
Effective Approaches for Watermarking XML
Data

Wilfred Ng and Ho-Lam Lau

Department of Computer Science,
The Hong Kong University of Science and Technology, Hong Kong

{wilfred, lauhl}@cs.ust.hk

Abstract. Watermarking enables provable rights over content, which
has been successfully applied in multimedia applications. However, it
is not trivial to apply the known effective watermarking schemes to
XML data, since noisy data may not be acceptable due to its structures
and node extents. In this paper, we present two different watermark-
ing schemes on XML data: the selective approach and the compression
approach. The former allows us to embed non-destructive hidden infor-
mation content over XML data. The latter takes verbosity and the need
in updating XML data in real life into account. We conduct experiments
on the efficiency and robustness of both approaches against different
forms of attack, which shows that our proposed watermarking schemes
are reasonably efficient and effective.

1 Introduction

Watermarking in the contexts of image, audio or video data is well-known to be
an effective technique to protect the intellectual property of electronic content.
Essentially, the technique embeds a secret message into a cover message within
the content in order to prove the ownership of materials. Remarkable successes
in watermarking on multimedia applications have been achieved in recent years
[4]. Thus, relevant business sectors are able to distribute their data while keeping
the ownership and preventing the original data being resold illegally by others.

The existing watermarking technology has mostly been developed in the con-
text of multimedia data, since such data has a high tolerance to noise and thus
it is not easy to detect the watermark. Unlike multimedia data, XML data are
diverse in nature: some are data-centric and numeric (e.g. regular scientific data)
while some are document-centric and verbose (e.g.book chapters). It is challeng-
ing to develop an effective watermarking scheme which is invisible and is able to
resist various kinds of attack.

In this paper, we attempt to develop watermarking schemes for XML data
based on two different watermarking approaches. One is the selective approach
and another is the compression approach. As for the selective approach, we de-
velop a watermarking scheme for uncompressed XML data based on the database
watermarking algorithm proposed by Agrawal [2]. The second approach is more
interesting. It follows our advocation that in reality some XML documents are
verbose and they need compression in practical applications [3]. In addition, we

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 68–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Effective Approaches for Watermarking XML Data 69

take into consideration that XML documents need to be updated frequently.
Therefore, in the compression approach, we introduce a novel watermarking
scheme based on our earlier developed XML compressor, namely XQzip, which
does not require full decompression when querying. [3]. By watermarking com-
pressed XML data, we gain the advantage of having better document security,
and at the same time, higher flexibility of updating XML data.

Related Work. Agrawal presents an effective watermarking technique for the
relational data [2]. This technique ensures some bit positions of certain attributes
contain the watermarks. We extend their techniques on XML data by defining
locators in XML in our selective approach. Sion [5] discusses the watermarking
of semi-structures of multiple types of contents and represents them as graphs by
characterizing the values in the structure and individual nodes. He also proposes
a watermarking algorithm that makes use of the encoding capacity of different
types of nodes. Gross-Amblard [1] investigates the problem of watermarking
XML databases while preserving a set of parametric queries. His work mainly
focuses on performing queries on different structures and pay less attention to
the watermarking scheme. However, the query approaches are similar to the pre-
defined queries used in the compression approach. At present, all proposed XML
watermarking schemes are based on uncompressed XML data and no studies
exist on watermarking compressed XML data to the best of our knowledge.

Paper Outline. After introducing our XML watermarking schemes in this sec-
tion, we describe and study the selective approach, which is for uncompressed
XML data, and the compression approach, which is for XQzip compressed XML
data in Sections 2 and 3, respectively. Then in Section 4, we conclude our work
and suggest future improvements for the watermarking schemes we developed.

2 The Selective Approach of Watermarking XML

In this section, we introduce the selective approach of XML watermarking. We
also analyze the robustness of our watermarking system against the following
two forms of attacks: subtractive attack and additive attack. All the experiments
related to the watermarking system are conducted on a machine of the configu-
ration as follows: P4 2.26GHz, 512MB main memory and 15GB disk space.

2.1 Watermark Insertion

In the selective approach of watermarking XML, the watermarks are randomly
distributed throughout the XML document based on a secret key provided by
the owner. We aim at making minor changes on XML data without causing
errors during the process.

The watermark insertion algorithm and the notations we used are presented
in Algorithm 1 and Table 1, respectively. Before embedding marks in XML
data, we define a locator, which is an analogy to the primary key in relational
databases, to indicate whether a particular element should be marked. Unlike

70 W. Ng and H.-L. Lau

watermarking relational databases [2], primary keys are not necessarily to be
specified and defined in XML. We assume the owner of the watermarked data
is responsible to select the elements that are suitable to be the candidates of
locators. The best choice of such an element is that its value is unique, non-
modifiable and has large locator space. For example, the tag “ISBN” of a book
XML document could be served as a locator.

Table 1. Notation Used

υ Number of elements in the document available for marking.

ξ Number of the least significant bits available for marking in an element.

1/γ Fraction of marked elements in the document (the watermark ratio).

α Significance level of the test for detecting a watermark.

N Number of elements in the document.

τ Minimum number of detected locators required for a successful detection.

Let E be a locator candidate and K be the secret key provided by the owner.
We use the value of E in a hash function H(E,K) = E ◦ K, which generates
a hash value, h to determine whether E should be marked or not. For the sake
of simplicity, we use concatenation to generate h. In fact H(E,K) can be some
other functions as long as it is able to generate a unique value for a given pair
of E and K. After determining the marked locators, say Em, we watermark the
value of Em according to the data type of Em. For numerical data, we mark
Em by modifying the least significant bit specified by the control parameter,
denoted as ξ. We assume that numerical data is able to tolerate small and non-
detectable changes. For example, “1000.30000” can be changed to “1000.30001”.
For textual data, the value of Em is replaced by a synonym function, denoted as
Synm(), which is based on a well-known synonym database WordNet [10]. For
example, “theory” can be replaced by its synonyms “concept” or “belief”. Once
Em is marked, we call it the marked element.

2.2 Watermark Detection

To detect whether the XML data has originated from the data source, the data
owner is required to supply the secret key, K, and the corresponding setting
file to the watermark detection algorithm, which is shown in Algorithm 2. The
setting file includes information such as the significance level, α, and the list
of locator candidates in XPath format. The detection algorithm finds out the
number of marked elements and locators in the XML data, and then evaluates
the hit rate. We call the locator whose watermark is detected by the algorithm the
detected locator. The detection algorithm uses a threshold function to calculate
the smallest integer, denoted as t, such that if the hit rate is larger than t, the
owner can claim the ownership of the document with the confidence of (1 − α).

Figure 1 shows the proportion of detected locators required for a successful
detection with 99% confidence against different watermark ratios. It is interest-

Effective Approaches for Watermarking XML Data 71

Algorithm 1 The watermark insertion algorithm in the selective approach
1: for each locator candidates r ∈ R do{
2: if (r.lablel() mod υ equals 0){ //mark this locator
3: value index i = r.lablel() mod υ; //modify value Ai

4: if (Ai is textual){
5: word index wi = r.lablel() mod num of word in value;
6: Ai = markText(r.lablel(), Ai, wi);} //modify the wth

i word
7: else if (Ai is numerical){
8: bit index bi = r.lablel() mod ξ; //modify the bth

i bit
9: Ai = markNum(r.lablel(), Ai, bi);}}}

10: Procedure markNum(secret key sk, number v, bit index j) return number
11: first hash = H(K · sk)
12: if(first hash is even)
13: set the jth least significant bit of v to 0;
14: else
15: set the jth least significant bit of v to 1;
16: return v;

17: Procedure markText(secret key sk, text v, word index j) return text
18: first hash = H(K · sk);
19: if (first hash is even)
20: replace the jth word w by a synonym s where s = change(w,0);
21: else
22: replace the jth word w by a synonym s where s = change(w, 1);
23: return v;

24: Procedure change(word w, value v) return word
25: if (Symn(w) equals v)
26: Do nothing and return w;
27: else{
28: syn list = all synonyms of w from a dictionary database;
29: randomly select a synonym s from syn list where Synm(s) equals v;}
30: Procedure Synm(word w) return number
31: if (H(w) is even)
32: return 0;
33: else
34: return 1;

ing to find that, in a small XML document (N = 10,000), if 1% of the records
are marked, only 62% of detected locators are needed to provide 99% confidence.
As the watermark ratio increases, the proportion of detected locators required
decreases. The proportion tends to the constant value of 0.5 because the detec-
tion algorithm is probabilistic and needs more than 50% of detected locators to
differentiate a watermark from a chance of random occurrence. In general, for
an XML document with more elements, fewer detected locators are required to
achieve the same level of detectability than XML documents with fewer elements.

72 W. Ng and H.-L. Lau

Algorithm 2 The watermark deletion algorithm in the selective approach
1: TotalCount = 0;
2: MatchCount = 0;
3: for each locator r ε R do{
4: if (r.lablel() mod γ equals 0){// this locator is detected
5: value index i = r.lablel() mod υ; // value Ai was modified
6: if (Ai is textual) {
7: word index wi = r.lablel() mod num of word in value; // wth

i word was modi-
fied

8: TotalCount = TotalCount+1;
9: MatchCount = MatchCount + isMatchNum(r.lablel(), Ai, wi);}

10: else if (Ai is numeric) {
11: bit index bi = r.lablel() mod ξ // bth

i bit was modified;
12: TotalCount = TotalCount+1;
13: MatchCount = MatchCount + isMatchWord(r.lablel(), Ai, bth

i);}}}
14: t = Threshold(Totalcount, α, 0.5);
15: if(MatchCount ≥ t)
16: The document is a suspect piracy;

17: Procedure Threshold(number n, significance a, success probability p)
18: q = 1 − p;
19: return minimum integer k such that Σn

r=knCr pr qn−r < α;

0.01 0.1 1 10

Watermark ratio (%)

pr
op

or
tio

n
of

 d
et

ec
te

d
lo

ca
to

rs
 r

eq
ui

re
d

=0.01

N=10,000 N=100,000

N=1,000,000 N=10,000,000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Proportion of detected locators required for successful watermark detection

2.3 Experiments

Two XML data sources are used in the experiments: 1998 statistics.xml and
weblog.xml. Table 2 shows the features of these datasets.

Marked and Modified Records. We first examine the relationship between
the fraction parameter, γ, and the marked locators. Figure 2(a) shows that
the percentages of marked locators in the two XML datasets are slightly lower
than our expected level (c.f. the superimposed curve representing 1/γ). This
is due to the fact that some locators cannot be modified by the watermark
insertion algorithm, such as the synonym of a word of the locator does not exist.
Figure 2(b) shows that the percentage of modified locators with different values
of γ. The experimental result for “1998 statistics.xml” is fluctuating around our
expected level of 50%, while that of the “weblog.xml” is usually less than 50%.

Effective Approaches for Watermarking XML Data 73

Table 2. Features of XML datasets

Documents File size
(KB)

No. of
records

No. of elements avail-
able for marking (υ)

No. of least significant
bits for marking (ξ)

1998 statistics.xml 1227 1226 4 3

weblog.xml 89809 247024 2 3

P
er

ce
n

ta
g

e
o

f
M

ar
ke

d
 L

o
ca

to
rs

(a)

100

0

10

20

30

40

50

60

70

80

90

1 2 3 5 7 9 10

(b)

P
er

ce
n

ta
g

e
o

f
M

o
d

if
ie

d
 L

o
ca

to
rs

0

10

20

30

40

50

60

70

80

90

100

1 2 3 5 7 9 10

Expected Level % of Modified Locators (1998_statistics.xml) % of Modified Locators (weblog.xml)

Fig. 2. Percentages of (a) marked and (b) modified locators versus γ

Table 3. Running time of watermark insertion

Watermark ratio (%) 100.00 50.00 33.33 20.00 14.29 11.11 10.00

1998 statistics.xml (sec) 0.891 0.891 0.861 0.891 0.871 0.871 0.851

weblog.xml (sec) 73.46 69.02 68.01 61.68 61.62 61.44 61.79

Running Time of Watermark Insertion. Table 3 shows the running time
of applying the watermark insertion algorithm on the two XML datasets with
different watermark ratios. The results show that the watermark ratios do not
have a big impact on the running time of the algorithm. The I/O time is the
main overhead, since the document is parsed only once, which is irrespective to
the watermark ratios.

Subtractive Attack. A subtractive attack aims at eliminating the presence of
watermarks. A successful subtractive attack reduces the watermarks created by
the original owner in order to render the claim of ownership impossible. Subset
attack is a typical form of subtractive attacks, it attempts to copy parts of the
watermarked document and hence reduces the percentage of watermarks found
in the document. We use the “weblog.xml” dataset to demonstrate the resistance
to subset attacks in the selective approach. We randomly select elements from
the watermark version of weblog.xml at different gap sizes and selectivity levels
and then examine the watermark detection percentage.

In Figure 3, when the gap size is equal to 10, 90% of watermarks can be
detected with only 0.02% selectivity level. When gap size increases, selectivity
level also increases for detecting over 90% of watermarks. At 0.3% selectivity,
watermark detection reaches 100%. For a gap size of 1000, only a small selectivity
level can reach over 90% watermark detection. This result indicates that the
watermarks inserted by our watermarking schemes are evenly distributed and
have good resistance to the subset attack.

74 W. Ng and H.-L. Lau

Gap Size

10

100

1000

Selectivity (%)

W
at

er
m

ar
k

D
et

ec
te

d
 (

%
)

0.
01

0.
02

0.
03

0.
10

0.
20

0.
30

1.
00

2.
00

3.
00

0

10

20
30

40

50

60

70
80

90

100

Fig. 3. Watermark detected versus selectivity level

Additive Attack. In an additive attack, illegal parties insert their own water-
marks over the original document and claim the “legal” ownership of the data.
Since the watermarks inserted afterwards is able to overwrite the former water-
marks in some overlapping regions, it results in the illegal copy more detected
elements than the original one can be found in the overlapping regions. Let M
be the total number of marked element, L be the number of elements available
for marking and F be the total number of watermarks added afterwards. The
probability of having overlapping region is given as follows:

{
1 − ΠF−1

i=0
(L−i)−M

L−i , if M + F < L;
0, if M + F ≥ L.

The mean of the overlapping region = L × Probability of collision in an
element node = L × (M/L) × (F/L).

Illegal parties may try to reduce the overlapping regions by using a low wa-
termark ratio such as 0.1% or 0.01%. Figure 4 shows the probability and the
mean of having overlapping regions when the watermark insertion algorithm is
applied twice on the same XML document.

Mean of overlapping element with
watermarks 0.01 %

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(d)

-

2

4

6

8

10

12

0.1 1 2 5 10

Mean of overlapping elements with
watermarks 0.1 %

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(c)

-

20

40

60

80

100

120

0.1 1 2 5 10

Probability of collision with
watermarks 0.01 %

0.1 1 2 5 10

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(b)

0
20

40
60

80
100

Probability of collision with
watermarks 0.1 %

0.1 1 2 5 10

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(a)

0

20

40
60

80

100

N = 10,000 N = 100,000 N = 1,000,000 N = 10,000,000

Fig. 4. Probability and mean of having overlapping region with 0.1% and 0.01% wa-

termark ratios

Figure 4(a) shows that for a small XML document (N=10000), if the owner
uses a 10% watermark ratio and the illegal party inserts watermarks with a
0.1% watermark ratio, the probability of the occurrence of overlapping regions
is 65%. However, the mean of these overlapping regions is only 1 as shown in

Effective Approaches for Watermarking XML Data 75

Figure 4(c). For a large XML document (N = 100,000), if the owner uses a
lower watermark ratio of 2% and the illegal party inserts watermarks with a
0.1% watermark ratio, we can achieve a higher probability of overlapping (85%)
and the mean of overlapping region is 2. Figures 4(b) & (d) show the results
of illegal parties using a very low watermark ratio of 0.01%. They show that
the probability of an overlapping occurrence and the mean of overlapping region
decrease dramatically. In this case, since the probability of overlapping region
is low, in order to resist additive attacks with a very low watermark ratio, we
can decrease the value of γ such that when overlapping occurs, the collisions of
watermarks are large enough to make an accurate decision.

Discussions. The experimental results show that the selective approach is sus-
ceptible to subtractive and additive attacks. The performance of the approach is
determined by four parameters: the size of the document (N), the watermarking
ratio (γ), the number of locators (v) and the significant level of the test (α). It is
worth mentioning in our finding larger documents can use a smaller watermark
ratio to achieve a particular confidence of detectability (c.f. Figure 1). Compu-
tation overhead introduced by the watermark ratio to the watermark insertion
algorithm is relatively small compared to the I/O time. The overhead is also
directly related to the size of the documents.

Our watermark algorithm can also resists some attacks that transform the
structure of the watermarked XML data conforming to DTDs or XML schemas
(i.e. distortive attack). Since XML data is a tree structure, re-transformation to
the original structure is possible by using the original schema, in this case we
can still apply the watermark detection algorithm to examine whether the XML
data belongs to the owner. In real life, some XML document is based on some
well-known schema, such as the Electronic Business using eXtensible Markup
Language (ebXML) [8], the distorted documents become less valuable.

3 The Compression Approach of Watermarking XML

Existing watermarking techniques are all targeted on plain XML data. The selec-
tive approach we introduced in Section 2 is efficient and effective in proving the
ownerships of the owners. However, the protection on the data from access in this
approach is not taken into consideration. In this section, we introduce a novel
watermark approach which is based on compressed XML data which provides a
prove of ownership as well as the protection of data security. The principle is that
compressed XML data are unable to be retrieved directly without the correct
decompression. Watermarking compressed XML data is a preventive measure
for unauthorized copy or reading. Similar to the selective approach, the com-
pression approach is also driven by the owner-selected secret key. The secret key
is used to calculate the location of the watermarks, each distributed copy is wa-
termarked by a unique secret key set by the owner. Without the secret key, the
compressed data cannot be retrieved. Authorized parties are allowed to retrieve
the data by using the pre-defined queries sets provided by the owner, the owner

76 W. Ng and H.-L. Lau

can also limit the amount of data visible to different parties by giving them
different pre-defined query sets. We also consider in practice some XML data
are updated frequently and thus it is inefficient to compress and watermark the
XML documents again for every update activity. Therefore, we provide a facility
which only requires the owner to distribute supplementary compressed files to
the relevant parties when update occurs.

3.1 Architecture of the Compression System

The architecture of the compression system is shown in Figure 5. We only briefly
explain the functionality of the main modules due to the space limit.

Compressed XML with
watermark

Compressed
Supplementary Set

Compressed Pre-defined
Query-set with watermark

Query and
Decompressor

Supplementary
Handler

Query
Result

ID
Adder

Query
Handler

Compressor (XQzip)

Watermark Engine

Key

XML

Supplementary

Own Info.

Pre-defined Query

User Query

Fig. 5. An overview of the compression approach of watermarking XML

ID Adder. The ID Adder is built on a SAX parser, it parses the XML document
sequentially and inserts the owner’s information into the XML document. The
information is stored in an “ownership node” under the root of the XML docu-
ment. The label of the ownership node is simply the hash value of the owner’s
secret key. To support update, a unique system-assigned ID value is added for
each element for easy processing when consulting the supplementary file.

Query Handler. This module is an interface that allows the owner to restrict
some pre-defined queries for an authorized party. The module selects the visible
parts of the XML document, then converts them into an XML document and
finally passes the XML document to the compressor.

Compressor and Watermark Engine. We adopt our earlier developed XQzip
[3] to carry out the XML compression. The secret key, hash function and gap
value are used to determine the byte position to be marked. Roughly, a smaller
gap value results in more watermarks being inserted into the compressed blocks.
After all the blocks are compressed and watermarked, they are merged into a
single file.

Query and Decompressor. Querying and decompressing are also executed
using XQzip [3]. A compressed pre-defined queries set is first decompressed.
Then, the authorized parties select and perform queries from the pre-defined
query list. The system locates the position of the query solution through the
index file developed in XQzip. The query solution is decompressed and passed to
the supplementary handler if update is required. In the process of decompression,

Effective Approaches for Watermarking XML Data 77

the query and decompressor hashes the embedded secret keys and gap values to
determine the marked elements and recover them.

Supplementary Handler. There are two steps in handling the supplementary
files when updating the compressed XML data. First, the handler removes the
out-dated contents defined by the supplementary set. The result is then passed
to the ID adder which updates the contents defined by the supplementary doc-
ument. Then, the parser checks for every attributes of each element, and if an
attribute is indicated as “added”, the parser inserts the value to the correspond-
ing elements and finally, the result is outputted as an XML file.

In the compressed watermark system, the number of watermarks in each
compressed block is restricted. The system processes byte flipping at the locator
indicated by the hash function. If one byte location is selected twice or even num-
ber of times, flipping does not occur at that byte location. To ensure that a block
contains at least one watermark, the number of watermark in each compression
block should be odd. The number of marks is determined by the following for-

mula where m is the block size: Number of mark =
{

m, when m is odd;
m + 1, otherwise.

3.2 Experiments

We implement the compression watermarking system and conduct a series of
experiments which are based on the same machine configuration as stated in
Section 2. Four common XML datasets are used in the experiments: XMark,
Shakespeare and two DBLP data sources of different size.

Effectiveness and Detectability of Compressed Watermarking System.
The data of a compressed document is retrieved by using the same {key, gap}
pair used in the compression. To test for the effectiveness of the system, we re-
trieve data from a compressed document by the query system from the following
scenarios: (1) different secret keys and different gap values, (2) the same secret
key but different gap values, (3) different secret keys but the same gap value,
and (4) the same secret key and same gap value. Note that when a wrong {key,
gap} pair is supplied, the query and decompressor cannot locate the pattern of
marked element and fails to decompress the required data.

Query Response Time. We present the worst case query response time of the
four datasets in the system on three different scenrios: (1) ID and update are
supported, (2) ID is supported but no update and (3) ID and update are not
supported. The test query we used is set to retrieve the whole document and the
processing involves a full decompression.

Figure 6(a) shows the query response time of the data sources in the system
which support ID and update. When the smallest gap value, i.e. gap = 1, requires
roughly 30% more time to process the query than that with the largest gap value,
i.e. gap = 10000. The reason for this is that the gap value controls the number of
marks to be recovered, the smaller the gap value, the more the marked elements
are needed to be recovered. Figure 6(b) shows the query response time of our
system and XQzip which support ID but not update. It shows that when the

78 W. Ng and H.-L. Lau

(b)

Gap=1 Gap=10 Gap=100 Gap=1000 Gap=100000

Query Response Time (With ID and update)

Compressed Data Sources
(a)

T
im

e
(s

)

0

200

400

600

800

1000

1200

XMark Shakes
-peare

DBLP1 DBLP2

Query Response Time (With ID and no update)

Compressed Data Sources
(b)

T
im

e
(s

)

0

50

100

150

200

250

300

XMark Shakes
-peare

DBLP1 DBLP2
0

20

40

60

80

100

120

140

160

180
Query Response Time (Without ID and update)

T
im

e
(s

)

Compressed Data Sources
(c)

XMark Shakes
-peare

DBLP1 DBLP2

Fig. 6. Query processing time comparison (a) (support ID and update), (b) (support

ID but not update) and (c) (do no support ID nor update)

gap value is smaller, the query processing time is longer; it takes 10 times longer
for gap = 1 than gap = 10000.

Compared Figure 6(a) to Figure 6(b), there is a big difference in the query
time between the updated case and that of not updated. The difference is obvious
when the gap value is small and the file size is large, in this case handling supple-
mentary XML documents is expensive and consumes too much time. However,
when the gap value is very small, time spent on recovering the marked elements
from the compressed XML data becomes critical and the time spent on handling
supplementary XML document becomes less significant.

Figure 6(c) shows the query time of the system which support neither ID nor
update. The result is similar to the results shown in Figure 6(b). In this case
most of the time is used in recovering the marked elements from the compressed
XML data. This also indicates that the time required for handling ID is linear
to the size of the document, which does not introduce much overhead.

Robustness of Watermarking. We now analyze the robustness of the com-
pression approach against various forms of attacks. An attack is assumed to be
aimed at retrieving data from the compressed document without using the query
system. Such attacks are classified as a flipping attack or an averaging attack.

Flipping Attack. A flipping attack attempts to destroy the watermark by flip-
ping the value at certain byte positions. Since a compressed document is com-
posed of many compressed blocks, an attacker attempts to attack each block
and combine all the attacked blocks to form a new compressed document. If any
one block is modified wrongly, the compressed document is unable to be decom-
pressed therefore the attacker has to guess the pattern of all blocks correctly.

Suppose the attacker knows the number of marked locators, m, and the size
of the data, n. If two marked elements are at the same location, they cancel the
effect of each other. The probability of correctly guessing the pattern of marks
is given by: 1

Σr=1,3,...,mnCr , for 0 < m ≤ n and m is odd.
Figure 7 shows the success rate of the simulated flipping attacks. The success

rate decreases upon the increase of block size at a fixed gap value. On the other
hand, if the block size is fixed, a decrease in gap value decreases the success rate.
For instance, a small block size (n = 30) and a large gap value (gap = 100000)
gives a higher success rate, however, most of the success rates are within 3%,
which are rather low.

Effective Approaches for Watermarking XML Data 79

Probability of successful flipping attack

0 1 2 3 4 5

0.005

0.01

0.015

0.02

0.025

0.03

0.035

su
cc

es
s

ra
te

log (gap)

n = 3000

n = 300

n = 30

Fig. 7. Success rate for flipping attack

Averaging Attack. An averaging attack attempts to construct a watermark-
free document from a number of sample watermarked documents. Similar to the
flipping attacker, an averaging attacker attacks the compressed data block by
block by analyzing all the compressed blocks from the available samples and
uses the information to construct a new block. Let the attacker has s samples (s
is supposed to be an odd number) and create a new artificial block, a. The ith

byte of a is the majority value of the ith byte in all the s samples.
We carry out experiments by simulating the averaging attack by using the

XMark and Shakespeare datasets. For each dataset, there are 99 samples avail-
able. We randomly generate the blocks sizes as the attack targets. To launch a
successful averaging attack, all artificial blocks are required to be successfully
attacked. The number of samples required is shown in Table 4 and “Fails” means
the attack is fail after averaging all the samples.

Table 4. Number of samples required for averaging attack at different gap size

Gap Size 1 5 10 100 1000 10000 100000

XMark Fails Fails Fails 5 3 3 3

Shakespeare Fails Fails Fails 5 3 3 3

From Table 4, we find that the attack on compressed data can be easily
successful if the gap values are large. This is mainly because majority of blocks
being unmarked when the gap value is large. When the gap value is below 10,
all attacks fail, since few byte errors are sufficient to prevent the attacker from
decompressing the data. From the results, we can see that when the gap value
is smaller the system is more robust against the averaging attack. Thus, there
is indeed a tradeoff between the gap value and compression time.

4 Concluding Remarks

We have presented two approaches for watermarking XML for both usual XML
and a compressed form, which are shown to be robust and effective. The proposed
watermark algorithms are presented and various forms of attacks are studied.
In the selective approach, we decide how to insert synonyms and control the

80 W. Ng and H.-L. Lau

synonymity level of a word. The performance of the scheme in this approach
depends very much on the quality of the synonym database. In the compression
approach, we rely on an effective queriable XML compressor we developed. This
approach is both effective and practical for large XML datasets.

References

1. D. Gross-Amblard. Query-preserving Watermarking of Relational Databases and
XML Documents. In Proc. of Principle of Database Systems, 2003.

2. R. Agrawal and J. Kiernan. Watermarking Relational Databases. In Proc. of
VLDB, 2002.

3. J. Cheng and W. Ng. XQzip: Querying Compressed XML Using Structural Index-
ing. In Proc. of the EDBT, pages 219-236, 2004.

4. C. Collberg and C. Thomborson. Software Watermarking: Models and Dynamic
Embeddings. In Proc. of Principles of Programming Languages, 1999.

5. R. Sion, M. Atallah and S. Prabhaker. Resilient Information Hiding for Abstract
Semi-Structures. In Proc. of the IWDW, 2004

6. S. Inoue et al. A Proposal on Information Hiding Methods using XML. In the
First NLP and XML Workshop.

7. M. Atallah, R. Sion and S. Prabhakar. Watermarking non-media content. In the
the CERIAS Security Symposium, 2001.

8. UN/CEFACT and OASIS. ebXML - Electronic Business using eXtensible Markup
Language. In http://www.ebxml.org/.

9. Y. Li, V. Swarup and S. Jajodia. Constructing a Virtual Primary Key for Finger-
printing Relational Data. In Proc. of the 2003 ACM workshop on Digital rights
management, 2003.

10. C Fellbaum. WordNet An Electronic Lexical Database. The MIT Press, 1998.

	Introduction
	The Selective Approach of Watermarking XML
	Watermark Insertion
	Watermark Detection
	Experiments

	The Compression Approach of Watermarking XML
	Architecture of the Compression System
	Experiments

	Concluding Remarks

