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Abstract. With the ever increasing connection between XML informa-
tion systems over the Web, users are able to obtain integrated sources of
XML information in a cooperative manner, such as developing an XML
mediator schema or using eXtensible Stylesheet Language Transforma-
tion (XSLT). However, it is not trivial to evaluate the quality of such
merged XML data, even when we have the knowledge of the involved
XML data sources. Herein, we present a unifying framework for merging
XML data and study the quality issues of merged XML information. We
capture the coverage of the object sources as well as the structural diver-
sity of XML data objects, respectively, by the two metrics of Information
Completeness (IC) and Data Complexity (DC) of the merged data.

1 Introduction

Information integration, a long established field in different disciplines of Com-
puter Science such as cooperative systems and mediators, is recognized as an
important database subject in a distributed environment [5, 8]. As the network-
ing and mobile technologies advance, the related issues of information integration
become even more challenging, since merged data can be easily obtained from a
wide spectrum of emerging modern data applications, such as mobile computing,
peer-to-peer transmission, mediators, and data warehousing.

As XML data emerges as a de-facto standard of Web information, we find
it essential to address the quality issues of integrated XML information. In this
paper, we attempt to establish a natural and intuitive framework for assessing
the quality of merging XML data objects in a co-operative environment. We
assume that there are many XML information sources which return their own
relevant XML data objects (or simply XML data trees) as a consequence of
searching for a required entity from the users. To gain the maximal possible
information from the sources, a user should first query the available sources and
then integrate all the returned results. We do not study the techniques used
in the search and integration processes of the required XML data objects as
discussed in [1, 2, 3]. Instead, we study the problem of how to justify the quality
of merged XML information returned from the cooperative sources.

We propose a framework to perform merging and to analyze the merged
information modelled as multiple XML data objects returned from a set of XML

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 81–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



82 H.-L. Lau and W. Ng

information sources. Essentially, our analysis is to convert an XML data object
in an Merged Normal Form (MNF) and then analyze the data content of the
normalized object based on a Merged Tree Pattern (MTP). We develop the
notions of Information Completeness (IC) and Data Complexity (DC). These
are the two components related to the measure of the information quality.

Intuitively, IC is defined to compute the following two features related to the
completeness of those involved information sources. First, how many XML data
objects (or equivalently, XML object trees) can be covered by a data source, and
second, how much detail does each XML data object contain. We call the first
feature of IC the merged tree coverage (or simply the coverage) and the second
feature of IC the merged tree density (or simply the density).

The motivation for us to define IC is that, in reality when posing queries
upon a set of XML information sources that have little overlaps in some pre-
defined set of core labels C, then the integrated information contains a large
number of distinct XML data objects but with few subtrees or data values under
the core labels, in this case the integrated information has comparatively high
coverage but low density. On the other hand, if the sources have large overlaps
in C, the integrated information contains a small number of distinct objects with
more subtrees or data elements under the core labels, in this case the integrated
information has comparatively low coverage but high density.

The metric DC is defined to compute the following two features related to
the complexity of the retrieved data items, resulting from merging data from
those involved information sources. First, how diversified the merged elements
or the data under a set of core labels are, and second, how specific those merged
elements or data are. We call the first feature of DC the merged tree diversity (or
simply the diversity) and the second feature of DC the merged tree specificity
(or simply the specificity). In reality, when we merge the data under a label in C
it may lead to a too wide and deep tree structure. For example, if most data of
the same object from different sources disagree with each other, then we have to
merge a diverse set of subtrees or data elements under the label. Furthermore,
the merged tree structure under the label can be very deep, i.e. to give very
specific information related to the label.

We assume a global view of data, which allows us to define a set of core labels
of an entity that we search over the sources. As a core label may happen anywhere
along a path of the tree corresponding to the entity instance, we propose a Merge
Normal Form (MNF). Essentially, an XML object in MNF ensures that only the
lowest core label along a path in the tree can contain interested subtrees or
data elements. Assuming all XML objects are in MNF we aggregate them into a
universal template called Merged Tree Pattern (MTP). We perform merging on
the subtrees or data values associated with C from XML tree objects: if the two
corresponding core paths (paths having a core label) from different objects are
equal, then they can be unanimously merged in MTP. If the two paths are not
equal, the conflict is resolved by changing the path to a general descendant path.
Finally, if the two core paths do not exist then they are said to be incomplete,
the missing node in MTP will be counted when computing IC.
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The main contributions is that we establish a framework for evaluating the
quality of integrated XML information. Our approach is based on a merged
XML template called MTP, which is used to aggregate XML data objects from
different sources. The framework is desirable for several reasons. First, the IC
score is a simple but an effective metric to assess the quality of individual data
source or a combination of data sources, which can serve as a basis for source
selection optimization. The DC is a natural metric to assess the diversity and
specificity of the subtrees under core labels. Second, MTP shares the benefits
of traditional nested relations which are able to minimize redundancy of data.
This allows a very flexible interface at the external level, since both flat and
hierarchical data can be well presented to the users. The MTP provides for
the explicit representation of the structure as well as the semantics of object
instances. Finally, an XML data objects T can be converted into MNF in a
linear time complexity, O(k1 + k2), where k1 is the number of nodes and k2 is
the number of edges in T .

Paper Organisation. Section 2 formalises the notion of integration for a set
of XML data objects from a given source, which includes the discussion of the
merged objects and the merged normal form (MNF). Section 3 introduces the
concept of XML merged tree pattern (MTP) and illustrates how XML data ob-
jects can be merged under the MTP. Section 4 defines the components of mea-
suring quality of integrated XML information. Finally, we give our concluding
remarks in Section 5.

2 Merging Data from XML Information Sources

In this section, we assume a simple information model consisting of different
XML sources, which can be viewed as a set of object trees. We introduce two
notions of Merge Normal Form (MNF) and Merge Tree Pattern (MTP) in order
to evaluate the merged results. Our assumptions of the information model of
co-operative XML sources are described as follows.

Core Label Set. We assume a special label set over the information sources,
denoted as C = {l1, . . . , ln}. C is a set of core tag labels (or simply core labels)
related to the requested entity e. We term those paths starting from the entity
node with tag label le leading to a core node with tag label the core paths. C
also consists of a unique ID label, K, to identify an XML object instance of e.
A user query q = 〈e, C〉 is a selection of different information related to a core
label, which should include the special K path. We assume heterogenicity of data
objects to be resolved elsewhere, such as using data wrappers and mediators.

Key Label and Path. We assume an entity constraint: if two sources present
an XML data object then we consider these objects represent the same entity in
real world. The K label is important to merge information of identical objects
from different sources. We do not consider the general case of FDs in order to
simplify our discussion. The assumption of the K tag label is practical, since in
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reality an ID label is commonly available in XML information, which is similar
to the relational setting.

Source Relationships. The information source contents overlap to various
degrees with each others, regarding the storage of XML data objects. In an
extreme case, one source can be equal to another source, for example mirror
Web sites. In the other extreme case, one source can be disjoint from another,
i.e. no common XML data object exists in two sources, for example one source
holds ACM publications and another source holds IEEE publications. Usually,
independent sources have different degrees of overlaps, e.g. they share information
of common objects. Furthermore, if all objects in one source exist in another
larger one then we say the former is contained in the latter.

Example 1. Figure 1 shows three publication objects T1, T2 and T3, all of which
have a K path, key, represented in different XML object trees as shown. Each ob-
ject contains different subsets of the core labels C = {key, author, title, url, year}.

C = {key, author, title, url, year}
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Fig. 1. A source of three XML data objects of publication records

We now consider merging the same XML data object identified by the K
path. There are several scenarios arising from merging an object obtained from
two different sources. (1) A core path l ∈ C of the object does not exist in either
sources. (2) A core path l ∈ C of the object is provided by only one source. (3)
A core path l ∈ C of the object is provided by both sources but their children
under the l-node may be distinct.

The first and second cases do not impose any problems for merging, since we
simply need to aggregate the existent paths in the merged result. The outcome
of the merge is that there is either no information for the path l or a unique
piece of information for the path l in the merged result. The last case does not
bring into any problem if the children (data values or subtrees) under the core
label obtained from the sources are identical. However, it poses a problem when
their children disagree with each other, since conflicting information happens in
the merged result. Our approach is different from the common ones which adopt
either human intervention or some pre-defined resolution schemes to resolve the
conflicting data. We make use of the flexibility of XML and introduce a special
merge node labelled as m (m-node) as a parent node to merge the two subtrees
as its children. We formalize the notion of merging in the following Definition.

Definition 1. (Merging Subtrees Under Core Labels) Let v1 and v2 be
the roots of two subtrees, T1 and T2, under a core label l ∈ C. Let m be the
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special label for merging subtrees. We construct a subtree T3 having the children
generated by T1 and T2, where v3 is a m-node whose children are defined as
follows. (1) T3 has two children of T1 and T2 under the root v3, if neither v1 nor
v2 are m-nodes. (2) T3 has the children T1 with T2 being added immediately
under v3, if v1 is under a m-node but v2 is not. (Similar for the case if v2 is the
only m-node.) (3) T3 has the children child(v1) and child(v2) under v3, if both
v1 and v2 are under m-nodes.

A merge operator on two given subtrees having the roots, v1 and v2, under
a given l, denoted as merge(v1, v2), is an operation which returns T3 as a child
under the l-node, defined according to the above conditions.

Figure 2 shows the three possible results of merge(v1, v2), on the two subtrees,
T1 and T2, under the core node with label � ∈ C. The three cases correspond to
the cases stated in Definition 1. We can see that the resultant subtree T3, which
has the root of a m-node, is constructed from T1 and T2.

Case 1

... ...

T2

v2

T1

v1
m

T2

v2

T1
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v3
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v3
(v1, m )

child(v1)

Case 3

child(v2)

T1

...

(v2, m)

...

m

child(v1)

v3

(v1, m )

child(v1) child(v2)

Fig. 2. The merge operator on two subtrees T1 and T2 under a core label

The merge operator can be naturally extended to more than two input chil-
dren under a given core node with a label l ∈ C. We can verify the following com-
mutativity and associativity properties of the merge operator: merge(v1, v2) =
merge(v2, v1) and merge(merge(v1, v2), v3) = merge(v1,merge(v2, v3)). In ad-
dition, the merge operator is able to preserve the occurrences of identical data
items of a core label of the same object. Our use of the merge node has the ben-
efit that it provides the flexibility of further processing of the children under the
m-node, which is independent on any pre-defined resolution schemes for conflict-
ing data. For example, in the case of having flat data values under the m-node,
we may choose an aggregate function such as min, max, sum or avg to further
process the conflicting results. In the case of having tree data under the m-node,
we may use a tree pattern to filter away the unwanted specific information.

One might think that it is not sufficient to define the merge operator over the
same object from different sources. In fact, the merge operator has also ignored
the fact that in a core path, more than one core label may occur. In order to deal
with these complications, we need the concepts of Merge Normal Form (MNF)
and Merge Tree Pattern (MTP) to handle general merging of XML data objects.

Definition 2. (Merge Normal Form) Let T be an XML object tree, where
P ⊆ C be the set of core labels in T and K ∈ P is the key label of T . Let us call
those nodes having a core label core nodes and those path having a core node
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core paths. A tree T is said to be in the Merge Normal Form (MNF), denoted
as N(T ), if for any core paths p in T , all the ancestor nodes of the lowest core
nodes of p have one and only one child.

Intuitively, the MNF allows us to estimate how much information is associ-
ated with the core labels of an entity by simply checking the lowest core label in
a path. We now present an algorithm which converts a given XML object tree,
T , into an MNF. By Definition 2, we are able to view N(T ) = {p1, . . . , pn} as
the merged normal form of T , where pi is the core path from the root to the
lowest core node in the path. Note that any particular core label may have more
than one core path in N(T ).

MNF Generation

Input: an XML object tree T .
Output: the MNF of the tree Tr = N(T )
N(T ){
1. Let Tr = φ; P = φ;
2. Normal(T.root);
3. return N(T ) := Tr;}
Normal(n) {
1. for each child node hi of n {
2. Normal(hi);
3. if (label(n) ∈ C) {
4. if (n has non-core children) {
5. if (there exist a path, path(n′) ∈ Tr, such that path(n′) = path(n))
6. child(n′) = merge(child(n′), child(n));
7. else {
8. if (label(n) /∈ P)
9. P ∪ label(n);
10. Tr ∪ path(n); }}}}}

The underlying idea of Algorithm 2 is to visit each node in T iteratively in a
depth first manner until all distinct core paths are copied as separate branches
into N(T ). The core paths that have no non-core subtrees attached are removed.
If there are two core paths ended at nodes with the same core label, we check if
there exists a path, path(n′) ∈ N(T ), such that path(n′) = path(n), their value
are simply merged together, otherwise, path(n) is added as a new branch. The
complexity of Algorithm 2 is O(k1 + k2), where k1 is the number of node and
k2 is the number of edges in T . Note that the NMF of T may not be a unique
N(T ) from Algorithm 2. However, it is easy to show that the output satisfies
the requirement in Definition 2. From now on, we assume that all XML data
object trees are in MNF (or else, they can be transformed to MNF by using
Algorithm 2.) We now extend the merge operations on two XML data objects.
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Definition 3. (Merging XML Data Object from Two Sources) Let core(T )
be the set of core labels in T . Given two XML object trees, T1 = {p1, . . . , pn} and
T2 = {q1, . . . , qm}, where pi and qj are core paths. We define T3 = merge(T1, T2)
such that T3 satisfies (1) pi ∈ T3, where pi ∈ T1, pi /∈ T2. (2) qj ∈ T3, where qj ∈
T2, qj /∈ T1. (3) rk ∈ T3 and child(nrk

) = merge(npi
, nqj

), where rk = pi = qj .
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Fig. 3. Merging of MNF XML trees N(T1) and N(T2)

Figure 3 shows the three possibilities of merging an XML object tree from
two different sources. By Algorithm 2, we can transform an XML object tree
into its MNF, which can be viewed as a set of basic core paths. We denote S as
a set of XML object trees in MNF, S = {T1, T2, . . . , Tn}. We further develop a
template for general merging, called the Merge Tree Pattern (MTP), which is
used to merge the information of a given set of normalized object trees obtained
from different sources. Essentially, we perform merging the children of the basic
core paths iteratively within MTP.

Definition 4. (Merge Tree Pattern) Let core(T ) denote the set of basic
core labels in T . Let T = {T1, . . . , Tn}. A Merge Tree Pattern (MTP) is a tree
template obtained by combining the trees in T . An MTP is generated according
to the following algorithm. We say that two basic core paths are mismatched, if
the two given paths both end at the same core label but they have different lists
of core nodes along the basic core path. The child of each leaf of the basic core
path in the MTP is a list of elements which store the data corresponding to the
basic core path. We also define desc(n) to be the descendant axis of the node n.
For example, given path(n) = r/a/b/c/d, we have desc(n) = r//d.

Example 2. Figure 4 demonstrates the generation of MTP with three XML trees
in MNF forms, T1, T2 and T3. We can check that the core path for “title” are
different in T1, T2 and T3, therefore, we represent it as the descendant axis
“r//title”. The child of the core label “author” in T2 is a subtree of non-core
labels, in MTP, we insert a labelled pointer (author, 1) to indicate it. Note that
the child of the core label “author” subtree is a subtree having the root m-node.
The list in Algorithm 4 does not store the whole tree structure, we only need to
insert a labelled pointer (m, 2) directed to the required subtree as shown.
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MTP Generation

Let Ti = {path(n1i), . . . , path(npi)}, 1 ≤ i ≤ n
and T = {path(m1), . . . , path(mq)}
Input: a set of trees in MNF, T = {T1, . . . , Tn}
Output: the MTP of T
MTPGen(T ){
1. Let T = T1;
2. For each Ti in T {
4. For each leaf node, n, in Ti {
5. if (path(ni) and path(mj) are mismatched) {
6. path(mj) = desc(mj);
7. list(mj).add(merge(value(mj), value(ni))); }
8. else {T ∪ path(ni);
9. list(ni).add(value(ni)); }}}
10. return MTPGen(T ) := T; }
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Fig. 4. Generation of MTP with three XML trees in MNF

3 Merge Operations on MTP

In order to perform merging of the entire query results from multiple sources, we
define two useful merge operators on MTPs, the join merge, �, and the union
merge, �.

Definition 5. (Join Merge Operator) Let P1 and P2 be two MTPs derived
from the sources S1 and S2. Let core(P1), core(P1) ⊆ C be the set of core labels
obtained from the sources S1 and S2, respectively, where K ∈ core(S1), and
K ∈ core(S2). Then we define the MTP P3 = P1 � P2, such that ∃T1 ∈ S1 and
∃T2 ∈ S2 satisfies that if r1//K = r2//K, then T3 is constructed by:
1. path(r3//K) := path(r1//K).
2. path(r3//l/v3) := path(r1//l/v1), where l ∈ (core(P1) − core(P1)).
3. path(r3//l/v3) := path(r2//l/v2), where l ∈ (core(P1) − core(P1)).
4. path(r3//l/v3) := desc(v3) where child(nv3) := merge(child(nv1), child(nv2)),
where l ∈ (core(P1) ∩ core(P2)).

The intuition behind the above definition is that in the first condition we
adopt the key path as the only criterion to join the tree objects identified by K
obtained from P1 and P2. The second and third conditions state that we choose
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Fig. 5. The Join Merge and Join Union Operators

all the paths from the two MTPs as long as they do not overlap. The fourth
condition is to resolve the conflict of having the common path in both source
MTPs by using a descendant path and merging the node information.

Example 3. Figure 5(c) and 5(d) illustrates the use of the join-merge and join-
union operations on P1 and P2.

Definition 6. (Union Merge Operator) Let P1 and P2 be two MTPs derived
from the sources S1 and S2. Let core(P1), core(P1) ⊆ C be the set of core labels
obtained from the sources S1 and S2, respectively, where K ∈ core(S1), and
K ∈ core(S2). Then we define the MTP P3 = P1 � P2, such that ∃T1 ∈ S1 and
∃T2 ∈ S2 satisfies that, if path(r1//K) = path(r2//K), then T3 is constructed by:
(1) path(r3//K) := path(r1//K). (2)path(r3//l/v3) := path(r1//l/v1), where
l ∈ (core(P1) − core(P1)). (3) path(r3//l/v3) := path(r2//l/v2), where l ∈
(core(P1) − core(P1)). (4) path(r3//l/v3) := desc(v3) where child(nv3) =
merge(child(nv1), child(nv2)), where l ∈ (core(P1) ∩ core(P2)). Or else T3 is con-
structed by path(r3//l/v3) := path(r1//l/v1) or path(r3//l/v3) := path(r2//l/v2).

Notably, the union merge operator can be viewed as a generalized from of
the full-outer join in relational databases [8].

4 Quality Metrics of Merged XML Trees

We describe two measures of information completeness and data complexity to
evaluate the quality of the results of the join and union merge operators.

The merged tree coverage (or simply the coverage) of an XML source relates
to the number of objects that the source can potentially return. Intuitively, the
notion of coverage captures the percentage of real world information covered
in a search. The problem lies in the fact that XML sources mutually overlap
a different extent. We need to devise an effective way to evaluate the size of
coverage.

Definition 7. (Merged Tree Coverage)
Let the MTP of the source S of a set of XML data objects be PS and n be

the total number of objects related to the requested entity e specified in a query
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q = (e, C), where C is the set of core labels associated with e. We define the
merged tree coverage (or the coverage) of PS with respect to q as cov(S) = |PS |

n ,
where | PS | is the number of XML data objects distinguished by the object key
K ∈ C stored in PS .

The coverage score of simple objects is between 0 and 1 and can be regarded
as the probability that any given real world object is represented by some objects
in the source. We adopt the union merge operator proposed in Definition 6 to
generate the MTP for the merged objects and determine the coverage score [4].

Example 4. Assume that there are about two million electronic computer science
publications over the Web (i.e. n = 2,000,000). About 490,000 of these are listed
in the Digital Bibliography & Library Project (DBLP) and the information is
available in XML format. Table 1 shows the number of electronic publications
available on the Web. The coverage scores are obtained by dividing the number
of publications by 2,000,000.

Table 1. The coverage score of five electronic publication sources

Number of Publication
659,481

1,463,418
490,000
412,306
75,000

Electronic Publication Source
CiteSeer

The Collection of Computer Science Bibliographies
DBLP

CompuScience
Computing Research Repository (CoRR)

Coverage Scores
0.3297
0.7317
0.2450
0.2061
0.0375

The coverage measure for the MTP from many sources can be computed in
a similar way, based on the coverage scores of individual sources. In reality, we
may download the source to assess the coverage or the coverage can be estimated
by a domain expert. To respond to a user query, a query is sent to multiple XML
information sources. The results returned by these sources are sets of relevant
XML data objects. Some data objects may be returned by more than one source.
We assume that there are only three different cases of overlapping data sources.

1. The two sources are disjoint, which means that, according to the K label,
there are no common XML data objects in the two sources. Then cov(Si � Sj)
is equal to cov(Si) + cov(Sj) and cov(Si � Sj) is equal to 0.

2. The two sources are overlapping, meaning that, according to the K label,
there are some common XML data objects in the two sources. The two sources
are assumed to be independent. Then cov(Si � Sj) is equal to cov(Si) + cov(Sj)
− cov(Si) ·cov(Sj) and cov(Si�Sj) is equal to cov(Si) ·cov(Sj) (if Si is contained
in Sj).

3. One source is contained in another, which means that, according to the K
label, all the XML data objects in one source are contained in another source.
Then cov(Si � Sj) is equal to cov(Sj) and cov(Si � Sj) is equal to cov(Si) (if Si

is contained in Sj).
Now, we consider the general case of integrating results returned from mul-

tiple data sources. We emphasize that the extension of the two merge opera-
tions in Definitions 5 and 6 from two sources to many sources is non-trivial,
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since mixed kinds of overlapping may occur between different sources. We let
M =

⊔
(S1, . . . , Sn) be the result obtained from union-merged a set of sources

W = {S1, . . . , Sn}. Let S 	∈ W . We define the disjoint sets of sources D ⊆ W to
be the maximal subset of W , such that all the sources in D are disjoint with S,
the contained sets of sources T ⊆ W to be the maximal subset of W , such that
all the sources in T are subsets of S, and the independent sets of sources I ⊆ W
to be the remaining overlapping cases, i.e. I = W − T − S.

Theorem 1. The following statements regarding W and S are true.
1. cov(M � S) = cov(M) + cov(S) − cov(M � S).
2. If 	 ∃Si ∈ W such that S ⊆ Si, then cov(M�S) = cov(M)+cov(S)−cov(M�S),
or else cov(M � S) = cov(S).

The merged tree density (or simply the density) of an XML source relates to
the ratio of core label information provided by the source. As XML objects have
flexible structures, the returned object trees from a source do not necessarily
have information for all the core labels. Furthermore, a basic core node may
have a simple data value (i.e. a leaf value) or a subtree as its child. We now
define the density of a core label in an MTP, PS .

Definition 8. (Core Label Density) We define the merge tree density (or
simply density) of a core path pl for some l ∈ C of PS , denoted as den(S, l),
by den(S, l) = | {T∈PS | rT //pl/v exists in T}|

| PS | , where “rT //pl/v” is a basic core
path and v is the corresponding core node in T . The density of the MTP PS ,
denoted as den(S), is the average density over all core labels and is given by
den(S) = Σl∈Cden(S,l)

|C| .

In particular, a core label that has a child (a leaf value of a subtree) for every
data tree of the source S has a density of 1 in its PS . The density of a core label
l that is simply not provided by any object data tree has density den(S, l) = 0.
Core labels for which a source can provide some values have a density score in
between 0 and 1. By assumption den(S,K) is always 1.

Table 2. The DBLP XML table from MTP(DBLP)

key
tr/ibm/GH24...

tr/ibm/RJ...
tr/sql/X3H2...
tr/dec/SRC...

tr/gte/TR-026...

title
SQL/Data System ...
Index Path Length...

Modification of User...
The 1995 SQL Reunion...
An Evaluation of Object...

author
-

Sai, Strong
Phil Shaw

-
Frank Manola

journal
IBM Publication

IBM Research Report
ANSI X3H2

Digital System...
GTE Laboratories...

volume
GH24-5013

RJ2736
X3H2-90-292
SRC1997-018

TR-0263-08-94-165

year
1981
1980
1990
1997
1994

url
-
-

db/systems/...
-

db/labs/gte/...

Example 5. Let C = (key, title, author, journal, vloumn, year, url) be a simpli-
fied set of core labels of an article object. Consider the DBLP table (ignoring
all core paths) extracted from MTP(DBLP) as shown in Table 2. The data in
the table is the information returned from the DBLP source for searching ar-
ticles. The density of the core labels title and url are den(S, title) = 1 and
den(S, url) = 0.4, respectively.
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Similar to finding real coverage scores, density scores can be assessed in many
ways in practice. Information sources may give the scores for an assessment. We
may also use a sampling technique to estimate the density. For large data sources,
the sampling process can be continuous and then the score can be incrementally
updated to a more accurate value.

Now, we consider the general case of n data sources. We use the same set of
notations M,W,T, S and I as already introduced in Section 4.

Theorem 2. The following statements regarding W and S are true.
1. (den(M � S) = den(M, l) · cov(M) + den(S, l) · cov(S) − den(T, l) · cov(T ) −
(den(S, l)+den(I, l)−den(S, l)·den(I, l))·cov(S)·cov(I)+(den(I, l)+den(T, l)−
den(I, l) · den(T, l)) · cov(I � T )) · 1

cov(M�S)

2. den(M � S, l) = den(M, l) + den(S, l) − den(M, l) · den(S, l).

Example 6. Assume that DBLP (D) and CiteSeer(C) are independent sources.
Let the density scores for the volumn label be 1 and 0.6 respectively. The cov-
erage score is 0.245 and 0.3297. Thus, the density score of their merged result
is given by den(D � C) = 1 · 0.245 + 0.6 · 0.3297 − (1 + 0.6 − 1 · 0.6) · 0.245 ·
0.3297 · 1

0.245+0.3298−0.245·0.3297 = 0.2387. We now add the CompuScience(S)
and assume it is independent of DBLP and CiteSeer. Its density of 0.8 for
the volume label and a coverage of 0.2061. The new density score is given by:
den(D � C � S) = 0.2387 · 0.5747 + 0.8 · 0.2061 − (0.2387 + 0.8 − 0.2387 · 0.8) ·
0.5747 · 0.2061 · 1

0.5747+0.2061−0.5747·0.2061 = 0.4179.

4.1 Information Completeness and Data Complexity

The notion of information completeness of an information source represents the
ratio of its information amount to the total information of the real world. The
more complete a source is, the more information it can potentially contribute to
the overall response to a user query.

Definition 9. (Information Completeness) The Information Completeness
(IC) of a source S is defined by

comp(S) =
No. of data objects associated with each l ∈ C in PS

| W | · | C | ,

where W is the total number of data objects of a real world entity and PS is the
MTP of S.

The following corollary allows us to employ coverage and density to find out
the IC score. This corollary can be trivially generalised to a set of information
sources using the corresponding MTP. Intuitively, the notion of IC can be in-
terpreted as the “rectangular area” formed by coverage (height) and density
(width). The following example further helps to illustrate these ideas.

Corollary 1. Let S be an information source. Then comp(S) = cov(S) ·den(S).
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Example 7. Table 2 represents the entries DBLP XML source. The table pro-
vides only five tuples with varying density. The coverage of the source is thus
given by cov(DBLP ) = 5

2,000,000 . The densities for the labels are 1, 1, 0.6, 1, 1,
1, and 0.4, respectively, and it follows that the density of the source is 6

7 . Thus,
the completeness of DBLP is 5

2,000,000 · 6
7 = 3

1,400,000 .

We define specificity and diversity of an XML source to represent the depth
and breadth of data that the source can potentially return. As the subtree of
a core label may contain subtrees of flexible structures, the returned data does
not contain the same amount of data, it may contain something as simple as a
single textual value, or a complex subtree having many levels.

Definition 10. (Specificity and Diversity) Let PS be the MTP of a source
S of a set of XML data objects. Let avg(di) and max(di) be the average and
maximum depth of child subtrees under the core node labelled by li ∈ C and D be
the maximum of {max(d1), . . . ,max(dn)} where | C |= n. Specificity is defined
by spec(S) = Σavg(di)

n·D . Similarly, we define diversity by div(S) = Σavg(bi)
n·B , where

avg(bi) and max(bi) are the average number and the maximum of children of
subtrees under the core node labelled by li ∈ C. Similarly, B be the maximum
of {max(b1), . . . ,max(bn)}.
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Fig. 6. Specificity and diversity of subtrees

Example 8. In Figure 6, under the core label C1, the list contains three values:
“(m, 1), (m, 2), −”. The depth of core label C1 is d(C1) = d((m,1))+d((m,2))+d(−)

3 =
2+4+0

3 = 2. Similarly, d(C2) = 1+1+1
3 = 1 and d(C3) = 0+ 7

3+1

3 = 1.1111. The
deepest path is (m, 2), so we have D = 4. The specificity of the tree is spec(S) =
d(C1)+d(C2)+d(C3)

n·D = 2+1+1.1111
3·4 = 0.3426. The breadth of core label C1, b(C1) =

b((m,1))+b((m,2))+b(−)
3 =

8
3+ 11

2 +0

3 = 2.7222. Similarly, b(C2) = 1+1+1
3 = 1 and

b(C3) = 0+4+1
3 = 5

3 . The broadest subtree is b((m, 2)), so we have B = 5.5. The
diversity of the tree is div(S) = b(C1)+b(C2)+b(C3)

n·B = 2.7222+1+1.6667
3·5.5 = 0.3266.

The notion of data complexity of an information source is employed to represent
the amount of information from the source. The higher the data complexity of
a source is, the richer and broader information it can potentially contribute to
the overall response to a user query.
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Definition 11. (Data Complexity) The Data Complexity (DC) of a source
S is defined by cpex(S) = spec(S) · div(S).

Example 9. Consider the MTP in Figure 6, the data complexity, DC of the tree
is cpex(S) = spec(S) · div(S) = 0.3426 · 0.3266 = 0.1119.

5 Concluding Remarks

We have proposed a framework which consists of two useful concepts, the first
being information completeness (IC), which represents the coverage of data ob-
jects and the density of data related to a set of core labels, and the second being
data complexity (DC), which represents the diversity and the specificity of data
content for a set of core nodes associated with the search entity. The framework
allows merging XML data objects obtained from different sources. We present
an MNF as a standard format to unify the essential data in merged objects of
an entity and an efficient algorithm to transform an XML data object into an
MNF. We develop MTP as a unifying template to represent the merge of a set
of XML objects. MTP serves as a basis to evaluate the IC and DC scores. We
also investigated the properties of density and coverage via two merge operators
in different sources that are disjoint, overlapping and independent. An impor-
tant issue related to this work is how we obtain the values of various metrics of
coverage, density, diversity and specificity. We suggest that this information can
be derived from the data sources or from other authority corpora. For example,
from the probability distribution on certain topics of CS if we compare those
complete or almost complete sources we can then compute the coverage.
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