
Efficient Processing of Group-Oriented Connection
Queries in a Large Graph

James Cheng
School of Computer

Engineering
Nanyang Technological
University, Singapore

jamescheng@ntu.edu.sg

Yiping Ke
Department of Systems

Engineering and Engineering
Management

Chinese University of Hong
Kong, Hong Kong

ypke@se.cuhk.edu.hk

Wilfred Ng
Department of Computer
Science and Engineering
Hong Kong University of
Science and Technology,

Hong Kong
wilfred@cse.ust.hk

ABSTRACT
We study query processing in large graphs that are funda-
mental data model underpinning various social networks and
Web structures. Given a set of query nodes, we aim to find
the groups which the query nodes belong to, as well as the
best connection among the groups. Such a query is useful
to many applications but the query processing is extremely
costly. We define a new notion of Correlation Group (CG),
which is a set of nodes that are strongly correlated in a
large graph G. We then extract the subgraph from G that
gives the best connection for the nodes in a CG. To facilitate
query processing, we develop an efficient index built upon
the CGs. Our experiments show that the CGs are mean-
ingful as groups and importantly, the meaningfulness of the
query results are justifiable. We also demonstrate the high
efficiency of CG computation, index construction and query
processing.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: Connection query, correlated group, social net-
works

1. INTRODUCTION
Graph is known as the most general data model for repre-

senting and understanding objects and their relationships in
various application domains. In recent years, graph databases
have become more in use and the volume of graph data in-
creases rapidly. Thus, it is important to develop efficient
algorithms for processing queries in graph databases.

Let W = (VW , EW) be a graph, where VW and EW are
the set of nodes and edges in W. The nodes in VW are
uniquely labeled and the edges in EW are undirected and
weighted. We call W a uniquely-labeled weighted graph, or
simply a graph in this paper. Given a set of query nodes,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Q, the query processing problem we study in this paper is
described as follows:

1. Find the group to which each query node q ∈ Q be-
longs, where the group of q is a set of nodes in W that
are mostly correlated to q as measured by a correlation
score.

2. For the group of each q ∈ Q, extract a subgraph from
W that gives the best connection for the nodes in the
group by maximizing a correlation score.

3. Compute the best connection among the groups of all
q ∈ Q in W, which is the answer to the query.

We name such a query a group-oriented connection query.
Group-oriented connection queries are important to a wide
range of applications. For example, how organizations and
people do business together, how terrorists plan and conduct
terrorist activities together and how the different terrorist
groups are related to each other, and how the various social
networks behave. It can also be applied to other domains
such as gene regulatory networks, viral marketing, the In-
ternet, and many more.

One of the challenges in processing group-oriented con-
nection queries is the formation of groups for different query
nodes. Consider two nodes in the graph, how do we decide
whether they are in the same group or not? A common way
is to consider every maximal clique as a group. However,
in many cases we cannot simply consider only the edge con-
nection, especially when some edges between the nodes in
the clique may have very low edge weight while others have
very high edge weights. Therefore, the nodes that belong to
the same clique may not really mean that they have close
connection with all other nodes. On the contrary, many
other structures, such as a star or a ring, may well repre-
sent a significant relationship between the nodes and can be
considered as a group.

In literature, the proximity graph [4] and the center-piece
subgraph (CEPS) [8] may be considered as a group. How-
ever, the computation of the proximity graph and the CEPS
is costly in general, especially for a large graph. Community
detection [7, 10, 3, 6, 1] can be employed to define groups in
a graph as communities; however, communities are usually
disjoint with each other, whilst in a large graph such as a
social network, many people may belong to different groups
at the same time.

We define groups by considering the relation between nodes
in a graph. The relation of one node u to another node v is
measured by a relevance score based on the concept of Ran-
dom Walk with Restart (RWR) [9]. There are many ways to
define the relevance measure, such as the shortest path and
the maximum flow. However, these measures are shown to
be inadequate in capturing the relation between two nodes
[2]. On the other hand, RWR is robust to various graph
structures and has been shown to be able to capture the
relationship between people in social networks [8, 9].

Based on the node relation, we define group, called a Cor-
relation Group (CG), as the set of nodes that are pair-wise
related with each other. To avoid redundancy, we require a
CG to be the maximum set of nodes that are correlated. For
each CG, we also extract a subgraph, called a Correlation
subgraph (C-graph), that reflects the correlation or relation
among the nodes.

To facilitate query processing, we develop an inverted-
index built upon the set of CGs. We devise efficient al-
gorithms for both the index construction and the query pro-
cessing. Our extensive experiments demonstrate the mean-
ingfulness of the CGs and the C-graphs, which are shown
to indeed capture the relation among the nodes as a group.
The results also show the efficiency of the index construction
and query processing. We also justify the meaningfulness of
our query answer.

2. CORRELATION GROUPS
We start by defining the notion of a group in a graph
W (See Section 1 for the definitions of a graph and our
problem). Semantically, a group refers to a set of objects
that have a certain “group” relation with each other such
that they are regarded as belonging together. We first define
this “group” relation.

We define correlation between two nodes as follows.

Definition 1 (Correlation). Let u and v be two nodes
in W. Let r(u, v) be the relevance score from u to v. Let
σ be a predefined minimum relevance threshold. Then, u

is related to v if r(u, v) ≥ σ; u and v are correlated if
r(u, v) ≥ σ and r(v, u) ≥ σ.

The relevance score r(u, v) in Definition 1 is a measure to
quantify the degree of the relation from u to v. We can adopt
a specific measure to suit the need of a specific application.
For general purpose, in this paper we use Random Walk with
Restart to define the relevance score, for its robustness to
various graph structures.

After defining the correlation between two nodes, we can
now extend the correlation to a set of nodes as follows.

Definition 2 (Correlated Nodeset). Let U be a set
of nodes in W. U is a Correlated Nodeset (CN) if ∀u, v ∈
U , r(u, v) ≥ σ.

It follows from Definition 2 that every node in a CN must
be correlated to all nodes (including itself) in the CN. How-
ever, the definition of CN reveals that every subset of a CN
is also a CN. If we define a group to be a CN, then there
are exponentially many groups, the majority of which share
many common nodes. To address this problem, we define a
group to be a maximal CN as follows.

Definition 3 (Correlation Group). Let U be a set of
nodes in W. U is a maximal CN if U is a CN and ∄U ′ ⊃ U

such that U ′ is a CN. U is said to be a Correlation Group
(CG) if and only if U is a maximal CN. A CG U is assigned
a correlation score, r(U), as given by the following equation:

r(U) = MIN{r(u, v) : u, v ∈ U}.

For computing the CGs, we only require those relevance
scores that are no less than σ. We define a graph Gscore

based on the relevance scores as follows. The set of nodes in
Gscore is the set of nodes in W. For any two nodes u and v

in Gscore , there is an edge (u, v) in Gscore if r(u, v) ≥ σ and
r(v, u) ≥ σ. It is not difficult to see that the set of CGs is
just the set of maximal cliques in Gscore . We can then apply
any existing algorithm for computing the set of CGs.

3. INDEX CONSTRUCTION
In this section, we devise an index for processing group-

oriented connection queries.
First, given the set of CGs, CG, we construct an inverted-

index on CG. We define the structure of the inverted-index
as follows.

Definition 4 (CG-Index). An inverted-index constructed
on CG, called the CG-index, consists of the following com-
ponents:

• CG Arrays (CGA): a two dimensional array which
stores CG, where each array CGA[i] stores the set of
CGs, S, where each CG in S consists of exactly i

nodes. The CGs in each CGA[i] are sorted in descend-
ing order of their correlation scores.

• Node Array (NA): an array stores the set of nodes,⋃
U∈CG

U .

• ID-array: for each distinct node u in the NA, we as-
sociate with u the set of IDs of the CGs that contain
u. The set of IDs is organized by the size of the cor-
responding CGs. The IDs of the CGs that are of size
i (i.e., the CGs in CGA[i]) are grouped together in an
array, called the size-i ID-array of u.

We assign the ID of a CG as follows. Let CGA[i][j] be the
j-th entry in CGA[i]. We assign the CG stored in CGA[i][j]
an ID j.

Constructing the CG-index, as shown in Algorithm 3, is
straightforward and efficient. Let U be the CG in CGA[i][j].
We add the ID of U , which is j, to the end of the size-i ID-
array of each node u ∈ U . The ID-arrays of the nodes are
accessed via a link in the NA, while the nodes in the NA
can be efficiently accessed via a hashtable.

After we obtain the CGs of the query nodes, we still need
to find how the nodes in a CG are connected with each
other. Let U be a CG and GU be the subgraph that gives
the best connection among the nodes in U . We call GU the
correlation subgraph (or C-graph for short) of U . Different
methods may be used to compute GU . For example, we
may define GU as the induced subgraph of W by U , or we
may connect the correlated nodes in U by the shortest paths
between them. Since we define correlation by relevance score
based on RWR, we use an RWR-based approach to compute
GU by an algorithm similar to that in [1] (Section V.C).

Algorithm 3 BuildIndex

Input: CG.
Output: The CG-index built on CG.

1. Store U ∈ CG in CGA[i], where |U | = i;
2. Sort the CGs in each CGA[i] in descending order of

their correlation scores;
3. for each j = 1, 2, . . . , in each CGA[i] do

4. for each u ∈ U in CGA[i][j] do

5. Insert u into the NA if u is not yet in the NA;
6. Add j to the end of the size-i ID-array of u;

However, after finding the groups, we also need to com-
pute the connection between the groups. For this purpose,
we model the relation between the CGs in a graph as follows.

Definition 5 (CG-Graph). A CG-graph is a weighted,
undirected graph G = (VG, EG) defined as follows:

• The set of nodes VG in G is the set of CGs CG.

• The set of edges EG in G and the corresponding edge
weight are defined as follows:

– EG = {(U, V) : U, V ∈ CG, and ((∃(u, v) ∈ EW s.t.
u ∈ U and v ∈ V) or (∃u ∈ U s.t. u ∈ V))}.

– The weight of each edge (U, V) ∈ EG is defined as
w(U,V) = AVG{(r(u, v) + r(v, u)) : u ∈ U, v ∈
V, and ((u, v) ∈ EW or u = v)}.

Intuitively, in Definition 5 we construct the CG-graph G
by connecting any two CGs if there is an edge between them
in W or if they share any common nodes. In other words,
two CGs are connected in G if and only if they are connected
in the original graphW. Since we measure the correlation by
the relevance scores, we also assign the weights of the edges
as the average relevance scores of the nodes that connect the
two CGs.

4. QUERY PROCESSING
In this section, we discuss how we process a query using

the CG-index and the CG-graph.
Given a set of query nodes, Q, we find the set of CGs that

contain all nodes in Q by the algorithm FindCG as shown
in Algorithm 4.

FindCG first finds the set of all maximal CNs in Q. The
purpose of this step is to group the correlated nodes in Q

first. Since Q is small, it is efficient to find all maximal CNs
in Q.

The CNs that are maximal in Q may not be maximal
in the global W; therefore, in Lines 3-10 of Algorithm 4,
FindCG uses the CG-index to find the CG that contains each
of the maximal CNs in Q. For each maximal CN U , we begin
with the size-|U | ID-arrays of each node u ∈ U . We skip all
size-i ID-arrays, for i < |U |, because the CGs whose IDs
are in a size-i ID-array cannot contain U . The algorithm is
simple, as we only need to intersect the size-i ID-arrays and
obtain the first CG returned by the intersection. Finally, we
return the set of all CGs obtained, which contains all nodes
in Q.

According to the way that the CG-index is constructed,
the first CG obtained by the intersection is the smallest CG

Algorithm 4 FindCG

Input: The CG-index, and a set of query nodes Q.
Output: The set of CGs that contains all nodes in Q, CQ.

1. CQ ← ∅;
2. Find the set of all maximal CNs in Q;
3. for each maximal CN, U , do

4. for each i = |U |, |U |+ 1, . . . , n,
where n is the size of the largest CG, do

5. Intersect the size-i ID-array of u, ∀u ∈ U ;
6. if(the intersection returns an ID, j)
7. Add the CG in CGA[i][j] to CQ;
8. Go to Line 3 and continue with next U ;
9. else if(the intersection reaches the end of

the size-i ID-array of some u)
10. Go to Line 4 and continue with next i;
11. return CQ;

that contains U . Here, we favor a smaller CG because the
smaller the CG, the larger proportion is U in the CG. When
there is a tie between CGs of the same size, the first CG
obtained has the highest correlation score since their IDs
are ordered according to their correlation scores in the ID-
arrays.

Next, we compute the best connection among the CGs.
We model the problem as a Steiner tree problem as follows:
given the CG-graph G and a set of CGs CQ, find a subtree
of minimal weight which includes all CGs in CQ. However,
before we can apply the Steiner tree model, we need to first
transform the weight of each edge in G into its inverse, since
we are finding the minimum-weight tree.

The minimum-weight Steiner tree problem has a fast al-
gorithm [5] that achieves 2-approximation and a complexity
of |CQ|

2O(|VG | log |VG |), where |CQ|
2 is usually a small con-

stant.
Note that each node in the minimum-weight Steiner tree

is a CG; for clearer visualization, we can display the query
answer as the Steiner tree, but allow the user to click into
a CG to view the detailed relationship between the nodes
when he/she is interested.

5. EXPERIMENTAL RESULTS
We assess the performance of CG computation, index con-

struction and query processing. We run all experiments on
an AMD Opteron 248 with 1GB RAM, running Linux 64-
bit.

We use the DBLP co-authorship dataset. The graph has
approximately 316K nodes and 1,834K edges, where a node
represents an author and the edge weight is the number of
papers co-authored between two authors. Due to space limit,
we only report part of our results.

5.1 Performance of Query Processing
In this experiment, we examine the performance of query

processing. We select three sets of queries as follows.

• CorQ: for each query in the set, all the query nodes
are randomly selected from some CG.

• RelQ: for each query in the set, the query nodes are
randomly selected from some CG and those nodes that
are related to the nodes in the CG.

• RandQ: for each query in the set, the query nodes are
randomly selected from the set of nodes in the entire
DBLP graph.

The three sets of queries represent three categories of cor-
relation between the nodes in a query. For each query in
CorQ, the nodes are highly correlated with each other within
the query. For each query in RelQ, only part of the nodes in
the query are highly correlated while the rest of the query
nodes are only related to others (one-way relation). For each
query in RandQ, the nodes within the query are likely not
correlated nor related.

We further classify each set of queries into five groups
(each containing 1000 queries) by varying the size of the
queries from 2 nodes to 20 nodes. Figure 1 shows the re-
sults of the query response time averaged over 1000 queries.
The response time increases linearly with the increase in the
query size. However, the worst response time for queries of
20 nodes is still less than 700 µsec. Overall, the query per-
formance is impressive as the response time is measured in
µsec. This experiment demonstrates the efficiency of our
CG-index and the C-graph extraction algorithm.

2 5 10 15 20
0

100

200

300

400

500

600

700

Query Size

T
im

e
(µ

s)

CorQ
RelQ
RandQ

Figure 1: Response Time Vs Query Sizes

5.2 A Case Study
We describe a case study to assess the quality of the query

answers. We select a query with the following four authors:

• Founders of Google: Sergey Brin and Lawrence Page

• Founders of Yahoo! : Dave Filo and Jerry Chih-Yuan
Yang

Due to space limit, we only show one full C-graph, at
the top shaded region of Figure 2, which corresponds to the
CG, {Sergey Brin, Lawrence Page}. The correlation score
of the C-graph is 0.01. The C-graph consists of nine per-
sons. Among the nine persons, Page is related to Brin, Cho,
Garcia-Molina, Motwani, and Winograd. However, apart
from Brin, Page has only one collaboration with the others.
The reason that Page is related to them is because Page has
only three publications and these five persons are all the co-
authors. Page has two out of three papers with Brin, thus
they are correlated. But the other scholars are not related to
Page or Brin since they have a large number of publications
with other people. As a result, although the C-graph may
seem to be complicated, it reflects the true and significant
information of Brin and Page regarding to their academic
publications.

For the founders of Yahoo!, since Filo and Yang do not
have any paper co-authored, they are separated in two C-
graphs. We show the two C-graphs by the shaded region at
the bottom of Figure 2 (only those very closely related au-
thors are shown), which shows that both Filo and Yang are
related to De Micheli who links the two C-graphs together.�����������������������Terry Winograd Hector Garcia-Molina Jeffrey D. Ullman

Junghoo Cho Lawrence Page Rajeev Motwani

Rajeev Rastogi Sergey Brin Kyuseok Shim

Abraham
Silberschatz

Sharad
Mehrotra

Paul D.
Franzon

Seth Copen
Goldstein

David
C. Ku

Giovanni
De Micheli

James A.
Rowson

Edwin A.
Harcourt

Dave Filo Luca Benini Jerry Yang
Maurizio
Damiani

7 13

1

1

1 1

1

1

1 1
9

8

32

2 2

6

25
44 11

13 4 1

1

113

1 1 36
3

5

3

Figure 2: Relationship between the Founders of

Google and Yahoo!

The overall answer graph depicted in Figure 2 reveals the
relationship between the founders of Google and Yahoo!. Ev-
ery edge in Figure 2 has a relevance score of at least σ, which
implies a strong correlation or relation between the two au-
thors linked by the edge. The computation of this answer
graph takes only 0.016 second.

6. CONCLUSIONS
We propose an effective group formation technique that

classifies the nodes in a large graph into meaningful groups
called CGs. The notion of CG reflects the correlation among
all the nodes within a CG. We develop an index for efficient
query processing. Experimental results verify the meaning-
fulness of the CGs and C-graphs and demonstrate the effi-
ciency of our algorithms.

7. REFERENCES
[1] J. Cheng, Y. Ke, W. Ng, and J. X. Yu. Context-aware object

connection discovery in large graphs. In ICDE, pages 856–867,
2009.

[2] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In KDD, pages 118–127, 2004.

[3] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The web as a graph: Measurements, models, and
methods. In COCOON, pages 1–17, 1999.

[4] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity in networks. In KDD, pages 245–255,
2006.

[5] K. Mehlhorn. A faster approximation algorithm for the steiner
problem in graphs. Inf. Process. Lett., 27(3):125–128, 1988.

[6] M. E. J. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69:066133, 2004.

[7] D. J. D. S. Price. Networks of scientific papers: The pattern of
bibliographic reference indicates the nature of the scientific
research front. Science, 149.

[8] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006.

[9] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[10] S. Wasserman and K. Faust. Social network analysis.
Cambridge University Press.

