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Abstract. It is increasingly recognised that user preferences should be addressed
in many advanced database applications, such as adaptive searching in databases.
However, the fundamental issue of how preferences impact the semantics and
rankings in a relation is not resolved. In this paper, we model a user preference
term involving one attribute as a hierarchy of its underlying data values and for-
malise the notion of Prioritized Preferences (PPs). We then consider multiple
user preferences in ranking tuples in a relational table. We examine the impact of
a given set of PPs on possible choices in ranking a database relation and develop
a new notion of Choice Constraints (CCs) in a relation, r. Given two PPs, X and
Y , a CC, X ≤ Y , is satisfied in r, if the choice of rankings according to Y is no
less than that of X . Our main results are related to these two notions of PPs and
CCs and their interesting interactions with the well-known Functional Dependen-
cies (FDs). First, we exhibit a sound and complete set of three inference rules for
PPs and further prove that for each closed set of PPs, there exists a ranking that
precisely satisfies these preferences. Second, we establish a sound and complete
set of five inference rules for CCs. Finally, we show the soundness and complete-
ness of two mixed systems of FD-PPs and FD-CCs. All these results are novel
and fundamental to incorporating user preferences in database design and mod-
elling, since PPs, CCs and FDs together capture rich semantics of preferences in
databases.

1 Introduction

Preference is an important and natural constraint that captures human wishes when
seeking information. However, the semantics of preferences were not adequately stud-
ied until the recent work in [7, 8, 2, 14]. In these papers, the fundamental nature of
different preferences in the form of “I like A better than B” is modelled by a set of
orderings defined over data. Still, the impact of preferences as a semantic constraint is
not adequately addressed in many ways. For example, in database modelling, traditional
constraints like Functional Dependencies (FDs) capture the semantics of the hard fact
only, but preferences do not have such semantics as constraints that represent a priority
of choices. However, as information becomes abundant over the web, there is a practical
need for generating a ranking that satisfies some user preferences in the search result [7,
8]. In addition, although FDs are widely recognized as the most important integrity con-
straint in databases, the interactions of FDs with preferences, to our knowledge, have
never been studied in literature.



In our modelling, we assume that a user preference is expressed in a sequence of
attributes that associate with their respective preference terms. We call the attributes
involved in preference terms preference attributes. The underlying idea is that a user
preference is inherent to the ordering relationship between the data projected onto the
preference attributes, and thus a preference hierarchy can be devised to capture the
choices of preference rankings. Our approach is to transform a relation to a preference
relation, r, which has only natural numbers according to the level of the preference hi-
erarchy. Then a ranking of tuples, ≤r, can be arbitrary defined on r whereas the consis-
tency of (r,≤r) is determined by the lexicographical order of the preference attributes.
The following example illustrates the use of a preference relation.

Example 1. Suppose a second-hand car relation is defined by the preference attributes
PRICE RANGE, ENGINE POWER and MILEAGE USED, which assert
the preferences specified by Y OUTH CHOICE (the choice of young customers).
The preference increases with first the price range and then the engine power and fi-
nally the car’s mileage. We adopt the PREFERRING clause proposed in [7] to express
the preference terms, which essentially impose an order over their corresponding data
domains. The three terms together the respective preference hierarchies are assumed to
be prioritized as follows:

First priority: LOWEST(price) ⇒ $5001− 6000 < $4001− 5000 < $1001− 2000.
Second priority: HIGHEST(power) ⇒ 1000cc < 2000cc < 3000cc.
Third priority: mileage AROUND 30,000km⇒ 10000km < 20000km < 30000km.

A preference relation, r, is generated by mapping the data values in the car relation
to natural numbers according to the level of the preference hierarchies of the given pref-
erence terms, which is shown in the right-hand side of Figure 1. The overall preference
ranking (which is unique in this simplified example but may be more than one in gen-
eral) in the last column, Rank, is determined by the lexicographical order of PRICE,
ENGINE and MILEAGE, which is consistent with the tuple ordering, t1 <r · · · <r t5.
Note that some attributes are abbreviated in the table due to width limits.

PRICE ENGINE MILEAGE

t1 1001-2000 1500cc 20000km
t2 4001-5000 3000cc 30000km
t3 4001-5000 2000cc 20000km
t4 4001-5000 1500cc 10000km
t5 5001-6000 3000cc 10000km

=⇒

PRICE ENGINE MILEAGE Rank
t1 1 3 2 1
t2 2 1 1 2
t3 2 2 2 3
t4 2 3 3 4
t5 3 1 3 5

Fig. 1. Transforming the second-hand car relation into a preference relation according to the
preference terms of Y OUTH CHOICE

Middle-class adult customers may have different preferences. This gives rise to a
different preference relation as shown in Figure 2, where the preference ranking (i.e.
Rank) is not consistent with the tuple ranking (i.e. <r). The preference terms of MID-
DLE CLASS CHOICE are assumed to be reprioritized as follows:



First priority: price AROUND $4000-$5000.
Second priority: HIGHEST(power).
Third priority: LOWEST(mileage).

Finally, pensioner customers may have another set of preference terms, which give
rise to the different preference relation and ranking shown in Figure 3. The preference
terms are assumed to be reprioritized as follows:

First priority: LOWEST(price).
Second priority: mileage BETWEEN 20,000km AND 30,000km.
Third priority: power AROUND 2000cc.

PRICE ENGINE MILEAGE Rank
t1 3 3 2 5
t2 1 1 3 1
t3 1 2 2 2
t4 1 3 1 3
t5 2 1 1 4

Fig. 2. MIDDLE CLASS CHOICE

PRICE ENGINE MILEAGE Rank
t1 1 2 1 1
t2 2 3 1 3
t3 2 1 1 2
t4 2 2 2 4
t5 3 3 2 5

Fig. 3. PENSIONER CHOICE

Any tuple ranking is trivially satisfied in a preference relation r when there are no
imposed preference terms. When preference terms are stated by the users, we check if
the tuple ranking in r are consistent with a (any) lexicographical order of the sequence
of the preference attributes. This gives rise to the notion of Prioritized Preferences (PPs)
(cf. see Definition 6 in [7] for the motivation for prioritized preferences), and in order
to have PP satisfied in r, tuple rankings are restricted to the set of preference rankings.
This also gives rise to another notion of Choice Constraints (CCs) being satisfied in
a relation. Given two PPs, X and Y , a CC, X ≤ Y , is satisfied in r, if the choice
of preference rankings according to Y is no less than that of X . We focus on three
interesting problems related to the semantics of preferences in relations:

1. When there is a tuple ranking that satisfies a set of PPs, what are the rules governing
such preference satisfaction?

2. When there is more than one possible tuple ranking that satisfies different PPs, what
are the rules of governing the ranking possibilities (CCs)?

3. What are the interactions between FDs, PPs and CCs?

Our main contribution is related to the above problems. We present a spectrum
of interesting axiom systems in this paper. With respect to preference satisfaction, we
exhibit a sound and complete set of three inference rules for PPs. It is further proved
that for each closed set of PPs, there exists a ranking that satisfies these preferences
and no others. With respect to the choice of tuple rankings for a given set of PPs, we
establish a sound and complete set of five inference rules for CCs. Finally, we study the



interactions between PPs and FDs, and between CCs and FDs and formally show the
soundness and completeness of two mixed systems of FD-PPs and FD-CCs. All these
results are novel and fundamental to incorporating user preferences in database design
and modelling, since PPs, CCs and FDs together capture rich semantics of preferences
in many database applications in reality.

The rest of the paper is organised as follows. In Section 2, we present some prelimi-
nary concepts and notation. In Section 3, we present a sound and complete system with
respect to PP satisfaction. In Section 4, we introduce the concept of CCs and present
a sound and complete system with respect to CC satisfaction. In Section 5, we discuss
the interactions between FDs and PPs and those between FDs and CCs. We present two
sound and complete systems of FD-PPs and FD-CCs. In Section 6, we review some
related work. In Section 7, we give our concluding remarks.

2 Preliminaries

We assume throughout that X and Y are sequences of attributes and that X ∼ Y
indicates the fact that X and Y have the same elements. XY denotes the concatenation
of X and Y (appending Y to X). A prefix of X , denoted as pre(X), is a sequence of the
form 〈A1, . . . , Am1〉, where X = 〈A1, . . . , Am〉 and 1 ≤ m1 ≤ m. A shuffle of X and
Y , denoted as shu(X, Y ), is defined as a sequence of the form 〈C1, . . . , Cm+n〉, where
there exists two subsequences of attributes 〈Ci1 , . . . , Cim

〉 = X and 〈Cj1 , . . . , Cjn
〉 =

Y , and the order of the attributes in X and Y is preserved in shu(X, Y ).
Lexicographical ordering is a fundamental property of prioritized preferences as

illustrated in Example 1, where the preference in Y OUTH CHOICE can be mod-
elled as a lexicographical ordering of the Cartesian product of the domains PRICE ×
ENGINE ×MILEAGE in the preference relation in Figure 1.

We assume the usual terminologies and notation used in the relational data model
[1]. In particular, let R = {A1, . . . , An} be the relation schema and t[Ai] (1 ≤ i ≤ n)
denote the projection of t onto attribute Ai. A relation r defined over R is a finite set of
tuples over R. We define r[Ai] = {t[Ai] | t ∈ r}.

Note that preference terms such as “BETWEEN AND”, “HIGHEST”, “LOWEST”
and “IN” as defined in [7] are equivalent to defining a partial ordering over the tuples
induced by the involved preference attributes. Thus, we are able to map the data val-
ues into natural numbers according to a preference hierarchy, resulting in a preference
relation.

We now assume a relation having one preference attribute, R = {A}, to illustrate
the idea. We first denote by H(r,A) a partition of r, which is a set of pairwise disjoint
non-empty subsets of r such that

⋃
T∈H(r,A) T = r, and we call the element T ∈

H(r,A) a preference level of r induced by A. A preference hierarchy of r induced by
A is a linearly ordered partition of r, corresponding to the preference term p imposed
on A.

Example 2. Consider r = {a, b, c, d, e, f} (6 tuples), where a ≤p
A c, b ≤p

A c, c ≤p
A e,

d ≤p
A e and d ≤p

A f . We now show two possible internal hierarchies, H(r,A) =
{T1, T2, T3}, given in Figure 4, in which each tuple is represented by a node.
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(b) Top-down partition

Fig. 4. Two possible preference hierarchies H(r, A)

Using the bottom-up partition approach, we successively collect the sets of minimal
tuples in the subsets of r and construct the preference hierarchy as illustrated in Figure
4(a). We remark that this method of constructing the preference hierarchy is essentially
a matter of convention and another possibility is shown in Figure 4(b) as a compari-
son. The two conventions can also be used to represent the “like less” and “like more”
preferences.

The idea of a preference hierarchies can be straightforwardly generalized to multiple
preference attributes. Algorithm 1 shows how to generate a preference relation arising
from the preference terms. Essentially, the algorithm collects the minimal tuples of a
relation (or its subset) with respect to each preference order using a bottom-up partition.

Algorithm 1 (PREFERENCE RELATION(r, X))
Input: A relation r, a set of preference attributes X and a set of preference
orderings ≤p

A for all A ∈ X .
Output: A preference relation of r.
1. begin
2. for all A ∈ X , do
3. i = 0;
4. do until r[A] = ∅
5. Increment i;
6. Obtain Ti as the set of minimal tuples (wrt ≤p

A) of r[A];
7. r[A] := r[A]− Ti and H(r, A) := {T1 <h · · · <h Ti};
8. for all t ∈ r, A ∈ X , do
9. Map t[A] to n in r whenever t[A] ∈ Tn and Tn ∈ H(r, A);
10. return r (with mapped natural numbers on r[X]);
11. end

Definition 1. (Preference Relation) Given a relation r over R, a prioritized prefer-
ence, X ⊆ R and a set of preference terms over X . A preference relation, (r,≤r), is
the relation (with mapped natural numbers on r[X] returned by Algorithm 1) together



with a tuple ranking, ≤r. From now on, we simply call a preference relation a relation
whenever no ambiguity arises.

The preference hierarchy generated in Step 7 by Algorithm 1 is unique and therefore
Definition 1 is well-defined. The uniqueness of the result of Algorithm 1 is due to the
fact that Tn is the unique set of all minimal tuples of r[A] according to ≤p

A. Intuitively,
a level Tn ∈ H(r,A) captures the “equivalent choices” with respect to a preference
term and the hierarchy observes the order arising from the preference term imposed on
A. In the special case of linearly ordered preference terms such as HIGHEST(power) or
LOWEST(price), Tn is the singleton containing the nth tuple sorted in numerical order.

In our running example, the preference hierarchies of PRICE, MILEAGE and
ENGINE POWER corresponding to the Y OUTH CHOICE are {{t1} <h {t2,
t3, t4} <h {t5}}, {{t2, t5} <h {t3} <h {t1, t4}} and {{t2} <h {t1, t3} <h {t4, t5}},
respectively.

3 Preferences and Choices

In this section, we present the notion of a Prioritized Preference (PP) and its satisfac-
tion over a relation.

The semantics of a preference with multiple attributes, X , is defined according to
lexicographical orderings, denoted as ≤lex

X , on the Cartesian product of the mapped
numerical values via the preference hierarchies of the attributes.

Definition 2. (Prioritized Preference and Choice) A prioritized preference (or simply
a preference), X , is a sequence of attributes obtained from a relation schema, R. A
preference, X , is satisfied in a relation, (r, ≤r) over R, denoted as (r, ≤r) |= X , if
for all t1, t2 ∈ r, t1[X] <lex

X t2[X] implies that t1 <r t2. We call any distinct ≤r

such that (r, ≤r) |= X a choice of rankings wrt X (or simply a choice whenever (r,
≤r) and X are understood), and denote the number of such distinct ranking choices as
| choice(r,X) |. In particular, if the choice is unique, we call the satisfaction arising
from the choice the unique satisfaction.

Notably, PPs allow the same attribute appearing several times in a preference X.
This is necessary for studying the inference rules later on, since some rules may infer
PPs having repeated attributes. However, by removing the repeated occurrence of a
particular attribute after its first occurrence in a preference, we can obtain an “equivalent
preference” in which each attribute appears at most once. This also implies there exists
only a finite number of distinct PPs (up to equivalence) for a given relational schema.

The following proposition follows directly from Definition 2. It means that if a
relation satisfies a unique choice, its tuples are simply ordered by ≤lex

X . Remarkably, if
X = R the satisfaction must be unique, since ≤lex

R is a linear order on r. In addition,
if we have all distinct (integer) values for all tuples under any attribute A ∈ X , the
satisfaction is also unique. This follows that for any arity-1 relation, i.e. | R |= 1, the
satisfaction, if any, must also be unique.

Proposition 1. Given X = A1 · · ·An. If | choice(r,X) |= 1, then, for all t1, t2 ∈ r,
t1 <r t2, if and only if ∃k, 1 ≤ k < n, such that t1[A1 · · ·Ak] = t2[A1 · · ·Ak] and
t1[Ak+1] < t2[Ak+1]. ¤



For example, it can be checked that the second-hand car relation has a unique sat-
isfaction according to (unique) Rank in Figures 1 to 3. However, we may have another
set of preference terms, which gives rise to two possible preference rankings, Rank
1 and Rank 2, shown in the two right columns of Figure 5. The preference terms are
assumed to be prioritized as follows:

First priority: LOWEST(price).
Second priority: mileage LESS THAN 30,000km.
Third priority: power BETWEEN 1500cc AND 2000cc.

PRICE MILEAGE ENGINE Rank 1 Rank 2
t1 1 1 1 1 1
t2 2 2 2 4 4
t3 2 1 1 2 3
t4 2 1 1 3 2
t5 3 1 2 5 5

Fig. 5. Two choices or rankings satisfying the preference terms

In other words, the relation in the above example should rank as {t1 <r t4 <r

t2 <r t3 <r t5} or {t1 <r t4 <r t3 <r t2 <r t5} in order to satisfy the imposed
preference, i.e. we have | choice(r, (price, mileage, power)) |= 2.

We now illustrate some non-trivial aspects of preference satisfaction in the follow-
ing example (assuming usual numerical order 0 < 1).

Example 3. Let r = {t1 <r t2} and X = ABCD as given in Figure 6. It is straight-

A B C D

t1 1 0 1 0
t2 1 1 0 1

Fig. 6. r |= BC but r 6|= CB; r |= ABC but r 6|= AC

forward to check that r |= BC but not r |= CB and that r |= ABC but not r |= AC.
However, we will prove later some interesting but non-trivial result such as that r |= AB
and r |= DC imply r |= ADB and r |= ADBC, as also illustrated in r.

The interesting interactions in the above example motivate our work of establish-
ing a set of inference rules for deriving preferences. In the subsequent discussion,
we assume preference satisfaction is restricted to a unique choice of ranking (i.e.,
| Choice(r,X) |= 1) and say that (r, ≤r) |=u X if (r, ≤r) |= X and there exists
no distinct ≤′r such that (r, ≤′r) |= X . The study of a unique choice of ranking is im-
portant, since it affects the way to store and index a preference relation. It may also lead



to more efficient evaluation of search queries, for example if the user asks follow-up
questions based on existing preference and ranking then we need to evaluate only one
relation.

We now begin to formalise the notion of PP satisfaction as follows.

Definition 3. (PP Satisfaction and Implication) Given a set of preferences, P , and a
relation, (r,≤r), we say that (r,≤r) logically implies P , denoted as (r,≤r) |=u P , if
and only if ∀X ∈ P , (r,≤r) |=u X . In addition, we say that P logically implies X ,
denoted as P |= X , if for any (r,≤r), (r,≤r) |=u P implies that (r,≤r) |=u X .

From now on, we may lighten the notation of (r,≤r) and simply use r to mean a
preference relation if ≤r can be understood.

An axiom system [1] for preferences over relations is a set of inference rules that
can be used to derive new preferences from P . We denote by P ` X the fact that either
X ∈ P or X can be inferred (or derived) from P by using one or more of the inference
rules in Definition 4.

Definition 4. (Inference Rules for Prioritized Preferences) Let P be a set of prefer-
ences over R, A ∈ R. Let X, Y be non-empty sequences of attributes obtained from R.
The inference rules for preferences are defined as follows:

(PP1) Expansion: If P ` X , then P ` XA.
(PP2) Shuffle: If P ` X and P ` Y , then P ` shu(X, pre(Y )).
(PP3) Compression: If P ` XAY AZ, then P ` XAY Z.

Unlike most known database constraints, P consists of no reflexivity rule in Def-
inition 4, since there is no trivial preference satisfaction in relations. We also remark
that the axiom system comprising these rules is minimal, since the three rules given in
Definition 4 are independent.

Lemma 1. The axiom system comprising inference rules PP1-PP3 is sound for the
satisfaction of PPs in relations. ¤

We now show in next theorem that the axiom system comprising the inference rules
in Definition 4 is sound and complete for preference satisfaction in preference relations.
The underlying idea in this proof is first to assume that a preference, X , cannot be
inferred from the axiom system and then to present a relation as a counter-example
in which all the preferences of P ′ hold except for X (cf. see Theorem 3.21 in [1]).
The result is significant since it indicates that the axiom system can be employed as a
theorem-proving tool for preferences.

Theorem 1. The axiom system comprising rules PP1 to PP3 is sound and complete for
preference satisfaction in relations.
Proof. We now establish the completeness by showing that if P 6` X , then P 6|= X .
Equivalently for the latter, it is sufficient to exhibit a relation as a counter-example, rc,
such that rc |=u P but rc 6|=u X . Assuming that L is the largest prefix of X such that
P ` LQ for some Q ⊆ R. Let us call this the L-assumption.

There are two cases to consider.



In the first case, we assume that L = X . We consider the relation rc = {t1 <r t2}
shown in Figure 7. Obviously, we have rc 6|=u X , since choice(rc, X) is not unique.
It remains to show that rc |=u P . Assume to the contrary that rc 6|=u P . So ∃X ′ ∈ P
such that rc 6|=u X ′. By the construction of rc, we have X ′ ⊆ X (as a set inclusion).
By the L-assumption and PP2, it follows that P ` LX ′. So, we have P ` L by PP3,
which is a contradiction, since we derive X from P .

X R−X

t1 0 · · · 0 0 · · · 0
t2 0 · · · 0 1 · · · 1

Fig. 7. A counter-example relation rc used
in the case of L = X

L B R−BL

t1 0 · · · 0 1 0 · · · 0
t2 0 · · · 0 0 1 · · · 1

Fig. 8. A counter-example relation rc used
in the case of L 6= X

In the second case, we assume that L 6= X . Let X = LBQ′ where B 6∈ L and
BQ′ ⊆ R. Using a similar technique of the first case, we construct the relation rc

shown in Figure 8, in which rc 6|=u X .
We now show that rc |=u P . We assume to the contrary that ∃p ∈ P such that

rc 6|=u p, where p = X ′. By the construction of rc, we have the following two possible
cases concerning X ′.

(Case of X ′ ⊆ L). By PP1, we expand p by attaching the attribute B. It follows
that P ` X ′B. By the L-assumption and PP2, it follows that P ` LX ′BQ. We thus
have P ` LBQ. But LB is the prefix of X and strictly contains L. This leads to a
contradiction, since we violate the L-assumption.

(Case of X ′ 6⊆ L). Let X ′ = V BW where V ⊆ L and W ⊆ R. By the L-
assumption and PP2, it follows that P ` LX ′. So by PP3 we have P ` LBW . But
LB is the prefix of X . This leads to the same contradiction, since we also violate the
L-assumption. ¤

4 Choice Constraints

In this section, we consider the case of more than one ranking of r that satisfy X and
formalize the notion of a Choice Constraint (CC) and their satisfaction in relations. We
formulate five inference rules that are proved to be sound and complete for CCs.

Definition 5. (Choice Constraint) Let X and Y be two sequences of non-empty at-
tributes obtained from R. The Choice Constraint (CC), Y ≤ X , is satisfied in r,
written as r |= Y ≤ X , if and only if, | choice(r, Y ) |≤| choice(r,X) |. Given a
set of CCs, C, we say that r logically implies C, denoted as r |= C, if and only if
∀(Y ≤ X) ∈ C, r |= Y ≤ X . In addition, we say that C logically implies Y ≤ X ,
denoted as C |= Y ≤ X , if for any r, r |= C implies r |= Y ≤ X .

The study of CCs is related to maintaining the preference rankings in a database,
since user preference terms may be removed or added. This is particular important



for cache-conscious systems in a client-server architecture, in this case some possible
rankings should be evaluated first in order to have quick response in the query evalua-
tion. For example, referring to the PENSIONER CHOICE ranking given in Fig-
ure 3, if the user is willing to drop the third priority of engine power, then we have two
choices. However, dropping the second priority of mileage used does not offer more
choices. It can be checked that the relation satisfies the CC, PRICE,ENGINE ≤
PRICE,MILEAGE.

We are now ready to define a particular axiom system for CC satisfaction in rela-
tions.

Definition 6. (Inference Rules for Choice Constraints) Assume that X, Y, Z are non-
empty sequences of attributes obtained from R.

(CC1) Reflexivity: C ` X ≤ X .
(CC2) Expansion: If C ` X ≤ Y and X is a subsequence of W , then C `W ≤ Y .
(CC3) Transitivity: If C ` X ≤ Y and C ` Y ≤ Z, then C ` X ≤ Z.
(CC4) Pseudo Augmentation: If C ` Y ≤ XY , then C ` Y Z ≤ XY Z.
(CC5) Permutation: If X ∼ X ′, Y ∼ Y ′ and C ` X ≤ Y , then C ` X ′ ≤ Y ′.

Note that CCs do not have usual augmentation as FDs. The counter example in
Figure 9 shows that the statement if C ` B ≤ A, then C ` BC ≤ AC is false. It can
also be checked that | choice(r,A) | = | choice(r,B) |= 2 but | choice(r,AC) |= 1
and | choice(r,BC) |=| choice(r, CB) |= 2.

A B C

t1 0 1 0
t2 0 0 1
t3 1 0 1

choice(r, A) = {t1 <r t2 <r t3; t2 <r t1 <r t3}
choice(r, B) = {t2 <r t3 <r t1; t3 <r t2 <r t1}
choice(r, AC) = {t1 <r t2 <r t3}
choice(r, BC) = {t2 <r t3 <r t1; t3 <r t2 <r t1}
choice(r, CB) = {t1 <r t2 <r t3; t1 <r t3 <r t2}

Fig. 9. r |= B ≤ A but r 6|= BC ≤ AC

Lemma 2. The following three inference rules can be derived from CC1 - CC5.

(CC6) Projection I: If Z is a subsequence of X , then C ` X ≤ Z.
(CC7) Projection II: If C ` X ≤ Y and Z is a subsequence of Y , then C ` X ≤ Z.
(CC8) Pseudo Union: If C ` X ≤ XY and C ` X ≤ XZ, then C ` X ≤ XY Z.

Lemma 3. The axiom system comprising inference rules CC1-CC5 is sound for the
satisfaction of CCs in relations. ¤

We now establish the completeness of the rules given in Definition 6. First, we
introduce two technical concepts of CC closure and CC cover for establishing the result.
Given C, a CC closure, denoted as C+, is given by C+ = {X ≤ Y | C ` X ≤ Y }.



A CC cover of C, denoted as cover(C), is the set of CCs that have maximal sets of
attributes on the right side. Formally, cover(C) = {X ≤ Y | X ≤ Y ∈ C+ and
∀(X ≤ Z) ∈ C+, Z ⊆ Y (as sets)}.

Clearly, C and C+ are equivalent. The following lemma shows that C and cover(C)
are equivalent with respect to CC inferencing.

Lemma 4. C ` X ≤ Y if and only if cover(C) ` X ≤ Y .
Proof. The proof of the “if” part is trivial by the definition of C+, since C ` C+ and
cover(C) ⊆ C+. The “only if” part can be established as follow: let (X ≤ Y ) ∈ C.
Then ∃(X ≤ Z) ∈ cover(C) such that Y ⊆ Z. If Y 6= Z, then we apply CC7 and thus
it follows that cover(C) ` X ≤ Y . ¤

Theorem 2. The axiom system comprising inference rules CC1 to CC5 is sound and
complete for the satisfaction of CCs in relations.
Proof. Let X+ = {Y | X ≤ Y ∈ cover(C)} and Y =

⋃
Y ∈X+(Y − X). We now

define an equivalence relation E on Y as follows: for any pair of attributes A1, A2 ∈ R,
A1 ≈E A2 if, for any Y ∈ X+, A1 ∈ Y iff A2 ∈ Y . Let C is an equivalence class (a
set of attributes) induced by E . The collection of all E = (C−X), P = {E1, . . . , En},
forms a partition of Y . We now construct a counter example relation rc = {t0 <r t1 <t

· · · <t tn} as follows. Let E0 = X . We generate an ith tuple for each Ei (0 ≤ i ≤ n)
as ti[A] = 0 whenever A ∈ Ei, ti[A] = i whenever A ∈ R−(X∪Y), and 1 otherwise.
The schema of rc is valid, since all E ∈ (P ∪ {X}) do not overlap.

By Lemma 3, we know that CC1 to CC5 are sound for CCs. We prove the com-
pleteness by showing that if C 6`X ≤ Y , then C 6|= X ≤ Y . Equivalently for the latter,
it is sufficient to exhibit a relation rc, such that rc |= C but rc 6|= X ≤ Y . Let rc be the
relation shown in Figure 10.

X E1 E2 · · · En R− (X ∪ Y)

t0 0 · · · 0 1 · · · 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0
t1 1 · · · 1 0 · · · 0 1 · · · 1 · · · 1 · · · 1 1 · · · 1
t2 1 · · · 1 1 · · · 1 0 · · · 0 · · · 1 · · · 1 2 · · · 2
...

...
...

...
. . .

...
...

tn+1 1 · · · 1 1 · · · 1 1 · · · 1 · · · 0 · · · 0 n + 1 · · · n + 1

Fig. 10. A relation rc showing that C 6|= X ≤ Y

We first show that rc |= C. Suppose to the contrary that rc 6|= C and thus there
exists a CC, V ≤ W ∈ C, such that rc 6|= V ≤ W . From the definition of X+ and
P , V and W do not cross more than one E. It follows from the construction of rc

that ∃A ∈ W such that A ∈ R − (X ∪ Y) and that V ⊆ X or V ⊆ Ei (as sets).
In the first case, it follows by CC5 and CC6 that C ` X ≤ V . By CC3, it follows
that C ` X ≤ W . Thus, it follows that C ` X ≤ A by CC6 again. This leads to a
contradiction, since A ∈ (X ∪Y). In the second case, it follows by the definition of Ei

and by CC5 and CC6 that C ` X ≤ Ei. By CC6, it follows that C ` X ≤ V . By CC3,



it follows that C ` X ≤ W . Thus, A ∈ (X ∪ Y). This leads to the same contradiction
again as the first case.

We conclude the proof by showing that rc 6|= X ≤ Y . Suppose to the contrary that
rc |= X ≤ Y ; by the construction of rc, Y ⊆ Ei (as sets). It follows by definition of
Ei and by CC6 that C ` X ≤ Ei. By CC3 and CC5, it follows that C ` X ≤ Y . This
leads to a contradiction, since we assume C 6` X ≤ Y . ¤

5 Interaction Rules

In this section we investigate the interactions between FDs and PPs in Section 5.1 and
those between FDs and CCs in Section 5.2.

We first state Armstrong’s axiom, which is known to be sound and complete for
FDs [1]. We also need to adapt the axiom to this context as follows.

Definition 7. (Armstrong’s Axiom System) Let X, Y, Z be non-empty sequences of
attributes obtained from R, A ∈ R and F be a set of FDs.

(FD1) Reflexivity: If Y ⊆ X , then F ` X → Y .
(FD2) Augmentation: If F ` X → Y , then F ` XA → Y A.
(FD3) Transitivity: If F ` X → Y and F ` Y → Z, then F ` X → Z.
(FD4) Permutation: If X ∼ X ′, Y ∼ Y ′, and F ` X → Y , then F ` X ′ → Y ′.

5.1 Interactions between FDs and PPs

We show that the axiom system that consists of PP rules in Definition 4, Armstrong’s
rules in Definition 7 and three new FD-PP interaction rules in Definition 8 is sound and
complete for FDs and PPs.

Now, we present the“mixed rules” for the interactions between FDs and PEs.

Definition 8. (Inference Rules for Interactions between FDs and PPs) Let Γ be a
mixed set FDs and PPs.

(FD-PPl) Superkey: If Γ ` X , then Γ ` X → R.
(FD-PP2) Absorption: If Γ ` X → A and Γ ` XAY , then Γ ` XY .
(FD-PP3) Generation: If Γ ` X → A and Γ ` XY , then Γ ` XAY .

Similar to the concept of implication used in PPs and CCs, we say r |= Γ , if and
only if r |= γ for all γ ∈ Γ . Notably, the statement actually means r |= f for any FD
f ∈ Γ and r |=u X and for any PP X ∈ Γ .

Lemma 5. The three interaction rules PF1 to PF3 are sound for the satisfaction of both
FDs and PPs in relations. ¤

We now show that the collection of the inference rules {PP1, PP2, PP3, FD1, FD2,
FD3, FD4, FD-PP1, FD-PP2, FD-PP3} is a sound and complete set of rules for proving
the implications of FDs and PPs taken together.



Theorem 3. The axiom system comprising inference rules PP1 to PP3, FD1 to FD4,
and FD-PP1 to FD-PP3 is sound and complete for the satisfaction of both PPs and FDs
in relations.
Proof. We only need to prove the completeness. Let Γ = Γf ∪ Γp where Γf is the set
of all FDs and Γp is the set of all PPs. We now establish the completeness by showing
that if Γ 6` γ, then Γ 6|= γ, where γ is either f (an FD) or p (a PP). Equivalently for the
latter, it is sufficient to exhibit a relation as a counter-example, rc, such that rc |= Γ but
rc 6|= γ. We let Γp2f = {X → R | X ∈ Γp}.

X+ R−X+

t1 0 · · · 0 0 · · · 0
t2 0 · · · 0 1 · · · 1

Fig. 11. A counter example relation rc used
in the case γ = X → A

R

t1 1 · · · 1
t2 0 · · · 0

Fig. 12. A counter example relation rc used
in the case γ = X when Γp = ∅

(Case of γ = f .) Let γ = X → A. By FD-PP1, we have Γ ` Γp2f ∪ Γf . Let
X+ = {B | Γp2f ∪ Γf ` X → B}. By the assumption of Γ 6` γ, it follows that
A /∈ X+. We consider the relation rc = {t1 <r t2} shown in Figure 11. Clearly,
rc 6|=u X → A. We proceed to show rc |= Γ . It is straightforward to check that
rc |= Γf . It remains for us to show that rc |=u Γp. Assume to the contrary that there
exists p ∈ Γp such that rc 6|=u p. Let p = Z. By construction of rc, Z ⊆ X+. It follows
that Γp2f ∪ Γf ` X → Z. But Z → R ∈ Γp2f . By FD3, it follows that X → R. Thus,
X+ = R and A ∈ X+. This leads to a contradiction, since by assumption, A /∈ X+.
This completes the proof of this case, since we have shown rc |= Γf ∪ Γp.

(Case of γ = p.) Let γ = X . There are two cases concerning Γp to consider.
First, if Γp = ∅, then the relation rc in Figure 12 satisfies rc |= Γf but rc 6|=u X .
Second, if Γp 6= ∅, then we assume that X0 is the largest prefix of X such that

Γ ` X0Q for some Q ⊆ R. Let us call this the X-assumption. We consider two further
cases concerning X0.

(Case 1:) When X0 = X , we let X+ = {B | Γf ` X → B} and Γ ` Z. We
use again the relation shown in Figure 11. (But note that the definition of X+ in this
case is not the same.) It is clear that rc 6|=u X but rc |= Γf . It remains for us to show
that rc |=u Γp. Assume to the contrary that there exists p ∈ Γp such that rc 6|=u p.
Let p = Z. By construction of rc, Z ⊆ X+. But X0 = X and thus, from the X-
assumption, it follows that Γ ` XQ. By Γf ` X → X+ and FD-PP3, it follows that
Γ ` XX+Q. By PP2, it follows that Γ ` XX+ZQ. By FD-PP1, Γ ` Z → R.
Thus, we have Γ ` Z → Q. By FD-PP2, it follows that Γ ` XX+Z and by PP3 it
follows that Γ ` XX+. Thus, it follows that Γ ` X , since Γ ` X → X ′. This is a
contradiction to the assumption of Γ 6` X .

(Case 2:) When X0 6= X , we let X = X0AQ where A /∈ X0. We let X+ = {B |
Γf ` X0 → B}. Note that A /∈ X+. Otherwise, it follows that Γf ` X0 → A and by
assumption Γ ` X0Q, it follows that Γ ` X0AQ by FD-PP3. This leads to a violation
of the X-assumption. We now consider the relation, rc, shown in Figure 13. Clearly,



X+ A R−X+A

t1 0 · · · 0 1 0 · · · 0
t2 0 · · · 0 0 1 · · · 1

Fig. 13. A counter example relation rc used in the case γ = X when Γp 6= ∅ (Case 2)

rc |= Γf but rc 6|=u X . It remains for us to show that rc |=u Γp. Assume to the contrary
that there exists p ∈ Γp such that rc 6|=u p. Let p = Z. By construction of rc, we have
the following two possible cases of Z.

(Case of Z ⊆ X+.) A contradiction can be established similar to the proof of Case
1 when X = X0.

(Case of Z 6⊆ X+.) Let Z = V AW where V ⊆ X+ and W ⊆ R. Since Γ ` X0Q
and Γ ` V AW , it follows by PP2 that Γ ` X0V AWQ. Since Γf ` X0 → X+,
it follows by FD-PP3 that Γ ` X0X

+V AWQ. Thus, by PP3 it follows that Γ `
X0X

+AWQ. Finally, by FD-PP2 and Γf ` X0 → X+, it follows that Γ ` X0AWQ.
This leads to a contradiction, since we violate the X-assumption. ¤

5.2 Interactions between FDs and CCs

We establish two new interaction rules for CCs and FDs. We show that the axiom system
that consists of CC rules in Definition 6, Armstrong’s rules in Definition 7 and the new
FD-CC interaction rules in Definition 9 is sound and complete for FDs and CCs.

Definition 9. (Inference Rules for Interactions between FDs and CCs) Let Σ be a
mixed set FDs and CCs.

(FD-CC1) Reverse: If Σ ` X → Y and Σ ` Y ≤ X , then Σ ` Y → X .
(FD-CC2) Transformation: If Σ ` X → Y , then Σ ` X ≤ Y .

Lemma 6. The inference rules FD-CC1 and FD-CC2 are sound for the satisfaction of
both FDs and CCs in relations. ¤

We now prove the axiom system is sound and complete for unary CCs and unary
FDs.

Theorem 4. The axiom system comprising inference rules CC1-CC5, FD1-FD4 and
CC-FD1-CC-FD2 is sound and complete for the satisfaction of both CCs and FDs in
relations.
Proof. We only need to prove the completeness. Let Σ = Σf ∪Σc where Σf is the set
of all FDs and Σc is the set of all CCs. We now establish the completeness by showing
that if Σ 6` σ, then Σ 6|= σ, where σ is either f (an FD) or c (an CC). Equivalently for
the latter, it is sufficient to exhibit a relation as a counter-example rc, such that rc |= Σ
but rc 6|= σ. We let Σf2c = {Y ≤ X | X → Y ∈ Σf}, which can be derived by the
rule FD-CC1.

(Case of σ = c.) We now show that Σ |= σ if and only if Σc ∪ Σf2c |= σ. For the
“if” part: by CC-FD1, it follows that Σ |= Σc ∪Σf2c. Thus, Σ |= σ. For the “only if”
part: assume that Σc ∪Σf2c 6|= σ. We need to show that Σ 6|= σ.



Let σ = X ≤ Y and X+
f = {A | Σf ` X → A}. We then modify the relation

based on Figure 10 such that ∀t ∈ rc, t[A] = 1 whenever A ∈ X+
f . It follows by

FD-CC2 that X+
f ⊆ X ∪ Y . Then, we can show that the following claim is true.

(∗) Claim: If rc 6|= X → Y and rc |= X ≤ Y , then rc 6|= Y → X .
By using the claim (∗), we are able to check that rc |= Σf . The proof of rc |= Σc

but rc 6|= X ≤ Y is similar to Theorem 2.
The result then follows by Theorem 2, since the set of inference rules for CCs in

Definition 6 is complete.
(Case of σ = f .) Let FD be X → Y . It can be shown that if Σ |= X → Y ,

then Σf |= X → Y , or else Σf |= Y → X . Assume that Σf |= X → Y . The
result immediately follows by Armstrong’s axiom. Otherwise, by the completeness of
Armstrong’s axiom it follows that Σ ` Y → X . It also follows by FD-CC2 that
Σ |= X ≤ Y , since we assume that Σ |= X → Y . Thus, it follows by the case of
(σ = c) in this proof that we have Σ ` X ≤ Y . The result follows, since by FD-CC1
we have Σ ` X → Y . ¤

6 Related Work

In literature, there is abundant work on data dependencies in relational databases [1]
but they have not been used to capture user preferences. It is worth mentioning that
in [5, 6] the axiom system for partial order dependencies is co-NP, which has limited
the applicability of order comparison dependencies for decades. Here, with a given
set of user preference terms, we override the partial order with a preference hierarchy
and generate a preference relation, which simplifies much complex technicalities in
establishing the axiom systems.

Preferences are receiving much attention in querying, since DBMSs need to pro-
vide better information services in advanced applications [7, 8]. In partiuclar, prefer-
ence SQL [8] is equipped with a “preferring” clause that allows user to specify soft
constraints reflecting multiple preference terms.

Our previous work [14] proposes Preference Functional Dependencies (PFDs) as
an extension of FDs in relations, which captures the relationship between preferences
and preference-dependent data. We emphasize that the constraints considered in this
paper are entirely different from PFDs. We study the inference rules for preference
constraints (PPs and CCs) in their own right. We neither incorporate preferences into
FDs nor classify attributes as the assumptions in [14]. However, we thoroughly study
the interactions between PPs, CCs and FDs.

7 Concluding Remarks

We model preference terms as partial orderings on a sequence of attributes and study
the implication problem of preference satisfaction in a relation. We first formalize the
concept of Prioritized Preferences (PPs), which is a sequence of preference attributes
used for ranking a relation. We then establish a novel sound and complete inference sys-
tem for PPs. The ranking choice is formalized as a set of possible rankings in a relation



that satisfies a PP. We propose the concept of Choice Constraints (CCs) which capture
the fact that the ranking choice resulting from one preference is less than or equal to
another. We then establish a sound and complete inference system for CCs. Finally, we
present interesting results on interactions between Functional Dependencies (FDs) and
PPs, and between FDs and CCs. The main result of this paper is fundamental, which
paves the way to transform the implication problem into a finite procedure for deriving
PPs, CCs and FDs from a given set of such constraints. With the established axiom sys-
tems, efficient algorithms for checking various kinds of preference satisfaction are to
be considered in our future work. It is also interesting to study how to infer and handle
vague user preference [10, 11], since in real life the user may not be willing to detail
and check all the preferences when querying.
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