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Abstract. In this paper, we develop a novel Web Usage Manipulation
Language (WUML) which is a declarative language for manipulating
Web log data. We assume that a set of trails formed by users during
the navigation process can be identified from Web log files. The trails
are dually modelled as a transition graph and a navigation matrix with
respect to the underlying Web topology. A WUML expression is executed
by transforming it into Navigation Log Algebra (NLA), which consists of
the sum, union, difference, intersection, projection, selection, power and
grouping operators. As real navigation matrices are sparse, we perform
a range of experiments to study the impact of using different matrix
storage schemes on the performance of the NLA.

1 Introduction

The topology of a Web site is constructed according to the designers’ conceptual
view of the Web information. There may be a mismatch, however, between the
users’ behavior and the expectation of the designers. Therefore, we propose and
develop a query language on Web log data. We assume that the Web usage
information can be generated from log files through a cleaning process [11, 4].
Based on our earlier work in [11], we model a collection of user sessions on
a given Web topology as a weighted directed graph, called a transition graph.
A corresponding navigation matrix is then computed using knowledge of the
underlying Web topology.

Herein, we extend the four basic operators of sum, union, intersection and
difference from [11] on valid navigation matrices to a more comprehensive set
of operators: sum, union, intersection, difference, projection, selection,
power and grouping. We call these operators collectively the Navigation Log
Algebra (the NLA). Navigation matrices generated from real Web log files are
sparse. We therefore carry out a spectrum of experiments to study the per-
formances of the NLA operators on synthetically generated navigation matrices.
The results indicate that the storage schemes affect the performances differently.

To gain better insight regarding navigation behavior from the log data, we
further develop a novel declarative language termed Web Usage Manipulation
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Language (WUML), which allows users to specify queries on navigation matri-
ces. The WUML expressions are implemented as a sequence of NLA operations.
Using WUML, a Web designer is able to better understand navigation details
over the site structure based on the analysis of querying results. For example,
the overall usage of the site can be generated by a WUML query that combines
all user categories, while the deviation analysis can be generated by a WUML
query that finds out the contrast between the designer’s expectation and user
navigation behaviors. WUML also enables the designers to view the overall per-
formance of a set of closely-related pages using grouping.
Our Contributions. (1) We define the NLA on navigation matrices, which are
a comprehensive set of operators of sum, union, intersection, difference,
projection, selection, power and grouping. (2) We propose a validation al-
gorithm called VALID, which is able to preserve the validity of the navigation
matrix when executing some of the operations. Essentially, this is to avoid iso-
lated sets of pages happening in NLA operations. (3) We develop a novel declar-
ative language WUML on navigation matrices. WUML can be transformed into
a corresponding sequence of operations. (4) We study three different storage
schemes to deal with the sparse nature in navigation matrices. By carrying out
a spectrum of experiments on synthetic Web log data, we clarify the effects of
storage schemes on individual NLA operators.
Related Work. There has been a lot of research related to applying data mining
techniques on the Web log data. A mass of Web usage mining tools [1, 2, 5,
14, 13, 7] have been developed to help the designers improve Web sites, attract
visitors, or provide users with a personalized and adaptive service. Several mining
languages, such as WUM’s MINT [13] and WEBMINER’s query language [7],
are also proposed for these objectives. However, these languages are based on
mining techniques for association rules and sequential patterns. Our WUML is
developed to specify a query which is sufficiently expressive to query log data
represented as a transition graph, or equivalently a navigation matrix.

The rest of this paper is organized as follows. In Section 2, we give preliminary
definitions related to Web usage analysis. NLA for the navigation matrices is
discussed in Section 3. We propose WUML and discuss the transformation of
a WUML expression into an NLA expression in Section 4. In Section 5, three
storage schemes for navigation matrices are introduced. A set of experimental
results on the NLA using different storage schemes are analyzed in Section 6.
Finally, we give our concluding remarks in Section 7.

2 Preliminaries

A Web topology W is defined as a directed graph, in which each node represents
one Web page and each directed link represents the hyperlink between pages. A
user session is a sequence of page requests from the same user such that no two
consecutive requests are separated by more than X minutes. In a user session,
two consecutive pages should have a link in the Web topology.

A transition graph is a weighted directed graph constructed from W by
adding two special pages: the starting page S and the finishing page F . Given a



set of user sessions, we define the weight of the link from S to any other page as
the number of times that the page is first requested. Similarly, the weight of the
link from any page to F is the number of times that the page is last requested.
As for links between any other two pages in W , called internal links, the weight
is the number of times that two pages appear as consecutive pages in the set of
user sessions. We dually model a transition graph as a navigation matrix [11].
A navigation matrix is defined as the adjacency matrix of a transition graph.
A one-to-one correspondence exists between transition graphs and navigation
matrices.

Now, we discuss the notion of validity of a transition graph. A node in a
transition graph is said to be balanced if the total weights of its in-links equal
to the total weights of its out-links. And the node degree is the total weights
of in-links and out-links. A transition graph is said to be valid if it satisfies the
following four conditions. (1) In-degree of S, out-degree of F and the link weight
from S to F are zero; (2) Every internal link having non-zero weight is also a
link in the Web topology, (Note that this excludes self-looping in the graph.);
(3) Every node except S and F should be balanced; (4) Every node which has
non-zero degree should be reachable from S.

The validity of the navigation matrix is equivalent to the validity of the
transition graph. That is, a navigation matrix is said to be valid if and only if its
corresponding transition graph is valid. As we can see in the subsequent sections,
after execution of some NLA operators, such as difference, intersection and
power, the output navigation matrix may not be valid. There may be nodes
with non-zero degree which cannot be reached from S. However, the validity in
outcomes is essential since it ensures that the operations continue in a procedural
manner. It is thus necessary to guarantee the output navigation matrix is valid.

We outline an algorithm, VALID, as shown in Algorithm 1, which employs
DFS strategy, to keep the validity of a navigation matrix. The input of the algo-
rithm is a navigation matrix whose nodes are balanced. Using VALID, connected
components of the transition graph can be found. If there is more than one com-
ponent, we add a link from S to the root of that component and also a link from
that root to F to keep it balanced. The output matrix is then valid since all
pages with non-zero degree are reachable from S.

Note that VALID needs three extra arrays (namely, color, parent and tag),
each with size of n+2, the space complexity is O(n). The time determining steps
are the two nested loops over n+2 in Lines 1 and 3 in Algorithm 1, which takes
O(n2) time. As for the execution of the DFS-VISIT procedure, it takes O(E)
time, where E is the number of edges in the transition graph corresponding to
the input navigation matrix. In the worst case, E equals to (n+2)2. To conclude,
the time complexity for running VALID is O(n2).

3 Navigation Log Algebra
In this section, we define the Navigation Log Algebra (the NLA). For more

illustrated examples on using some operations, the readers may refer to [11].
Sum. The sum of two navigation matrices M1 and M2, denoted as M1 + M2,
is defined as a navigation matrix M3 such that, for all i, j ∈ {0, . . . , n + 1},



Algorithm 1 VALID Algorithm
Input: Matrix M with n + 2 dimensions
VALID(M)

1. FOR all 0 ≤ i ≤ n + 1 //Initialization
2. DO color[i] := WHITE; parent[i] := NIL; tag[i] := 0;
3. FOR all 0 ≤ j ≤ n + 1
4. DO IF M [i][j] != 0
5. THEN tag[i] := 1; break;//tag indicates pages with non-zero degree
6. tag[0] := 1; //Make sure DFS starts from page S
7. FOR all 0 ≤ i ≤ n + 1 //DFS: Find connected components
8. DO IF tag[i] = 1 and color[i] = WHITE
9. THEN DFS-VISIT(i);
10. FOR all 1 ≤ i ≤ n
11. DO IF tag[i] = 1 and parent[i] = NIL //Ensure validity by adding
12. THEN M [0][i] += 1; M [i][n + 1] += 1; //links from S and links to F
DFS-VISIT(i) //Recursively search to form connected components
1. color[i] := GRAY
2. FOR all 0 ≤ j ≤ n + 1
3. DO IF M [i][j] != 0 and color[j] = WHITE
4. THEN parent[j] := i; DFS-VISIT(j);

Output: The valid matrix of M

(aij)3 = (aij)1 +(aij)2. Actually, sum is exactly the generic sum of two matrices.
Trivially, the outcome M3 remains to be valid.
Union. The union of two navigation matrices M1 and M2, denoted as M1

⋃
M2,

is defined as a navigation matrix M3 such that, for all i, j ∈ {1, . . . , n}, (aij)3 =
max((aij)1, (aij)2); (a0j)3 =max((a0j)1, (a0j)2)+max(0,

∑n+1
k=1max((ajk)1,

(ajk)2) −
∑n

k=0max((akj)1, (akj)2)); (ai(n+1))3 =max((ai(n+1))1, (ai(n+1))2)+
max(0,

∑n
k=0 max((aki)1, (aki)2) −

∑n+1
k=1max((aik)1, (aik)2)); and all other el-

ements are zero. For union, we do not need to use VALID because the max
function used in union is able to maintain the reachability of nodes from S.
Difference. The difference of two navigation matrices M1 and M2, denoted
as M1 − M2, is defined as a navigation matrix M3 such that, for all i, j ∈
{1, . . . , n}, (aij)3 = max(0, ((aij)1−(aij)2)); (a0j)3 = max(0, ((a0j)1−(a0j)2))+
max(0,

∑n+1
k=1 max(0, ((ajk)1 − (ajk)2)) − ∑n

k=0 max(0, ((akj)1 − (akj)2)));
(ai(n+1))3 = max(0, ((ai(n+1))1 − (ai(n+1))2)) + max(0,

∑n
k=0 max(0, ((aki)1 −

(aki)2)) −
∑n+1

k=1 max(0, ((aik)1 − (aik)2))); and all other elements are zero. As
the result may be invalid, we run VALID after executing the above operation.
Intersection. The intersection of two navigation matrices M1 and M2, de-
noted as M1

⋂
M2, is defined as a navigation matrix M3 such that, for all

i, j ∈ {1, . . . , n},(aij)3 = min((aij)1, (aij)2); (a0j)3 = min((a0j)1, (a0j)2) +
max(0,

∑n+1
k=1 min((ajk)1, (ajk)2) − ∑n

k=0 min((akj)1, (akj)2)); (ai(n+1))3 =
min((ai(n+1))1, (ai(n+1))2)+max(0,

∑n
k=0 min((aki)1, (aki)2)−

∑n+1
k=1 min((aik)1,



(aik)2)); and all other elements are zero. We run the VALID algorithm on the
intermediate answer from executing intersection.
Projection. The projection of one navigation matrix M1, denoted as

∏
P (M1)

where P is a set of Web pages, is defined as a navigation matrix M3 such
that, for all Pi, Pj ∈ P , (aij)3 = (aij)1; (a0j)3 = (a0j)1 +

∑
k=1,...,n;Pk /∈P (akj)1;

(ai(n+1))3 = (ai(n+1))1 +
∑

k=1,...,n;Pk /∈P (aik)1; and all other elements are zero.
Projection does not need the VALID algorithm.
Selection. The selection of one navigation matrix M1, denoted as σθx(M1),
where θ is a comparator such as >, <, >=, <=, or =, and x is a positive in-
teger, is defined as a navigation matrix M3 such that, for all i, j ∈ {1, . . . , n},
if(aij)1θx, (aij)3 = (aij)1; (a0j)3 = (a0j)1+

∑
k=1,...,n;(akj)1θ̄x(akj)1; (ai(n+1))3 =

(ai(n+1))1 +
∑

k=1,...,n;(aik)1θ̄x(aik)1; and all other elements are zero. The nota-
tion θ̄ denotes the complement of θ (e.g. θ̄ is “<=” when θ is “>”). The output
is already valid, so it does not need to be processed through VALID.
Power. The power of one navigation matrix M1, denoted as (M1)x, where x is
a non-negative integer, is defined as a navigation matrix M3 such that M3 =
0(n+2)×(n+2) if x = 0; M3 = M1 if x = 1; and M3 = M1 · (M1)x−1 if x ≥ 2.
Herein, the operator “·” denotes the multiplication of two matrices. The result
M3 may not be valid, since we need to ignore the possible non-zero values in
its diagonal and at (a0(n+1))3. We should maintain the pages balance and run
VALID. The semantics for non-zero entry (aij)3 in M3 = (M1)x is that there is
a trail from Pi to Pj with the length of x in M1. If (aij)3 is large, it indicates
that many users have traversed from Pi to Pj . If there is no link from Pi to Pj in
the Web topology, the designer may add this link to facilitate better navigation.
Grouping. The grouping of a navigation matrix M1, denoted as GP (M1),
where P is a set of pages in W , returns a navigation matrix M3 which is an
aggregated view of M1. Grouping groups all the pages in P as a single page in
M3 by ignoring the links within the pages in P and adding up the weight of links
from and to the outside pages, respectively. By grouping a set of pages which are
closely related in semantics, we are able to understand the navigation in terms
of information units [9]. Our approach is to view grouping as an aggregation of
log information. Therefore, we do not define ungrouping here, since ungrouping
introduces uncertainty in log information which needs further study.

The following properties follow from the definitions of the NLA operators.
We will see later these properties pave the way for choosing an efficient execution
plan for a given WUML expression. We only state the following properties where
we assume δ1 ∈ {+,∪,∩} and δ2 ∈ {∪,∩}, since the proof is straightforward.
Associative Property. (M1 δ1 M2) δ1 M3 = M1 δ1 (M2 δ1 M3).
Commutative Property. M1 δ1 M2 = M2 δ1 M1; ΠP (σθx(M)) = σθx(ΠP (M))
Distributive Property. ΠP (M1 δ1 M2) = ΠP (M1) δ1 ΠP (M2); GP (M1 δ1 M2)
= GP (M1) δ1 GP (M2); and σθx(M1 δ2 M2) = σθx(M1) δ2 σθx(M2).

4 The Web Usage Manipulation Language

We now introduce a declarative language on navigation matrices termed the
Web Usage Manipulation Language (the WUML). A WUML expression is exe-
cuted via the NLA operators defined in Section 3, which shares the same principle



of translating a SQL expression into a sequence of relational algebra operations.
We now define the WUML syntax in Backus Naur Form (BNF):

<query> :: = <selectClause><fromClause>[<conditionClause>][<groupClause>]

<selectClause> :: = SELECT <pageList>

<queryList> :: = query [, query. . .]

<fromClause> :: = FROM <matrixIdentifier> | FROM <operator> <matrixList>

<conditionClause> :: = WHERE LINKWT <compOp> integer

<groupClause> :: = GROUP BY <pageList>

<pageList> :: = pageIdentifier [, pageIdentifier. . .]|∗
<matrixList> :: = matrixIdentifier [, matrixIdentifier. . .]

<operator> :: = SUM|UNION|DIFF|INTERSECT|POWER integer

<compOp> :: = | <= | >= | < | =
There are four main clauses in a query expression: the select, from, condition,

and group . Among them the select and the from clauses are compulsory, while
the condition and the group clauses are optional. Similar to SQL, WUML is a
simple declarative language but is powerful enough to express query on the log
information stored as navigation matrices.

We execute a WUML expression by translating it into a sequence of NLA
operations using Algorithm 2. Suppose P is a set of l Web pages which appears
in the select clause, where P = {P1, P2, . . . , Pl}, M is a set of m matrices which
appears in the from clause, where M = {M1,M2, . . . , Mm}, PG is a set of n
Web pages which appears in the group clause, where PG = {P1, P2, . . . , Pn},
OPER ∈ {ε, SUM , UNION , DIFF , INTERSECT , POWER α }, x and α
are two non-negative integers. Note that the input WUML query expression is
assumed to be syntactically valid. If OPER = ε or POWER α, then m = 1.
Figure 1 depicts a query tree which illustrates the basic idea.

Algorithm 2 TRANS Algorithm
Input: A WUML expression q
LET q = <selectClause><fromClause>[<conditionClause>][<groupClause>]

<selectClause> := “SELECT P | ∗”
<fromClause> := “FROM OPER M”
<conditionClause> := “WHERE LINKWT θx”
<groupClause> := “GROUP BY PG”

Procedure:
Step 1 : For the fromClause, CASE OPER OF:

ε : TEMP := “M1”
SUM : TEMP := “M1 + M2 + · · ·+ Mm”
UNION : TEMP := “M1

⋃
M2

⋃ · · ·⋃Mm”
DIFF : TEMP := “M1 −M2 − · · · −Mm”
INTERSECT : TEMP := “M1

⋂
M2

⋂ · · ·⋂Mm”
POWER α : TEMP := “(M1)

α”
Step 2 : For the selectClause:

IF “∗” THEN TEMP := TEMP
ELSE TEMP := “ΠP(TEMP )”

Step 3 : IF there is a whereClause THEN TEMP := “σθx(TEMP )”
Step 4 : IF there is a groupClause THEN TEMP := “GPG(TEMP )”

Output: TEMP expression



GPG GROUP CLAUSE
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ΠP SELECT CLAUSE
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Fig. 1. WUML query tree
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Fig. 2. Optimized WUML query tree

Now, we present a set of examples, which illustrates the usage of the WUML
expressions and the translation into the corresponding sequence of NLA opera-
tions. Let M , M1, M2 and M3 be navigation matrices.
Q1: We want to know how frequently the pages P1 and P2 were visited.

WUML expression: SELECT P1, P2 FROM SUM M1, M2.
NLA operation: Π{P1,P2}(M1 + M2).

Q2: We want to find out the essential difference of preferences between the two
groups of users in M1 and M2. We consider those links having the weight > 3.

WUML expression: SELECT * FROM DIFF M1, M2 WHERE LINKWT
> 3. NLA operation: σ>3(M1 −M2).
Q3: We want to get the navigation details in an information unit [9] consisting
of the pages P1, P2, and P3. We may gain insight to decide whether it is better
to combine these three Web pages or not. So we consider them as a group.

WUML expression: SELECT * FROM SUM M1, M2 GROUP BY P1, P2, P3.
NLA operation: G{P1,P2,P3}(M1 + M2).

Q4: We want to know whether some pages were visited by users after 3 clicks.
If they were seldom visited or lately visited in a user session, we may decide to
remove or update them to make them more popular.

WUML expression: SELECT P1, P2, P3 FROM POWER 3 M .
NLA operation: Π{P1,P2,P3}(M)3.

Q5: Now we want to get the specific information of a particular set of Web pages.
WUML expression: SELECT P1, P2, P3, P4, P5 FROM INTERSECT M1,

M2, M3 WHERE LINKWT > 6.
NLA operation: σ>6(Π{P1,P2,P3,P4,P5}(M1

⋂
M2

⋂
M3)).

Let us again consider the query, Q5. We will see in Section 6 that the running
time of NLA operators are proportional to the number of non-zero elements in
the executed matrix. Therefore, the optimal plan is to first execute the NLA
operators which can minimize the number of non-zero elements in the matrix.
For the sake of efficiency, the projection (Π) should be executed as early as
possible. So a better NLA execution plan of Q5 can be obtained as follows:
Q6 : σ>6(Π{P1,P2,P3,P4,P5}(M1)

⋂
Π{P1,P2,P3,P4,P5}(M2)

⋂
Π{P1,P2,P3,P4,P5}(M3)).

We now summarize some optimization rules as depicted in Figure 2. First,
the projection should be done as early as possible since it can eliminate some
non-zero elements. Note that projection is not distributive under difference
and power. Second, since the selection is not distributive under some binary
operators such as difference, we do not change the execution order. Finally,



the grouping creates a view different from the underlying Web topology. There-
fore, it should be done at the last step except some operators taking another
navigation matrix whose structure is the same as the grouped one. Note that
these rules are simple heuristics to sort NLA operations. We still need to find
out a more systematic way to generate an optimized execution plan for a given
WUML expression.

5 Storage Schemes for Navigation Matrices

As the navigation matrices generated from the Web log files are usually sparse,
the storage scheme of a matrix greatly affects the performance of WUML. In
this section we introduce three storage schemes, COO, CSR, and CSC, to study
their impacts on the NLA operations.

In literature, the technique of storing sparse matrices has been intensively
studied [3, 8]. In our WUML environment, we store the navigation matrix as
three separate parts: the first row (i.e. the weights of the links starting from S),
the last column(i.e. the weights of the links ending in F ) and the square matrix
despite the rows and columns of S and F . We employ two vectors, Svector and
Fvector, which contains an array for the non-zero values in the vector as well as
the corresponding index, to store the first row and the last column. Table 2 and
3 show examples using the matrix given in Figure 1. As for the third part of
the navigation matrix, we implement the storage schemes proposed in [8]. We
illustrate the schemes using the matrix in Table 1.
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Navigation
Matrix

Non-zero 3 1

Column 1 2
Table 2. Svector

Non-zero 3 1

Column 2 4
Table 3.
Fvector

Non-zero 2 2 1 3 1 1

Column 2 3 1 4 2 3

Row 1 1 2 3 4 4
Table 4. COO
Scheme

The Coordinate (COO) storage scheme is the most straightforward structure
to represent a sparse matrix. As illustrated in Table 4, it records each nonzero
entry together with its column and row index in three arrays. The Non-zero array
holds the non-zero entries in row-first order. Similar to COO, the Compressed
Sparse Row (CSR) storage scheme also consists of three arrays. CSR differs from
COO in the Compressed Row array. In CSR, Compressed Row is an array of
size n, where n is the number of pages in Web topology. It stores the location
of the first non-zero entry in that row. Table 5 shows the structure of CSR. The
Compressed Sparse Column (CSC) storage scheme, as shown in Table 6, is similar
to CSR. It has three arrays: Nonzero array to hold the non-zero values in column-
first order, Compressed Column array to hold the location of the first non-zero
entry of that column, Row array for the row indices. CSC is the transpose of CSR.
There are also other sparse matrix storage schemes, such as Compressed Diagonal
Storage (CDS) and Jagged Diagonal Storage (JDS) [12]. However, they are used
for storing a banded sparse matrix. In reality, the navigation matrix should not
be banded. Therefore, these schemes are not studied in our experiments.



Non-zero 2 2 1 3 1 1

Column 2 3 1 4 2 3

Compressed Row 0 2 3 4
Table 5. CSR Scheme

Non-zero 1 2 1 2 1 3

Compressed Column 0 1 3 5

Row 2 1 4 1 4 3
Table 6. CSC Scheme

6 Experimental Results and Analysis

We carry out a set of experiments to compare the performances of the three
storage schemes introduced in Section 5. We also study the usability and effi-
ciency of WUML on different data sets. The data set we used in the experiments
is a set of synthetic Web logs on different Web topology, which are generated by
a log generator designed in [10]. The parameters used to generate the log files are
described in Table 7. Among these four parameters, PageNum and MeanLink

LogSize The number of log records in a log file.

UserNum The number of users traversing the Web site.

PageNum The number of pages in the Web topology.

MeanLink The average number of links per page in the Web topology.
Table 7. Parameters for Data Set

are dependent on the underlying Web topology while the other two are not.
These experiments are run on Pentium 4, 2.5GHz, and 1G of RAM machine
configuration.

6.1 Construction Time of Storage Schemes

We choose three data sets: D1 = (2500, 1500, 1500, 3), D2 = (5000, 3000, 3000, 5)
and D3 = (10000, 6000, 6000, 10), in which the components represent the pa-
rameters LogSize, UserNum, PageNum and MeanLink, respectively. Then we
construct three storage schemes based on the generated log files from D1 to D3.
Our measurement of the system response time includes I/O processing time and
CPU processing time. As shown in Figure 3, the response time grows signifi-
cantly as the parameters increase. Since most of the time is consumed in reading
the log files, the construction time for the same given data set varies slightly
among the three storage schemes. But it still takes more time to construct COO
than the other two schemes, since there is no compressed array for COO. CSC
needs more time than CSR because the storage order in CSC is column-first
while reading in the file is in row-first order.
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6.2 Processing Time of Binary Operators

We present the CPU processing time results of four binary operators: sum, union,
difference and intersection. Each time we tune one of the four parameters
to see how the processing time changes on COO, CSR and CSC storage schemes.
For each parameter, we carry out experiments on ten different sets of Web logs.
We first compare the processing time of each single operator under different
storage schemes. Then we present the processing time of each storage scheme
under different operators.
Tuning LogSize. We set UserNum and PageNum to be 3000, MeanLink to be
5. The results are shown in Figure 5. When LogSize increases, the processing
time of the same operator on each storage scheme also increases. The reason is
that the number of non-zero elements in the navigation matrix grows with the
increase of LogSize, and therefore it needs more time to do the operations.
Tuning PageNum. We set LogSize to be 5000, UserNum to be 3000, and
MeanLink to be 5. The results are presented in Figure 7. With the growth of
PageNum, the CPU time for each operator on specified storage scheme grows
quickly. It is because PageNum is a significant parameter when constructing
the navigation matrix. The more pages in the Web site, the larger dimension of
a navigation matrix, and consequently, the more time needed to construct the
navigation matrix.
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Fig. 5. The CPU time by tuning LogSize



Tuning UseNum. Figure 6 shows the results when LogSize is 5000, PageNum
is 3000 and MeanLink is 5. We observe that the processing time remains almost
unchanged when UserNum grows. The main reason is that, although different
user may have different behavior when traversing the Web site, the number of
non-zero elements in navigation matrix is roughly the same due to the fixed
LogSize.
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Fig. 6. The CPU time by tuning UserNum

Tuning MeanLink. We use the log files with LogSize of 5000, UserNum of
3000 and PageNum of 3000. The results are shown in Figure 8 which indicates
that, with the increase of MeanLink, the processing time decreases.

Note that when processing the sum, COO always outperforms others, while
CSR and CSC perform almost the same (see Figures 5(a), 6(a), 7(a) and 8(a)).
The similar phenomenon can be observed in Figures 5(d), 6(d), 7(d) and 8(d)
for processing the intersection. As shown in Figures 5(b), 6(b), 7(b) and 8(b),
we see that the processing time for union on three storage schemes has no signif-
icant difference. Finally, from Figures 5(c), 6(c), 7(c) and 8(c), the difference
is opposite to sum: the performances of CSR and CSC are much better than
COO when processing difference. Note also that from Figure 4, difference
requires the most processing time, and sum needs the least. The Web logs used in
this set of experiments has 5000 LogSize, 1000 UserNum, 3000 PageNum and 5
MeanLink. The reason for this result is as follows. As we have mentioned, when
defining sum, we do not need to check the balance of Web pages and the valid-
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Fig. 7. The CPU time by tuning PageNum

ity of the navigation matrix. Therefore, it takes the least time to perform sum.
For union, we only need to check the balance of Web pages without checking
the validity of the output matrix. But for difference and intersection, we
have to check both the page balance and matrix validity, which is rather time-
consuming. It can be found that intersection does not need much time. This
is because there are very few non-zero elements in the output matrix.

6.3 Performance of Unary Operators

Power. We study the performance of power using log files with 5000 LogSize,
3000 UserNum, 5 MeanLink, (100, 500, 1000) PageNum. Each matrix multiplies
twice (i.e. power = 2). We show the result in Figure 9. COO performs much
worse than CSR and CSC in this situation. We also see that power is a rather
time-consuming operator.
Projection and Selection. Since projection and selection are commuta-
tive, we study the time cost by swapping the two operators on the same navi-
gation matrix. The matrix is constructed on a log file with 5000 LogSize, 5000
PageNum, 3000 UserNum and 5 MeanLink. From Figure 10, we conclude that
doing projection before selection is more efficient than doing selection and
then projection. According to this result, we can do some optimization when
interpreting some queries. Moreover, COO outperforms CSR and CSC.
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Fig. 8. The CPU time by tuning MeanLink

From the experimental results shown above, we have the following observa-
tions. First, from construction point of view, CSR is the best. Second, COO is
the best for sum and intersection. Third, CSR and CSC perform almost the
same for difference and power, and greatly outperform COO. Finally, COO,
CSR and CSC perform the same for union. Taking these observations into con-
sideration, CSR is the best for our WUML expressions. Although COO performs
better in sum and intersection, it needs too much time for difference which
is intolerant when the user issues a query associated to difference. Although
the performance of CSC is the same as CSR with respect to the operations, CSC
needs more time to be constructed. We also observe that the time growth for
each operator is linear to the growth of parameters, which indicates that the
usability and scalability of WUML is acceptable in practice.

7 Concluding Remarks

We presented NLA which consists of a set of operators on navigation matrices
and proposed an efficient algorithm VALID (O(n) space and O(n2) time com-
plexities) to ensure the validity of an output matrix by NLA operators. Within
NLA, we develop a query language WUML and study the mapping between the
WUML statements and NLA expressions. To choose an efficient storage scheme
for the sparse navigation matrix, we carried out a set of experiments on different
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synthetic Web log data sets, which are generated by tuning different parameters
such as the number of pages, the number of mean links and the number of users.
By the experimental results on three storage schemes of COO, CSC and CSR, we
can see that the CSR scheme is relatively efficient for NLA. As for future work,
we plan to develop a full-fledged WUML system to preform both analyzing and
mining the real Web log data sets. We are also studying a more complete set of
optimization heuristic rules for the NLA operators in order to generate a better
execution plan for an input WUML expression.
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