
On the Expressive Power of the Relational Algebra with
Partially Ordered Domains

Wilfred Ng ∗ Mark Levene † Trevor I. Fenner ‡

Abstract
Assuming data domains are partially ordered, we apply Paredaens’ and

Bancilhon’s Theorem to examine the expressiveness of the extended rela-
tional algebra (the PORA), which allows the ordering predicate v to be
used in formulae of the selection operator (σ). The PORA expresses exactly
the set of all possible relations which are invariant under order-preserving
automorphism of databases. Our main result shows that there is a one-to-
one correspondence between three hierarchies of: (1) computable queries,
(2) query languages and (3) partially ordered domains.

Key Words: ordered domains, expressive power, relational algebra, queries.

C.R. Categories: F.4.3, H.2.1

1 Introduction

Many naturally arising data types have an associated structure, of which do-
main ordering is a very important one [5, 7]. With the assumption of partially
ordered domains, we examine the extra expressiveness of the relational algebra
that we can gain with respect to an ordered database instance, and the relation-
ship between ordered domains and classes of queries. Our first result, which is
a generalisation of Paredaens’ and Bancilhon’s Theorem [8, 2], shows that the
PORA expresses exactly the set of ordered relations which are invariant under
order-preserving automorphisms. Our second result, which involves the notion
of a meaningful computable query with respect to a given ordered domain, shows
that there exist hierarchies of (1) meaningful computable queries, (2) partially
ordered relational algebras and (3) partially ordered domains, and that there is
a one-to-one correspondence between them.

Throughout this paper we follow the usual set notation [6]. We denote the
singleton {A} simply by A when no ambiguity arises and let id be the identity
mapping on any set.

∗Department of Computing, Hong Kong Polytechnic University, email:
csshng@comp.polyu.edu.hk

†Department of Computer Science, University College London, University of London, email:
m.levene@cs.ucl.ac.uk

‡Department of Computer Science, Birkbeck College, University of London, email:
trevor@dcs.bbk.ac.uk

1



2 Ordered Databases and the PORA

A partial ordering v on the set S is a binary relation on S satisfying the
conditions of reflexivity, anti-symmetry and transitivity [6]. We denote the spe-
cial cases of linear ordering by ≤. At the other extreme, when S is completely
unordered, v is just the equality predicate =. A partially ordered set (or simply
an ordered set) is a structure 〈S,v〉.

We assume that the readers are familiar with the basic teminology for the
relational databases. [4, 9, 1]. In the ordered databases we let U be a countably
infinite set of attribute names. Without loss of generality, we assume that all
attributes A ∈ U share the same domain 〈D,v〉.

A relation schema (or simply a schema) R is a subset of U . A database
schema is a finite set R = {R1, . . . , Rn} of relation schemas, for some n ≥ 1.

An ordered relation (or simply a relation) r defined over a schema R is a
finite set of tuples over R. An ordered database (or simply a database) over
R = {R1, . . . , Rn} is a finite set d = {r1, . . . , rn}. We call r and d an unordered
relation and an unordered database if the underlying domain is unordered. Sim-
iliar comments also apply to r and d when the domain is linearly ordered.

We restrict our discussion to the active domain, denoted by adom(d), con-
taining only the values that appear in the database instance d; so adom(d) is
ordered by v. The possible information of d is the countably infinite set of all
relations that can be derived from adom(d), denoted by Poss(d), is defined by
Poss(d) =

⋃∞
i=0P(adom(d)i).

We call f an ordering automorphism of 〈S,vS〉 whenever f is a permutation
on S such that the ordering vS is preserved. If the set {a ∈ S | f(a) 6= a}
is finite, then we call f a finite ordering automorphism. We denote the set of
all finite ordering automorphisms of an ordered set 〈S,vS〉 by Aut(S,vS), or
simply Aut(S) when vS is clear from the context.

Definition 2.1 (Order-preserving Database Automorphism) Let h be an
ordering automorphism of 〈adom(d),v〉. We call h an order-preserving database
automorphism if its extension to d satisfies h(d) = d; by this we mean that
h(ri) = ri for 1 ≤ i ≤ n. We denote the set of all order-preserving database
automorphisms of database d by Aut(v, d), or simply Aut(d) when v is clear
from the context.

It follows from Definition 2.1 that, for all partial orderings v and all linear
orderings ≤, Aut(≤, d) = {id} ⊆ Aut(v, d) ⊆ Aut(=, d). It also follows that
Aut(v, d) = Aut(=, d) ∩ Aut(adom(d),v). The following example should help
to clarify the meaning of Aut(d).

Example 1 Let a database d contain just a single relation having 4 tuples, r =
{xz, yz, xw, yw}, and let 〈adom(d),v〉 = 〈{w, x, y, z}, {x v y, x v z, x v w}〉
We define functions: h1 by h1(x) = y, h1(y) = x, h1(z) = z and h1(w) = w;

2



h2 by h2(x) = x, h2(y) = z, h2(z) = y and h2(w) = w; and h3 by h3(x) = x,
h3(y) = y, h3(z) = w and h3(w) = z. Then h1 6∈ Aut(d) because, although
it preserves d, it does not preserve the ordering; and h2 6∈ Aut(d) because,
although it preserves the ordering, it does not preserve d; however, h3 ∈ Aut(d)
because it preserves both the ordering and d.

The partially ordered relational algebra (PORA) consists of a collection of six
operators (see [1, 9]): union, Cartesian product, difference, projection, renaming,
and lastly extended selection (σF ), where the selection formula F is restricted
to be the forms A v B or A 6v B, where A, B ∈ U . A PORA expression is a
well-formed expression composed of a finite number of operators in the PORA
whose operands are relation schemas. We denote by EPORA the set of all PORA
expressions. In addition, we use EUORA and ELORA to represent EPORA in the
contexts of unordered and linearly ordered databases.

We need the following technical lemma to establish our main theorem, in
which we define Aut(r) = Aut({r, adom(d)}) for a relation r, where adom(d) is
regarded as a unary relation and d is understood from the context.

Lemma 2.1 Let d = {r1, . . . , rn} be a database over {R1, . . . , Rn}, s be the
unordered relation over S given by s = {〈a, b〉 | a v b and a, b ∈ adom(d)},
d′ = {r1, . . . , rn, s} considered as an unordered database over {R1, . . . , Rn, S},
and r′ = r × s considered as an unordered relation over RS. Then

(a) Aut(=, d′) = Aut(v, d),

(b) Aut(=, r′) = Aut(v, r),

(c) e′(d′) = r′ for some e′ ∈ EUORA if and only if e(d) = r for some e ∈ EPORA.
2

Using our notation, we can state Paredaens’ and Bancilhon’s Theorem (PB
Theorem) in [8] as follows, e(d) = r for some e ∈ EUORA if and only if
Aut(=, d) ⊆ Aut(=, r), where d is an unordered database. We now show that
this theorem can be generalised to ordered databases.

Theorem 2.2 Let d be an ordered database over R and r an ordered relation
over R. Then e(d) = r for some e ∈ EPORA if and only if Aut(v, d) ⊆ Aut(v, r).

Proof.
By part (a) of Lemma 2.1 Aut(v, d) = Aut(=, d′) and by part (b) of Lemma
2.1 Aut(v, r) = Aut(=, r′). So Aut(v, d) ⊆ Aut(v, r) if and only if Aut(=, d′)
⊆ Aut(=, r′). By PB Theorem Aut(=, d′) ⊆ Aut(=, r′) if and only if e′(d′) = r′

for some e′ ∈ EUORA. The result then follows by part (c) of Lemma 2.1 that
Aut(v, d) ⊆ Aut(v, r) if and only if e(d) = r for some e ∈ EPORA. 2

Corollary 2.3 Let d be a linearly ordered database. Then, for all r ∈ Poss(d),
e(d) = r for some e ∈ ELORA. 2

3



3 A Hierarchy of Computable Queries

We use an index subscript to denote different orderings on D, i.e., Di = 〈D,vi

〉 where i is a positive integer. The semantics of “more ordered” domains can
be defined in terms of ordering automorphisms of domains.

Definition 3.1 (More Ordered Domain) A domain D2 is said to be more
ordered than another domain D1, denoted by D1 ¹ D2, if, for all finite S ⊆ D,
Aut(S,v2) ⊆ Aut(S,v1).

Note that the above definition corresponds to the intuition of more ordered.
The informal reason for allowing S ⊆ D in the above definition is that we take
into account the fact that the active domain of a database can be defined on
any subset of D. As a consequence of the definition, Aut(d) is not affected by
the automorphisms induced from outside the active domain.

Now we consider the expressiveness of the relational algebra for different
orderings. Let the set of relations generated from the information contained in a
given database d, denoted by Gen(vi, d), be defined by the following expression

Gen(vi, d) = {r | r = e(d) for some e ∈ EPORAi}.
Definition 3.2 (More Powerful Relational Algebra) A relational algebra
PORA2 is more powerful than another PORA1, denoted by PORA1 ¹ PORA2,
if, for all databases d, Gen(v1, d) ⊆ Gen(v2, d).

We still need to extend the notion of computable query to ordered databases
[3]. The motivation for our definition is to include those queries which are
meaningful with respect to the ordered domain concerned.

Let DB(R) be the countably infinite set of all databases defined over a
database schema R and let χ =

⋃∞
i=0 P(Di).

Definition 3.3 (Meaningful Computable Query) A meaningful computable
query with respect to a given domain Di is a partial recursive function δ from
DB(R) to χ, for some database schema R, such that, for all d ∈ DB(R),

(a) if δ(d) is defined, then δ(d) ∈ Poss(d), and

(b) for all h ∈ Aut(vi, d), h(δ(d)) = δ(d).

We denote the set of all meaningful computable queries by Qi.

Note that our definition of a meaningful computable query is the same as
the conventional one if we restrict ourselves to unordered domains.

Lemma 3.1 Let d = {r1, . . . , rn} be a database over {R1, . . . , Rn}, s be the
unordered relation over S given by s = {〈a, b〉 | a v b and a, b ∈ adom(d)}, and
r = r1×· · ·× rn× s, considered as an unordered relation over R1 · · ·RnS. Then
Aut(v, d) = Aut(=, r). 2

4



Lemma 3.2 For any database schema R, D1 ¹ D2 if and only if Aut(v2, d) ⊆
Aut(v1, d) for all databases d over R. 2

We now present our main result stating the association between domains,
queries and languages. This allows us to establish hierarchies for these entities.

Theorem 3.3

(a) D1 ¹ D2 if and only if Q1 ⊆ Q2,

(b) D1 ¹ D2 if and only if PORA1 ¹ PORA2.

Proof.
(a) (If) Assume D1 6¹ D2. By Lemma 3.2, this implies that there exists a
database d′ such that h2 6∈ Aut(v1, d

′) for some h2 ∈ Aut(v2, d
′). Let d′ =

{r′1, . . . , r′n}. We now construct a query that is in Q1 but not in Q2. Given
d′, consider r′ where we substitute d′ for d and r′ for r in Lemma 3.1, with
respect to v1. Thus, for all h ∈ Aut(v1, d

′), we have h(r′) = r′. On the other
hand, h2(r′) 6= r′ since h2 6∈ Aut(v1, d

′). We define a query δ as follows: δ(d)
= r′ when d = d′ and δ(d) is equal to the empty set otherwise. By part (b) of
Definition 3.3, δ ∈ Q1 but δ 6∈ Q2.

(Only if) Let δ ∈ Q1 be a query from DB(R) to χ and let d ∈ DB(R). From
Definition 3.3, δ(d) ∈ Poss(d) and, for all h ∈ Aut(v1, d), h(δ(d)) = δ(h(d)). By
the assumption D1 ¹ D2 and Lemma 3.2, Aut(v2, d) ⊆ Aut(v1, d). Therefore,
for all h ∈ Aut(v2, d), h(δ(d)) = δ(d) and thus δ ∈ Q2.

(b) (If) AssumeD1 6¹ D2. By Lemma 3.2, there exists a database d′ = {r1, . . . , rn}
such that Aut(v2, d

′) 6⊆ Aut(v1, d
′). It suffices to exhibit a database d and a

relation r such that r ∈ Gen(v1, d) but r 6∈ Gen(v2, d). We let d = d′ and
r = r1 × · · · × rn × s, where s = {〈a, b〉 | a v1 b and a, b ∈ adom(d′)}. Clearly,
s can be derived from d′ by some e ∈ PORA1 and thus r ∈ Gen(v1, d

′). It
remains to show r 6∈ Gen(v2, d

′). Suppose r ∈ Gen(v2, d
′). Then, by Theorem

2.2, Aut(v2, d
′) ⊆ Aut(v2, r), so Aut(v2, d

′) ⊆ Aut(=, r). By Lemma 3.1, it
follows that Aut(v2, d

′) ⊆ Aut(v1, d
′), which leads to a contradiction.

(Only if) Let r ∈ Gen(v1, d). We need to show that r ∈ Gen(v2, d). By
Theorem 2.2, Aut(v1, d) ⊆ Aut(v1, r). Thus

Aut(adom(d),v2) ∩Aut(v1, d) ⊆ Aut(adom(d),v2) ∩Aut(v1, r).

Moreover, we have Aut(v1, d) = Aut(adom(d),v1) ∩Aut(=, d) and
Aut(v1, r) = Aut(adom(d),v1) ∩Aut(=, r). It follows that

Aut(adom(d),v2) ∩Aut(adom(d),v1) ∩Aut(=, d) ⊆
Aut(adom(d),v2) ∩Aut(adom(d),v1) ∩Aut(=, r).

By assumption D1 ¹ D2, Aut(adom(d),v2) ⊆ Aut(adom(d),v1). It follows that
Aut(adom(d),v2) ∩Aut(=, d) ⊆ Aut(adom(d),v2) ∩Aut(=, r). Hence we have
Aut(v2, d) ⊆ Aut(v2, r). By Theorem 2.2 again, we have r ∈ Gen(v2, d). 2

Corollary 3.4 Q1 ⊆ Q2 if and only if PORA1 ¹ PORA2. 2

5



4 Conclusions

We present the following diagram which summarises the relationship between
the hierarchies of (1) meaningful computable queries, (2) partially ordered do-
mains, and (3) partially ordered relational algebras. The implications of this
result are that when the underlying data domain of an ordered database has
more inherent structure, then the scope of possible queries is wider. In other
words, the ordered relational model can provide more expressive query languages
than those of the conventional one. There remains the problem of trying to find
a more convenient characterisation of the domain ordering ¹ without explicitly
involving the set of ordering automorphisms. The semantics of ¹ may be de-
fined in terms of the relationship of the structural features between two ordered
domains, leading to the syntactical insight of the notion of “more ordered”.

Queries Q= ⊆ . . . ⊆ Qi ⊆ . . . ⊆ Q≤
l l l

Domains 〈D, =〉 ¹ . . . ¹ 〈D,vi〉 ¹ . . . ¹ 〈D,≤〉
l l l

Algebras PORA= ¹ . . . ¹ PORAi ¹ . . . ¹ PORA≤

Figure 1: Correspondence between hierarchies of queries, domains and languages

References

[1] P. Atzeni and V. De Antonellis. Relational Database Theory. Ben-
jamin/Cummings Publishing Company, Inc., (1993).

[2] F. Bancilhon. On the Completeness of Query Languages for Relational
Databases. In LNCS 64: Mathematical Foundations of Computer Science,
Springer-Verlag, pp. 112-124, (1978).

[3] A.K. Chandra and D. Harel. Computable Queries for Relational Data
Bases. Journal of Computer and System Sciences 21, pp. 156-178, (1980).

[4] E.F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM 13(6), pp. 377-387, (1970).

[5] S. Ginsburg and R. Hull. Sort Sets in the Relational Model. Journal of the
Association for Computing Machinery 33(3), pp. 465-488, (1986).

[6] P. Halmos. Naive Set Theory, Springer-Verlag, New York, (1974).

[7] D. Maier and B. Vance. A Call to Order, In ACM symp. on Principles of
Databases Systems. pp. 1-16, (1993).

[8] J. Paredaens. On the Expressive Power of the Relational Algebra. Infor-
mation Processing Letter 7(2), pp. 107-111, (1978).

[9] J.D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I,
Rockville, MD., Computer Science Press, (1988).

6


