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Neighbourhood-based Nearest Neighbour Search
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¨ Motivation 
Delaunay graph – dual of Voronoi Diagram    
For 2 dimension space
- Greedy without backtracking
- Expected log(n) steps 

Curse of dimensionality ! 



Neighbourhood-based Nearest Neighbour Search
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¨ KNN graph based methods 

¨ Small world graph based methods 

¨ Relative neighbourhood graph based methods

¨ Investigations under some specific settings 

¨ Benchmark 



KNN graph based Methods 
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¨ KNN graph 
Each point x in high dimensional space à a vertex x in the KNN graph
For it’s k nearest neighbours {y} à add a directed edge x à y 

K = 2



KNN Graph Construction 
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¨ Exact KNN graph construction

- Brute-force costs O(n2)
- Other exact algorithms, e.g., L2Knng (CIKM’15)

¨ Approximate KNN graph construction 
- Reducing to individual KNN search

e.g., based on LSH methods, but still expensive   
- Jointly find KNN for everyone, such as 

L2 distance: data partition (Jie JLMR09) , space filling curve (Connor TVVG10).  
general metric distance: Kgraph (WWW’11), etc
sparse data:  KIFF (ICDE’16), etc



Important properties for KNN graph construction
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¨ General
¨ Scalable
¨ Space efficient
¨ Fast 
¨ Accurate 



Kgraph (www’10) – Motivation 
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¨ Neighbors’ neighbors are likely to be neighbors

¨ By exploring each point’s neighbors’ neighbors, we can
¤ Recover missing true K-NN graph edges
¤ Find approximations better than current ones

missingA

B

C
Slides from Dr. Wei Dong (WWW’11)



Kgraph (www’10)
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¨ NN-Descent 

1. Initialize K-NN graph approximation
Each point randomly picks K neighbors

2. Loop, each point
Explores its current neighbors’ neighbors
Updates K-NN list if better ones are found

Until no improvements can be made

Slides from Dr. Wei Dong (WWW’11)

Implementation: https://github.com/aaalgo/kgraph

https://github.com/aaalgo/kgraph


Kgraph (www’10) - Analysis under assumptions
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Slides from Dr. Wei Dong (WWW’11)

¨ Assume growth restricted - doubling constant c :

¨ If for every x we have K points in
à explore K2 points in   
à expect to hit       points in
Set                        , and we can repeatedly improve!

¨ It should converge in           iterations (    : diameter of dataset)

r
r/2

2r

x



Kgraph (www’10),  Computation Speedup  
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Slides from Dr. Wei Dong (WWW’11)

¨ Local Join 

¨ Incremental search

¨ Sampling

¨ Early termination

B

C

B
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Search on KNN graph – Greedy heuristic 
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¨ One or more random selected starting nodes
¨ Keep on finding the closest node among unvisited neighbor nodes
¨ Terminate when there is no improvement  

In practice, a candidate node list with limited budget is used to avoid local 
optimum (beam search): 
e.g., implementation of Kgraph [https://github.com/aaalgo/kgraph] from Dr. Wei Dong

X0

X1

[e.g., ChávezEric MCPR’10, Hajebi ICJAI’11, k-DR KDD’11 ]

X2

X3

q

https://github.com/aaalgo/kgraph


Vairants of kNN graph
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¨ Sparsification of KNN graph (k-DR KDD’11)

¨ Diversified KNN graph (DPG TKDE’20, CoRR’16)

¨ Pruned Bi-directed KNN graph (PANNG, SISAP’16)



k-DR KDD’11 
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¨ k-DR graph: Degree reduced undirected kNN graph

Slides from Prof. Sawada (KDD’11)



k-DR KDD’11
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Slides from Prof. Sawada (KDD’11)



DPG TKDE’20, CoRR’16
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¨ DPG: Diversified Proximity Graph 
(https://github.com/DBWangGroupUNSW/nns_benchmark/tree/master/algorithms/DPG)  

Build KNN graph, then (1) choose K/2 diversified neighbours; (2) add reverse edge when 
necessary



PANNG, SISAP’16
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¨ PANNG : Pruned bi-directed KNN graph   
(https://github.com/yahoojapan/NGT)  

(1) bi-directed edge;  (2) remove edges according to distance & connectivity 

https://github.com/yahoojapan/NGT


Neighbourhood-based Nearest Neighbour Search
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¨ KNN graph based methods 

¨ Navigable small world graph based methods 

¨ Relative neighbourhood graph based methods

¨ Investigation under some specific settings 

¨ Benchmark 



NSW IS'14
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Slides from Dr. Malkov (IS’14)

Problem: Long paths in proximity 
graphs. 

Idea: Social networks are searchable 
e.g. Milgram experiment. 



NSW IS'14
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Slides from Dr. Malkov (IS’14)

Problem: Long paths in proximity graphs. 

Idea: Social networks are searchable e.g. 
Milgram experiment. 

Solution: Just add “long” links (e.g. with 
NSW algorithm) to get log(N) hops.



Construction of SW graph
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q Randomized neighbourhood graph (SODA’93)
Based on distance &  randomly assigned rank

q Navigable small world (NSW) graph (IS’14)
Incremental construction of NSW graph: 
(1) k-NNS for each new node; 
(2) updates it’s neighbours after other nodes are inserted (keep old edges)   



HNSW TPAMI’20, CoRR’16
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Slides from Dr. Malkov (TPAMI’20)

N2=N/4

N1=N/2

N0=N

● In HNSW we split the graph into layers 
(fewer elements at higher levels) 

● Search starts for the top layer. Greedy 
routing at each level and descend to 
the next layer.

● Maximum degree is capped while 
paths ~ log(N) → log(N) complexity 
scaling.

● Incremental construction 



HNSW implementation
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Slides from Dr. Malkov (TPAMI’20)

q Carefully implemented in C/C++:
https://github.com/nmslib/nmslib (2.1k stars)
https://github.com/nmslib/hnswlib (1k stars)

q Third-party open-source implementations in Java, C#, Rust, Go, Python, Julia, 
including the ones by Facebook (Faiss) and Microsoft (HNSW.Net)

q Used in production in Amazon, Snapchat, Yandex, Twitter, Pinterest and 
other s. 

`

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib


Neighbourhood-based Nearest Neighbour Search
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¨ KNN graph based methods 

¨ Small world graph based methods 

¨ Relative neighbourhood graph based methods

¨ Investigation under some specific settings 

¨ Benchmark 



Relative Neighbourhood graph
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¨ Relative Neighbourhood Graph (RNG)

Vertices u and v are connected if there is no vertex in the 
intersection of the two balls.

Brute-force costs O(n3)



FANNG CVPR’16
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Occlusion definition Diagram form

q In practice, the trade-off between recall and computational  cost is managed by
placing  a hard limit on the number  of distances that will be  computed.

Slides from authors 



NSG VLDB’19
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¨ Monotonic Path
distance to the end point monotonically decrease 

¨ Monotonic Search Network (MSN)
Any pair of nodes x, y, there is at least one monotonic path  

property: if q is a node of network, start from any node, 
we can find exact NN with greedy search (no backtracking !)

¨ Relative Neighbourhood Graph (RNG) 
is not a MSN [Dearholt SSC'88] 

When the search goes from p to q,
the path is non-monotonic (e.g., rq < pq) 



NSG VLDB’19
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¨ Monotonic Relative Neighbourhood Graph (MRNG)

RNG

For any edge  

Add edges -> ensure the existence of monotonic path 

The search from p to q is straightforward



NSG VLDB’19
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¨ Navigating Spreading-out Graph (NSG)：approximate MRNG

¨ Build an approximate kNN graph.
¨ Find the Navigating Node. (All search will start with this fixed 

node – center of the graph ).
¨ For each node p, find a relatively small candidate neighbour 

set. (sparse)
¨ Select the edges for p according to the definition 

of MRNG. (low complexity)
¨ leverage Depth-First-Search tree (connectivity)



Neighbourhood-based Nearest Neighbour Search
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¨ KNN graph based methods 

¨ Small world graph based methods 

¨ Relative neighbourhood graph based methods

¨ Investigation under some specific settings 

¨ Benchmark 



How ML can help? 
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¨ Learning to Route in Similarity Graphs (ICML’19)

Slides from ICML’19

• Greedy routing: Pick the best neighbor of the current vertex
• Beam search: Expand the most promising vertex in the candidate pool
•New method: Learn a routing algorithm directly from data



How ML can help? 
31

¨ Learning to Route in Similarity Graphs (NIPS’19)
1.Imitation Learning: Train the  agent to imitate expert

decisions
2.Agent is a beam search based  on learned vertex

representations
3.Expert encourages the agent to  follow a shortest path to the  

actual nearest neighbor v∗

Slides from ICML’19



How ML can help? (2)
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¨ Learned adaptive early termination (SIGMOD’20)
- Consider the IVF index and HNSW index 
- Get features
- Apply the decision tree models (Gradient boosting decision trees)
- Integrated into the existing search algorithm 



Neighbourhood-based graph under other settings 
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q Dealing with billion-scale data in a single machine 
HNSW +  Vector quantization (e.g., ECCV’18, CVPR’18, GRIP CIKM’19, SIGMOD’20)

- Increase the number of regions in the inverted (multi-) index (larger codebook) 
- Use HNSW for fast search of promising regions 

Slides from Dr. Baranchuk (ECCV’18)



Neighbourhood-based graph under other settings 
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q Non-metric distance 
- SISAP’19, 
- Maximum Inner Product (MIP) distance: ip-NSW (NeurIPS’18), IPDG (EMNLP’19), 

ip-NSW+ (AAAI’19)

Slides from Prof. Chen and Dr. Yao (AAAI’19)

Dataset
Index 

Building

Inner Product Proximity Graph

Query
Processing

Angular Distance Proximity Graph

Query
q

Angular 
Distance
Proximity 
Graph

Inner Product 
Proximity Graph

MIPS neighbor of 
Angular neighbors



Neighbourhood-based graph under other settings 
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q GPU (SONG ICDE’20, CoRR’13)

¨ External memory (Zoom CoRR’18)

¨ Distributed computing ( JPDC'07)



Neighbourhood-based Nearest Neighbour Search
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¨ KNN graph based methods 

¨ Small world graph based methods 

¨ Relative neighbourhood graph based methods

¨ Investigation under some specific settings 

¨ Benchmark 



Benchmarks for ANNS on high dimensional data
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q https://github.com/erikbern/ann-benchmarks (NNS Benchmark IS'19)

¨ https://github.com/DBWangGroupUNSW/nns_benchmark (DPG 
TKDE’20, DPG CoRR’16)

¨ Many implementations/Libraries are public available, e.g.,:
- Non-Metric Space Library (NMSLIB) https://github.com/nmslib/nmslib available for Amazon 

Elasticsearch Service

- NGT (https://github.com/yahoojapan/NGT/wiki)

- FLANN http://www.cs.ubc.ca/∼mariusm/flann

- ANN http://www.cs.umd.edu/~mount/ANN

https://github.com/erikbern/ann-benchmarks
https://github.com/DBWangGroupUNSW/nns_benchmark
https://github.com/nmslib/nmslib
https://github.com/yahoojapan/NGT/wiki


Benchmark (DPG TKDE’20, CoRR’16)
38

Why do we need ANNS benchmark  
¨ Coverage of competitor Algorithms and Datasets from different areas
- 16 representative algorithms   - 20 real-life datasets and two synthetic dataset

¨ Overlooked Evaluation Measures/Settings
- 7 measurements (e.g., search time, quality, scalability, index time/size, robustness, updatability, tuning of 
parameters 

¨ Discrepancies in existing results
¨ Comparison fairness. Scope:  
- L2 distance
- Dense vector 
- No hardware specific optimizations (e.g., multi-threads, SIMD instructions, hardware pre-fetching, or GPU)  

- Exact kNN as the ground truth



Benchmark (DPG TKDE’20, CoRR’16)
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Benchmark (DPG TKDE’20, CoRR’16)
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