation and truthfulness have been noted by
Ghodsi et al. [6] as the design objective of fair queueing1.
While they ensure the basic requirements of fairness, we
believe resource utilization is another important dimension to
evaluate a fair queueing scheme. We therefore introduce work

1Service isolation is defined in another form in [6], called share guarantee.
Our definition here is more intuitive and precise.

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Multi-Resource Fluid Flow Model

Assume packets can be served in arbitrarily small increments
on every resource

13

DRGPS can be used to measure the performance of a given
queueing scheme. We consider two fairness metrics, the Abso-
lute Fairness Bound (AFB) and the Relative Fairness Bound
(RFB). Though both can be similarly defined as in the single-
resource scenario [11], AFB might not be well justified under
the multi-resource setting and is usually hard to obtain. As
for RFB, we show that, counter-intuitively, a packet service
discipline may achieve better fairness performance in the
multi-resource setting as compared with the single-resource
counterpart.

More importantly, we see that DRGPS guides the design
of practical packet-by-packet service disciplines. With it,
techniques and insights that have been developed for fair
queueing (e.g., [11] Ch. 9) could be borrowed into multi-
resource scheduling design. We present our findings via both
high-level discussions and concrete case studies. We show that,
by emulating DRGPS, well-known fair queueing algorithms
such as WFQ [8], [9], WF2Q [12], and FQS [13] will have im-
mediate multi-resource extensions. Focusing on multi-resource
WF2Q only, we analyze its performance and derive novel
bounds on its fairness, measured by the multi-resource RFB.
Many practical considerations are also discussed in this paper.
Based on the insights derived from DRGPS, it is possible to
leverage the substantial effort that has been put forth on fair
queueing to the new, yet critical, multi-resource environment
in today’s networks.

II. FAIR QUEUEING AND ITS DESIGN OBJECTIVES

For a queueing discipline, one central issue to be addressed
is the notion of fairness. In essence, what queueing algorithm
is deemed to be fair? Despite the pioneering work of Ghodsi
et al. [6], the answer to this question remains fuzzy in the
middlebox environment, where traffic flows require multiple
hardware resources. In this section, we briefly review those
desired scheduling properties that are uniformly required in
the fair queueing literature [7], [8]. We extend them to
the multi-resource environment and define multi-resource fair
scheduling.

An essential property of fair queueing is to offer predictable
service isolation. In single-resource queueing, for example,
when link bandwidth is the only resource to schedule, each of
the n backlogged flows should receive 1/n bandwidth share.
Weighted fairness generalizes this property, such that each
flow i is assigned a weight wi and will receive wi/

P
j wj

bandwidth share.
Property 1 (Service isolation): Suppose there are n flows

that are backlogged. A multi-resource queueing scheme offers
predictable service isolation if for each flow i, the received
service is at least at the level when every resource is equally
allocated. Further, when flow i is assigned a weight wi, then
the received service is at least at the level when every resource
is allocated in proportion to the weight, i.e., flow i receives
wi/

P
j wj allocated share on each resource.

Note that, under multi-resource fair queueing, having the
same service share does not imply the same resource alloca-
tion, as resources that are allocated might not be fully utilized.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

P3 P4... ...

Fig. 1. Packets may consume different amounts of resources, and may have
different processing rates on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

3

3

...

...

(a) h100% CPU, 100% Linki.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link

50%
0%

Time0 21

3

3

...

...P2

100%

(b) h100% CPU, 50% Linki.

Fig. 2. Different resource allocations may lead to the same service for a
flow. (a) Throughput mismatch between CPU and link bandwidth in Fig. 1
makes it impossible to fully utilize the allocated link bandwidth. The received
service is 1 packet per time unit. (b) Reducing the bandwidth allocation to
50% will not reduce the received service.

To see this, consider a flow whose traffic needs encryption
before transmission, and hence more time is needed for the
CPU to process a packet than the link to transmit it. As shown
in Fig. 1, when 100% of each resource is applied, the CPU
processing time is twice the link transmission time. Consider
two allocations, one allocating h100% CPU, 100% Linki, the
other allocating h100% CPU, 50% Linki. As illustrated in
Figs. 2a and 2b, under two different allocations, the flow
receives the same service of 1 packet per unit time. For this
reason, to offer service isolation, it is not always necessary to
equally divide every resource among all traffic flows.

In fact, a naive scheduling scheme that equally divides
all resources among traffic flows (referred to as per-resource
fairness in [6]) is vulnerable to strategic behaviours. As noted
by Ghodsi et al. [6], by artificially inflating their demand for
resources they do not need, some flows may receive better
service, at the cost of other flows. To discourage such strategic
behaviours, we further require truthfulness in a scheduling
scheme.

Property 2 (Truthfulness): A multi-resource queueing
scheme is truthful if no flow can receive better service (i.e.,
finish faster) by misreporting the amount of resources it
requires.

Both service isolation and truthfulness have been noted by
Ghodsi et al. [6] as the design objective of fair queueing1.
While they ensure the basic requirements of fairness, we
believe resource utilization is another important dimension to
evaluate a fair queueing scheme. We therefore introduce work
conservation to reflect such a concern of queueing efficiency.

Property 3 (Work conservation): A multi-resource
queueing scheme is work conserving if no resource that
could be used to serve a busy flow is wasted in idle. In other

1Service isolation is defined in another form in [6], called share guarantee.
Our definition here is more intuitive and precise.

50% link allocation is
wasted

No resource allocation
is wasted

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Non-wasteful allocation

Under non-wasteful allocation, we can view that all resources
are consumed simultaneously, at the same rate

14

example of Fig. 1, for a packet that needs encryption before
transmission, the packet processing rate on CPU is only half
the rate on the link bandwidth. Such service mismatch makes it
impossible to fully utilize the link resource. We see in Fig. 2a
that even if 100% bandwidth is allocated for packet transmis-
sion, the link remains idle for 50% of the time. As a result,
the service received is bottlenecked on CPU. This implies
that allocating full link bandwidth for packet transmission
is unnecessary. Instead, if we only allocate 50% bandwidth
and assume that packets can be served in arbitrarily small
increments on the link resource, we will have a scheduling
outcome shown in Fig. 2b. We see that the received service
remains 1 packet per time and is the same as that in Fig. 2a.

Generally speaking, the discrepancy among processing rates
on different resources leads to allocation waste, as the received
service is bottlenecked by the minimum one across all re-
sources. Therefore, resources should be allocated in a way
such that packets are processed at the same rate. This can
be exactly realized in the multi-resource fluid model, where
packets receive the service in infinitesimally small increments
on every resource.

Formally, given some packet, let ⌧r be the processing time
on resource r when 100% of resource r is allocated to process
it. The full service rate on resource r is then 1/⌧r. Now
let fr be the share (fraction) of resource r allocated. The
corresponding service rate on resource r is fr/⌧r. A non-
wasteful allocation should have a uniform service rate across
all resources, i.e.,

fr/⌧r = fr0/⌧r0 (1)

for all r and r0. In the previous example, h⌧
1

, ⌧
2

i =

h1 CPU time, 0.5 Link timei (see Fig. 1). The allocation
h100% CPU, 50% Linki in Fig. 2b is non-wasteful with a
uniform service received on both CPU and link bandwidth
(i.e., 1 packet per time).

Here we make a key observation on non-wasteful alloca-
tions. Since resources are processed at a uniform service rate,
it is equivalent to considering all of them to be scheduled
in parallel. Fig. 5 shows an equivalent representation of
Fig. 2b, where both CPU and link bandwidth are scheduled
simultaneously. Note that such a parallel resource consumption
model is only possible in the idealized multi-resource fluid
model. With it, resource scheduling in time has an equivalent
representation of resource allocation in space, which we will
use in the next subsection.

C. Dominant Resource Generalized Processor Sharing

DRGPS implements exact DRF allocation in the fluid
model, at all times. In particular, for any packet, its dominant
resource is simply the one that needs the most time to process
when using 100% of the resource, i.e., the one with the
maximum processing time ⌧r. In Fig. 1, both P1’s and P2’s
dominant resource is CPU. The dominant share is then defined
as the fraction of the dominant resource allocated, and is 100%
for P1 and P2 in Fig. 5. At any given time, DRGPS seeks to
“equalize” the dominant share of packets across all flows (with

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link

50%
0%

Time0 21

3

3

...

...P2

100%

Fig. 5. An equivalent view of Fig. 2b, where resources are scheduled in
parallel.

TABLE I
RESOURCE PROFILES OF PACKETS IN TWO FLOWS.

Packet Flow Arrival Time hCPU,Linki
P1 Flow 1 0 h4, 2i
Q1 Flow 2 1 h1, 1i
Q2 Flow 2 2 h1, 3i

appropriate weights in the case of weighted fairness), leading
to an exact DRF allocation in the fluid flow model.

As an example, consider two equally weighted flows requir-
ing both CPU and link bandwidth. Flow 1 has one packet P1
to serve at time 0, while flow 2 has two, Q1 and Q2, arriving at
times 1 and 2, respectively. P1’s resource profile is h4, 2i. That
is, it takes 4 units of time for CPU to process P1, and 2 for
Link, both working with full utilization. The resource profiles
of Q1 and Q2 are h1, 1i and h1, 3i, respectively. Table I gives
a brief summary.

The resulting DRGPS allocation over time is given in
Table II and is also depicted in Fig. 6. At time 0, only
P1 is ready for service. Based on its resource profile,
DRGPS allocates 100% CPU and 50% link bandwidth (i.e.,
h1 CPU, 1/2 Linki), leading to a maximum uniform service
rate 1/4. This allocation remains until time 1, at which time
Q1 is ready for flow 2, competing with P1 for both CPU
and link bandwidth. Since CPU is the dominant resource of
both packets, it is evenly allocated to each of them. As a
result, P1 receives h1/2 CPU, 1/4 Linki while Q1 receives
h1/2 CPU, 1/2 Linki, where the link bandwidth is allocated
in proportion to the resource profile of the two packets.
With this allocation, it takes 2 time units to serve Q1.
Hence, at time 3, Q2 replaces Q1 and competes with P1
for resources. Unlike P1, Q2’s dominant resource is the link
bandwidth. DRGPS then allocates h2/3 CPU, 1/3 Linki to P1
and h2/9 CPU, 2/3 Linki to Q2, under which their dominant
shares are equalized and the throughput is maximized. Such an
allocation maintains until P1 gets fully served at time 6. From
then on, Q2 is the only packet to serve. It is then allocated
h1/3 CPU, 1 Linki and finishes at time 7.

We now formalize the description of DRGPS. Let us define
B(t) as the set of flows that are backlogged at time t. These
flows are competing for m middlebox resources. For flow i 2
B(t), let wi be its weight, and h⌧i,1, . . . , ⌧i,mi be the resource
profile of its packet currently being served, where ⌧i,r is the
processing time on resource r (assuming full utilization). The

DRGPS can be used to measure the performance of a given
queueing scheme. We consider two fairness metrics, the Abso-
lute Fairness Bound (AFB) and the Relative Fairness Bound
(RFB). Though both can be similarly defined as in the single-
resource scenario [11], AFB might not be well justified under
the multi-resource setting and is usually hard to obtain. As
for RFB, we show that, counter-intuitively, a packet service
discipline may achieve better fairness performance in the
multi-resource setting as compared with the single-resource
counterpart.

More importantly, we see that DRGPS guides the design
of practical packet-by-packet service disciplines. With it,
techniques and insights that have been developed for fair
queueing (e.g., [11] Ch. 9) could be borrowed into multi-
resource scheduling design. We present our findings via both
high-level discussions and concrete case studies. We show that,
by emulating DRGPS, well-known fair queueing algorithms
such as WFQ [8], [9], WF2Q [12], and FQS [13] will have im-
mediate multi-resource extensions. Focusing on multi-resource
WF2Q only, we analyze its performance and derive novel
bounds on its fairness, measured by the multi-resource RFB.
Many practical considerations are also discussed in this paper.
Based on the insights derived from DRGPS, it is possible to
leverage the substantial effort that has been put forth on fair
queueing to the new, yet critical, multi-resource environment
in today’s networks.

II. FAIR QUEUEING AND ITS DESIGN OBJECTIVES

For a queueing discipline, one central issue to be addressed
is the notion of fairness. In essence, what queueing algorithm
is deemed to be fair? Despite the pioneering work of Ghodsi
et al. [6], the answer to this question remains fuzzy in the
middlebox environment, where traffic flows require multiple
hardware resources. In this section, we briefly review those
desired scheduling properties that are uniformly required in
the fair queueing literature [7], [8]. We extend them to
the multi-resource environment and define multi-resource fair
scheduling.

An essential property of fair queueing is to offer predictable
service isolation. In single-resource queueing, for example,
when link bandwidth is the only resource to schedule, each of
the n backlogged flows should receive 1/n bandwidth share.
Weighted fairness generalizes this property, such that each
flow i is assigned a weight wi and will receive wi/

P
j wj

bandwidth share.
Property 1 (Service isolation): Suppose there are n flows

that are backlogged. A multi-resource queueing scheme offers
predictable service isolation if for each flow i, the received
service is at least at the level when every resource is equally
allocated. Further, when flow i is assigned a weight wi, then
the received service is at least at the level when every resource
is allocated in proportion to the weight, i.e., flow i receives
wi/

P
j wj allocated share on each resource.

Note that, under multi-resource fair queueing, having the
same service share does not imply the same resource alloca-
tion, as resources that are allocated might not be fully utilized.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

P3 P4... ...

Fig. 1. Packets may consume different amounts of resources, and may have
different processing rates on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

3

3

...

...

(a) h100% CPU, 100% Linki.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link

50%
0%

Time0 21

3

3

...

...P2

100%

(b) h100% CPU, 50% Linki.

Fig. 2. Different resource allocations may lead to the same service for a
flow. (a) Throughput mismatch between CPU and link bandwidth in Fig. 1
makes it impossible to fully utilize the allocated link bandwidth. The received
service is 1 packet per time unit. (b) Reducing the bandwidth allocation to
50% will not reduce the received service.

To see this, consider a flow whose traffic needs encryption
before transmission, and hence more time is needed for the
CPU to process a packet than the link to transmit it. As shown
in Fig. 1, when 100% of each resource is applied, the CPU
processing time is twice the link transmission time. Consider
two allocations, one allocating h100% CPU, 100% Linki, the
other allocating h100% CPU, 50% Linki. As illustrated in
Figs. 2a and 2b, under two different allocations, the flow
receives the same service of 1 packet per unit time. For this
reason, to offer service isolation, it is not always necessary to
equally divide every resource among all traffic flows.

In fact, a naive scheduling scheme that equally divides
all resources among traffic flows (referred to as per-resource
fairness in [6]) is vulnerable to strategic behaviours. As noted
by Ghodsi et al. [6], by artificially inflating their demand for
resources they do not need, some flows may receive better
service, at the cost of other flows. To discourage such strategic
behaviours, we further require truthfulness in a scheduling
scheme.

Property 2 (Truthfulness): A multi-resource queueing
scheme is truthful if no flow can receive better service (i.e.,
finish faster) by misreporting the amount of resources it
requires.

Both service isolation and truthfulness have been noted by
Ghodsi et al. [6] as the design objective of fair queueing1.
While they ensure the basic requirements of fairness, we
believe resource utilization is another important dimension to
evaluate a fair queueing scheme. We therefore introduce work
conservation to reflect such a concern of queueing efficiency.

Property 3 (Work conservation): A multi-resource
queueing scheme is work conserving if no resource that
could be used to serve a busy flow is wasted in idle. In other

1Service isolation is defined in another form in [6], called share guarantee.
Our definition here is more intuitive and precise.

<100% CPU, 50% Link>

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Dominant Resource & Dominant Share

For a packet, its dominant resource is the one that requires the
most packet processing time

E.g., Packet P1 has <CPU time, Transmission Time> = <1, 0.5>
CPU is the dominant resource of P1

15

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

P3 P4... ...

Fig. 2. Packets may consume different amount of resources, and may have
different throughput on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link
100%
0%

Time0 2

P2

1

P3

3

3

...

...

Fig. 3. Throughput mismatch between CPU and link bandwidth in Fig. 2
makes it impossible to fully utilize the link resource, even if 100% bandwidth
is allocated for packet transmission. The overall packet throughput is 1.

that needs encryption before transmission, more time is needed
for CPU to process than NIC to transmit. As illustrated in
Fig. 2, when using 100% resource, the packet throughput on
CPU is only half the throughput on the link bandwidth. Such
a throughput mismatch makes it impossible to fully utilize the
link resource. We see in Fig. 3 that even if 100% bandwidth
is allocated for packet transmission, the link remains idle for
50% time, and the flow’s overall throughput is bottlenecked
by the throughput on CPU (1 in this example). This implies
that allocating full link bandwidth for packet transmission
is unnecessary. Instead, if we only allocate 50% bandwidth
and assume that packets can be served in arbitrarily small
increments on the link resource, we will have a scheduling
outcome shown in Fig. 4. We see that the flow’s overall
throughput remains 1 and is the same as that in Fig. 3.

Generally speaking, having a throughput mismatch on
different resources leads to allocation waste, as the flow’s
overall throughput is bottlenecked by the minimum one on
all resources. As a result, resources should be allocated in
a way such that packets are processed at the same “rate”
(throughput). This can be exactly realized in the fluid flow
model, where packets receive the service in infinitesimally
small increments on all resources. Formally, for a packet, let
⌧r be the processing time on resource r when 100% resource
r is allocated to process that packet. The full throughput on

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link

50%
0%

Time0 21

3

3

...

...P2 P3

100%

Fig. 4. Reducing the link bandwidth allocation to 50% will not reduce the
flow’s overall throughput. In this case, packets are processed at the same rate,
1 per time, on both CPU and link resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P3

P1

Link

50%
0%

Time0 21

3

3

...

...P2 P3

100%

Fig. 5. An equivalent view of Fig. 4, where we assume that both CPU and
link bandwidth are scheduled at the same time.

resource r is then 1/⌧r. Now let fr be the fraction (share)
of resource r allocated. The corresponding throughput on
resource r is fr/⌧r. A non-wasteful allocation should have
a uniform throughput across all resources, i.e.,

fr/⌧r = fr0/⌧r0 (1)

for all r and r0. In the previous example, let resource 1 and 2
be CPU and link bandwidth, respectively. We have h⌧1, ⌧2i =
h1, 0.5i (see Fig. 2). The allocation h100% CPU, 50% Linki
in Fig. 4 is non-wasteful with a uniform throughput (1 in this
case) on both CPU and link bandwidth.

Since resources are processed at a uniform rate under a
non-wasteful allocation, it is equivalent to assuming that all
of them are scheduled in parallel. Fig. 5 shows an equivalent
representation of Fig. 4, where both CPU and link bandwidth
are scheduled simultaneously. With such a parallel resource
consumption model, it is sufficient to focus on throughput
allocation on all resources at any given time. This significantly
simplifies the description of DRF-GPS, which we present in
the next subsection.

C. Idealized DRF-GPS Queueing

DRF-GPS implements the exact DRF allocation in the fluid
flow model, at all time. In particular, for a packet, its dominant
resource is simply the one that needs the most time to process
when using 100% resource, i.e., the one with the maximum
processing time ⌧r. In Fig. 2, both P1 and P2’s dominant
resource is CPU. The dominant share is then defined as the
fraction of the dominant resource allocated, and is 100% for
P1, P2, and P3 in Fig. 5. At any given time, DRF-GPS seeks
to “equalize” the dominant share of packets across all flows
(assuming flows are all equally weighted), leading to an exact
DRF allocation in the fluid flow model.

As an example, consider two equally weighted flows requir-
ing both CPU and link bandwidth. Flow 1 has one packet P1
to serve at time 0, while flow 2 has two, Q1 and Q2, arriving
at time 1 and 2, respectively. P1’s resource profile is h4, 2i.
That is, it takes 4 unit time for CPU to process P1, and 2 for
NIC, both working with full utilization. The resource profiles
of Q1 and Q2 are h1, 1i and h1, 3i, respectively. Table I makes
a brief summary.

The resulted DRF-GPS allocation over time is given in
Table II and is also depicted in Fig. 6. At time 0, only P1
is ready for service. Based on its resource profile, DRF-
GPS allocates 100% CPU and 50% link bandwidth (i.e.,

The dominant share is the fraction of dominant resource
allocated to process the packet

E.g., <70% CPU, 60% Link> is allocated to process P1
The dominant share of P1 is 70%

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

DRGPS

Dominant Resource Fairness (DRF)

At any given time, every backlogged !ow is allocated the same
dominant share
Max-min fair on the dominant resource

DRGPS achieves the DRF allocation at all times!

16

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

DRGPS: An Example

17

TABLE I
RESOURCE PROFILES OF PACKETS IN TWO FLOWS.

Packet Flow Arrival Time hCPU,Linki
P1 Flow 1 0 h4, 2i
Q1 Flow 2 1 h1, 1i
Q2 Flow 2 2 h1, 3i

TABLE II
RESULTED DRF-GPS ALLOCATION FOR THE EXAMPLE OF TABLE I.

Time Interval

Flow 1 Flow 2

Packet Allocation Packet Allocation

[0, 1) P1 h1, 1/2i N/A N/A
[1, 3) P1 h1/2, 1/4i Q1 h1/2, 1/2i
[3, 6) P1 h2/3, 1/3i Q2 h2/9, 2/3i
[6, 7) N/A N/A Q2 h1/3, 1i

h1 CPU, 1/2 Linki), leading to a maximum uniform pro-
cessing rate of 1/4. This allocation remains until time 1,
at which Q1 is ready for flow 2, competing with P1 for
both CPU and link bandwidth. Since CPU is the dominant
resource of both packets, it is evenly allocated to each of
them. As a result, P1 gets h1/2 CPU, 1/4 Linki while Q1 gets
h1/2 CPU, 1/2 Linki, where the link bandwidth is allocated
in proportion to the resource profile of the two packets. With
this allocation, it takes 2 unit time to serve Q1. Hence, at
time 3, Q2 replaces Q1 and competes with P1 for resources.
Unlike P1, Q2’s dominant resource is the link bandwidth.
The DRF allocation then allocates h2/3 CPU, 1/3 Linki to P1
and h2/9 CPU, 2/3 Linki to Q2, under which their dominant
shares are equalized (both being 2/3) and the throughput is
maximized (because the link bandwidth is already saturated).
Such an allocation maintains until P1 gets fully served at time
6. From then on, Q2 is the only packet to serve. It is then
allocated h1/3 CPU, 1 Linki and finishes at time 7.

We now formalize the description of DRF-GPS. Let us
define B(t) as the set of flows that are backlogged at time
t. These flows are competing for m middlebox resources.
For flow i 2 B(t), let wi be its allocation weight, and
h⌧i,1, . . . , ⌧i,mi be the resource profile of its packet currently
being served, where ⌧i,r is the processing time on resource r.
The dominant resource of this packet is denoted as

r⇤i = argmax

r
⌧i,r . (2)

With DRF-GPS, the current packet in flow i receives the DRF
allocation hf t

i,1, . . . , f
t
i,mi, where f t

i,r is the share of resource r
allocated at time t. The computation of hf t

i,1, . . . , f
t
i,mi follows

directly from [11], [13]. In particular, when ⌧i,r > 0 for all
flow i and resource r, the resulted dominant share has a simple
form:

f t
i,r⇤i

=

wi

maxr
P

j2B(t) wj ⌧̄j,r
, (3)

where ⌧̄j,r = ⌧j,r/⌧j,r⇤j is the normalized processing time
on resource r for flow j. We see that all flows’ normalized
dominant share are equalized, i.e.,

f t
i,r⇤i

/wi = f t
j,r⇤j

/wj , 8i, j 2 B(t) . (4)

The share of other resource r allocated is determined
based on the dominant share. Specifically, given an allocation

CPU
100%

0%
1 Time0 2

Link

50%
0%
0 21

3

3

100%

4 5 6 7

Time4 5 6 7

50%
P1
Q1
Q2

Fig. 6. An pictorial illustration of DRF-GPS for the example of Table I.

hf t
i,1, . . . , f

t
i,mi, the corresponding instantaneous throughput

(i.e., processing rate) sti is bounded by the minimum one on
all resources, i.e.,

sti(hf t
i,1, . . . , f

t
i,mi) = min

r
f t
i,r/⌧i,r . (5)

To avoid unnecessary allocation waste, one should ensure that

f t
i,r/⌧i,r = f t

i,r0/⌧i,r0 , (6)

for all resource r and r0. Now taking r0 = ri⇤ , we have

f t
i,r = f t

i,r⇤i
⌧̄i,r, for all r. (7)

DRF-GPS is an attractive multiplexing scheme to schedule
multiple resources for a number of reasons.

First, DRF-GPS offers the service protection.
Proposition 1 (Service protection): With DRF-GPS, at

any given time t, the instantaneous throughput received by a
backlogged flow is at least that resulted by allocating resources
in proportion to its weight, i.e.,

sti(hf t
i,1, . . . , f

t
i,mi) � sti(hwi/

X

j

wj , . . . , wi/
X

j

wji), (8)

for all flow i 2 B(t).
Proof: The proof follows directly from the property of

sharing incentive of the DRF allocation in [13].
Second, no scheduler manipulation is possible in DRF-GPS:
Proposition 2 (Truthfulness): No flow has the incentive

to manipulate the scheduler by misreporting its packet profile.
Specifically, for any flow i 2 B(t), let hf t

i,1, . . . , f
t
i,mi be

the resulted allocation when i truthfully reports its packet
profile h⌧i,1, . . . , ⌧i,mi, and let h ˆf t

i,1, . . . , ˆf
t
i,mi be the resulted

allocation when i misreports. We then have

sti(hf t
i,1, . . . , f

t
i,mi) � sti(h ˆf t

i,1, . . . , ˆf
t
i,mi) . (9)

Proof: The proof follows directly from the property of
strategy-proofness of the DRF allocation in [13].

Third, DRF-GPS is work conserving in that no resource
would be wasted in idle should it were used to increase a
flow’s throughput.

Proposition 3 (Work conserving): With DRF-GPS, at
least one resource is fully utilized whenever there is a packet
that has not yet finished the service. Specifically, at all time t
where B(t) 6= ;, there exists a resource r, such that

X

i2B(t)

f t
i,r = 1 . (10)

example of Fig. 1, for a packet that needs encryption before
transmission, the packet processing rate on CPU is only half
the rate on the link bandwidth. Such service mismatch makes it
impossible to fully utilize the link resource. We see in Fig. 2a
that even if 100% bandwidth is allocated for packet transmis-
sion, the link remains idle for 50% of the time. As a result,
the service received is bottlenecked on CPU. This implies
that allocating full link bandwidth for packet transmission
is unnecessary. Instead, if we only allocate 50% bandwidth
and assume that packets can be served in arbitrarily small
increments on the link resource, we will have a scheduling
outcome shown in Fig. 2b. We see that the received service
remains 1 packet per time and is the same as that in Fig. 2a.

Generally speaking, the discrepancy among processing rates
on different resources leads to allocation waste, as the received
service is bottlenecked by the minimum one across all re-
sources. Therefore, resources should be allocated in a way
such that packets are processed at the same rate. This can
be exactly realized in the multi-resource fluid model, where
packets receive the service in infinitesimally small increments
on every resource.

Formally, given some packet, let ⌧r be the processing time
on resource r when 100% of resource r is allocated to process
it. The full service rate on resource r is then 1/⌧r. Now
let fr be the share (fraction) of resource r allocated. The
corresponding service rate on resource r is fr/⌧r. A non-
wasteful allocation should have a uniform service rate across
all resources, i.e.,

fr/⌧r = fr0/⌧r0 (1)

for all r and r0. In the previous example, h⌧
1

, ⌧
2

i =

h1 CPU time, 0.5 Link timei (see Fig. 1). The allocation
h100% CPU, 50% Linki in Fig. 2b is non-wasteful with a
uniform service received on both CPU and link bandwidth
(i.e., 1 packet per time).

Here we make a key observation on non-wasteful alloca-
tions. Since resources are processed at a uniform service rate,
it is equivalent to considering all of them to be scheduled
in parallel. Fig. 5 shows an equivalent representation of
Fig. 2b, where both CPU and link bandwidth are scheduled
simultaneously. Note that such a parallel resource consumption
model is only possible in the idealized multi-resource fluid
model. With it, resource scheduling in time has an equivalent
representation of resource allocation in space, which we will
use in the next subsection.

C. Dominant Resource Generalized Processor Sharing

DRGPS implements exact DRF allocation in the fluid
model, at all times. In particular, for any packet, its dominant
resource is simply the one that needs the most time to process
when using 100% of the resource, i.e., the one with the
maximum processing time ⌧r. In Fig. 1, both P1’s and P2’s
dominant resource is CPU. The dominant share is then defined
as the fraction of the dominant resource allocated, and is 100%
for P1 and P2 in Fig. 5. At any given time, DRGPS seeks to
“equalize” the dominant share of packets across all flows (with

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link

50%
0%

Time0 21

3

3

...

...P2

100%

Fig. 5. An equivalent view of Fig. 2b, where resources are scheduled in
parallel.

TABLE I
RESOURCE PROFILES OF PACKETS IN TWO FLOWS.

Packet Flow Arrival Time hCPU,Linki
P1 Flow 1 0 h4, 2i
Q1 Flow 2 1 h1, 1i
Q2 Flow 2 2 h1, 3i

appropriate weights in the case of weighted fairness), leading
to an exact DRF allocation in the fluid flow model.

As an example, consider two equally weighted flows requir-
ing both CPU and link bandwidth. Flow 1 has one packet P1
to serve at time 0, while flow 2 has two, Q1 and Q2, arriving at
times 1 and 2, respectively. P1’s resource profile is h4, 2i. That
is, it takes 4 units of time for CPU to process P1, and 2 for
Link, both working with full utilization. The resource profiles
of Q1 and Q2 are h1, 1i and h1, 3i, respectively. Table I gives
a brief summary.

The resulting DRGPS allocation over time is given in
Table II and is also depicted in Fig. 6. At time 0, only
P1 is ready for service. Based on its resource profile,
DRGPS allocates 100% CPU and 50% link bandwidth (i.e.,
h1 CPU, 1/2 Linki), leading to a maximum uniform service
rate 1/4. This allocation remains until time 1, at which time
Q1 is ready for flow 2, competing with P1 for both CPU
and link bandwidth. Since CPU is the dominant resource of
both packets, it is evenly allocated to each of them. As a
result, P1 receives h1/2 CPU, 1/4 Linki while Q1 receives
h1/2 CPU, 1/2 Linki, where the link bandwidth is allocated
in proportion to the resource profile of the two packets.
With this allocation, it takes 2 time units to serve Q1.
Hence, at time 3, Q2 replaces Q1 and competes with P1
for resources. Unlike P1, Q2’s dominant resource is the link
bandwidth. DRGPS then allocates h2/3 CPU, 1/3 Linki to P1
and h2/9 CPU, 2/3 Linki to Q2, under which their dominant
shares are equalized and the throughput is maximized. Such an
allocation maintains until P1 gets fully served at time 6. From
then on, Q2 is the only packet to serve. It is then allocated
h1/3 CPU, 1 Linki and finishes at time 7.

We now formalize the description of DRGPS. Let us define
B(t) as the set of flows that are backlogged at time t. These
flows are competing for m middlebox resources. For flow i 2
B(t), let wi be its weight, and h⌧i,1, . . . , ⌧i,mi be the resource
profile of its packet currently being served, where ⌧i,r is the
processing time on resource r (assuming full utilization). The

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Properties of DRGPS

DRGPS achieves all desired scheduling properties

Predictable service isolation
Truthfulness
Work conservation

DRGPS therefore serves as an idealized "uid fair queueing
benchmark in the multi-resource setting

Cannot be implemented because packets are assumed to be in"nitely
divisible

18

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Packet-Based Multi-
Resource Fair Queueing

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

DRGPS offers a design guideline

Leverage the design techniques developed for the traditional
single-resource fair queueing

Schedule packets by emulating DRGPS
WFQ, WF2Q, FQS can have direct extensions to multiple resources

Approximate DRGPS without strict emulation
Estimate the work progress (virtual time) of DRGPS, e.g., SCFQ, SFQ, etc.

DRFQ [Ghodsi12] is a multi-resource SFQ extension

Serve !ows in a simple round-robin fashion
De"cit Round Robin (DRR), Smoothed Round Robin (SRR), Strati"ed Round
Robin (StRR)

20

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Schedule packets by
emulating DRGPS

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Emulating DRGPS in Real-Time

DRGPS can be accurately emulated by stamping two service
tags upon packet arrival

Virtual time v(t)

Tracks the work progress of DRGPS

Virtual starting time

The virtual time when the packet arrives the system

Virtual #nishing time

The virtual time when packet "nishes service under the DRGPS system

22

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Emulating DRGPS in Real-Time (Cont’d)

23

The definition above indicates that, when there is no back-
logged flow in the system, the virtual time is reset to 0, which
is equivalent to setting t = 0. It is hence without loss of
generality to focus on the busy period, in which there are
always packets to process, i.e., B(t) 6= ; for all t in the period.

We now consider a flow i and its sequence of packets.
Denote the kth packet of the sequence by pki , its arrival time
by aki , and the time it finishes service under DRGPS by dki .
Let h⌧ki,1, . . . , ⌧ki,mi be the packet’s profile, where ⌧ki,r is the
required processing time on resource r. We further define Sk

i

as the virtual time when packet pki starts to receive service,
and F k

i as the virtual time when pki finishes service, i.e.,

F k
i = v(dki), k = 1, 2, . . . (13)

We refer to Sk
i and F k

i as the virtual starting and finishing
times of packet pki , respectively. The following proposition
reveals their relationship.

Proposition 4: Under DRGPS, for every flow i, its virtual
starting and finishing times satisfy the following relationship:

Sk
i = max{F k�1

i , v(aki)} ,

F k
i = ⌧ki,rk⇤

i
/wi + Sk

i ,
(14)

where F 0

i = 0 for all flow i.
Proof: Let Ti(t1, t2) be the total processing time flow i

receives in the time interval (t
1

, t
2

). Let bki be the time that
pki starts to receive service, i.e.,

bki = max{aki , dk�1

i } , (15)

where we define d0i = 0. Note that all of the previous packets
of flow i are completely served by bki . We have

⌧ki,rk⇤
i
/wi = Ti(b

k
i , d

k
i)/wi

= v(dki)� v(bki) ,
(16)

where the last equality holds because flow i is backlogged
during (bki , d

k
i). By the definition of v(t), we see that it is

increasing during the busy period. Therefore, from (15), we
have

v(bki) = max{v(aki), v(dki)} . (17)

Substituting (17) to (16), we see the statement holds.
Proposition 4 provides a simple iterative algorithm to ac-

curately emulate DRGPS in real-time. Upon the arrival of
each packet, two service tags, the virtual starting time and
the virtual finishing time, are stamped, with their values
iteratively computed from (14). These service tags contain all
the scheduling information of a packet in the DRGPS system
(i.e., when the packet gets served and when it finishes) with
which the scheduling details are easily reconstructed.

Note that though DRGPS can be accurately emulated, it
cannot be implemented unless flows are served in arbitrarily
small increments. In contrast, practical service disciplines must
schedule packets as discrete entities. Under this constraint,
how to closely approximate DRGPS is a major challenge. This
challenge echos the significant efforts that have been put forth
to approximate GPS in the single-resource setting. We see

in the next section that, with DRGPS, these efforts can be
leveraged to schedule multiple resources.

IV. PACKET-BASED MULTI-RESOURCE FAIR QUEUEING

To closely approximate DRGPS, practical packet-by-packet
queueing scheme should schedule packets in a way such that
the DRF allocation is achieved over time. Two fundamental
questions therefore arise: (1) How do we measure the per-
formance gap between DRGPS and a packet-based scheme?
(2) How can a packet-by-packet alternative be designed to
closely track DRGPS? We take some initial steps towards
answering these questions, where we start off by elaborating
the performance measures.

A. Fairness Measures

Fairness is our primary concern. When there is a single
resource to schedule, two fairness metrics, Absolute Fairness
Bound (AFB) and Relative Fairness Found (RFB), are widely
adopted in the fair queueing literature [11]. Both can be
extended to the multi-resource setting.

Absolute Fairness Bound (AFB): AFB compares the work
progress of a packet-by-packet queueing scheme (real system)
with that in a referencing GPS system that receives the same
packet arrival process as in the real system. For any given
flow, AFB compares the service this flow receives in both the
real system and the referencing GPS system. The maximum
service gap is then used as a metric to measure the fairness
of a real system [11].

This idea may be directly extended to the multi-resource
setting, where a referencing DRGPS is maintained to track
the service received, which is then used to compare with
the service received in the real system. However, such a
comparison may be unfair. Since resources are processed in
parallel under DRGPS, its work progress may be far ahead
of that in real systems, in which resources are scheduled
in sequence. As a result, with AFB, some times it is hard
to tell if the discrepancy of work progress on the dominant
resource is due to unfairness of the scheduling algorithm itself
or the intrinsic advantage of the parallel resource processing
model adopted in DRGPS. Moreover, AFB is usually hard to
obtain, as it requires more involved analysis, even in the single-
resource setting [11]. It is hence less popular as compared with
RFB in the fair queueing literature [16], [7], [17].

Relative Fairness Bound (RFB): RFB is a another widely
adopted fairness metric in the fair queueing literature [16],
[11]. Without maintaining a referencing GPS system, RFB
measures the fairness of a real system by bounding the gap
between service received by a pair of backlogged flows. This
idea can also be naturally extended to the multi-resource
setting, which we shown below.

From the perspective of DRGPS, a service discipline is fair
if it equalizes all flows’ service received on their dominant
resources (see (4)) in all time intervals. This is equivalent
to allocating equal processing time on the dominant resource
across backlogged flows. Based on this intuition, we define

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Emulating DRGPS in Real-Time (Cont’d)

Upon a packet arrival, both the starting time and the #nishing
time are stamped to the packet

With the service tags, the scheduling results of DRGPS can be
fully recovered

Just like how GPS is emulated in the single-resource setting

24

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Schedule Packets by Emulating DRGPS

A referencing DRGPS system is maintained in background

Many scheduling choices are available

Packet that "nishes service the earliest in the reference DRGPS system is
scheduled "rst, e.g., WFQ, PGPS
Packets that starts service the earliest in the reference DRGPS system is
scheduled "rst, e.g., FQS
Imposing some admission control policy, e.g., WF2Q

25

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A Case Study:
Dominant Resource WF2Q

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Dominant Resource WF2Q (DRWF2Q)

A referencing DRGPS system is maintained in background

Whenever there is a scheduling opportunity

Packets that already started their service under the referencing DRGPS
system are eligible for scheduling
Among them, the one that "nishes the earliest will be scheduled

27

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A Running Example

28

Flow 1 sends P1, P2, ...

Each packet requires <1 CPU time, 2 Transmission Time>

Flow 2 sends Q1, Q2, ...

Each packet requires <3 CPU time, 1 Transmission Time>

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A Running Example

29

Finally, another line of popular scheduling schemes serve
flows in a round-robin fashion (e.g., DRR [18] and SRR
[19]), such that their received services are roughly equalized.
These algorithms could also be extended to the multi-resource
setting. Flows are still served round-robin, but the objective
is to roughly equalize the service received on their dominant
resources.

Though all three approaches above could be potentially
applied to designing packet-by-packet fair queueing schemes,
due to the space constraint, we only focus on multi-resource
WF2Q as a case study in the next section.

V. A CASE STUDY: DOMINANT RESOURCE WF2Q

As a case study, we extend WF2Q to the multi-resource
setting and analyze its performance, through which we demon-
strate the significance of DRGPS by showing that (1) how
a packet-based queueing scheme could be designed based
on DRGPS and (2) how its performance is measured using
the metrics proposed in the previous section. We start by
elaborating on Multi-Resource WF2Q.

A. Dominant Resource WF2Q

Similar to conventional WF2Q [12], Multi-Resource WF2Q
(DRWF2Q) emulates DRGPS in the background and schedules
packets based on the order of their finishing times in the
referencing DRGPS system. In particular, upon the arrival of
packet pki (i.e., the kth packet in flow i), two service tags, the
virtual starting time Sk

i and finishing time F k
i , are stamped,

with their values iteratively computed from (14). Whenever
there is a scheduling opportunity at time t, packets that already
start service under DRGPS are eligible to schedule, i.e., those
with Sk

i  v(t), where v(t) is the virtual time defined in (12).
Among these packets, the one that finishes the earliest (i.e.,
having the smallest F k

i) is scheduled.
For example, consider two equally weighted flows that

keep sending packets. Flow 1 sends P1, P2, . . . , each with
the same resource profile h1 CPU time, 2 Link timei, while
flow 2 sends Q1, Q2, . . . , each with the same profile
h3 CPU time, 1 Link timei. Note that the two flows have
different dominant resources. Fig. 8a shows the scheduling
outcome under DRGPS, based on which, the scheduling
results of DRWF2Q are computed and illustrated in Fig. 8b.
Consider time 5, at which P2 finishes its service on CPU
under DRWF2Q. Both Q2 and P3 are available for service
with the same finishing time under DRGPS. However, only
Q2 is eligible to be scheduled because at this time, the service
for P3 has not yet started under DRGPS.

In this example, DRWF2Q is shown to closely
track the progress of DRGPS, just like WF2Q does
GPS. Over time, the service received by flow 1
and flow 2 are h1/3 CPU time, 2/3 Link timei and
h2/3 CPU time, 2/9 Link timei, respectively, which are
exactly the same as that under DRGPS. A more general
analysis is presented in the next subsection.

P1
Q1

P2 P3 P4 P5 P6
Q2 Q3 Q4

P1 P2 P3 P4 P5 P6
Q1 Q2 Q3 Q4

CPU
100%

0%
3 Time0 6

Link

50%
0%

9

100%

12 15 18

Time

50%

30 6 9 12 15 18

...

...

(a) Scheduling outcome under DRGPS.

P6

P6P3Q1P1 P2 Q2 Q3P4 P5 Q4

Q1P1 P3P2 Q2 Q3P4 P5 Q4

CPU
100%

0%
3 Time0 6

Link

50%
0%

9

100%

12 15 18

Time

50%

30 6 9 12 15 18

...

...

(b) Scheduling outcome under DRWF2Q.

Fig. 8. An example of DRWF2Q, where packets are scheduled based on the
order of their finishing time in the referencing DRGPS system.

B. Performance Analysis

We now analyze the fairness performance of DRWF2Q,
using the extended RFB metric defined in Sec. IV.

Proposition 6: Under DRWF2Q, for any two flows i and
j that are backlogged in (t

1

, t
2

), we have
����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

����  4max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (23)

Proof: Let (t, ¯t) � (t
1

, t
2

) be the largest time interval
during which both flows are backlogged. That is, before time
t (after time ¯t), either flow i or j is inactive. For any time
t 2 (t, ¯t), we claim

����
Ti(t, t)

wi
� Tj(t, t)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (24)

Once (24) is proved, we see the statement holds by noting
Tl(t1, t2) = Tl(t, t2)� Tl(t, t1), l = 1, 2.

Suppose at time t, the kith packet of flow i and the kj th
packet of flow j are being served, which are denoted as pki

i

and p
kj

j , respectively. Let B(p) and E(p) be the starting and
finishing times of packet p in the referencing DRGPS system,
respectively. Also, let T ⇤

i (a, b) be the aggregate service flow
i receives on its dominant resource in (a, b) under DRGPS.
Finally, let ¯ti and ¯tj satisfy the following relationships:

Ti(t, t) = T ⇤
i (t, ¯ti) ,

Tj(t, t) = T ⇤
j (t, ¯tj) .

(25)

To show (24), it is equivalent to showing
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (26)

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness Measure

Relative fairness bound (RFB)

DRGPS has RFB = 0

30

Q1P1 P2 P3

Q1P1 P2

CPU
100%

0%
3 Time0 6

Link

0%

9

100%

Time30 6 9

...

...

Q2

Q2

P3 Q3

t

(a) Real scheduling.

P1 P2 P3

Q1

CPU
100%

0%
3 Time0 6

Link

0%

9

100%

Time30 6 9

...

...

Q2 Q3

t

(b) Service on the dominant resource.

Fig. 7. Even packets are scheduled as entities, the gap of service that two
flows received on their dominant resources could be 0.

RFB as the maximum gap of the normalized service received
on the dominant resource between two backlogged flows.

Definition 2: For any packet arrival process, let Ti(t1, t2)
be the aggregate service (processing time) flow i receives on
its dominant resource in the time interval (t

1

, t
2

). Let B(t
1

, t
2

)

be the set of flows that are backlogged in (t
1

, t
2

). We define
the Relative Fairness Bound (RFB) as

R = sup

t1,t2;i,j2B(t1,t2)

����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

���� . (18)

RFB is well justified in the multi-resource setting. The
service gap accurately reflects the fairness of the scheduler.
Intuitively, RFB measures the degree to which the DRF
allocation is violated. The smaller the measure is, the more
closely the scheme approximates DRGPS, and the fairer the
scheduler is. As an extreme example, we see that the RFB of
DRGPS is 0.

Proposition 5: The RFB of DRGPS is 0. In particular, we
have

Ti(t1, t2)

wi
=

Tj(t1, t2)

wj
, (19)

for any two flows i, j 2 B(t
1

, t
2

),
Proof: It is easy to verify that under DRGPS, for any

flow i, we have

Ti(t1, t2) =

Z t2

t1

f t
i,r⇤i

dt . (20)

By (4), we see that for any two flows i, j 2 B(t
1

, t
2

),

Ti(t1, t2)

wi
� Tj(t1, t2)

wj
=

Z t2

t1

f t
i,r⇤i

wi
�

f t
j,r⇤j

wj

!
dt = 0, (21)

for all t. This implies that the RFB of DRGPS is 0.
There is an important result regarding RFB in the tra-

ditional fair queueing literature. The well-known work of
Golestani [16] shows that no packet-by-packet queueing
scheme can achieve zero RFB, as packets are scheduled as
discrete entities. Golestani further gives a lower bound on
the maximum service gap between a pair of busy flows. This
result, however, no longer holds in the multi-resource setting,
which we show via a counter-example.

Consider two equally weighted traffic flows that keep send-
ing packets, where flow 1 sends P1, P2, . . . while flow 2 sends
Q1, Q2, Except packet P1, which requires 1 time unit
for CPU processing and 2 for link transmission, each of the
other packets requires 2 time units on both CPU and link

transmission. In this case, we can view link bandwidth as
the dominant resource of flow 1, while CPU is the dominant
resource of flow 2. As illustrated in Fig. 7a, if flow 1 and
flow 2’s packets are scheduled alternately, then both flows will
receive exactly the same amount of service on their dominant
resources at all times (see Fig. 7b), i.e.,

T
1

(t
1

, t
2

) = T
2

(t
1

, t
2

) . (22)

It is easy to see that RFB of the given schedule is 0.
This is a pleasant surprise. The example above indicates that

under some circumstance, scheduling multiple resources may
be “fairer” than scheduling a single one. The key reason here
is that, even when packets are scheduled as discrete entities,
two flows can receive service on their dominant resources in
parallel, which is impossible under the single-resource setting.
This demonstrates the significant difference between single-
resource and multi-resource scheduling.

Despite such difference, with DRGPS, the insights and
techniques derived for single-resource queueing could still be
leveraged in the multi-resource scenario. We briefly discuss
this in the next subsection.

B. Packet-By-Packet Scheduling Based on DRGPS

A significant benefit of the idealized DRGPS model is that
it enables us to leverage the extensive fair queueing literature
to design packet-by-packet scheduling algorithms. Below we
give high-level discussions on several design approaches. A
detailed case study is deferred to Sec. V.

As an analogy to the single-resource fair queueing, there
are three potential approaches for packet-based scheduling to
approximate DRGPS. First, similarly to [8], [13], [9], [12], we
can emulate DRGPS in the background, using the algorithm
in Sec. III-D, and serve packets by referencing the algorithm’s
scheduling results. Just as in the single-resource case, multiple
scheduling choices are available. For example, packets can be
scheduled based on either the order of starting time (e.g., FQS
[13]) or finishing time (e.g., WFQ [8], [9]) in the referencing
DRGPS system. A more complicated scheduling algorithm
is also possible. For example, similarly to WF2Q [12], an
admission control scheme might be applied when multiple
packets are available to schedule – those that are not yet served
in the referencing DRGPS system are ineligible for scheduling.

Second, algorithms that emulate DRGPS (or GPS) are
usually competitive in terms of both fairness and delay, but
they might suffer from high computational complexity in the
emulation process. A well-known approach to alleviate this
difficulty in the fair queueing literature is to estimate the
work progress of GPS based on packets that are currently
served (e.g., SCFQ, SFQ, etc.). Similar approaches can also
be adopted in the multi-resource setting. Since the main com-
plexity of emulating DRGPS is contributed by evaluating the
virtual time defined in (12), the key challenge is to efficiently
estimate it. The insights derived for the single-resource case
can be applied. In fact, the scheduling discipline proposed in
[6] may be considered to belong to this category of design,
although it directly extends SFQ without referencing DRGPS.

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness of Dominant Resource WF2Q (DRWF2Q)

31

Finally, another line of popular scheduling schemes serve
flows in a round-robin fashion (e.g., DRR [18] and SRR
[19]), such that their received services are roughly equalized.
These algorithms could also be extended to the multi-resource
setting. Flows are still served round-robin, but the objective
is to roughly equalize the service received on their dominant
resources.

Though all three approaches above could be potentially
applied to designing packet-by-packet fair queueing schemes,
due to the space constraint, we only focus on multi-resource
WF2Q as a case study in the next section.

V. A CASE STUDY: DOMINANT RESOURCE WF2Q

As a case study, we extend WF2Q to the multi-resource
setting and analyze its performance, through which we demon-
strate the significance of DRGPS by showing that (1) how
a packet-based queueing scheme could be designed based
on DRGPS and (2) how its performance is measured using
the metrics proposed in the previous section. We start by
elaborating on Multi-Resource WF2Q.

A. Dominant Resource WF2Q

Similar to conventional WF2Q [12], Multi-Resource WF2Q
(DRWF2Q) emulates DRGPS in the background and schedules
packets based on the order of their finishing times in the
referencing DRGPS system. In particular, upon the arrival of
packet pki (i.e., the kth packet in flow i), two service tags, the
virtual starting time Sk

i and finishing time F k
i , are stamped,

with their values iteratively computed from (14). Whenever
there is a scheduling opportunity at time t, packets that already
start service under DRGPS are eligible to schedule, i.e., those
with Sk

i  v(t), where v(t) is the virtual time defined in (12).
Among these packets, the one that finishes the earliest (i.e.,
having the smallest F k

i) is scheduled.
For example, consider two equally weighted flows that

keep sending packets. Flow 1 sends P1, P2, . . . , each with
the same resource profile h1 CPU time, 2 Link timei, while
flow 2 sends Q1, Q2, . . . , each with the same profile
h3 CPU time, 1 Link timei. Note that the two flows have
different dominant resources. Fig. 8a shows the scheduling
outcome under DRGPS, based on which, the scheduling
results of DRWF2Q are computed and illustrated in Fig. 8b.
Consider time 5, at which P2 finishes its service on CPU
under DRWF2Q. Both Q2 and P3 are available for service
with the same finishing time under DRGPS. However, only
Q2 is eligible to be scheduled because at this time, the service
for P3 has not yet started under DRGPS.

In this example, DRWF2Q is shown to closely
track the progress of DRGPS, just like WF2Q does
GPS. Over time, the service received by flow 1
and flow 2 are h1/3 CPU time, 2/3 Link timei and
h2/3 CPU time, 2/9 Link timei, respectively, which are
exactly the same as that under DRGPS. A more general
analysis is presented in the next subsection.

P1
Q1

P2 P3 P4 P5 P6
Q2 Q3 Q4

P1 P2 P3 P4 P5 P6
Q1 Q2 Q3 Q4

CPU
100%

0%
3 Time0 6

Link

50%
0%

9

100%

12 15 18

Time

50%

30 6 9 12 15 18

...

...

(a) Scheduling outcome under DRGPS.

P6

P6P3Q1P1 P2 Q2 Q3P4 P5 Q4

Q1P1 P3P2 Q2 Q3P4 P5 Q4

CPU
100%

0%
3 Time0 6

Link

50%
0%

9

100%

12 15 18

Time

50%

30 6 9 12 15 18

...

...

(b) Scheduling outcome under DRWF2Q.

Fig. 8. An example of DRWF2Q, where packets are scheduled based on the
order of their finishing time in the referencing DRGPS system.

B. Performance Analysis

We now analyze the fairness performance of DRWF2Q,
using the extended RFB metric defined in Sec. IV.

Proposition 6: Under DRWF2Q, for any two flows i and
j that are backlogged in (t

1

, t
2

), we have
����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

����  4max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (23)

Proof: Let (t, ¯t) � (t
1

, t
2

) be the largest time interval
during which both flows are backlogged. That is, before time
t (after time ¯t), either flow i or j is inactive. For any time
t 2 (t, ¯t), we claim

����
Ti(t, t)

wi
� Tj(t, t)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (24)

Once (24) is proved, we see the statement holds by noting
Tl(t1, t2) = Tl(t, t2)� Tl(t, t1), l = 1, 2.

Suppose at time t, the kith packet of flow i and the kj th
packet of flow j are being served, which are denoted as pki

i

and p
kj

j , respectively. Let B(p) and E(p) be the starting and
finishing times of packet p in the referencing DRGPS system,
respectively. Also, let T ⇤

i (a, b) be the aggregate service flow
i receives on its dominant resource in (a, b) under DRGPS.
Finally, let ¯ti and ¯tj satisfy the following relationships:

Ti(t, t) = T ⇤
i (t, ¯ti) ,

Tj(t, t) = T ⇤
j (t, ¯tj) .

(25)

To show (24), it is equivalent to showing
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (26)

Without loss of generality, we assume packet pki
i finishes

earlier than packet pkj

j under DRGPS, i.e.,

E(pki
i)  E(p

kj

j) . (27)

It suffices to consider the following two cases.
Case 1: B(pki

i) � B(p
kj

j). In this case, we have

B(p
kj

j)  ¯tl  E(p
kj

j), l = i, j. (28)

As a result,
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

���� =
����
T ⇤
j (t, ¯ti)

wj
�

T ⇤
j (t, ¯tj)

wj

����


T ⇤
j (t, E(p

kj

j))� T ⇤
j (t, B(p

kj

j))

wj

 ⌧max

j /wj ,

where the equality holds because of Proposition 5, and the
first inequality is derived from (28).

Case 2: B(pki
i) < B(p

kj

j). We consider two sub-cases.

Sub-Case 1: E(p
kj

j)  E(pki+1

i). In this case, we have

B(pki
i)  ¯tl  E(pki+1

i), l = i, j .

Hence,
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

���� 
T ⇤
j (t, E(pki+1

i))� T ⇤
j (t, B(pki

i))

wj

 2⌧max

j /wj .

Sub-Case 2: E(p
kj

j) > E(pki+1

i). In this case, we must
have

B(p
kj

j)  E(pki
i) . (29)

Otherwise, we will have

B(p
kj

j) > E(pki
i) = B(pki+1

i), (30)

where the last equality holds since flow i is busy. In other
words, packet pki+1

i starts earlier than packet p
kj

j under
DRGPS, which implies that when packet p

kj

j is scheduled
under DRWF2Q, packet pki+1

i is also eligible for service. This
contradicts the principle of DRWF2Q, as packet pki+1

i finishes
earlier than p

kj

j and should be served before p
kj

j .
With (29), we derive as follows:
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

���� 

�����
T ⇤
i (t, ¯ti)

wi
� T ⇤

i (t, E(pki
i))

wi

�����

+

�����
T ⇤
i (t, E(pki

i))

wi
�

T ⇤
j (t, ¯tj)

wj

�����

 T ⇤
i (t, E(pki

i))

wi
� T ⇤

i (t, B(pki
i))

wi

+

T ⇤
j (t, E(p

kj

j))

wj
�

T ⇤
j (t, B(p

kj

j))

wj

 ⌧max

i /wj + ⌧max

j /wj ,

where the second inequality follows from (29).
Proposition 6 directly leads to the following corollary.
Corollary 1 (RFB): The RFB of DRWF2Q is

R = 4max

i

⇢
⌧max

i

wi

�
. (31)

It is worth mentioning that the analysis above does not make
any assumptions on the resource requirement patterns of a
flow. In particular, a flow may change its dominant resource
at any time and on any packet. Note that this is not the case
in the analysis of [6] for its SFQ scheme, which holds only
when each flow has a fixed dominant resource throughout the
backlog period.

Though the case study above only focuses on WF2Q, by
emulating DRGPS, queueing schemes such as WFQ [8], [9]
and FQS [13] will have immediate multi-resource extensions.
Similar analysis can also be applied to these algorithms.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some practical concerns that are
important for real-world multi-resource fair queueing. We also
share our views on some possible future directions.

First, to accurately approximate DRGPS, the system de-
signer needs to know the processing time required by a packet
on each resource. This information can be obtained either
by packet profiling, before the packet is processed, or by
monitoring resource usage during packet processing. However,
both are expensive to implement for high-speed networks.
The former requires deep packet inspection, while the latter
needs to maintain a resource monitor. Note that none of these
approaches is needed for conventional fair queueing, for which
the only information required is the packet size and is available
in the packet header.

A possible solution is to adopt some simple estimation of
the processing time based on the packet size only. Since the
transmission time can be accurately inferred from the packet
size, such estimation is needed only for the other resources.
For example, CPU and memory bandwidth are the two most
commonly considered resources in middleboxes. The experi-
ment in [6] reveals that the processing times associated with
these two resources may be approximated by linear functions
of the packet size, suggesting that a simple estimation model
could be sufficient in practice.

Second, with increasingly common deployment of software-
defined middleboxes on commodity servers, the work com-
plexity of a queueing scheme becomes a more important con-
cern. Algorithms that require emulating DRGPS might not be
appropriate choices due to their high complexity. In such cases,
simpler scheduling algorithms with constant work complexity,
such as DRR [18], may find new application scenarios in
the multi-resource setting. The design and evaluation of these
algorithms against DRGPS could be fertile ground for future
research.

Third, besides fairness, packet delay is also an important
concern for a queueing scheme. Traditional fair queueing
literature has suggested a variety of techniques to bound the

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Conclusion

DRGPS generalizes GPS to the multi-resource setting in MBs

Offers perfect service isolation that is immune to any strategic
behaviours and is work conserving as well
Serves as a perfect multi-resource fair queueing benchmark to which
all practical alternatives should approximate

With DRGPS, techniques developed for traditional fair
queueing can be leveraged to the multi-resource setting

We design DRWF2Q as a case study and analyze its fairness
performance

32

Saturday, 29 June, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Thanks!
http://iqua.ece.toronto.edu/~weiwang/

Saturday, 29 June, 13

http://iqua.ece.toronto.edu/~weiwang/
http://iqua.ece.toronto.edu/~weiwang/

