
ADI: Towards a Framework of App Developer
Inspection

Kai Xing, Di Jiang, Wilfred Ng, Xiaotian Hao

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{kxing,dijiang,wilfred,xhao}@cse.ust.hk

Abstract. With the popularity of smart mobile devices, the amount of
mobile applications (or simply called apps) has been increasing dramati-
cally in recent years. However, due to low threshold to enter app industry,
app developers vary significantly with respect to their expertise and rep-
utation in the production of apps. Currently, there is no well-recognized
objective and effective means to profile app developers. As the mobile
market grows, it already gives rise to the problem of finding appropriate
apps from the user point of view. In this paper, we propose a framework
called App Developer Inspector (ADI), which aims to effectively profile
app developers in aspects of their expertise and reputation in develop-
ing apps. ADI is essentially founded on two underlying models: the App
Developer Expertise (ADE) model and the App Developer Reputation
(ADR) model. In a nutshell, ADE is a generative model that derives the
latent expertise for each developer and ADR is a model that exploits
multiple features to evaluate app developers’ reputation. Using the app
developer profiles generated in ADI, we study two new applications which
respectively facilitate app search and app development outsourcing. We
conduct extensive experiments on a large real world dataset to evalu-
ate the performance of ADI. The results of experiments demonstrate the
effectiveness of ADI in profiling app developers as well as its boosting
impact on the new applications.

Keywords: App Developer, Profiling, App Searching, App Development Out-
sourcing

1 Introduction

Nowadays, more and more people use smart phones as their primary communi-
cation tools. This trend leads to the booming of the mobile app market, which
is estimated to reach 25 billion US$ by 2015 1. In the face of the lucrativeness
of the app market, many people plunge themselves into developing mobile apps.

1 http://www.prnewswire.com/news-releases/marketsandmarkets-world-mobile-
applications-market-worth-us25-billion-by-2015-114087839.html

2

However, app development has relatively low threshold to enter and thus ei-
ther individual amateurs or well-organized studios can release their apps to the
market. In light of the huge discrepancy among app developers, we propose a
formal framework that can effectively evaluate and comprehensively analyze app
developers. The study and development of this framework can not only facilitate
better app quality control but also promote new app development in the app
ecosystem.

In this paper, we propose a framework named App Developer Inspector (ADI)
for profiling app developers. ADI mainly consists of two underlying models,
the App Developer Expertise (ADE) model and the App Developer Reputation
(ADR) model, respectively profiling app developers’ expertise and reputation.
ADE is a novel generative model to derive app developers’ expertise. ADR,
which is a RankSVM-based model, undertakes the function of evaluating app
developers’ reputation. The expertise reveals which kind of app functionalities
(such as sports games, communication applications and so on) an app developer
is expert in. The reputation indicates a developer’s overall trustworthiness and
proficiency in developing high quality apps.

In order to demonstrate the use of app developer profiles obtained from ADI,
we study the following two applications.

– Facilitate App Search App developers’ reputation and expertise are both
significant factors in developing effective app search engine. There exist many
“Look-Alike” apps having similar names and descriptions with the high qual-
ity ones[5]. When users search for a popular high quality app, app search
engines sometimes rank the “Look-Alike” apps high in the searching results
without taking app developers’ reputation into consideration.

– App Development Outsourcing App developer profiles are also useful
in app development outsourcing. With the information of app developers’
expertise, employers2 are able to find proper developers to undertake app
development.

We conduct exhaustive experiments on a large real world dataset to show
the effectiveness of ADE and ADR. The results of experiments demonstrate that
ADE performs well in generating app developers’ expertise and ADR shows good
performance in evaluating app developers’ reputation. We also demonstrate the
boosting impact of app developer profiles in facilitating app search and app
development outsourcing by detailed experimentation.

In summary, the main contributions of this paper are as follows:

– To the best of our knowledge, this work is the first to systematically study
how to profile app developers. We develop a new framework, App Developer
Inspector (ADI), which seamlessly integrates multiple information sources
to derive app developers’ expertise and reputation.

2 In this work, we refer companies or individuals who want to outsource app develop-
ment as the employers.

ADI: Towards a Framework of App Developer Inspection 3

– We conduct comprehensive experiments to verify the effectiveness of the ADI
framework. The experimental results show that ADE effectively generates
app developers’ expertise in fine granularity and ADR objectively evaluates
app developers’ reputation.

– We show how to apply app developers’ reputation in facilitating app search
and verify the improvement by exhaustive experiments. For app development
outsourcing, we propose a new method BMr-BR to recommend quality de-
velopers.

The rest of the paper is organized as follows. In Section 2, we review the
related literature. In Section 3, we provide an overview of the App Developer
Inspector framework. In Section 4, we propose ADE model to obtain app de-
velopers’ expertise. In Section 5, we evaluate app developers’ reputation with
the ADR model. In Section 6, we introduce the applications of app developer
profiles in facilitating app search and app development outsourcing. In Section
7, we present the experimental results. Finally, the paper is concluded in Section
8.

2 Related Work

Our framework involves a spectrum of techniques that are briefly discussed as
follows.

Smart Phone App There are some works on smart phone apps but most of
them focused on app security. In [25], a systematic study was presented to detect
malicious apps on both official and unofficial Android Markets. Alazab et al. [1]
used the Android application sandbox Droidbox to generate behavioral graphs
for each sample and these provided the basis of development of patterns to aid in
identifying malicious apps. X.Wei et al. [24] described the nature and sources of
sensitive data, what malicious apps can do to the data, and possible enterprise
solution to secure the data and mitigate the security risks. Di et al. [11] proposed
a framework of utilizing semantic information for app search.

Topic Modeling In recent years, topic modelling is gaining momentum in data
mining. Griffiths et al. [6] applied Latent Dirichlet Allocation (LDA) to scientific
articles and studied its effectiveness in finding scientific topics. There follow more
topic models that are proposed to handle the problems of document analysis that
exist in specific domains. Kang et al. [13] proposed a topic-concept cube which
supports online multidimensional mining of query log. Mei et al. [17] proposed a
novel probabilistic approach to model the subtopic themes and spatiotemporal
theme patterns simultaneously. Some recent work on query log analysis also
studied the impact of temporal and spatial issues. Ha-Thuc et al. [7] proposed
an approach for event tracking with emphasis on scalability and selectivity. Di et
al. [9],[10] also studied the spatial issues in web search data with topic modeling.
To the best of our knowledge, our work is the first one to systemically study how
to utilize topic modeling to profile app developers’ expertise.

4

Learn to Rank Our work is related to learning to rank techniques, which is a
intensively studied area in information retrieval and machine learning. RankSVM
was proposed in [12] to optimize search engines via clickthrough data. In [22]
and[8], RankSVM had been successfully applied to identify quality tweets on the
social network Twitter and used social network user profile to personalize web
search result.

Expert Finding The application of app development outsourcing has some
similarities with expert finding. Maarten de Rijke et al.[2] proposed two models
to search experts on a given topic from an organization’s document repositories.
Although there are some similarities between expert finding and app develop-
ment outsourcing, e.g. they all aim to find “expert”, the difference between them
is fundamental. Two models in [2] focused on mining experts from corporation
documents while our app development outsourcing is intended to recommend
proper and quality app developers.

3 Overview of ADI

In this section, we provide a general overview of the ADI framework, including
its architecture and a glance of app developer profiles.

3.1 Architecture of ADI

As Figure 1 shows, there are two models, ADE and ADR, to generate app de-
veloper profiles. Before applying ADR, We first extract some features, such as
popularity, good ratio, web site quality and so on, from multiple information
sources, i.e., information from apps, users and developers. Then ADR model
generates app developers’ reputation on basis of the extracted features. Mean-
while, a novel generative model ADE is employed to compute app developers’
expertise from app descriptions and categories. Finally, an app developer profile
that consists of app developers’ expertise and reputation is generated.

3.2 App Developer Profiles

In ADI, app developer profiles consists of two components, which are respectively
app developers’ reputation and app developers’ expertise.

The first component, app developers’ reputation, which indicates app devel-
oper’s proficiency and trustworthiness in developing apps, is represented by a
real value. We apply ADR to compute this value and higher the value is, higher
reputation a developer achieves.

The other component, app developers’ expertise, depicts functionality-based
expertise of developers in app development. In app developers’ expertise are also
two subcomponents. One is a series of expertises, each of which is represented
by a set of keywords. These keywords are generated by our ADE model to

ADI: Towards a Framework of App Developer Inspection 5

User Reviews

Web Site

Download Number

Rating

Description & Category

ADR

ADE

Web Site Quality

Good Ratio

Popularity

 Bayes Average Rating

App Developer Profile

Reputation

Expertise

Fig. 1. Architecture of App Developer Inspector (ADI)

characterize a certain expertise. For each expertise, a proficiency is given to
indicate how proficient a developer is in the expertise. Take Rovio (a famous
game studio) as an example, in Figure 2 expertise 1 is represented by ”game,
birds, war...” and the corresponding proficiency is 0.7. The underlying reason of
including this expertise part is that an app developer generally has more than
one set of expertises and they may be in different proficiency level as well.

Rovio Profile

ID: Rovio

Reputation: 0.9

Expertise 1(0.7) game, action, bird, pigge, war...

Expertise 2(0.2) arcade, cartoon, Alex...

Expertise 3(0.1) power, battery, consumption...

Fig. 2. Abstract Presentation of Rovio’s profile

4 App Developer Expertise Model

In this section, we describe App Developer Expertise (ADE) model that derives
the app developers’ expertise in app development. The ADE aims to profile each
developer’s expertise in a concise and flexible way. We assume that each app
developer has a Multinomial expertise (or in the metaphor of LDA, a topic)

6

distribution. We first group the app descriptions of the same developer as a doc-
ument. Then, we filter out the non-informative words according to a stopword
list provided in [14]. An interesting phenomenon in the app corpus is that devel-
opers are actually have implicit links, which can be obtained by analyzing the
download records of the users. For example, if app a1 developed by developer d1
and app a2 developed by developer d2 are both downloaded by the same user,
we create a link between d1 and d2. We utilize a D ×D matrix M to store the
link information and the entry M [i, j] is computed by the number of times that
i’s apps have been downloaded with j’s apps.

The generative process of this model is illustrated in Algorithm 1 and the
notation used is summarized in Table 1.

Algorithm 1 Generative Process of ADE

1: for each topic k ∈ 1, ...,K do
2: draw a word distribution ϕk ∼ Dirichlet(β);
3: draw a category distribution ϕ′

k ∼ Dirichlet(δ);
4: end for
5: for each document d ∈ 1, ..., D do
6: draw d’s topic distribution θd ∼ Dirichlet(α)
7: sample a linked developer di with proportion to link weight of l(d, di), then draw

a document specific distribution θdi ;
8: combine θd and θdi by tuning parameter λ to generate a document distribution

θ;
9: for each sentence s ∈ d do
10: choose a topic z ∼ Multinomial(θ);
11: generate words w ∼ Multinomial(ϕz);
12: generate the category c ∼ Multinomial(ϕ′

z);
13: end for
14: end for

We aim to find an efficient way to compute the joint likelihood of the observed
variables with hyperparameters:

P (w, z|α, β, δ, λ, l) = P (w|z, β)P (c|z, δ)P (z|α.λ, l). (1)

The probability of generating the words is given as follows:

P (w|z, β) =
∫ D∏

d=1

Sd∏
s=1

Wds∏
i=1

P (wdsi|ϕzds)
Ndswdsi

K∏
z=1

P (ϕz|β)dΦ. (2)

The probability of generating the categories is given as follows:

P (c|z, β) =
∫ D∏

d=1

Sd∏
i=1

P (cdi|ϕ′
zdi

)

K∏
z=1

P (ϕ′
z|β)dΦ. (3)

After combining the formula terms, we apply Bayes rule and fold terms into the
proportionality constant, the conditional probability of the kth topic for the ith
sentence is defined as follows:

ADI: Towards a Framework of App Developer Inspection 7

P (zi = k|z−i,w, l, α, β, λ) ∝
(1− λ)CDK

dk + λCDK
lk + αk∑K

k′=1((1− λ)CDK
dk′ + λCDK

lk′ + αk′)

CKC
kc + δc∑C

c′=1(C
KC
kc + δc′)

Γ (
∑W

w=1(C
KW
kw + βw))

Γ (
∑W

w=1(C
KW
kw + βw +Niw))

W∏
w=1

Γ (CKW
kw + βw +Niw)

Γ (CKW
kw + βw)

(4)

where CDK
lk is the number of sentences that are assigned topic k in document l,

which is a randomly sampled document that is linked by the document d.
After processing the app developers by the proposed model, the ith developer’s
profile is represented by a search topic vector (θi1, θi2, ..., θin), where θik is a real
number that indicates the ith user’s endorsement for the kth search topic. The
value of θik is computed as follows:

θik =
CDK

dk + αk∑K
k′=1(C

DK
dk′ + αk′)

. (5)

Table 1. Notations Used in the ADI Framework

Parameters Meaning Parameters Meaning

D the number of documents λ a parameter controlling the influence
of the linked document

K the number of topics zi the topic of word i

z a topic z−i the topic assignments for all
words except word i

w a word w word list
representation of the corpus

θ multinomial distribution CKC
kc the number of times that

over topics c is assigned topic k

ϕ multinomial distribution CDK
lk the number of words assigned to

over words topic k in the linked document l

ϕ′ multinomial distribution δ Dirichlet prior vector for ϕ′

over categories

α Dirichlet prior vector for θ CDK
dk the number of sentences that

are assigned topic k in document d

β Dirichlet prior vector for ϕ CKW
kw the number of times that

w is assigned topic k

l link list

We utilize the generative model to mine an individual developer’s expertise
of a specific field. Compared with the category information, the topics whose
amount can be determined by the users represent the developer characteristics
with finer granularity. Note that the topic amount K can be customized and
thus, it strikes a good balance between efficiency and granularity. Note that the
method proposed here is potentially scalable to very large datasets. For example,
the Gibbs sampling is scaled to run very large sized datasets in [18].

8

5 App Developer Reputation Model

In this section, we introduce App Developer Reputation (ADR) model to evaluate
app developers’ reputation. Before elaborating how ADR works, we define app
developers’ reputation as the overall trustworthiness and proficiency in develop-
ing apps. ADR is model based on RankSVM[12] and works as follows. It first
ranks each developer using a series of extracted features, i.e., popularity, rating
and so forth. Then reputation of each developer can be calculated according to
the generated ranking.

5.1 App Developer Reputation Generation

The generation process of ADR is carried out in three steps. We first input some
pairwise training instances into RankSVM and get a generated rank model. Next,
we utilize this rank model to rank a set of developers. Finally, the reputation of
the developer i is given by:

Ri = 1− ranki
N

, (6)

where ranki is the ranking of developer i, N is the total number of developers.

5.2 Extracted Features

There are four features, popularity, rating, web site quality, and good ratio, used
in RankSVM. We now present the construction of these features from multiple
information sources.

App Popularity The popularity of an app is evaluated by the number of times
that the app has been downloaded[5]. To compute a developer’s app popularity,
we first compute the popularity of an app as follows:

pj = log(Nj). (7)

Where Nj denotes the downloaded number of app j. Then the app popularity
feature of a developer i is defined as follows:

Popi =

∑
j∈A(i) pj

|A(i)|
, (8)

where A(i) is the collection of apps developed by the developer i.

Bayes Average Rating The more ratings are given to an app, the more reliable
the average of ratings is to reflect the app quality. Otherwise, app rating may
be a misleading indicator. Here we use Bayes average rating to represent this
intuition:

Brj =
Nav · rav + rj ·Nj

Nj +Nav
, (9)

ADI: Towards a Framework of App Developer Inspection 9

where Nav and rav are respectively the average number of rating from users and
average rating over all apps, rj and Nj respectively denote the raw rating and
the number of rating for app j.

If number of rating for an app is much smaller than the average number of
rating over all apps, Bayes average rating is close to the average rating over all
apps. Otherwise, Bayes average rating approximately equals app’s raw rating.
This property makes Bayes average rating a more reliable indicator.

Considering a developer may produce more than one apps, we use the average
Bayes average rating of all the apps developed by the developer as the rating
feature. Let A(i) contain all the apps developed by developer i, rating feature is
computed as follows:

Bri =
1

|A(i)|
∑

j∈A(i)

Brj . (10)

Web Site Quality Good developers usually have their own web sites where
they post information about their app products. In this case, these web sites can
be an important auxiliary information for evaluating app developer reputation.
Here we define web site quality feature of a developer as the content relevance
between the developers’ web sites and app development or app products. The
process of extracting web site quality feature is done in two steps. First, we
collect a corpus of words related to app development and app products. Then
we compute cosine similarity in vector space model [21] between developers’ web
sites and the corpus collected in first step. This cosine similarity is considered
as web site quality. For developers not having their own web sites, we simply set
their web site quality to 0.

Good Ratio In app marketplace such as Google Play, every app is open for
app users to comment. Therefore, we can obtain a general user opinion of apps
by mining the user reviews. Here we present good ratio feature, which is the
proportion of positive reviews among all reviews. Considering that app user
reviews are very short texts similar to tweets, we adapt a two-step SVM classifier
model proposed by [3] to conduct sentiment analysis on app user reviews. The
first step aims to distinguish subjective reviews from non-subjective reviews
through a subjectivity classifier. Then we further classify the subjective reviews
into positive and negative reviews, namely, polarity detection. The features used
in these two SVM are word meta features in app user reviews.

Meta Features For a word in app user reviews, we map it to its part-of-
speech using a part-of-speech dictionary3. In addition to POS tags, we also map
the word to its prior subjectivity and polarity. The prior polarity is switched from
positive to negative or from negative to positive when a negative expression, e.g.,
“don’t”, “never” precedes the word.

3 The POS dictionary is available at: http://wordlist.sourceforge.net/pos-readme

10

6 Applications

In this section, we show the use of app developer profiles in facilitating app
search and app development outsourcing.

6.1 Facilitate App Search

In this application, rather than exploring the background rank schema in exist-
ing app search engines, we turn to rank aggregation which deals with problem
of combining the result lists returned by multiple search engines. The rank ag-
gregation method we utilize here is Borda Count[19], which is a rank based
aggregation method.

We apply app developer profiles in facilitating app search in the following
way. We first rank apps by their developers’ reputation and get a ranking list,
which we call reputation ranking list here. Then we utilize Border’s method
to aggregate the ranking list returned by existing app search engine and the
reputation ranking list. The aggregated ranking list is considered as the ranking
result after applying app developer profiles in app search. The experiment in
Section 7.3 shows this strategy improves the search quality of existing app search
engines.

6.2 App Development Outsourcing

We consider the following scenario in app development outsourcing. Given a de-
tailed description of desired app, which may contain the functionalities and the
interface design, we would like to identify and recommend proper app develop-
ers to users. Let us call this app development outsourcing problem. Candidate
Model and the Document Model proposed in [2] can be applied to app devel-
opment outsourcing after some adaptation and are used as two baselines in our
experiments. We now explain the details of the adaptation of the two models
as follows: in the app development outsourcing scenario, each app description
is considered as a document and the description of wanted app is referred to as
query.

However, candidate model and document model merely take relevance be-
tween the given query and existing app descriptions into consideration, which can
only recommend developers who have developed similar apps with the wanted
one but can’t guarantee that the recommended developers are all proficient. To
tackle this defect, we propose a BM25 and reputation based recommendation
(BMr-BR) methods to recommend excellent and experienced developers.

BMr-BR BMr-BR not only considers the relevance between the given query
and existing app descriptions but also takes into app developer reputation. In
this way, the recommended developers can be guaranteed to be experienced
and proficient. The ranking function to recommend developrs in BMr-BR is as
follows:

R ·
∑
i

score(Ti, q), (11)

ADI: Towards a Framework of App Developer Inspection 11

where Ti is the key words set of Expertise i generated by ADE, q is the given
query, R is developer’s reputation.

The value score(Ti, q) is defined as:

score(Ti, q) =
n∑

j=1

IDF (tj)αi
n(tj , Ti)(k1 + 1)

n(tj , Ti) + k1(1− b+ b |Ti|
avgdl)

, (12)

where tj is a term in q, αi is developer’s proficiency in expertise i, n(tj , Ti)
denotes the frequency of tj in Ti, k1 and b are free parameters. Usually, k1 ∈
[1.2, 2.0] and b = 0.75 according to [15].

7 Experiments

7.1 Experiment Setting Up

In this paper, we select the official Android marketplace, Google Play, as the
core information source of apps and developers.

We collected a total of 533,740 apps, which accounts for 82% of the whole
apps on Google Play. From the webpage of an app on Google Play, we can obtain
detailed information about this app such as the description, rating, download
number and user reviews. Besides, the URLs of developer’s web sites (if any) can
be also accessed from Goog Play. We use these URLs to collect app developer’s
web sites.

7.2 Evaluation of ADE and ADR

Evaluation of ADE An informal but important measure of the success of
probabilistic topic models is the plausibility of the discovered search topics.
For simplicity, we use the fixed symmetric Dirichlet distribution like [6], which
demonstrates good performance in our experiments. Hyperparameter setting is
well studied in probabilistic topic modeling and is beyond the scope of this paper.
Interested readers are invited to refer [23] for further details.

Currently, very few probabilistic topic models are proposed to analyze app
developers, thus it is hard to find counterparts for the proposed one. Thus, we
select Latent Dirichlet Allocation (LDA) [4] and Pink-LDA as baselines, since
they are general enough to be applied in the task. We use a held-out dataset to
evaluate the proposed model’s capability of predicting unseen data. Perplexity is
a standard measure of evaluating the generalization performance of a probabilis-
tic model [20]. It is monotonically decreasing in the likelihood of the held-out
data. Therefore, a lower perplexity indicates better generalization performance.
Specifically, perplexity is calculated according to the following equation:

Perplexityheld−out(M) = (

D∏
d=1

Nd∏
i=1

p(wi|M))
−1∑D

d=1
(Nd) , (13)

12

where M is the model learned from the training process. The result of per-
plexity comparison is presented in Figure 3(a), from which we observe that the
proposed models demonstrate much better capability in predicting unseen data
comparing with the LDA baselines. For example, when the number of search
topics set to 300, the perplexity of LDA is 420.65, the perplexity of PLink-LDA
is 419.23 and that of the proposed topic model is 299.12. The result verifies that
our proposed model provides better fit for the underlying structure of the infor-
mation of each app developer. Thus, the proposed model has better performance
to derive different facets of the expertness for app developers.

 250

 300

 350

 400

 450

 500

50 100 150 200 250 300

P
er

pl
ex

ity

Topic Number K

ADE
LDA

Plink-LDA

(a) Perplexity Comparison

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 20 30 40 50

G
.K

.T
au

 D
is

ta
nc

e

Top-k

PMR
ADR

(b) ADR Evaluation

Fig. 3. ADE and ADR Evaluations

Evaluation of ADR To evaluate ADR, we manually label 400 pairwise com-
parison among about 800 developers which are used to train RankSVM. The
comparison between two developers is performed according to their web sites
and the average rating, average installations, user reviews of their apps. We first
consider the average rating and average installations. If two app developers are
very close in above two aspects, we then refer to their web sites and reviews of
their apps. Apart from these pairwise comparison, we also rank 50 developers
manually according to 10 volunteers’ judgements as the ground truth to evaluate
effectiveness of ADR and baselines.

We propose an intuitive baseline (PMR) which ranks developers according to
the arithmetic product of popularity and average rating. The evaluation metric
we use here is the well-known generalized Kendall’s Tau distance[16].

The experiment result is showed in Figure 3(b) where ADR is about 0.1 lower
than PMR in terms of Kendall’s Tau Distance, which indicates that ADR gives
much better reputation ranking.

7.3 Evaluation of Applications

Evaluation of Facilitating App Search We conduct some experiments to
show that app developer profiles make app search more effective. We first pre-
pare the pseudo ground truth by rank aggregation. We use Borda Count[19] to

ADI: Towards a Framework of App Developer Inspection 13

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30 40 50

G
.K

.T
au

 D
is

ta
nc

e

Top-K

GooglePlay
Reputation+GooglePlay

(a) googleplay

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30 40 50

G
.K

.T
au

 D
is

ta
nc

e

Top-K

GooglePlay
Reputation+GooglePlay

(b) appgravity

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30 40 50

G
.K

.T
au

 D
is

ta
nc

e

Top-K

AppBrain
Reputation+AppBrain

(c) appbrain

Fig. 4. Facilitating App Search Evaluation

aggregate the app ranking lists of three commercial search engines, i.e. Google
Play, appgravity, appbrain, for each query. Apps are ranked by Borda scores
in the aggregated ranking list. Then we use the aggregated ranking list as the
pseudo ground truth of the corresponding query.

We also employ the generalized Kendall’s Tau distance to evaluate the cor-
relation between the pseudo ground truth and the ranking list generated by
methods under study. The larger the generalized Kendall’s Tau distance is, the
less correlation between two ranking lists.

From Figure 4(a) to 4(c), we see that all ranking results that aggregate app
developer reputation ranking list have smaller generalized Kendall’s Tau dis-
tance than these not taking app developer reputation into consideration. After
combined with app developer reputation ranking, the generalized Kendall’s Tau
distance of Google Play, appgravity, appbrain all decrease in studied top-k rank-
ing results, which show app developer profiles effectively improves app search
quality.

Evaluation of App Development Outsourcing We implement BMr-BR
and two baselines, candidate model and document model, in this section. 5000
developers are selected as the candidates set, in which some big famous studios
are excluded. We first fabricate 10 queries which are descriptions of ten wanted
apps. Then BMr-BR, candidate model and document model are applied to rec-
ommend developers for these 10 queries. In order to evaluate the recommended
results, we manually check the top-10 and top-20 recommended developers for
each query. The check standard is that, if a developer has developed a similar4

apps to the given query we consider it is a hit developer. Besides, a hit developer
is more proper if its apps that are similar to the given query have higher rating
as well as more good user reviews.

When implementing BMr-BR, we set the topic amount K=50 and the av-
erage length of expertise key words sets is 802. To evaluate the performance of
these three methods, we compute the mean precision at top-10 and top-20 as well
as Mean Reciprocal Rank (MRR) at top-20. As Figure 5(a) shows, BMr-BR has
the highest mean precision both at top-10 and top-20, which are respectively 0.33

4 ”similar” means the two app have similar functions, game rules or undertake similar
tasks.

14

and 0.275. Besides, BMr-BR also outperforms candidate model and document
model in MRR at top-20 respectively by 0.24 and 0.22.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 20

M
ea

n
P

re
ci

si
on

Top-K

Candidate Model
Document Model

BMr-BR

(a) Mean Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

20

M
ea

n
R

ec
ip

ro
ca

l R
an

k
(M

R
R

)

Candidate Model
Document Model

BMr-BR

(b) Mean Reciprocal Rank (MRR)

Fig. 5. App Development Outsourcing Evaluation

8 Conclusion

In this paper, we present a new ADI framework which is founded on two under-
lying models of ADE and ADR to profile app developers. Within the framework,
these two models take into account multiple information sources, such as app de-
scriptions, ratings and user reviews, in order to effectively and comprehensively
profile app developers. The ADE model uses app’s description and category to
generate app developer’s functionality-based expertise. The ADR model utilizes
information from apps, users and developers to evaluate the reputation of an app
developer. The extensive experiments show that the two models are effective. In
addition, we demonstrate the use of app developer profiles by two applications,
facilitating app search and app development outsourcing. All the empirical re-
sults show that app developer profiling is extremely useful for both the users
and developers. Our modeling approach paves the way to establish more sophis-
ticated profiling, for example taking into account social information in a mobile
platform to extend our ADI framework.

References

1. M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian. Analysis of malicious
and benign android applications. In ICDCSW, 2012.

2. K. Balog, L. Azzopardi, and M. De Rijke. Formal models for expert finding in
enterprise corpora. In SIGIR. ACM, 2006.

3. L. Barbosa and J. Feng. Robust sentiment detection on twitter from biased and
noisy data. In ACL, 2010.

4. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The Journal
of Machine Learning Research, 2003.

ADI: Towards a Framework of App Developer Inspection 15

5. P. Chia, Y. Yamamoto, and N. Asokan. Is this app safe?: a large scale study on
application permissions and risk signals. In Proceedings of the 21st international
conference on World Wide Web, pages 311–320. ACM, 2012.

6. T. L. Griffiths and M. Steyvers. Finding scientific topics. Proc. of the National
Academy of Sciences of the United States of America, 2004.

7. V. Ha-Thuc, Y. Mejova, C. Harris, and P. Srinivasan. A relevance-based topic
model for news event tracking. In SIGIR, 2009.

8. D. Jiang, K. Leung, and W. Ng. Context-aware search personalization with concept
preference. In CIKM, 2011.

9. D. Jiang and W. Ng. Mining web search topics with diverse spatiotemporal pat-
terns. In SIGIR.

10. D. Jiang, J. Vosecky, K. W.-T. Leung, and W. Ng. G-wstd: A framework for
geographic web search topic discovery. In CIKM, 2012.

11. D. Jiang, J. Vosecky, K. W.-T. Leung, and W. Ng. Panorama: a semantic-aware
application search framework. In EDBT, 2013.

12. T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD,
2002.

13. D. Kang, D. Jiang, J. Pei, Z. Liao, X. Sun, and H. J. Choi. Multidimensional
mining of large-scale search logs: a topic-concept cube approach. In WSDM, 2011.

14. C. D. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval.
Cambridge University Press Cambridge, 2008.

15. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval,
volume 1. Cambridge University Press Cambridge, 2008.

16. J. Mazurek. Evaluation of ranking similarity in ordinal ranking problems. Acta
academica karviniensia.

17. Q. Mei, C. Liu, H. Su, and C. X. Zhai. A probabilistic approach to spatiotemporal
theme pattern mining on weblogs. In WWW, 2006.

18. D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for
topic models. The Journal of Machine Learning Research, 10:1801–1828, 2009.

19. M. Renda and U. Straccia. Web metasearch: rank vs. score based rank aggregation
methods. In Proceedings of the 2003 ACM symposium on Applied computing. ACM,
2003.

20. M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model
for authors and documents. In Proceedings of the UAI conference, 2004.

21. G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

22. J. Vosecky, K. Leung, and W. Ng. Searching for quality microblog posts: Filtering
and ranking based on content analysis and implicit links. In DASFAA, 2012.

23. H. M. Wallach. Structured topic models for language. Unpublished doctoral dis-
sertation, Univ.of Cambridge, 2008.

24. X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Malicious android applications
in the enterprise: What do they do and how do we fix it? In Data Engineering
Workshops (ICDEW), 2012 IEEE 28th International Conference on, pages 251–
254. IEEE, 2012.

25. Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In Proc. of
the 19th Annual Network and Distributed System Security Symposium (NDSS),
2012.

