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Abstract. In many online shopping applications, such as Amazon and eBay, tra-
ditional Association Rule (AR) mining has limitations as it only deals with the
items that are sold but ignores the items that are almost sold (for example, those
items that are put into the basket but not checked out). We say that those almost
sold items carry hesitation information, since customers are hesitating to buy
them. The hesitation information of items is valuable knowledge for the design
of good selling strategies. However, there is no conceptual model that is able to
capture different statuses of hesitation information. Herein, we apply and extend
vague set theory in the context of AR mining. We define the concepts of attrac-
tiveness and hesitation of an item, which represent the overall information of a
customer’s intent on an item. Based on the two concepts, we propose the notion
of Vague Association Rules (VARs). We devise an efficient algorithm to mine the
VARs. Our experiments show that our algorithm is efficient and the VARs capture
more specific and richer information than do the traditional ARs.

1 Introduction
Association Rule (AR) mining [1] is one of the most important data mining tasks. Con-
sider the classical market basket case, in which AR mining is conducted on transactions
that consist of items bought by customers. There are many items that are not bought
but customers may have considered to buy them. We call such information on a cus-
tomer’s consideration to buy an item the hesitation information of the item, since the
customer hesitates to buy it. The hesitation information of an item is useful knowledge
for boosting the sales of the item. However, such information has not been considered
in traditional AR mining due to the difficulty to collect the relevant data in the past.
Nevertheless, with the advance in technology of data dissemination, it is now much
easier for such data collection. A typical example is an online shopping scenario, such
as “Amazon.com”, which we are able to collect huge amount of data from the Web
log that can be modelled as hesitation information. From Web logs, we can infer a cus-
tomer’s browsing pattern in a trail, say how many times and how much time s/he spends
on a Web page, at which steps s/he quits the browsing, what and how many items are
put in the basket when a trail ends, and so on. Therefore, we can further identify and
categorize different browsing patterns into different hesitation information with respect
to different applications.

There are many statuses of a piece of hesitation information (called hesitation sta-
tus (HS)). Let us consider a motivating example of an online shopping scenario that



involves various statuses: (s1) HS of the items that the customer browsed only once and
left; (s2) HS of the items that are browsed in detail (e.g., the figures and all specifica-
tions) but not put into their online shopping carts; (s3) HS of the items that customers
put into carts and were checked out eventually. All of the above-mentioned HSs are
the hesitation information of those items. Some of the HSs are comparable based on
some criterion, which means we can define an order on these HSs. For example, given
a criterion as the possibility that the customer buys an item, we have s1 ≤ s2 ≤ s3.
The hesitation information can then be used to design and implement selling strategies
that can potentially turn those “interesting” items into “under consideration” items and
“under consideration” items into “sold” items.

Our modelling technique of HSs of an item rests on a solid foundation of vague
set theory [2–4]. The main benefit of this approach is that the theory addresses the
drawback of a single membership value in fuzzy set theory [5] by using interval-based
membership that captures three types of evidence with respect to an object in a universe
of discourse: support, against and hesitation. Thus, we naturally model the hesitation
information of an item in the mining context as the evidence of hesitation with respect to
an item. The information of the “sold” items and the “not sold” items (without any hes-
itation information) in the traditional setting of AR mining correspond to the evidence
of support and against with respect to the item. For example, if a customer bought an
item 5 times, hesitated to buy (when different HSs are not distinguished) it 2 times, and
did not browse it 3 times (in 10 visits), then we can obtain a vague membership value,
[0.5, 0.7] (where 0.7 = 1 − 3/10), for the item. When we distinguish different HSs,
say the customer hesitated to buy the item 2 times in HSs s1 once and s2 once, where
s1 ≤ s2 ≤ s3. Then the vague membership value for s1 is [0.5, 0.6] and that for s2 is
[0.6, 0.7]. As for s3, since there is no hesitation evidence for it, and s2 ≤ s3, its vague
membership value is a single point, [0.7, 0.7].

To study the relationship between the support evidence and the hesitation evidence
with respect to an item, we propose attractiveness and hesitation of an item, which are
derived from the vague membership in vague sets. An item with high attractiveness
means that the item is well sold and has a high possibility to be sold again next time.
An item with high hesitation means that the customer is always hesitating to buy the
item due to some reason (e.g., the customer is waiting for price reduction) but has a
high possibility to buy it next time if the reason is identified and resolved (e.g., some
promotion on the item is provided). For example, given the vague membership value,
[0.5, 0.7], of an item, the attractiveness is 0.6 (the median of 0.5 and 0.7) and the hesi-
tation is 0.2 (the difference between 0.7 and 0.5), which implies that the customer may
buy the item next time with a possibility of 60% and hesitate to buy the item with a
possibility of 20%.

Using the attractiveness and hesitation of items, we model a database with hesita-
tion information as an AH-pair database that consists of AH-pair transactions, where A
stands for attractiveness and H stands for hesitation. Based on the AH-pair database,
we then propose the notion of Vague Association Rules (VARs), which capture four
types of relationships between two sets of items: the implication of the attractive-
ness/hesitation of one set of items on the attractiveness/hesitation of the other set of
items. For example, if we find an AH-rule like “People always buy quilts and pillows(A)



but quit the process of buying beds at the step of choosing delivery method(H)”. Thus,
there might be something wrong with the delivery method for beds (for example, no
home delivery service provided) which causes people hesitate to buy beds. To evaluate
the quality of the different types of VARs, four types of support and confidence are de-
fined. We also investigate the properties of the support and confidence of VARs, which
can be used to speed up the mining process.

Our experiments on both real and synthetic datasets verify that our algorithm to
mine the VARs is efficient. Compared with the traditional ARs mined from transac-
tional databases, the VARs mined from the AH-pair databases are more specific and
are able to capture richer information. Most importantly, we find that, by aggregating
more transactions into an AH-pair transaction, our algorithm is significantly more ef-
ficient while still obtaining almost the same set of VARs. The concept of VARs is not
limited to the online shopping scenario. In our experiments, we demonstrate that VARs
are applied to mine Web log data.
Organization. This paper is organized as follows. Section 2 gives some preliminaries
on vague sets and ARs. Section 3 introduces VARs and presents the related concepts.
Section 4 discusses the algorithm that mines VARs. Section 5 reports the experimental
results. Section 6 discusses the related work and Section 7 concludes the paper.

2 Preliminaries
2.1 Vague Sets
Let I be a classical set of objects, called the universe of discourse, where an element of
I is denoted by x.
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Fig. 1. The True (α) and False (β) Membership Functions of a Vague Set

Definition 1. (Vague Set) A vague set V in a universe of discourse I is characterized
by a true membership function, αV , and a false membership function, βV , as follows:
αV : I → [0, 1], βV : I → [0, 1], where αV (x) + βV (x) ≤ 1, αV (x) is a lower
bound on the grade of membership of x derived from the evidence for x, and βV (x) is a
lower bound on the grade of membership of the negation of x derived from the evidence
against x. Suppose I = {x1, x2, . . . , xn}. A vague set V of the universe of discourse I is
represented by V =

∑n
i=1[α(xi), 1−β(xi)]/xi, where 0 ≤ α(xi) ≤ (1−β(xi)) ≤ 1.2

The grade of membership of x is bounded to [αV (x), 1−βV (x)], which is a subinterval
of [0, 1] as depicted in Fig. 1. For brevity, we omit the subscript V from αV and βV .

We say that [α(x), 1−β(x)]/x is a vague element and the interval [α(x), 1−β(x)] is
the vague value of the object x. For example, [α(x), 1−β(x)] = [0.5, 0.7] is interpreted



as “the degree that the object x belongs to the vague set V is 0.5 (i.e. α(x)) and the
degree that x does not belong to V is 0.3 (i.e. β(x)).” For instance, in a voting process,
the vague value [0.5,0.7] can be interpreted as “50% of the votes support the motion,
30% are against, while 20% are neutral (abstentions).”

2.2 Median Memberships and Imprecision Memberships
In order to compare vague values, we introduce two derived memberships: median
membership and imprecision membership [4]. Note that given a vague value [α(x), 1−
β(x)], we have unique median membership Mm(x) and imprecision membership Mi(x),
and vice versa.

Median membership is defined as Mm = 1
2 (α + (1 − β)), which represents the

overall evidence contained in a vague value. It can be checked that 0 ≤ Mm ≤ 1.
Obviously, the vague value [1,1] has the highest Mm, which means the corresponding
object definitely belongs to the vague set (i.e., a crisp value). While the vague value
[0,0] has the lowest Mm, which means that the corresponding object definitely does not
belong to the vague set.

Imprecision membership is defined as Mi = ((1 − β) − α), which represents the
overall imprecision of a vague value.It can be checked that 0 ≤ Mi ≤ 1. The vague
value [a, a](a ∈ [0, 1]) has the lowest Mi which means that the membership of the
corresponding object is exact (i.e., a fuzzy value). While the vague value [0,1] has the
highest Mi which means that we do not have any information about the membership of
the corresponding object.

The median membership and the imprecision membership are employed in this pa-
per to measure the attractiveness and the hesitation of an item with respect to a customer.

2.3 Association Rules
Let I = {x1, x2, . . . , xn} be a set of items 1. An itemset is a subset of I . A transaction
is an itemset. We say that a transaction Y supports an itemset X if Y ⊇ X . For brevity,
we write an itemset X = {xk1 , xk2 , . . . , xkm

} as xk1xk2 . . . xkm
.

Let D be a database of transactions. The frequency of an itemset X , denoted as
freq(X), is the number of transactions in D that support X . The support of X , denoted
as supp(X), is defined as freq(X)

|D| , where |D| is the number of transactions in D. X

is a Frequent Itemset (FI) if supp(X) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-specified
minimum support threshold.

Given the set of all FIs, the set of ARs is obtained as follows: for each FI Y and
for each non-empty subset X of Y , we generate an AR, r, of the form X ⇒ Y − X .
The support of r, denoted as supp(r), is defined as supp(Y ) and the confidence of r,
denoted as conf (r), is defined as supp(Y )

supp(X) . We say that r is a valid AR if conf (r) ≥ c,
where c (0 ≤ c ≤ 1) is a user-specified minimum confidence threshold.

3 Vague Association Rules
In this section, we first propose the concept of Hesitation Statuses (HSs) of an item and
discuss how to model HSs. Then we introduce the notion of Vague Association Rules
(VARs) and four types of support and confidence used in order to fully evaluate their
quality. Some properties of VARs that are useful to improve the efficiency of mining
VARs are presented.

1 We refer to the terms item and object interchangeably in this paper.



3.1 Hesitation Information Modeling
A Hesitation Status (HS) is a specific state between two certain situations of “buying”
and “not buying” in the process of a purchase transaction.

Here we use a more detailed example of placing an order with “Amazon.com” [6]
to illustrate the idea of HS. There are following nine steps, which forms a queue, to
place an order: (s1) Find the items you want; (s2) Add the items to your shopping cart;
(s3) Proceed to checkout; (s4) Sign in; (s5) Enter a shipping address; (s6) Choose a
shipping method; (s7) Provide a password and payment information; (s8) Review and
submit your order; (s9) Check your order status.

A customer may quit the ordering process at any step for some reason, for example,
forgetting the sign name or password. Therefore, the HSs with respect to different quit-
ting steps are different, since the more steps a customer goes, the higher possibility the
customer buys the item.

However, some HSs are incomparable. For example, a customer may put an item
into the wishing list if the item is out of stock. The HS in this case is incomparable to
the HS of the item with respect to quitting order at step 6, since we lack evidence to
support any ordered relationship between these two HSs.

We now formally model the hesitation information of an item as follows.
Definition 2. (Hesitation and Overall Hesitation) Given an item x ∈ I and a set of
HSs S = {s1, s2, . . . , sw} with a partial order≤ . The hesitation of x with respect to an
HS si ∈ S is a function hi(x) : I → [0, 1], such that α(x) + β(x) +

∑w
i=1 hi(x) = 1,

where hi(x) represents the evidence for the HS si of x. The overall hesitation of x with
respect to S is given by H(x) =

∑w
i=1 hi(x). 2

It can be easily checked from the above definition that H(x) = 1−α(x)− β(x). S
can also be represented by a Hasse Diagram whose vertices are elements in S and the
edges correspond to≤. All components in S can be partitioned into two groups of HSs:
a Chain Group (CG) consists of connected components that are chains (including the
case of a singleton HS node), and a Non-Chain Group (NCG) consists of components
that are non-chains (not chains).

In order to capture the hesitation evidence and the hesitation order ≤, a subinterval
of [α(x), 1−β(x)] is used to represent the customer’s intent of each item with respect to
different HSs. To obtain the intent value, the idea of linear extensions of a partial order is
used. However, computing the number of extensions is a #P-complete problem [7]. An
algorithm that generates all of the linear extensions of a partially ordered set in constant
amortized time is given in [8]. In real applications, say the online-shopping scenario,
we can simplify ≤ in order to reduce the computation complexity. From now on, we
assume that a component G in the NCG is a chain of Incomparable Chain Sets (ICSs),
{ICS1 ≤ ICS2 ≤ · · · ≤ ICSl}, where ICSi ∈ G is a set of chains satisfying the
following condition: the parent (child) HSs of the top (bottom) elements in all chains,
if any, are in the same ICS.

Note that this condition implies that the parent (child) HS of a chain in the top
(bottom) ICS is an empty set.

We now present an algorithm that partitions a component G in NCG into different
ICSs in Algorithm 1.
Example 1. Let S = {s1, . . . , s17}, and its Hasse diagram consists of four components
as shown in Fig. 2. We see that the component g2 is in CG, since it is a chain, and the



Algorithm 1 PartitionNCG(G)
1. i := 1;
2. while G 6= ∅
3. Let ICSi be the set of all minimal HS s ∈ G;
4. forall s ∈ ICSi do
5. Search the longest chain segment of s such that each HS (excluding s itself)

in it has a unique child, and the child has a unique parent;
6. Put all HSs of the chain segment in ICSi if any;
7. G := G− ICSi; i := i + 1;
8. return the result {ICS1 ≤ ICS2 ≤ · · · ≤ ICSi}.
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Fig. 2. The Hasse Diagram of the Ordered Set of HSs

components g1, g3, and g4 are in NCG, where different ICSs are represented by the
dashed ellipses. Consider the component g1, s1 is the only element in ICS1, since it
has more than one parent (i.e. s2 and s3) and the longest chain segment of s1 (according
to Line 5 of Algorithm 1) contains itself only, while s2 and s3 are in ICS2, since they
are the top HSs and have no parents. Thus, we partition g1 into the chain of ICSs as
ICS1 ≤ ICS2. Consider the component g3, s6 is the only element in ICS1. s9 and s7

are the minimal HSs in ICS2. s8 is also in ICS2, since it has a unique child s7 and s7

has a unique parent s8. s10 is not in ICS2, since it has two children (i.e. s8 and s9).
Consider the component g4, s11 and s12 are in ICS1, since they both have more than
one parents. s13, s14 and s15 are in ICS2 and finally, the top HSs s16 and s17 form
ICS3. 2

Given a set of purchase transactions, we can aggregate the transactions to obtain the
intent of each item with respect to different HSs. Although aggregating the transactions
may lose some exact information of the items for customers, in many cases the overall
knowledge is more useful than the details of every transaction. For example, in our
online shopping scenario, by aggregating the data we alleviate the problem of high cost
of mining on huge log data sets.
Definition 3. (Intent and Overall Intent) Given a set of HSs, (S,≤), the intent of an
item x with respect to an HS si ∈ S, denoted as int(x, si), is a vague value [αi(x), 1−
βi(x)] which is a subinterval of [α(x), 1− β(x)] and satisfies the following conditions:

1. (1− βi(x)) = αi(x) + hi(x).
2. For each ICSj in the chain ICS1 ≤ ICS2 ≤ · · · ≤ ICSj ≤ · · · ≤ ICSl, of

an NCG component G, we assume a linear extension of G (s1 ≤ s2 ≤ · · · ≤



sm) such that there exists a segment (sp+1 ≤ · · · ≤ sp+q) consistent with all
the chains in ICSj , where 1 ≤ p + 1 and p + q ≤ m. The intent for ICSj ,
denoted as [αICSj

(x), 1 − βICSj
(x)], is given by αICSj

(x) = α(x)+(1−β(x))
2 −

1
2

∑m
k=1 hk(x) +

∑p
k=1 hk(x), 1− βICSj

(x) = αICSj
(x) +

∑p+q
k=p+1 hk(x).

3. – If si is in a chain of the CG, s1 ≤ s2 ≤ · · · ≤ si ≤ · · · ≤ sn, then for 1 ≤ i ≤ n,
we define
αi(x) = α(x)+(1−β(x))

2 − 1
2

∑n
k=1 hk(x) +

∑i−1
k=1 hk(x).

– If si is in a chain of ICSj , sg ≤ sg+1 ≤ · · · ≤ si ≤ · · · ≤ sv , where ((p + 1) ≤
g ≤ v ≤ (p + q)), then for g ≤ i ≤ v, we define

αi(x) =
αICSj

(x)+(1−βICSj
(x))

2 − 1
2

∑v
k=g hk(x) +

∑i−1
k=g hk(x).

The overall intent of x, denoted as INT (x), is the interval [α(x), 1− β(x)]. 2
Condition 1 shows the relationship among (1 − βi(x)), αi(x) and hi(x). Together

with condition 3, we can determine the intent [αi(x), 1− βi(x)], since hi(x), α(x) and
(1− β(x)) are given parameters.

The formulas in condition condition 3 are similar, which are defined to ensure that
the numerical order of median membership of the HSs is consistent with the order of
HSs. This also fits for the cases in most real life applications.
Example 2. Table 1 shows the transactions of a single customer derived from an online
shopping system, where we use 1 and 0 to represent that an item is bought and not
bought (without any hesitation information), as in the traditional AR mining setting.
The set of HSs is given by S = {s1 ≤ s2, s1 ≤ s3, s4 ≤ s5}, that is, the graphs g1 and
g2 in Fig. 2.

In Table 1, given 10 transactions, we have 7 buy and 1 not buy and 2 HSs (s1 and s3)
for an item A. Consider g1 = {s1 ≤ s2, s1 ≤ s3}, we have one of its linear extension
s1 ≤ s2 ≤ s3. Since ICS1 = {s1} and ICS2 = {s2, s3}, we have int(A, s1) =
[0.6, 0.8], int(A, s2) = [0.85, 0.85] and int(A, s3) = [0.8, 0.9], according to Definition
3. As s4 and s5 is a chain in CG, we then obtain int(A, s4) = int(A, s5) = [0.75, 0.75].
Thus, we obtain all the intent of A for the HSs in S as shown in the first column of Table
2 and in Fig. 3. It can be checked that s2, s4 and s5 are single points, since the hesitation
evidence is zero for them. The intent database of all items (A,B, C, D) for different HSs
(s1, . . ., s5) can be similarly determined, which is shown in Table 2 and also illustrated
by Fig. 3. Note that the values in the last row of the table are [α(x), 1−β(x)], indicating
the overall hesitation H(x). 2

Given the intent of an item for an HS, we further define the attractiveness of the
item which represents the overall evidence for it with respect to an HS.
Definition 4. (Attractiveness and Overall Attractiveness) The attractiveness of x
with respect to an HS si, denoted as att(x, si), is defined as the median membership of
x with respect to si, that is, 1

2 (αi(x) + (1 − βi(x))). The overall attractiveness of x is
a function ATT (x) : I → [0, 1], such that ATT (x) = 1

2 (α(x) + (1− β(x))). 2
Given the intent [αi(x), 1 − βi(x)] of an item x for an HS si, we have a one-one cor-
responding pair of the attractiveness and hesitation of x, called the AH-pair, denoted
as 〈att(x, si), hi(x)〉. Attractiveness and hesitation are two important concepts, since
people may have special interest in finding ARs with items of high attractiveness (sold
well) or high hesitation (almost sold).

We now define an AH-pair transaction and an AH-pair database.



Table 1. Ten Transactions of a Cus-
tomer

TID A B C D

1 1 s4 s4 s1

2 1 0 s1 0
3 1 1 s1 s3

4 0 s5 s3 s3

5 s1 1 s2 s2

6 1 0 s5 s3

7 s1 s5 s3 s3

8 1 0 s4 s5

9 s3 0 0 0
10 1 s5 1 s5

Table 2. An Intent Database for Different HSs

H A B C D

h1(x) [0.6,0.8] [0.4,0.4] [0.25,0.45] [0.1,0.2]
h2(x) [0.85,0.85] [0.4,0.4] [0.55,0.65] [0.4,0.5]
h3(x) [0.8,0.9] [0.4,0.4] [0.5,0.7] [0.25,0.65]
h4(x) [0.75,0.75] [0.2,0.3] [0.35,0.55] [0.3,0.3]
h5(x) [0.75,0.75] [0.3,0.6] [0.55,0.65] [0.3,0.5]
H(x) [0.6,0.9] [0.2,0.6] [0.1,0.9] [0,0.8]

Table 3. An AH-pair Database for Different HSs

H A B C D

h1(x) <0.7,0.2> <0.4,0> <0.35,0.2> <0.15,0.1>

h2(x) <0.85,0> <0.4,0> <0.6,0.1> <0.45,0.1>

h3(x) <0.85,0.1> <0.4,0> <0.6,0.2> <0.45,0.4>

h4(x) <0.75,0> <0.25,0.1> <0.45,0.2> <0.3,0>

h5(x) <0.75,0> <0.45,0.3> <0.6,0.1> <0.4,0.2>

H(x) <0.75,0.3> <0.4,0.4> <0.5,0.8> <0.4,0.8>
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Fig. 3. Intent for Different HSs of Items

Definition 5. (AH-Pair Transaction and Database) An AH-pair transaction T is a
tuple <v1, v2, . . . , vm> on an itemset IT = {x1, x2, . . . , xm}, where IT ⊆ I and
vj = 〈MA(xj),MH(xj)〉 is an AH-pair of the item xj with respect to a given HS or
the overall hesitation, for 1 ≤ j ≤ m. An AH-pair database is a sequence of AH-pair
transactions. 2

We can transform the intent database shown in Table 2 to its equivalent AH-pair
database shown in Table 3 without losing any information and present the attractiveness
and hesitation of the items directly.

We can further calculate AH-pairs directly without calculating the intent first, and
the calculation process can be simplified. Since att(x, si) = αi(x) + 1

2hi(x), and



hi(x) is known, the three conditions in Definition 3 can be replaced by three equivalent
conditions. Formally, we give the method of calculating AH-pairs as follows.

The AH-pair of an item x with respect to an HS si, 〈att(x, si), hi(x)〉, satisfies the
following conditions:

1. Assume the same setting as stated as condition 2 of Definition 3.
The attractiveness for ICSj , denoted as att(x, ICSj), is given as follows.
att(x, ICSj) = ATT (x)− 1

2

∑m
k=1 hk(x) +

∑p
k=1 hk(x) + 1

2

∑p+q
k=p+1 hk(x),

2. If si is in a chain of the CG, s1 ≤ s2 ≤ · · · ≤ si ≤ · · · ≤ sn, for 1 ≤ i ≤ n, we
define att(x, si) = ATT (x)− 1

2

∑n
k=1 hk(x) +

∑i−1
k=1 hk(x) + 1

2hi(x).
3. If si is in a chain of ICSj , sg ≤ sg+1 ≤ · · · ≤ si ≤ · · · ≤ sv , where ((p + 1) ≤

g ≤ v ≤ (p + q)), for g ≤ i ≤ v, we define
att(x, si) = att(x, ICSj)− 1

2

∑v
k=g hk(x) +

∑i−1
k=g hk(x) + 1

2hi(x). 2

The following proposition states the relationship between the hesitation order of
two HSs and the attractiveness for them of an item.

Proposition 1. If si ≤ sj , then att(x, si) ≤ att(x, sj).

Proof. It follows directly from the method of calculating AH-pairs above. 2

The following proposition states the relationship between the overall attractiveness
and hesitation, and the attractiveness and hesitation for different HSs.

Proposition 2. Given S = {s1, s2, . . . , sw}, ATT (x)H(x) =
∑w

i=1 att(x, si)hi(x).

Proof Sketch. We first prove the case that S contains CG components only, where con-
dition 2 in the method of calculating AH-pairs above applies to all chains in S. Then
we extend the proof to the case that S includes both CG and NCG components, where
condition 3 applies for the chains of ICSs in NCG. When S contains CG components
only, for any chain, (s1 ≤ · · · ≤ si ≤ · · · ≤ sn), in S, we have ATT (x)−att(x, si) =
1
2

∑n
k=1 hk(x)−∑i−1

k=1 hk(x)− 1
2hi(x) = 1

2 (hi+1(x)+hi+2(x) · · ·+hn(x)−h1(x)−
h2(x)−· · ·−hi−1(x)). It can be checked that

∑n
i=1(ATT (x)−att(x, si))hi(x) = 0.

Then we extend this conclusion to the whole S, since any chains in S satisfies this
conclusion, that is to say, we have

∑w
i=1(ATT (x) − att(x, si))hi(x) = 0. Thus,

ATT (x)H(x) =
∑w

i=1 att(x, si)hi(x). When S contains both CG and NCG com-
ponents, since each ICSj of NCG in condition 3 can be regarded as the case of CG in
condition 2, in a similar way, we can check that the conclusion also holds for the case
including NCG components. 2

Proposition 2 indicates that the sum of the product of attractiveness and hesitation
with respect to all HSs preserves the product of overall attractiveness and hesitation.

3.2 Vague Association Rules and their Support and Confidence

We now present the notion of VARs and define the support and confidence of a VAR.

Definition 6. (Vague Association Rule) A Vague Association Rule (VAR), r = (X ⇒
Y ), is an association rule obtained from an AH-pair database. 2



Based on the attractiveness and hesitation of an item with respect to an HS, we
can define different types of support and confidence of a VAR. For example, if we
have special interest in the association between well-sold items (high attractiveness)
and almost-sold items (high hesitation). Then, with some analysis between the former
and the latter, we may make some improvements to boost the sales of the latter. For
this purpose, we define Attractiveness-Hesitation (AH) support and AH confidence of a
VAR to evaluate the VAR. Similarly, we can obtain the association between an itemset
with high hesitation and another itemset with high attractiveness, between two itemsets
with high attractiveness, and between two itemsets with high hesitation for different
purposes. Accordingly, we define four types of support and confidence to evaluate the
VARs as follows.

Note that here A (or H) can refer to either the overall attractiveness (or hesitation),
or the attractiveness (or hesitation) of a given HS.

Definition 7. (Support) Given an AH-pair database, D, we define four types of sup-
port for an itemset Z or a VAR X ⇒ Y , where X ∪ Y = Z, as follows.

1. The A-support of Z, denoted as Asupp(Z), is defined as
∑

T∈D

∏
z∈Z

MA(z)

|D| .

2. The H-support of Z, denoted as Hsupp(Z), is defined as
∑

T∈D

∏
z∈Z

MH (z)

|D| .

3. The AH-support of Z, denoted as AHsupp(Z), is defined as
∑

T∈D

∏
x∈X,y∈Y

MA(x)MH (y)

|D| .

4. The HA-support of Z, denoted as HAsupp(Z), is defined as
∑

T∈D

∏
x∈X,y∈Y

MH (x)MA(y)

|D| .

Z is an A (or H or AH or HA) FI if the A- (or H- or AH- or HA-) support of Z is
no less than the (respective A or H or AH or HA) minimum support threshold σ. 2

Definition 8. (Confidence) Given an AH-pair database, D, we define the confidence
of a VAR, r = (X ⇒ Y ), where X ∪ Y = Z, as follows.

1. If both X and Y are A FIs, then the confidence of r, called the A-confidence of r

and denoted as Aconf (r), is defined as Asupp(Z)
Asupp(X) .

2. If both X and Y are H FIs, then the confidence of r, called the H-confidence of r

and denoted as Hconf (r), is defined as Hsupp(Z)
Hsupp(X) .

3. If X is an A FI and Y is an H FI, then the confidence of r, called the AH-
confidence of r and denoted as AHconf(r), is defined as AHsupp(Z)

Asupp(X) .
4. If X is an H FI and Y is an A FI, then the confidence of r, called the HA-

confidence of r and denoted as HAconf(r), is defined as HAsupp(Z)
Hsupp(X) . 2

Example 3. Given the AH-pair database in Table 4 with respect to a given HS s1 for
customers with different CID , let σ = 0.5 and c = 0.5. Note that the first line in Table
4 is from the first line in Table 3, which represents the AH-pairs of different items for
HS s1 with respect to the customer with CID 1. Then, Asupp(A) = (0.7 + 0.9 + 0.7 +
0.8 + 1)/5 = 0.82, AHsupp(A ⇒ D) = (0.7 × 0.1 + 0.9 × 0.8 + 0.7 × 0.9 + 0.8 ×
0.7 + 1× 0.8)/5 = 0.556, AHconf(A ⇒ D) = 0.556

0.82 = 0.678. Similarly, we calculate
AHsupp(A ⇒ B) = 0.112 ≤ σ, AHconf (A ⇒ B) = 0.137 ≤ c. Thus, A ⇒ D is a
valid VAR with respect to AH-support and AH-confidence, but A ⇒ B is not. 2



Table 4. An AH-pair database on items with respect to s1

CID A B C D

1 <0.7,0.2> <0.4,0> <0.35,0.2> <0.15,0.1>

2 <0.9,0.2> <0.7,0.2> <0.6,0.8> <0.5,0.8>

3 <0.7,0.1> <0.8,0.4> <0.4,0.7> <0.5,0.9>

4 <0.8,0> <0.9,0> <0.5,0.9> <0.4,0.7>

5 <1,0> <0.9,0.1> <0.4,0.8> <0.6,0.8>

Table 5. The Four Types of Support
and Confidence of A ⇒ B

A H AH HA
supp 0.618 0.016 0.112 0.06
conf 0.754 0.16 0.137 0.6

We also compute all the four types of support and confidence of A ⇒ B as shown
in Table 5. It shows that A ⇒ B is a valid VAR with respect to A-support and A-
confidence, but not a valid VAR with respect to other types of support and confidence.

Problem Description. Given an AH-pair database D with respect to an HS si or the
overall hesitation, σ and c, the problem of VAR mining is to find all VARs r such that
supp(r) ≥ σ and conf(r) ≥ c, where supp and conf are one of the A-, H-, AH-, and
HA- support and confidence. 2

Note that the thresholds σ and c can be different for different types of VARs. Here-
after, we just set them to be the same for different types of VARs, and this can be easily
generalized to the case of different thresholds.

We give some properties of VARs which can be used to design an efficient algorithm
for mining VARs. The following proposition states that the support defined for a certain
itemset with respect to HSs has the anti-monotone property.

Proposition 3. Given two different HSs si and sj , let suppi (confi) and suppj (confj)
be the corresponding support (confidence) with respect to different HSs. The following
statements are true.
1. If si ≤ sj , then Asuppi(Z) ≤ Asuppj(Z).
2. If si ≤ sj and ∀y ∈ Y , hi(y) ≤ hj(y), then AHsuppi(Z) ≤ AHsuppj(Z).
3. If ∀x ∈ X , hi(x) ≤ hj(x) and si ≤ sj , then HAsuppi(Z) ≤ HAsuppj(Z).
4. If ∀z ∈ Z, hi(z) ≤ hj(z), then Hsuppi(Z) ≤ Hsuppj(Z).

Proof. It follows from Definition 7 and Proposition 1. 2

According to Proposition 3, when we find the support of an itemset with respect to
an HS to be less than σ, we can prune the same itemset in the mining search space. The
pruning applies to all the HSs less than or equal to, or in the same ICS with the original
HS.

The following proposition states that the support defined for an itemset in an AH-
pair database with respect to a certain HS has the anti-monotone property.

Proposition 4. If X ⊆ X ′, then Asupp(X ′) ≤ Asupp(X) and Hsupp(X ′) ≤ Hsupp(X).

Proof. Since X ⊆ X ′ and 0 ≤ MA(x) ≤ 1 (x ∈ X ′), we have
∏

x∈X′
MA(x) ≤

∏
x∈X

MA(x). Thus Asupp(X ′) =

∑
T∈D

∏
x∈X′

MA(x)

|D| ≤
∑

T∈D

∏
x∈X

MA(x)

|D| = Asupp(X).



And we also have AHsupp(X ′) ≤ AHsupp(X), since AHsupp(X ′) = Asupp(X ′)
and AHsupp(X) = Asupp(X). Similarly, we can prove the cases of Hsupp and
HAsupp. 2

According to Proposition 4, when we find the support of an itemset to be less than σ,
we can prune all its supersets in the mining search space. We can obtain greater pruning
by the following two propositions.

Proposition 5. Given an item x, MH(x)
2 ≤ MA(x) ≤ 1− MH(x)

2 .

Proof. Since α(x) ≥ 0, MH(x)
2 = (1−β(x))−α(x)

2 ≤ (1−β(x))+α(x)
2 = MA(x). Since

β(x)≥0, MA(x) = α(x)+(1−β(x))
2 ≤ α(x)+(1+β(x))

2 = 1− (1−β(x))−α(x)
2 = 1−MH(x)

2 .

Proposition 6. Given a VAR, r = (X ⇒ Y ), where |X| = m and |Y | = n, we have

1. ( 1
2 )m Hsupp(r) ≤AHsupp(r) ≤ 2nAsupp(r);

2. ( 1
2 )n Hsupp(r) ≤ HAsupp(r) ≤ 2mAsupp(r);

3. AHconf(r) ≤ 2nAconf (r);
4. ( 1

2 )nHconf (r) ≤ HAconf (r).

Proof Sketch. The proof follows from Proposition 5. 2
By Proposition 6, we can prune VARs according to the relationship among different

support and confidence. For example, if we have 2nAsupp(r) < σ, then AHsupp(r) ≤
2nAsupp(r) < σ; thus, we can prune r directly without computing AHsupp(r).

4 Mining Vague Association Rules
In this section, we present an algorithm to mine the VARs. We first mine the set of all
A, H , AH and HA FIs from the input AH-pair database with respect to a certain HS or
the overall hesitation. Then, we generate the VARs from the set of FIs.

Let Ai and Hi be the set of A FIs and H FIs containing i items, respectively. Let
AiHj be the set of AH FIs containing i items with A values and j items with H values.
Note that AiHj is equivalent to HjAi. Let CW be the set of candidate FIs, from which
the set of FIs W is to be generated, where W is Ai, Hi, or AiHj .

Algorithm 2 MineVFI(D, σ)
1. Mine A1 and H1 from D;
2. Generate CA2 from A1, CA1H1 from A1 and H1, and CH2 from H1;
3. Verify the candidate FIs in CA2 , CA1H1 and CH2 to give A2, A1H1 and H2, respectively;
4. for each k = 3, 4, . . ., where k = i + j, do
5. Generate CAk from Ai−1 and CHk from Hi−1, for i = k;
6. Generate CAiHj from Ai−1Hj , for 2 ≤ i < k, and from A1Hj−1, for i = 1;
7. Verify the candidate FIs in CAk , CHk , and CAiHj to give Ak, Hk, and AiHj ;
8. return all Ai, Hj , and AiHj mined;

The algorithm to compute the FIs is shown in Algorithm 2. We first mine the set of
frequent items A1 and H1 from the input AH-pair database D. Next, we generate the



candidate FIs that consists of two items (Line 2) and compute the FIs from the candidate
FIs (Line 3). Then, we use the FIs containing (k − 1) items to generate the candidate
FIs containing k items, for k ≥ 3, which is described as follows.

For each pair of FIs, x1 · · ·xk−2y and x1 · · ·xk−2z in Ak−1 or Hk−1, we generate
the itemset x1 · · ·xk−2yz into CAk

or CHk
. For each pair of FIs, x1 · · ·xi−2uy1 · · · yj

and x1 · · ·xi−2vy1 · · · yj in Ai−1Hj , or x1y1 · · · yj−2u and x1y1 · · · yj−2v in A1Hj−1,
we generate the itemset x1 · · ·xi−2uvy1 · · · yj or x1y1 · · · yj−2uv into CAiHj .

After generating the candidate FIs, we obtain the FIs as follows. For each Z ∈ CAk

(or Z ∈ CHk
), if ∃X ⊂ Z, where X contains (k−1) items, X 6∈ Ak−1 (or X 6∈ Hk−1),

then we remove Z from CAk
(or CHk

). For each Z = x1 · · ·xiy1 · · · yj ∈ CAiHj
, if

∃i′, where 1 ≤ i′ ≤ i, (Z − {xi′}) 6∈ Ai−1Hj ; or ∃j′, where 1 ≤ j′ ≤ j, (Z −
{yj′}) 6∈ AiHj−1, then we remove Z from CAiHj . Here, the anti-monotone property
[1] of support is applied to prune Z if any of Z’s subsets is not an FI. After that, the
support of the candidate FIs is computed and only those with support at least σ are
retained as FIs.

Finally, the algorithm terminates when no candidate FIs are generated and returns
all FIs.

After we mine the set of all FIs, we generate the VARs from the FIs. There are four
types of VARs. First, for each A or H FI Z, we can generate the VARs X ⇒ Y , ∀X, Y
where X ∪ Y = Z, using the classical AR generation algorithm [1]. Then, for each AH
(or HA) FI Z = (X ∪Y ), where X is an A FI and Y is an H FI, we generate two VARs
X ⇒ Y and Y ⇒ X . The confidence of the VARs can be computed by Definition 8.

After we generate all the VARs with respect to the given HS or overall hesitation,
we can repeat our algorithm on the mi-pair database of different HS. Properties in
Proposition 3 can be used to prune itemsets if the current HS has the relationships
indicated in Proposition 3 with the original HS.

5 Experiments
In this section, we use both real and synthetic datasets to evaluate the efficiency of the
VAR mining algorithm and the usefulness of the VARs. All experiments are conducted
on a Linux machine with an Intel Pentium IV 3.2GHz CPU and 1GB RAM. Due to
space limitation, the experimental results are related to the overall hesitation.

5.1 Experiments on Real Datasets

For the first set of experiments, we use the Web log data from IRCache [9], which is the
NLANR Web Caching project.

We first preprocess the Web log and identify the browsing trails of each user. Then,
we define the weight, Wwp, of a Web page, wp, in a trail as the product of the time spent
on wp and the position of wp in the trail. If wp appears more than once in the trail, we
sum up its weights. Finally, we normalize the weights of the Web pages within a trail.
Thus, Wwp measures the degree that wp satisfies the user. Given two thresholds HL

and HU (0 ≤ HL ≤ HU ≤ 1), we can classify Web pages into three categories: target
(if Wwp ≥ HU ), non-target (if Wwp ≤ HL), and transition (if HL < Wwp < HU ).
The three categories correspond to the three statuses of items, i.e., 1, 0 and h (overall
hesitation), respectively.



Since the Web log data contain a huge number of different Web sites, we only report
the result on the Web log of a single Web site (www.google.com) from all nine IRCache
servers on a single day (Aug. 29, 2006). We identify 6066 trails and aggregate them by
the user ID (the remote host). The corresponding AH-pair database consists of 263
AH-pair transactions and 260 items (i.e., Web pages). Here we set HL to be 0.01 and
HU to be 0.7.

When σ= 0.001 and c=0.9, we obtain only one VAR:
http://gmail.google.com/, http://gmail.google.com/mail/⇒ http://mail.google.com/mail/,
with HA-support of 0.003 and HA-confidence of 0.99. This VAR shows that http://gmail.
google.com/ and http://gmail.google.com/mail/ always play the role of transition pages
to the target page http://mail.google.com/mail/. As a possible application, we can add a
direct link from the transition pages (http://gmail.google.com/ or http://gmail.google.com
/mail/) to the target page (http://mail.google.com/mail/) to facilitate the user traversal
of the Web site. Actually, by typing either the URL of the two transition pages in a Web
browser, it is redirected to the URL of the target page, where the redirect mechanism
serves as a special kind of direct link.

If we set c to be 0.7, we obtain more VARs as follows:
1. H1A1: http://google.com/ ⇒ http://www.google.com/ (0.001, 0.77)
2. H1A1: http://gmail.google.com/ ⇒ http://mail.google.com/mail/ (0.004, 0.86)
3. A2H1: http://mail.google.com/mail/, http://gmail.google.com/mail/
⇒ http://gmail.google.com/ (0.001, 0.77)

4. A2H1: http://mail.google.com/mail/, http://gmail.google.com/
⇒ http://gmail.google.com/mail/ (0.001, 0.84)

5. H1H1: http://gmail.google.com/ ⇒ http://gmail.google.com/mail/ (0.003, 0.75)
In each VAR, the number in the bracket shows the support and confidence of the

VAR. We find that, in the first two H1A1 rules, the transition page is redirected to
the target page. The next two A2H1 rules show that http://gmail.google.com/mail/ and
http://gmail.google.com/ can both play the role of transition or target pages, while
http://mail.google.com/mail/ is always the target page with high confidence (above 0.7).
The last H1H1 rule shows that both of the two pages are transition pages. We may com-
bine them together or delete one of them to make the website more concise.

In order to compare with the traditional ARs, we also test on the database that
contains all the trails without distinguishing the Web pages by their weights and aggre-
gating the pages by user. At σ= 0.0008 and c=1, 70 ARs are returned. Among them, 59
ARs (84%) contain the entrance page (www.google.com), which is not that interesting.
Among the remaining ARs, the following rule is found:
http://mail.google.com/, http://gmail.google.com/, http://gmail.google.com/mail/
⇒ http://mail.google.com/mail/ with support 0.001 and confidence 1, which is similar
to one of the VARs we find.

The above results show the effectiveness of mining VARs, since the traditional AR
mining approach returns many ARs but it is hard for the user to tell which ARs are more
important for practical uses, while mining VARs can find more specific rules directly.

5.2 Experiments on Synthetic Datasets
We test on the synthetic datasets to evaluate the efficiency and the scalability of our al-
gorithm. We modify the IBM synthetic data generator [10] by adding “hesitation” items.



The ID and the number of “hesitation” items in each transaction are generated accord-
ing to the same distributions as those for the original items. We generate a dataset with
100000 transactions and 100 items. We use a parameter Step to represent the number of
transactions which are aggregated to give an AH-pair transaction.

0

50

100

150

200

250

300

350

400

0 1 2 3 4

lg(Step)

R
u

n
n

in
g

 T
im

e
 (

s
e
c
.)

MinSupp=0.02

MinSupp=0.03

MinSupp=0.04

MinSupp=0.05

MinSupp=0.1

Fig. 4. Running Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4

lg(Step)

N
u

m
b

e
r 

o
f 

F
Is

MinSupp=0.02

MinSupp=0.03

MinSupp=0.04

MinSupp=0.05

MinSupp=0.1

Fig. 5. Number of FIs

We first test the algorithm under different values of Step. Fig. 4 and Fig. 5 report the
running time and the number of FIs. From Fig. 4, the running time increases with the
decrease in the value of σ due to the larger number of FIs generated. We also find that,
for the same value of σ, the running time decreases significantly with the increase in
the value of Step. This is because we aggregate more transactions to a single AH-pair
transaction and hence the number of AH-pair transactions is smaller in the database.
However, Fig. 5 shows that the number of FIs for the different Step values varies only
slightly (note that all the five lines are nearly horizontal in Fig. 5). This result shows
that we can actually aggregate more transactions to give the AH-pair transactions so
that we can improve the efficiency of the mining operation but still obtain the same set
of FIs and hence the VARs.

6 Related Work
We are aware of a number of studies that extend the traditional AR mining for uncertain
data in different applications, such as mining fuzzy ARs. However, there is no modelling
of hesitation information in an application [11–13]. Fuzzy ARs are proposed to handle
quantitative items in the form “X is A”⇒ “Y is B”, where X , Y are the set of items and
A, B are fuzzy concepts represented by fuzzy sets. For example, “position is senior”⇒
“salary is high”.

Although the formulas of different kinds of support and confidence in VARs seem
to relate to their counterparts in fuzzy ARs, VARs and fuzzy ARs are fundamentally
different. VARs focus on the associations between crisp itemsets based on the attrac-
tiveness and hesitation of items, while fuzzy ARs do not consider hesitation information
and focus on the associations between fuzzy concepts.

In our previous works, we extend the concepts of Functional Dependency (FD),
Chase procedure [14], SQL and AR in standard relational databases by applying vague
set theory in order to handle the widely existent vague information, and propose VFD
[3], VChase [15], VSQL [4] and VAR [16], respectively. In [16], a basic approach to
incorporate the hesitation information into the ARs is given. However, the modelling of
hesitation information with respect to different HSs is newly developed in this paper.



7 Conclusions
We model hesitation information by vague set theory in order to address a limitation
in traditional AR mining problem, which ignores the hesitation information of items in
transactions. We propose the notion of VARs that incorporates the hesitation informa-
tion of items into ARs. We define two important concepts, attractiveness and hesitation,
of an item with respect to different HSs, which reflect the overall information of a cus-
tomer’s intent on the item. We also define different types of support and confidence for
VARs in order to evaluate the quality of the VARs for different purposes. An efficient
algorithm is proposed to mine the VARs, while the effectiveness of VARs is also re-
vealed by experiments on real datasets. As for future work, mining VARs in different
applications is an interesting topic that deserves further study. For example, different
ranking scores together with clickthrough data of a search result can be modelled as an
object having different HSs. In this case VARs can be minded to reflect different users’
preferences.
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