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Abstract. The rapid growth in the amount of XML data and the devel-
opment of publish-subscribe systems have led to great interest in process-
ing streaming XML data. We propose the QstreamX system for querying
streaming XML data using a novel structure, called Hash-Lookup Query
Trees, which consists of a Filtering HashTable (FHT), a Static Query
Tree (SQT) and a Dynamic Query Tree (DQT). The FHT is used to
filter out irrelevant elements and provide direct access to relevant nodes
in the SQT. The SQT is a tree model of the input query. Based on the
SQT, the DQT is built dynamically at runtime to evaluate queries. We
show, with experimental evidence, that QstreamX achieves throughput
five times higher than the two most recently proposed stream querying
systems, XSQ and XAOS, at much lower memory consumption.

1 Introduction

With the rapid growth in the amount of XML data, processing streaming XML
data has gained increasing attention in recent years. Two main and closely re-
lated stream processing problems in XML are filtering [1, 6, 5, 2, 7, 8, 13] and
querying [3, 10, 11, 14]. The problem of filtering is to match a set of boolean
path expressions (usually in XPath syntax) with a stream of XML documents
and to return the identifiers of the matching documents or queries. In query-
ing streaming XML data, however, we need to output all the elements in the
stream that match the input query. Apart from natural streaming data used in
publish-subscribe systems such as stock quotes and breaking news, it is some-
times more feasible to query large XML datasets in a streaming form, since we
need to parse the document only once and keep only data that are relevant to
the query evaluation in the memory.

In this paper, we focus on processing XPath queries with streaming XML
data. Unlike filtering, querying outputs an element if it matches the input query.
The difficulty is that in the streaming environment, we sometimes cannot de-
termine whether an element is in the query result with the data received so far.
However, we cannot simply discard the element as its inclusion in the query re-
sult may be verified with some element arriving in the future. Therefore, we need
to buffer the potential query results. Proper buffer handling for querying XML
streams, however, is rather complex, as illustrated by the following example.



Example 1. Consider evaluating the query Q = “//a[.//f]//b/c” on the XML
document tree in Figure 1, assuming its elements come as a stream in ascending
order of their (numerical) ids marked near the circle.
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Fig. 1. A Sample XML Document Tree

When the element c5 (i.e. the node with label “c” and id = 5 on the left
side of the tree) arrives, we have two node sequences, q1 = 〈a1, b4, c5〉 and
q2 = 〈a2, b4, c5〉, matching the main path of Q, i.e. “//a//b/c”. However, we
cannot output c5 at this stage, since the predicate, “[.//f]”, of both a1 and a2
have not been satisfied. As this predicate may be satisfied with an f element
that comes later, we must buffer c5 for both q1 and q2; but only one copy of c5
should be kept in memory as to avoid duplicate buffering.

When the end-tag of the element a2 arrives, a2 expires and so does the node
sequence q2. Since a2’s predicate is not satisfied, we need to remove the element
c5 buffered for q2. But c5 should not be deleted, since it is still being buffered
for q1, which may satisfy Q if there is an f element, descendant of a1, coming
in the stream. Similarly, we buffer c10 for the node sequences, q3 = 〈a1, b8, c10〉
and q4 = 〈a7, b8, c10〉. Then when the start-tag of the element f12 arrives, q1, q3

and q4 satisfy Q. Hence, we need to immediately flush the element c5 buffered
for q1 and the c10 buffered for q3 and q4. However, we should flush c10 only once,
though it is buffered for both q3 and q4.

When c13 arrives, we should not buffer but output c13 immediately, since
this time the node sequences, 〈a1, b8, c13〉 and 〈a7, b8, c13〉, instantly satisfy Q.
Again, we should output c13 only once for the two sequences.

Example 1 suggests some important issues in the query processing: (1) buffer-
ing of potential query results or outputting determined query results; (2) the
decision of flushing or removing buffered data; and (3) duplicate avoidance in
buffering, outputting, flushing and removing. Let us call all these issues collec-
tively as buffer handling in our subsequent discussion.

Buffering comes only with the presence of predicates. The query in Example 1
contains only a single atomic predicate but the problem is already very complex.
Another important issue is that a substantial amount of elements in a stream
are usually irrelevant, however, no existing querying systems have considered
filtering out these elements.

We propose the QstreamX system, which attempt to address the above-
mentioned challenges with the use of a novel data structure, called Hash-Lookup



Query Trees (HLQT). HLQT consists of the following three components: a Fil-
tering HashTable (FHT), a Static Query Tree (SQT) and Dynamic Query Tree
(DQT). The FHT filters out irrelevant streaming elements and provides direct
access to nodes in the SQT that are relevant for the processing of relevant ele-
ments. The SQT is a tree model of the input query, based on which the DQT is
constructed dynamically at runtime to evaluate queries.

QstreamX has the following desirable features:
Language Expressiveness. QstreamX supports all XPath axes except the
sideways axes (i.e. preceding-sibling and following-sibling). It also sup-
ports multiple and nested predicates with and and or operators, a common set
of aggregations, and multiple queries and outputs.
Processing Efficiency. Our algorithm is able to achieve O(|D|) time complex-
ity and O(|Q|) space complexity, where |D| is the size of the streaming data and
|Q| is the size of the input query.
Buffering Effectiveness. QstreamX (1) buffers only those data that must be
buffered for the correct evaluation of the query; (2) flushes or removes buffered
data with no delay; and (3) avoids buffering and outputting any duplicate data.
Effective Design. HLQT makes the implementation of QstreamX straightfor-
ward. The FHT is realized as a simple array that stores distinct query elements
and pointers to the SQT nodes. The SQT is translated directly from the input
query by four simple transformation rules, while the DQT is constructed with
correspondence to the structure of the SQT.

In the rest of the section, we discuss related work on stream processing.
In Section 2, we present the XPath queries supported by QstreamX. We de-
fine Hash-Lookup Query Trees and present query evaluation in Sections 3. We
evaluate QstreamX in Section 5 and conclude the paper in Section 6.

1.1 Related Work

A number of filtering systems [1, 6, 5, 2, 7, 13, 8] have been proposed to process
XPath filters on streaming XML documents. XFilter [1] converts queries into sep-
arate Deterministic Finite Automata (DFAs), while YFilter [6] eliminates redun-
dant processing on common prefixes in the queries by a single Non-Deterministic
Finite Automaton (NFA). XTries [5] also supports shared processing of common
subexpressions of the queries by a trie. The throughput of these systems de-
creases linearly with the number of queries. LazyDFA [2, 7] ensures a constant
high throughput by lazily constructing a DFA for the entire workload of queries.
However, LazyDFA may require excessive memory for XML data with complex
structures. This problem is addressed in [13], which clusters the queries into n
DFAs to reduce the number of DFA states and introduces a shared NFA state ta-
ble to reduce the size of the NFA state table stored in each DFA state. The XPush
machine [8] eliminates common predicates by translating the query workload
into a deterministic pushdown automaton. Among these systems, only [13] and
[8] support almost the same set of queries (except aggregations) as QstreamX.
Although we consider the same query language, filtering only outputs the identi-



fier of matching documents or queries and does not require buffering of potential
query result.

A closer match to QstreamX is the XAOS algorithm [3], which translates
an XPath query into a tree and uses an extra graph to support the parent
and ancestor axes by converting them into forward axes. The graph determines
which set of elements (and with what depth) to look for in the incoming stream.
The tree is used to maintain a structure to keep track of the matched elements.
However, the query results are only determined at the ROOT of the structure, i.e.,
at the end of the stream, while HLQT outputs an element no later than when its
inclusion in the query result is decided. Keeping the matched data until the end
of a stream also does not scale, especially because streaming data is unbounded.
Moreover, features such as aggregations, or-expressions and multiple queries are
infeasible in XAOS’s approach.

The filtering systems [2, 7, 13, 8] guarantee a constant high throughput using
a hash algorithm to access directly relevant states for processing each element.
However, direct access to relevant states or nodes using hash-lookup is con-
siderably complicated by buffer handling in the querying problem. In fact, all
existing querying systems need to search for matching transitions or relevant
nodes for each (including irrelevant) streaming element. Our proposed HLQT
adopts a hash-lookup strategy, which is natural to filter out irrelevant elements
and provide direct access to nodes relevant for processing relevant elements.

2 QstreamX Query Expressions

We support a practical subset of XPath 2.0 queries with extended aggregations,
whose Extended Backus-Naur Form (EBNF) is shown in Figure 2.

Q ::= /LP (/OE)?
LP ::= LS | LS/LP
LS ::= AX::(tag | ∗) P? | (@attribute | @∗) CP?
AX ::= self | child | descendant | descendant-or-self | parent |

ancestor | ancestor-or-self
P ::= [P (and | or) P] | [LP CP?]
CP ::= OP literal | [[. OP literal] (and | or) [. OP literal]]
OP ::= > | < | >= | <= | = | != | contains | starts-with
OE ::= text() | count() | sum() | avg() | max() | min()

Fig. 2. EBNF Grammar of QstreamX Queries

3 Hash-Lookup Query Trees

We now define the three components of Hash-Lookup Query Trees (HLQT): the
Static Query Tree, the Dynamic Query Tree and the Filtering HashTable.
The Static Query Tree The Static Query Tree (SQT) is a tree model of the
input query constructed by four transformation rules, as depicted in Figure 3,
where elements in dotted line are optional components. The transformation rules
are derived directly from the EBNF of the language presented in Figure 2.



We now explain the four transformations that are used to construct the SQT.
(a) LocationStep Transformation. A location step is transformed into an
SQT node, or a snode for short, which is a triplet, (axis, predicate, dlist), where
axis is the axis of the location step; predicate, if any, is handled by Predicate
Transformation; and dlist is a list of DQT node pointers that provide direct
access to the DQT nodes. A dlist is initially empty, since node pointers are
added to the dlist at runtime during query evaluation.
(b) LocationPath Transformation. A location path is a sequence of one or
more location steps. Therefore, LocationPath Transformation is just a sequence
of one or more LocationStep Transformations, where a snode is connected to its
parent by its axis.
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Fig. 4. The SQT of an Example Query

(c) Predicate Transformation. To facilitate efficient predicate processing,
we require predicates be fully parenthesized when they are joined by the logical
operators. We then model the predicates as a binary tree, called a Predicate
Binary Tree (PBT). A node in the PBT is called an SQT predicate node, or a
spnode, which is one of the following three types: O (for or-expression), A (for
and-expression) and P (an encapsulation of other predicate). Value comparison,
if any, is also modelled by a P-spnode, by an A-spnode or by an O-spnode for
multiple value matches.

We classify predicate transformation into the following three categories: (1)
an atomic predicate is transformed by applying LocationPath Transformation
on the location path in the predicate, as shown in Figure 3(c1) and 3(c2); (2)
a nested predicate is transformed by applying Predicate Transformation recur-
sively; and (3) an and/or expression is transformed by applying Predicate Trans-
formation on both sides of the logical operator, as shown in Figure 3(c3).
(d) ROOT/OE Transformation. This transformation is carried out in two
steps. The first step is at the beginning of the SQT construction, we create the
root of the SQT. The second step is at the completion of the SQT construction,
we create a node, called the output node, in order to model the output expression
of the query.



Let s be a snode. If s has an ancestor that is a spnode, then we say s is under
a PBT. Note that s is not part of the PBT, since a PBT consists of only spnodes.
If the root of a PBT is connected to s, then the PBT is the PBT of s. We say
that s is the parent of another snode, s′, if s and s′ are connected by the axis of
s′, and that s is the indirect-parent of s′, if s and s′ are connected by a path of
spnodes in the PBT of s.

The primary path of the SQT is the path that still remains when all PBTs
and all snodes under the PBTs are removed. For example, in Figure 4, the nodes
s1, s3, s6 and s7 have a PBT, while the nodes s2, s3, s4, s5, s6 and s8 are under a
PBT; s1 is the parent of s7 but the indirect-parent of s2, s3 and s6; 〈s0, s1, s7, s9〉
is the primary path. Moreover, if a snode is not on the primary path, then it is
under a PBT. Note that there may be more than one primary path in the DQT,
if the streaming data is recursive with respect to an axis on the primary path of
the SQT. The dot notation a.b means that b is the component of a. For example,
s.dlist refers to the dlist of s.

The Dynamic Query Tree The Dynamic Query Tree (DQT) is constructed
dynamically at runtime to simulate the execution of query evaluation. We use
the SQT to guide the construction of the DQT and to provide direct access
(using the dlists) to nodes in the DQT that are relevant for the processing of a
streaming element. We now detail the structure of the DQT, with reference to
the SQT.

Like the SQT, there are two types of nodes in the DQT: DQT node (dnode)
and DQT predicate node (dpnode). Each dnode (dpnode) corresponds to a unique
snode (spnode) and the relationship between the dnodes (dpnodes) is the same
as that between the corresponding snodes (spnodes).

A dnode, d, is a triplet, (depth, blist, flag), where depth is the depth of the
corresponding XML element in the streaming document, and the blist and the
flag are used to aid buffer handling and predicate evaluation. The content of
d.blist is described as follows:

– If d is on the primary path, then d.blist is either ∅ or a list of pointers to
where query results are buffered.

– If d is under a PBT, then d is used to evaluate a predicate and hence no
data need be buffered for d. However, we assign a special value, ρ, to d.blist
so that we can immediately identify whether a dnode is under a PBT or on
the primary path during query processing.

The flag is either T or F, which has different meanings:

– If d is on the primary path (i.e. d.blist 6= ρ), :
Case of d.flag = T. The predicates of all d’s ancestors and d are satisfied.
Case of d.flag = F. The predicate of some of d’s ancestors has not been
satisfied.

– If d is under a PBT (i.e. d.blist = ρ):
Case of d.flag = T. All d’s descendants are satisfied.
Case of d.flag = F. d has some descendant not satisfied.



When we say that a dnode, d, is satisfied, we mean that the predicates of all
d’s descendants and d are satisfied. When we say that d’s predicate is satisfied,
we mean that d’s PBT is evaluated to be true (and deleted), but it does not
imply that the predicates of d’s descendants are all satisfied. A dpnode is one
of the following types: P, A (i.e. and), O (i.e. or), L (i.e. left) and R (i.e. right),
where L (or R) indicates that the left (or right) side of the and-predicate has
been satisfied and only the right (or left) side needs to be processed.
The Filtering Hashtable The Filtering HashTable (FHT) filters out all stream-
ing elements that do not match any element in the query. A hash value is gen-
erated for each distinct element or attribute label in the query. The labels are
then stored in the corresponding hash slot. Collision is handled by chaining. In
practice, collisions are very rare in QstreamX, since we use a hashtable of default
size 1024 (only a few KB memory size), while most XML datasets have less than
200 distinct elements.

To provide direct access to snodes that match a streaming element, a list,
called the slist, is kept in each hash slot. An element of the slist is a triplet,
(sparent, schild, dp), where sparent and schild are two snode pointers, and sparent
is either the parent or indirect-parent of schild; and dp is a list of L or R symbols
to represent the left or right direction, respectively, from sparent to schild, if
sparent is the indirect parent of schild and sparent’s PBT has more than one
spnodes; dp is denoted by ∅ otherwise.

Figure 5 shows the slist of the six elements, a, b, c, d, e and f, of the query
in Figure 4. For example, b’s slist has two elements since there are two bs in the
query. In both slist-elements, the schilds, s7 and s3, model b; while the sparent,
s1, is the parent of s7 but the indirect-parent of s3. The first dp is ∅ since we
can reach s7 from s1 directly, while the second dp, LR, shows that from the root
of s1’s PBT, we reach s3’s parent by going left and then right.

a:{(s0,s1,∅)}; d:{(s7,s8,∅)}; e:{(s3,s4,∅)}; f:{(s1,s6,R)};
b:{(s1,s7,∅),(s1,s3,LR)}; c:{(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}.

Fig. 5. The slist of the Query in Figure 4

4 QstreamX Query Processing

Consider the query shown in Figure 4 on the XML document presented in Figure
1. For brevity, we use li.S to denote the S event (same for A, T and E) of the
element, whose label is l and id is i, in Figure 1. For example, a1.S refers to the
S event of a1. Throughout, we use si to denote a snode in the SQT (see Figure
4) and di to denote a dnode in the DQTs (see Figures 6(a)-6(f)).
(a) Basic DQT Construction. We first create the root of the DQT, d0 =
(0,∅,T), and add d0’s pointer to the dlist of the corresponding snode, s0. On the
arrival of a1.S, we apply hashing on the label, a, and access a’s slist (c.f. Figure
5), {(s0,s1,∅)}, that is stored in a’s hash slot. We use s0’s pointer in a’s slist to
access s0 and then use d0’s pointer in s0.dlist to access d0. From d0 we create its
child, d1 = (1,∅,F), to correspond to s0’s child, s1. We set d1.blist to ∅, since s1

is on the primary path, and d1.flag to F, since s1 has a PBT. We then construct
the PBT for d1 according to the PBT of s1 and insert the pointer to d1 into



s1.dlist. In the same way, for the next (recursive) event a2.S, we create another
child, d2, for d0. In the following discussion, when we create a dnode, we also
construct its PBT, if any; and after the dnode is created, its pointer is inserted
into the dlist of its corresponding snode to provide direct access. We show the
DQT constructed so far in Figure 6(a), in which we also show all the non-empty
dlists of the snodes.
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Fig. 6. The DQTs for Processing the Query in Figure 4 on the XML Doc in Figure 1

(b) Predicate Processing (Bubble-Up). The next streaming event is c3.S
and we have three elements in c’s slist: {(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}. However,
the dlists of the parent snodes, s7 and s3, are empty, which implies that s7 and
s3 have not been matched. Hence, we only process (s1,s2,LL) and access d2 and
d1 via their pointers in s1.dlist. We then use dp, i.e. LL, to start from the root
of d2’s PBT, pr, to reach the leftmost leaf dpnode, pl. Since s2 has no PBT and
child, c3.S satisfies s2. Thus, no dnode is created but we bubble the satisfaction
from pl up the PBT. The bubble-up immediately satisfies pl’s parent since it
models an or-predicate. Hence, we continue bubbling up to pr, which is an and-
predicate. We change pr.type to L to indicate that the left child of pr is evaluated
to be true. In the same way, we evaluate d1’s PBT with c3.S. We update the
DQT in Figure 6(b). (We ignore d3-d6 for the time being.)
(c) Elimination of Redundant Processing. We do not process c3.T and
c3.E, since the dlists of s9, s5 and s2 are empty, implying that no dnode exists
to process c3.T and c3.E. Note that c3.T and c3.E are indeed redundant for
processing the query .

Then it comes b4.S. Using (s1,s7,∅) in b’s slist we access s1 and then d2 and
d1. From d2 and d1 we create their respective child, d3 and d4, corresponding
to s1’s child s7. However, for the other element, (s1,s3,LR), in b’s slist, when we
use dp to process s3, we find that s3 belongs to the satisfied part of a PBT,
since the first component of dp, i.e. L, matches the type of the root of both d2’s
PBT and d1’s PBT. This is also a part of QstreamX’s mechanism to eliminate
redundant processing. In the same way, we also skip the processing of last two
slist-elements in c’s slist for the next streaming element, c5.



(d) Buffering. We only need to process the slist-element, (s7,s9,∅), for c5. For
c5.S, we access d4 and d3 via s7.dlist, and create their respective child, d5 and
d6, corresponding to s9. For c5.T , we apply hashing on the label, c, obtained
from the stack top. We then access d6 and d5 via s9.dlist. Since s9’s child is
the output node and both d6 and d5 have no PBT, c5.T is a potential query
result. We create Buffer b1 to buffer c5.T , i.e. “C2”. Then we insert the pointer
to b1 into both d6.blist and d5.blist, and increment b1.counter twice. We show
the updated DQT and the Buffer in Figure 6(b).
(e) Uploading. To process c5.E, we use (s7,s9,∅) to access s9 and then access
d6 and d5, via s9.dlist. We upload d6.blist and d5.blist to their parents d3 and d4

respectively. Then, we delete d6 and d5, and remove their pointers from s9.dlist.
With d6.S and d’s slist, {(s7,s8,∅)}, we then further delete the PBT of d4

and d3, since d6.S satisfies s8. Again, s8’s empty dlist avoids the redundant
processing of d6.T and d6.E.

To process b4.E, we upload d4.blist and d3.blist to their parents d1 and d2

respectively. We then delete d4 and d3, and remove their pointers from s7.dlist.
We update the DQT and the dlists in Figure 6(c). Note that both d1.blist and
d2.blist now contain the pointer to Buffer b1.
(f) Buffer Removing. Then for a2.E, we access d2 and d1 via s1.dlist. We do
not upload d2.blist since d2 has a PBT, i.e. the predicate is not satisfied, and
hence the data buffered is not a query result with respect to d2. We access Buffer
b1 via b1’s pointer in d2.blist to decrement b1.counter. Then we delete d2 and its
PBT. We do not process d1, since d1.depth does not match the depth of a2.E.

We then create another child, d7, for d0 with a7.S. Then corresponding to s7,
b8.S creates d8 and d9 as child of d7 and d1 respectively. Although b8.S is not
processed for d1’s PBT, we create d10 to evaluate s3, as shown in Figure 6(d).

Then e9.S satisfies s4 and we delete d10’s PBT, while s4’s empty dlist avoids
e9.T and e9.E being redundantly processed. Next c10.S creates a child for d9

and d8 respectively, corresponding to s9. This c10.S also satisfies s5, and the
satisfaction triggers d10’s satisfaction, which is bubbled up until it updates the
type of the root of d7’s PBT to L. The last element in c’s slist is thus not
processed, since s2 belongs to a satisfied part of the PBT.

For c10.T , i.e. “C3”, we buffer “C3” in Buffer b2. On the arrival of c10.E, the
blists are uploaded to d9 and d8. Then d11.S satisfies s8 and we delete the PBT
of both d9 and d8. Next, f12.S creates d11 and d12 to evaluate s6, as shown in
the updated DQT in Figure 6(e).
(g) Predicate Processing (Trickle-Down) and Flushing. Then f12.T , i.e.
“xml-db”, matches the and-predicate in d12’s and d11’s PBT. We bubble up the
satisfaction to the or-predicate, i.e. the root of d12’s and d11’s PBT. Thus, both
d12 and d11 are satisfied; and the satisfaction is bubbled up and triggers the
satisfaction of both d1’s PBT and d7’s PBT. Since d1 and d7 are on the primary
path, we trickle down the satisfaction of their PBT to their descendants.

The trickle-down starts at d1, since d12, which is under d1’s PBT, is processed
before d11. We first update d1.flag to T and access b1 via d1.blist to flush b1. We
then decrement b1.counter to zero and hence we delete b1. We also set d1.blist



to ∅. Then we trickle down to d1’s child d9, we set d9.flag to T and access b2 via
d9.blist to flush b2. We then set b2.store to “flushed” and decrement b2.counter.
Then we set d9.blist to ∅. When the trickle-down reaches d8, we access b2 again
via d8.blist. Since b2.store is “flushed”, we only decrement b2.counter. We delete
b2 since b2.counter now becomes zero.
(h) Outputting. Then for c13.S we create d13 and d14 as child of d9 and d8

respectively, as updated in Figure 6(f). Since d9.flag and d8.flag are T, d13.flag
and d14.flag are also set to T. Therefore, when we process c13.T for d14, we
immediately output c13.T as a query result. We also set a flag to indicate that
c13.T is outputted, so that we do not output it again when we process d13 next.
The flag is then unset.

Then for c13.E, we delete d14 and d13; for b8.E, we delete d9 and d8; for a7.E,
we delete d7.
(i) Depth Mismatch and Hash-Lookup Filtering. Although s7 is satisfied
again with b14 and d15, c16 does not match the depth of the child of s7 and is
hence filtered out. The elements, x17, y18 and z19, have no corresponding hash
slots and are hence filtered out. Finally, we delete d1 when a1.E comes, while
we delete d0, i.e. the root of the DQT, to terminate the query processing at the
end of the stream.

5 Experimental Evaluation

We evaluate QstreamX on two important metrics for XML stream processing:
the throughput and the memory consumption. We compare its performance with
two most recently proposed querying systems, the XSQ system V1.0 [14] and the
XAOS system[3]. We use the following four real datasets [12]: the Shakespeare
play collection (Shake), NASA ADC XML repository (NASA), DBLP, and the
Protein Sequence Database (PSD). We ran all the experiments on a Windows
XP machine with a Pentium 4, 2.53 GHz processor and 1 GB main memory.
Throughput Throughput measures the amount of data processed per second
when running a query on a dataset. For each of the four real datasets, we use 10
queries, which have a roughly equal distribution of the four types: Q1 consists of
only child axis, Q2 consists of only descendant-or-self; Q3 and Q4 mix the
two axes, but Q3 consists of a single atomic predicate, while Q4 allows multiple
(atomic) predicates. An example of each type is shown below:
(Q1): “/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()”
(Q2): “//dataset//author//lastname/text()”
(Q3): “//inproceedings[year > 2000]/title/text()”
(Q4): “//ProteinEntry[summary]/reference[accinfo]

/refinfo[@refid =“A70500”]//author/text()”

The throughput1 of each system on processing a single query is measured
as the average of the throughput of processing each of the 10 queries for each
dataset. We also measure the throughput of processing multiple queries (5 and
1 Since outputting the query results to the screen dominates the processing time, we

write the results to a disk file for all systems.



10 queries) by QstreamX, where the input queries are simply each half of the
10 queries and the 10 queries as a whole respectively. However, the Xerces 1.0
Java parser used in XSQ is on average two times slower than the C++ parser
used in QstreamX and XAOS. Therefore, we use the relative throughput [14],
which is calculated as the ratio of the throughput of each system to that of the
corresponding SAX parser, to give a comparison only on the efficiency of the
underlying querying algorithm.

As shown in Figure 7, QstreamX achieves very impressive throughput, which
is about 80% of that of the SAX parser (the throughput for Shake is 78% when
the dataset is scaled up by three time); in another word, 80% of the upper
bound. Compared with XSQ and XAOS, QstreamX on average achieves relative
throughput of 2.7 and 4.5 times higher, respectively. The tremendous improve-
ment made by our algorithm over the XSQ and XAOS algorithms is mainly due
to the effective filtering of irrelevant elements by hash-lookup and the direct
access to relevant nodes through slist and dlist. Finally, we remark that the raw
throughput of QstreamX is on average 5.4 and 9 times higher than that of XSQ
and XAOS, respectively.
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Fig. 7. Relative Throughput

The average relative throughputs of QstreamX on processing 5 queries and
10 queries are 43% and 19%, as denoted by QstreamX5 and QstreamX10 respec-
tively in Figure 7. The great drop in the throughput is mainly because 5 and
10 times more potential query results need to be processed and duplicate avoid-
ance has to be performed for 5 and 10 more times. However, this overhead is
inevitable for processing multiple queries on XML streams, since we must buffer
the potential query results at any given time. Despite of this, we remark that
the throughput of QstreamX on 5 queries is still 1.5 times higher than that of
XSQ (i.e. a raw throughput of 3 times higher), while that on 10 queries is only
slightly lower (but a slightly higher raw throughput).
Memory Consumption We measured roughly constant memory consumption
of no more than 1 MB for QstreamX on all datasets and queries (including the
two cases of multiple query processing). In fact, a large portion of the memory
is used in buffering and in the input buffer of the parser, while the memory used
for building the trees is almost negligible. The constant memory consumption



proves the effectiveness of buffer handling, while the lower memory consumption
verifies that the size of the DQT is extremely small. The memory consumption
of XSQ is also constant (as a result of its effective buffering) but several times
higher than that of QstreamX (as a result of a less efficient data structure). The
memory consumption of the XAOS system increases linearly, since the algorithm
stores both the data and the structure of all matched elements and outputs the
results at the end of a stream.

6 Conclusions

We have presented the main ideas in QstreamX, an efficient system for processing
XPath queries of streaming XML data, by utilizing a novel data structure, Hash-
Lookup Query Trees (HLQTs), which consists of a simple hash table (the FHT)
and two elegant tree structures of the SQT and the DQT. We have devised a
set of well-defined transformation rules to transform a query into its SQT and
discussed in detail how the dynamic construction of the DQT evaluates queries.
A unique feature of QstreamX is that it processes only relevant XML elements in
the stream by hash-lookup and accesses directly nodes that are relevant for their
processing. We have demonstrated that QstreamX achieves significantly higher
throughput and consumes substantially lower memory than the state-of-the art
systems, XSQ and XAOS.

References

1. M. Altinel and M. Franklin. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of VLDB, 2000.

2. I. Avila-Campillo and et al. XMLTK: An XML Toolkit for Scalable XML Stream
Processing. In Proc. of PLANX, 2002.

3. C. Barton and et al. Streaming XPath Processing with Forward and Backward Axes.
In Proceedings of ICDE, 2003.

4. Z. Bar-Yossef, M. F. Fontoura, and V. Josifovski. On the Memory Requirements of
XPath Evaluation over XML Streams. In Proceedings of PODS, 2004.

5. C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML
Documents with XPath Expressions. In Proceedings of ICDE, 2002.

6. Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and Scalable Filtering
of XML Documents. In ICDE, 2002.

7. T. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams with
Deterministic Automata. In Proceedings of ICDT, 2003.

8. A. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates. In
Proceedings of SIGMOD, 2003.

9. V. Josifovski, M. F. Fontoura, and A. Barta. Querying XML Steams. In VLDB
Journal, 2004.

10. M. L. Lee, B. C. Chua, W. Hsu, and K. L. Tan. Efficient Evaluation of Multiple
Queries on Streaming XML Data. In Proceedings of CIKM, 2002.

11. B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou. A Transducer-Based
XML Query Processor. In Proceedings of VLDB, 2002.

12. G. Miklau and D. Suciu. XML Data Repository.
http://www.cs.washington.edu/research/xmldatasets.

13. M. Onizuka. Light-weight XPath Processing of XML Stream with Deterministic
Automata. In Proceedings of CIKM, 2003.

14. F. Peng and S. Chawathe. XPath Queries on Streaming Data. In Proceedings of
SIGMOD, 2003.


