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ABSTRACT
RFID (radio frequency identification) technology has been widely
used for object tracking in many real-life applications, such as in-
ventory monitoring and product flow tracking. These applications
usually rely on passive RFID technologies rather than active ones,
since passive RFID tags are more attractive than active ones in
many aspects, such as lower tag cost and simpler maintenance.

RFID technology is also important for indoor location tracking
systems that require high degree of accuracy. However, most ex-
isting systems estimate object locations by using active RFID tags,
which usually incur localization error of more than one meter. Al-
though recent studies begin to investigate the application of passive
tags for indoor location tracking, these methods are far from de-
ployable and research of this application is still in its infancy.

In this paper, we propose a new indoor location tracking sys-
tem, named PassTrack, which relies on the read rates of passive
RFID tags for location estimation. PassTrack is designed to tolerate
noise arising from external environmental factors, by probabilisti-
cally modeling the relationship between tag read rate and tag-reader
distance, and updating the model parameters based on the current
readings of reference tags.

Besides tolerance of noise, PassTrack is also outstanding in terms
of localization accuracy and efficiency. Several new approaches for
location inference are supported by PassTrack, and the best one in-
curs an average error of around 30 cm, and is able to carry out over
7500 location estimations per second on an ordinary machine. Fur-
thermore, as a result of using passive RFID tags, PassTrack also
enjoys the many other benefits of passive RFID tags mentioned be-
fore. We have conducted extensive experiments on both real and
synthetic datasets, which demonstrate that our PassTrack system
outperforms the previous localization approaches in localization
accuracy, tracking efficiency and space applicability.
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1. INTRODUCTION
A variety of methods have been proposed for the purpose of ob-

ject location tracking, such as those based on GPS, ultrasound, in-
frared and RFID [10]. While GPS-based localization systems are
widely utilized for outdoor environments, the GPS technology has
poor performance for indoor applications, due to its requirement of
line-of-sight signal reception from the satellites. For indoor loca-
tion tracking, RFID-based localization technologies have become
popular due to the simplicity of attaching tags to target objects, as
well as their better tolerance to errors.

There has been over a decade of research on RFID localization,
most of which make use of active tags [1, 9, 14] due to their long
read range of up to 100 meters. Recently, passive RFID tags are
advocated in several studies [3, 6, 10] for location estimation, since
they are more attractive than active ones in the following aspects:

• Lower cost. The cost of a passive tag is significantly lower
than that of an active tag, and therefore passive tags are suit-
able for those applications where tracking tags are used in a
one-off manner. (e.g. inventory monitoring and product flow
tracking).

• Easier maintenance. Active tags are battery-powered and
thus have limited lifetime. For a system using a large set of
active tags, the long term maintenance process (e.g. battery
replacement) can be complex and costly.

• Smaller error. Localization systems that are based on ac-
tive tags usually incur meters of error [1], which is too large
for some indoor applications (e.g. resident monitoring in an
elderly house).

Despite the above benefits, most existing research and applica-
tions on passive RFID tags simply focus on determining the general
existence or non-existence information within the range of RFID
detection [2, 3, 5, 6, 8], and research on location estimation using
passive tags is still in its infancy.

However, high-accuracy object location estimation is desired for
many applications, such as tracking equipment and personnel in
hospitals, and providing location-specific information in supermar-
kets, museums and libraries. For example, the PlaceLab Couple 1
Dataset1 records the RFID tagging data about a one month stay of
a couple in the PlaceLab. In this application, the activities “using
a computer” and “sleeping deeply” of a subject cannot be differ-
entiated by an active-tag-based localization system, if the bed is
only one meter away from the computer desk. Other applications

1http://architecture.mit.edu/house_n/data/
PlaceLab/PLCouple1.htm



include using the estimated trajectory data for trajectory mining us-
ing existing algorithms [15, 16, 17, 18] which can tolerate a certain
degree of inaccuracy.

In this paper, we propose a passive RFID system for real-time in-
door location tracking, named PassTrack, which translates streams
of raw RFID readings into estimated object trajectories with high
efficiency. This is important for many database applications involv-
ing RFID data.

Our main contributions are summarized as follows:

• Novelty: We are the first to model the relationship between
tag read rate and tag-reader distance by a sigmoid curve,
while earlier studies use over-simplistic models such as piece-
wise constant functions [3]. This reader detection model is
integrated into a sound probabilistic inference model that en-
ables efficient location inference.

• Noise Tolerance: PassTrack learns the reader detection mod-
els online, and is thus able to dynamically adapt the detection
model to the changing environment.

• Localization accuracy: We propose several new algorithms
for indoor location tracking based on the read rates of pas-
sive RFID tags. Our system estimates the location of a con-
stantly moving object (or a static object) with an average er-
ror of around 30cm (or below 20cm), which is several times
smaller than that of the LANDMARC system [1] that uses
active tags.

• Tracking efficiency: Our most accurate algorithm (and thus
the slowest due to its heavier computational overhead) is able
to perform over 7500 location estimations per second on an
ordinary computer, which is still orders of magnitude faster
than the sampling-based method of [3].

• Space applicability: We demonstrate that our approach can
estimate object locations in a much larger area than that re-
ported in the state-of-the-art work of [10].

The rest of the paper is organized as follows: Section 2 intro-
duces the components of the PassTrack system, including the adap-
tive reader detection model and the likelihood-based location infer-
ence model. The former is further described in Section 3, and the
latter is explained in detail in Section 4. In Section 5, we report
extensive experiments which verify that our approach is superior to
the existing methods in both localization accuracy and efficiency.
Finally, we review the related work in Section 6, and conclude the
paper in Section 7.

2. PASSTRACK SYSTEM
The setting of our tracking system is outlined as follows: We use

n RFID readers/antennae {R1, R2, . . ., Rn}, m passive reference
tags {T1, T2, . . ., Tm}, and u passive tracking tags {O1, O2, . . .,
Ou} to track u objects. The key to our approach is to decouple the
reader detection model from the location inference process:

• For each reader/antenna Ri, its detection model is “learned”
from the current read rate of the reference tags dynamically,
where the read rates are determined from the readings.

• Using the learned reader detection models, for each tracking
tag Oi, we find its most likely location based on the observed
read rate of Oi from each reader.

This decoupling strategy is important for PassTrack. While ex-
ternal factors such as changes in temperature and humidity, and the
number of objects nearby may influence the detection performance
of a reader, our approach is able to dynamically adapt the detec-
tion model to the changing environment, due to the online learning
of the reader detection models. We elaborate on these parts in the
following two sections.

3. READER DETECTION MODEL

3.1 Reader Detection Model Learning
The location inference model of PassTrack relies on the reader

detection model, which estimates the distance of a tag to an RFID
antenna, by the readings of that tag received by the antenna. RSSI
(received signal strength indicator), which is widely adopted in the
active-tag-based systems [1, 9, 11, 12, 14], is usually not available
for passive tags [10]. Therefore, we leverage the read rate informa-
tion for distance estimation.

The read rate of a tag by an antenna is usually estimated by the
tag response count in a fixed number of interrogation cycles sent
from the antenna. For example, if an antenna detects the response
from a tag in 3 out of a series of 10 interrogation cycles, the read
rate is estimated to be 0.3.

We formally define the reader detection model as follows:

DEFINITION 1 (READER DETECTION MODEL). The reader
detection model of a reader/antenna R is a function p(ℓ) such that,
given the Euclidean distance ℓ = ||T, R|| between a tag T and the
reader R, returns the expected read rate of T by R.

Both [2] and [3] observed that the read rate of a passive tag re-
mains high (close to 1) when the tag is within a certain distance
δmajor from the reader, and then decreases almost linearly with the
increment of the distance until the read rate reaches 0, where the
corresponding distance is δminor. The former range (0 to δmajor)
is termed the major detection region, while the latter (δmajor to
δminor) is termed the minor detection region.

The shape of the “read rate vs. distance” curve is like an upside-
down curve of the logistic function f(ℓ) = 1

1+e−ℓ , where ℓ is the
distance between the tag and the antenna. Therefore, we choose the
function p(ℓ) = 1

1+eaℓ+b (a > 0, b < 0) to fit the reader detection
model, where a can be adapted to control how sharp the read rate
decreases in the minor detection region, and b can be adapted to
control the range of the major detection region.

Now, we formulate our reader detection model for reader Ri as
follows:

pi =
1

1 + eaiℓi+bi
(ai > 0, bi < 0). (1)

where pi is the tracking/reference tag read rate at Ri, and ℓi rep-
resents the distance from the tracking/reference tag at location l⃗ =
(x, y), to reader Ri at location (xi, yi), and is given by:

ℓi =
√

(x− xi)2 + (y − yi)2. (2)

For each reader Ri, there are two parameters (ai and bi) that
can be determined dynamically. This allows for the adaption of the
model to a changing environment. We next explain how to estimate
the current model parameters ai and bi, based on the read rates of
the reference tags.

Let pij denote the current read rate of each reference tag Tj esti-
mated by reader Ri. Furthermore, since the locations of the readers
and the reference tags are fixed, we can easily get the distance ℓij =
||Ri, Tj || between Ri and Tj . As a result, during each time step, we



(a) Experimental Setting on the Ground (b) Experimental Setting on the Shelf

Figure 1: Experimental Setting for Reader Detection Model
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Figure 2: Read Rate vs. Tag Distance for the Ground-Level Setting
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Figure 3: Read Rate vs. Tag Distance for the Waist-Level Setting

have access to a set of pairs {(pi1, ℓi1), (pi2, ℓi2), . . . , (pim, ℓim)}
for each reader Ri.

Equation (1) implies that ln( 1
pi
− 1) = aiℓi + bi. Thus we can

employ the least square method to estimate ai and bi, using the
transformed set of pairs {(ln( 1

pi1
− 1), ℓi1), (ln( 1

pi2
− 1), ℓi2),

. . ., (ln( 1
pim
− 1), ℓim)}.

Our approach is cost-effective, since we can afford to distribute
many cheap passive tags in the whole tracking region to enable
the learning of an accurate model. Note that very far (or close)
reference tags with read rate 0 (or 1) should be discarded, since
Equation (1) does not allow p = 0 (or p = 1).

Our reader detection model is more accurate than the 3-state
model in [3] which simply assumes a fixed constant read rate value
among the minor detection region. More importantly, our model
is adaptive to the environment and thus gives rise to more accurate
location estimation.

3.2 Effect in Real Experimental Setting
We evaluated our reader detection model in the real indoor en-

vironments shown in Figures 1(a) and (b). In our experiments, 3
to 4 passive reference tags are placed in each of the four orthog-
onal directions around an antenna, with different distances to the
antenna.

Figure 1(a) simulates the case where the readers/antennea and
the reference tags are deployed on the ground, and each moving
object sticks a tag at the bottom. For example, if the tracking ob-
jects are people, the tracking tags can be stick on the side of their
shoes. To avoid the directional effect of the tags, each person can
stick two tags of the same ID on both sides of their shoes. The
reference tags are put at distances 1.05m, 1.35m, 1.65m and 1.95m
from the antenna in two directions, and at distances 0.9m, 1.2m,
1.5m and 1.8m from the antenna in the other two directions. The
tag positions are interleaved on the two pairs of directions, so as to
provide more (distance, read rate) pairs for model fitting.
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Figure 4: Negative Log-Likelihood vs. Object Locations
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Figure 5: Tracking Area for Experimental Study

Figure 1(b) simulates the case where the readers/antennea and
the reference tags are deployed 1m above the ground, e.g. stuck on
the side of desks or walls. We make a shelf to build this setting. The
shelf is made of styrofoam to minimize its impact on RFID detec-
tion. In this scenario, tracking tags can be stuck around the waists
of people. The reference tags are put at distances 0.9m, 1.5m, 2.1m
and 2.7m from the antenna in two directions, and at distances 1.2m,
1.8m and 2.4m from the antenna in the other two directions.

We use the Intermec IF61 smart reader which supports connec-
tion with 4 antennae, and connect it to an FCC-4 tuned dipole an-
tenna produced by A.H. Systems. The antenna is omni-directional,
which conforms to the models in the previous studies such as [3].
As for the passive tags, we use UHF Gen2 DogBone RFID tags
from UPM Raflatac. We set the response timeout parameter so that
it takes about 1 second to accomplish 5 interrogation cycles.

We measure the read rates based on 10 interrogation cycles for
20 times, 20 cycles for 15 times, and 100 cycles for 10 times. Fig-
ures 2 and 3 present the “read rate vs. distance” relations for the
two experimental settings. For example, Figure 2(a) shows the tag
read rates (points) and the learned curves for all the 20 runs based
on 10 cycles in the ground-level setting. Figures 2(b)–(c) and 3(a)–
(c) are similarly obtained. In Figures 2(d) and 3(d), the blue points
are the average read rates of the 10 runs based on 100 cycles, and
the red curves are obtained by least squares on these points.

It is obvious that the slopes of the curves in Figure 3 are gentler
than those in Figure 2, which implies that read rate decays more
slowly with distance in the waist-level setting, possibly due to less
interference of the ground. Clearly, the read rate measurements
based on 100 interrogation cycles are the most stable ones, and
therefore, we determine the parameters a and b based on readings
from the latest 100 cycles (around 20s). By fitting p(ℓ) = 1

1+eaℓ+b

we have a = 9.4831 and b = −16.2015 in Figure 2(d), and a =
3.6423 and b = −7.8597 in Figure 3(d).

4. LOCATION INFERENCE MODEL
In this section, we describe our approach of estimating object

locations using the dynamic reader detection model.
Consider the event that during the latest N interrogation cycles,

the object with a tracking tag O responds to reader Ri for ki times.
This happens with probability

(
N
ki

)
pki

i (1− pi)
N−ki . If we assume

that each reader detects the tag of each object independently, which
is also assumed in other work such as [3], then the probability that
O responds ki times to reader Ri (i = 1, 2, · · · , n) is given by

L =

n∏
i=1

(
N

ki

)
pki

i (1− pi)
N−ki , C

n∏
i=1

pki
i (1− pi)

N−ki , (3)

where C =
∏n

i=1

(
N
ki

)
is a constant.

Our aim is to find the value of O’s location l⃗ = (x, y) that max-
imizes the likelihood L, which is equivalent to minimizing the cor-
responding negative log-likelihood L = − ln(L/C) (without con-
sidering the constant C > 0):

L = −
n∑

i=1

[ki ln pi + (N − ki) ln(1− pi)] , −
n∑

i=1

Li . (4)

Figure 5 shows a tracking area of 6 m× 6 m = 36 m2, where the
9 black circles represent readers/antennae, and the small rectangles
represent reference tags. This setting will be used to evaluate the
performance of PassTrack in Section 5.

Note that PassTrack actually allows for much more flexible de-
ployment that caters to the actual building structures, as long as (1)
for each antenna, there exist sufficient reference tags with different
distances to it, and (2) for most of the indoor locations, a tracking
tag there can be detected by at least 3 to 4 nearby antennae.

The first requirement ensures that there are sufficient learning
samples for estimating the reader detection model parameters. The
second requirement is called detection range overlap. Besides im-
proving localization accuracy, it also allows the system to work
even if some reader/antenna gets disconnected.

Refer to the tracking setting in Figure 5 again. We now denote
the vector of response count information by k⃗ = {k1, k2, . . . , k9},
where ki denotes the response count obtained by reader Ri. Fig-
ure 4(a) demonstrates the values of the negative log-likelihood L at
various locations when the actual location of the object to track is
close to the center of the tracking area (⃗k = {0, 0, 0, 0, 0, 4, 0, 3, 5}),
and Figure 4(b) is when the actual location is close to the border
(⃗k = {0, 0, 0, 0, 5, 5, 0, 5, 0}). Both Figures 4(a) and 4(b) are for
the ground-level setting. Figures 4(c) (⃗k = {0, 0, 0, 0, 2, 5, 0, 5, 5})
and 4(d) (⃗k = {0, 2, 0, 3, 5, 5, 1, 3, 0}) are for the waist-level set-
ting, and are plotted in a similar manner. For Figures 4(a)–(d), the
read rate estimation is based on 5 cycles (which takes around 1s).



We now study how to use the likelihood model of Equation (4)
for efficient location inference. One approach is to impose a grid
structure on the tracking area, and to evaluate the negative log-
likelihood L using Equation (4) at each location on the grid. The
location of the object to track is estimated as the location on the grid
with the minimum value of L. However, the granularity of the grid
structure influences the accuracy of the estimation, and evaluation
on a too fine-grained grid structure is time-consuming.

Another approach to find the location that minimize L is to use
Newton’s method [7], which is well-known for function optimiza-
tion. Newton’s method enables faster convergence than gradient
descent, since it is based on the second-order Taylor approxima-
tion of the target function. As shown in Figures 4(a)–(d), L is al-
most convex, which is appropriate for applying Newton’s method.
Since L is not strictly convex, the choice of the initial location to
start Newton’s method is very important for avoiding being stuck
at those non-convex locations, and we choose it to be the result lo-
cation of the grid-based method described above, so as to make it
close to the global minimum. In this case, a coarse-grained grid
structure is adequate, and we adopt an 8 × 8 grid for the tracking
area in Figure 5. Algorithm 1 shows the details of our Newton’s
method, which is adapted from [7].

Algorithm 1 Object Location Inference by Newton’s Method
1: given tolerance ϵ > 0
2: Compute the starting point (x0, y0) using grid search
3: l⃗← (x0, y0)
4: repeat
5: Compute∇L(⃗l)

6: Compute∇2L(⃗l)

7: Compute the Newton step: △l⃗← −(∇2L(⃗l))−1∇L(⃗l)

8: Compute decrement: λ2 ← ∇L(⃗l)T (∇2L(⃗l))−1∇L(⃗l)
9: quit if λ2/2 ≤ ϵ

10: Choose step size t by backtracking line search
11: l← l⃗ + t△l⃗
12: end repeat

Line 10 of Algorithm 1 uses the backtracking line search algo-
rithm shown in Algorithm 2. The default parameters we use for
backtracking line search are α = 0.2, β = 0.6 and ϵ = 10−6.

Algorithm 2 Backtracking Line Search

1: given a descent direction△l⃗ at l⃗,
constants α ∈ (0, 0.5), β ∈ (0, 1)

2: t← 1
3: while L(⃗l + t△l⃗) > L(⃗l) + αt(∇L(⃗l))T△l⃗ do
4: t← βt
5: end while

In our experiments, we find that Algorithm 1 always terminates
within 10 iterations. However, we still set an upperbound of 100
iterations for Algorithm 1. Another special case we handle is when
the inferred location leaves the tracking area. In this case, the algo-
rithm immediately returns the location estimation of the previous
iteration. A third possible scenario is when an object is not de-
tected by any reader/antenna within the current time window, in
which case we use the old location estimation as the current one.
We never encounter such a scenario in our experiments, although
it is possible for the RFID readers/antennea to miss readings when
there are too many tags in their detection ranges. We do not include

the above details in the pseudo-code in Algorithm 1 for better read-
ability.

Note that Algorithm 1 requires the computation of the gradient
(see Line 5) and Hessian matrix (see Line 6) ofL. Fortunately, they
have elegant forms that can be evaluated efficiently, as is formalized
by Theorem 1 below.

THEOREM 1. Given the negative log-likelihood functionL (Equa-
tion (4)), its gradient∇L(⃗l) and Hessian matrix∇2L(⃗l) are given
by:

∇L =

[
∂L
∂x
∂L
∂y

]
=

n∑
i=1

Bi

[
∆xi/ℓi

∆yi/ℓi

]
, (5)

∇2L =

[
∂2L
∂x2

∂2L
∂x∂y

∂2L
∂y∂x

∂2L
∂y2

]

=

n∑
i=1

(
Ai

ℓ2i

[
∆x2

i ∆xi∆yi

∆xi∆yi ∆y2
i

]
+

Bi

ℓ3i

[
∆y2

i −∆xi∆yi

−∆xi∆yi ∆x2
i

])
, (6)

where

∆xi = x− xi , (7)
∆yi = y − yi , (8)
Ai = a2

i Npi(1− pi) , (9)
Bi = ai(ki −Npi) . (10)

PROOF. Since x and y are symmetric, we only need to compute
∂L
∂x

, ∂2L
∂x2 and ∂2L

∂x∂y
. Note that L is a function of pi (Equation (4)),

which is in turn a function of li (Equation (1)), which is further a
function of x and y (Equation (2)). For ease of presentation, we
define the following notation:

δi = ∆yi/∆xi . (11)

We will use the following property in the computation, which
can be easily verified:

LEMMA 1. The derivative of p(ℓ) = 1
1+eaℓ+b (a > 0, b < 0)

is p′(ℓ) = p(ℓ) · (p(ℓ)− 1).

By taking the partial derivative of L with respect to x, we have

∂L
∂x

= −
n∑

i=1

[
∂Li

∂pi
· ∂pi

∂(a · ℓi + b)
· ∂(a · ℓi + b)

∂x

]

= −
n∑

i=1

[(
ki

pi
+

N − ki

pi − 1

)
· pi(pi − 1)

· ai(x− xi)√
(x− xi)2 + (y − yi)2

]

= −
n∑

i=1

[
(Npi − ki) ·

ai(x− xi)√
(x− xi)2 + (y − yi)2

]

=

n∑
i=1

ai(ki −Npi)√
1 + δ2

i

(12)

=

n∑
i=1

ai(ki −Npi)
∆xi

ℓi
.



Next, we compute the second derivatives:

∂2L
∂x2

=
∂

∂x

[
n∑

i=1

ai(ki −Npi)√
1 + δ2

i

]

=

n∑
i=1

[
1√

1 + δ2
i

· ∂

∂x
(ai(ki −Npi))

+ai(ki −Npi) ·
∂

∂x

(
1√

1 + δ2
i

)]

=

n∑
i=1

[
−aiN√
1 + δ2

i

· ∂pi

∂x

−ai(ki −Npi) ·
(
δi(1 + δ2

i )−
3
2

)
· ∂δi

∂x

]
=

n∑
i=1

[
−aiN√
1 + δ2

i

· aipi(pi − 1)√
1 + δ2

i

− ai(ki −Npi)

·

(
∆yi

∆xi

(
∆x2

i + ∆y2
i

∆x2
i

)− 3
2
)
·
(
−∆yi

∆x2
i

)]

=

n∑
i=1

[
a2

i Npi(1− pi)

1 + δ2
i

+ ai(ki −Npi)
∆y2

i

ℓ3i

]

=

n∑
i=1

[
a2

i Npi(1− pi)
∆x2

i

ℓ2i
+ ai(ki −Npi)

∆y2
i

ℓ3i

]
.

∂2L
∂x∂y

=
∂

∂y

[
n∑

i=1

ai(ki −Npi)√
1 + δ2

i

]

=

n∑
i=1

[
1√

1 + δ2
i

· ∂

∂y
(ai(ki −Npi))

+ai(ki −Npi) ·
∂

∂y

(
1√

1 + δ2
i

)]

=

n∑
i=1

[
−aiN√
1 + δ2

i

· ∂pi

∂y

−ai(ki −Npi) ·
(
δi(1 + δ2

i )−
3
2

)
· ∂δi

∂y

]

=

n∑
i=1

 −aiN√
1 + δ2

i

· aipi(pi − 1)√
1 + δ′i

2
− ai(ki −Npi)

·

(
∆yi

∆xi

(
∆x2

i + ∆y2
i

∆x2
i

)− 3
2
)
· 1

∆xi

]

=
n∑

i=1

[
a2

i Npi(1− pi)
∆xi∆yi

ℓ2i

−ai(ki −Npi)
∆xi∆yi

ℓ3i

]
.

To compare with the likelihood-based method described above,
we also incorporate a baseline algorithm based on the idea of near-
est neighbors (NN), which are popular with the active-tag-based
RFID localization systems (see Section 6). The location of an
object O is estimated as (x, y) =

∑n
i=1 wi(xi, yi), where the

weight wj of reader Rj is empirically set to be wj =
kj∑n

i=1 ki

or wj =
k2

j∑n
i=1 k2

i
, to give higher weight to a reader that detects

O with a higher read rate. Our extensive experiments described
in Section 5 have shown that the naive NN-based approach in-
curs several times more error than our Newton’s-method-based ap-
proach, which verifies that, our Newton’s-method-based approach
best brings out the information contained in read rates.

As there are only 5 interrogation cycles in each second, if we
estimate the location of an object for each second solely using the
read rates that are measured based on these 5 cycles, we cannot ob-
tain read rate values of high precision. Therefore, we use a sliding
window of multiple cycles to measure the read rates. While a larger
window usually improves the precision of read rate measurements
for static objects, this is not the case for moving objects due to the
outdated readings in the window. We will study the relationship
between window size and localization accuracy in Section 5.5.

5. EXPERIMENTS
In this section, we evaluate the performance of PassTrack in the

6m×6m tracking area shown in Figure 5, which is equipped with 9
antennae. To save our research time, we simply use synthetic data
instead of real data for the experiments. In order to run experiments
in a wide variety of settings, we built a data generator that simulates
the multi-antennae scenario according to the real-world study on
one-antenna described in Section 3.2.

Data Generator. In each time step (which is 1s), our data gen-
erator first generates the locations of the moving objects to track,
and then, the readings of each reader are generated according to its
reader detection model: in each of the 5 cycles, the tag of a moving
object is detected by the reader with the probability p computed
from Equation (1).

To avoid generating too idealized readings, we design our data
generator to also be able to generate noisy readings that better sim-
ulate the real-world scenarios. In the ideal case, the response count
value conforms to the binomial distribution with standard devia-
tion

√
Np(1− p). Our data generator generates noisy readings

by adding or subtracting (with equal probability) the original re-
sponse count by β̃

√
Np(1− p), where the random variable β̃ ∼

Uniform[0, β], and β is a user-specified parameter that controls the
noise level. If the resulting response count is below 0 (or above N ),
it is set to 0 (or N ).

We use [wℓ, wu] to configure the sliding window to include the
previous wℓ time steps and the succeeding wu time steps besides
the current one. For example, [0, 0] denotes that the window con-
tains only the 5 cycles in the current second, while [−1, 1] denotes
that the window contains the cycles from the previous second to the
next second (N = 15).

Unless otherwise stated, we fix the reader model parameters ai

and bi during data generation and location inference. We set ai =
9.4831 and bi = −16.2015 (ai = 3.6423 and bi = −7.8597) for
the experiments in the ground-level (waist-level) setting.

In the sequel, we denote our grid-based localization method as
Grid, our Newton’s method that uses Grid for initialization as New-
ton, our two nearest-neighbor-based methods as NN (where wj =
kj/

∑n
i=1 ki) and NN2 (where wj = k2

j /
∑n

i=1 k2
i ). We assume

the speed of a moving object to be 1m/s to simulate walking speed.
All the experiments are run on a Lenovo IBM ThinkPad X201i

laptop with a 2.53Hz Intel Core i3 GPU and 2GB memory.

5.1 Localization Accuracy for Moving Objects
To visualize the effectiveness of our localization approach in sce-

narios where objects are always moving, we generate the data that
correspond to an object moving in circular and Z-shaped trajecto-
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Figure 6: Real and Inferred Trajectories in the Waist-Level Setting

ries, and invoke Newton to estimate its location at each time step.
The experiments are done in the waist-level setting and the results
are shown in Figure 6. In Figures 6(a)–(d), the blue points (con-
nected by the solid lines) are the true locations (trajectories) of the
object, and the red points (connected by the dotted lines) are the
inferred locations (trajectories). The estimated trajectory in Fig-
ure 6(b) has a smaller radius than the true circular trajectory, be-
cause the window contains the readings from the previous and the
next second. For the experiments in Figures 6(a)–(d), Newton is
able to recover the original trajectory of an object with reasonable
accuracy: the average error never exceeds 30cm.

5.2 Localization Accuracy for Static Objects
A larger sliding window usually improves the precision of read

rate measurements for static objects, which in turn tends to increase
the accuracy of object location estimation. In this subsection, we
study the relationship between window size and localization qual-
ity for static objects. We randomly generate the locations for 5
static objects, and run our localization algorithms on the data for
3000 time steps in both the ground-level setting and the waist-level
setting, with different window sizes. We adopt the window con-
figuration [−w, w], where the parameter w controls the size of the
window (which is 2w + 1).

For each of the 15,000 (5×3000) location estimations, we com-
pute its error distance as the Euclidean distance between the esti-
mated location and the true location. One measurement of local-
ization accuracy that we use is the average of these 15,000 error
distances. Another measurement is the cumulative percentile of er-
ror distance which is also adopted in [1].

Figure 7(a) shows the average error distance of our localization
algorithms with different window sizes, where the suffix “_slf” (or
“_gnd”) means that the corresponding algorithm works at the waist-
level (or ground-level) setting. We can see that Newton incurs the
least localization error and thus achieves the best accuracy. The
average errors of all the algorithms decrease with the increment of
window size, and when w = 5, Newton_slf is already around 10cm
and Newton_gnd is already around 17cm. In this case, the window
size is 2w + 1 = 11, and as there are 5 cycles in each time step,
only 55 interrogation cycles are used to estimate the read rates. This
result is much better than the work of [10], which uses 100 cycles
to estimate the read rates and still incurs an average error of 19cm.

Since the reader detection range is longer at the waist-level set-
ting than at the ground-level one, an object tends to be detected by
more readers. As a result, at the waist-level setting, Newton can use
more information for location estimation and therefore incurs less
error than if it works at ground-level, as illustrated in Figure 7(a).
However, this is not the case for the NN-based algorithms: the
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Figure 7: Effect of Window Size for Static Object Localization

waist-level versions are shown to be worse than the ground-level
ones in Figure 7(a). This is because the NN-based heuristics lack
the support of a formal underlying inference model.

Figure 7(b) shows the cumulative percentile of error distance for
our localization algorithms when w = 10, from which we have
the similar observations that Newton incurs the least error and the
waist-level version works better than the ground-level one. From
Figure 7(b), we can see that Newton can estimate the location of an
object within 22cm error with 75% probability.

5.3 Effect of Object Moving Frequency
We studied the performance of our localization algorithms for

constantly moving objects in Section 5.1 and for static objects in
Section 5.2. However, a more practical scenario is when objects
frequently change their locations, and stop for some time between
two consecutive movements. For example, in inventory monitor-
ing, the goods are not likely to change their locations all the time,
although they may be moved to different shelves from time to time.
The application of resident monitoring also requires to recognize
activities such as “reading paper” (e.g. on sofa) and “using a com-
puter” (e.g. on a desk), which involve the stay at a specific location
for a while.
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Figure 9: Learned v.s. True Model Parameters

To study the effect of object moving frequency on localization
accuracy, we generate the trajectories of 5 objects that interleave
between staying and moving for 3000 time steps. We parameter-
ize our data generator with stop duration T , so that each object
moves for k steps (turns around if it reaches the wall), where k ∈
{1, 2, 3, 4, 5} is randomly picked, then stops for T time steps, and
then repeats the above process until 3000 time steps are reached.

Figure 8(a) (or Figure 8(b)) shows the average error distance of
our localization algorithms with window [0, 0] (or [−1, 1]) for vari-
ous stop durations. While both Figures 8(a) and (b) verify the intu-
ition that all the algorithms incur less error for longer stop duration
(and thus less frequent movements), the Newton algorithms have
more dramatic drop in error with the increment of stop duration in
Figure 8(b). This is because more interrogation cycles are used for
read rate estimation when window [−1, 1] is adopted, which leads
to more accurate read rate estimation, and thus more accurate lo-
calization. Both figures confirm that Newton incurs the least error
and the waist-level version works better than the ground-level one.

5.4 Results of Model Parameter Learning
In Section 3.2, we studied the quality of the reader detection

models learned using read rate estimations of reference tags based
on 10, 20 and 100 interrogation cycles, and showed that estimating
read rates based on 100 cycles gives the most stable model.

In this subsection, we further study the effect of window size for
reference tag read rate estimation on localization accuracy. While a
larger window size gives more accurate read rate estimations of the
reference tags, the model learned from these read rate estimations
may not be close to the true reader detection model. This is because
the true reader detection model changes with time, and the large
window contains responses to early interrogation cycles. In fact,
there is a delay between the learned model and the true one, and
the larger the window size, the longer the delay.

To study the effect of window size on the difference between the
learned model and the true one, we randomly generate the locations
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for 5 static objects, and run our localization algorithms on the data
for 200 time steps (1000 cycles). We simulate the change of true
reader detection model, by changing the model parameters a and b
linearly from the ground-level parameters (at the beginning of the
1000 cycles) to the waist-level parameters (at the end of the 1000
cycles). Note that this is a more abrupt model change than what is
likely to happen in a real world scenario. Then, we learn the reader
detection model from read rate estimations of reference tags based
on 20, 40, 60, 80, 100 and 120 interrogation cycles.

Figures 9(a) and (b) show both the true model parameters and the
learned model parameters in the 200 time steps, where the black
lines correspond to the true model parameters, and the green, red
and blue curves correspond to the model parameters learned from
read rate estimations based on 20, 60 and 120 interrogation cy-
cles, respectively. In Figures 9(a) and (b), the learned model pa-
rameters present an obvious delay from the true parameters (i.e.
the learned parameter curves are approximately the true parame-
ter curves shifted towards the left), and the larger the number of
interrogation cycles, the longer the delay (note that the colors of
the curves from left to right are green, red, blue and black in or-
der). Besides, model parameters learned from read rate estimations
based on small windows such as the 20-cycle one (the green curve)
are very unstable.
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Figure 11: Effect of Window Size on Localization Accuracy

Figure 10 shows the average error distance of our localization
algorithms with different window size for reference tag read rate
estimation, where we use window [−1, 1] for tracking tag read rate
estimation. We can see that the 60-cycle window leads to the least
localization error (around 25cm) for Newton. In the real scenario,
the model change is not likely to be as abrupt as our experimental
setting, and larger window size such as 100 cycles is likely to be a
better choice.

5.5 Effect of Window Size for Moving Objects
In Section 5.2, we have seen that a larger window increases the

accuracy of location estimation for static objects. However, larger
window size may not always imply higher localization accuracy
for moving objects. On the one hand, a larger window contains
more interrogation cycles, which give rise to read rate measure-
ments of higher precision. On the other hand, the outdated readings
in a larger window have a negative impact on the localization accu-
racy, since the tracking object is assumed to be at a fixed location
throughout the time in the window.

Therefore, with the increment of window size, one can expect
that the localization error drops when the window size is small, and
then rises as the window size further increases. The optimal win-
dow size depends on the average moving frequency of the tracking
objects, and needs to be tuned according to the application. For ex-
ample, while window [−1, 1] is better than window [0, 0] for track-
ing constantly moving objects as shown in Section 5.1, the reverse
is true for the experiments on static objects in Section 5.2.

To study the relationship between optimal window size and ob-
ject moving frequency, we generate the trajectories of 5 objects for
3000 time steps with different stop durations T . Part of the results
are shown in Figure 11. Figure 11(a) shows the average error dis-
tance of our localization algorithms when T = 20, where we can
see that the optimal window parameter is w = 1. In Figure 11(b)
which corresponds to T = 80, we can see that the optimal window
parameter is w = 3. To sum up, the optimal window size is larger
for objects that move less frequently.
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Figure 12: Effect of External Interference

5.6 Tolerance to External Interferences
So far, we have been assuming that the response count of a tag to

a reader within N interrogation cycles strictly follows the binomial
distribution. In this set of experiments, we study the tolerance of
our algorithm to external interference by varying the parameter β
of our data generator, which is described at the beginning of this
section. We set the maximum value of β to be 2.5 so that the read
count can be biased by at most 2.5 times its standard deviation,
which is a very significant deviation.

Figure 12(a) (or Figure 12(b)) shows the average error distance
of our localization algorithms with window [0, 0] (or [−1, 1]) for
various noise levels, where we can see that the error of Newton_slf
increases more dramatically than and finally exceeds that of New-
ton_gnd, and therefore Newton_gnd is more tolerant to external in-
terference than Newton_slf. From the figures we can see that our
localization algorithms, including Newton, all have good tolerance
to external interference, and Newton still incurs the least error in
noisy environments.

5.7 Scalability
To test the scalability of our localization algorithms, we generate

the trajectories of 20 constantly moving objects for varying time
steps t, and run our algorithm on these data with window set to
[−1, 1]. The execution times of all the algorithms increase linearly
with the total number of location estimations (which is 20t).
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Figure 13 shows the results of our scalability test, where the NN
algorithms take only around 0.1% of the time consumed by Newton
on the same number of location estimations, and Grid takes around
85% of the time consumed by Newton. For t = 10,000, the 200,000
(= 20t) location estimations are accomplished by Newton in less
than 26s. Therefore, over 7500 location estimations can be done
for each second by an ordinary computer, which is sufficient for
supporting large scale real-time location tracking applications.

5.8 Comparison with Multilateration
In this subsection, we compare our best algorithm, i.e. Newton,

with the best algorithm, i.e. Multilateralization (ML), in the pio-
neering work of [10] that uses passive tags for indoor localization.

We randomly generate the locations for 4 static objects, and run
both localization algorithms on the data for 3000 time steps in both
the ground-level setting and the waist-level setting, with different
window sizes. Figure 14 shows the results of comparison, where
we can see that the average error of ML is over 1m. In fact, ML
is not as accurate as the nearest neighbor based methods, let alone
Newton. The low accuracy of ML is caused by the small number
(3 to 4) of readers that can detect an tracking object, since ML is
effective only when many readers can detect an object. However,
for passive tags with low detection range, this implies a dense de-
ployment of readers/antennea, which is too costly to be carried out.

6. RELATED WORK
Most existing localization systems are based on the active RFID

technology[1, 9, 11, 12, 14]. The nearest neighbor based algo-
rithms are adopted by RADAR [9] and LANDMARC [1] for lo-
cation inference, where the location of the target is estimated by
properly averaging the locations of the reference points whose re-
ceived signal strength distribution is similar to that of the target.
Other more advanced models based on the signal propagation char-
acteristics include those proposed in [11, 12, 13, 14], such as mul-
tilateration and Bayesian graphical modeling.

Passive RFID technology has been studied for data cleaning pur-
pose [2, 3, 5, 6, 8]. However, very few work is done to track objects
using passive tags, except the pioneering work of [10], which is still
primitive in that its experiments are conducted in a very small area
of 1.83m×1.83m.

7. CONCLUSION
Motivated by many advantages of passive RFID tags such as

low tag cost and convenience of maintenance, we explore the tech-
niques of using passive tags for indoor RFID localization. Our lo-
calization system, PassTrack, learns for each reader an adaptive
reader detection model that has good tolerance to external interfer-
ence. Several algorithms are supported by PassTrack for location
inference based on read rates of passive RFID tags, and the best

one, Newton, incurs an average localization error of around 30 cm,
and is able to carry out over 7500 location estimations per sec-
ond on an ordinary machine. The excellent tracking accuracy and
efficiency of PassTrack enables it to support large-scale real-time
indoor localization applications.
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