
Maintaining Consistency of Probabilistic
Databases: A Linear Programming Approach

You Wu and Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong, China
cs wyxab@stu.ust.hk, wilfred@cse.ust.hk

Abstract. The problem of maintaining consistency via functional de-
pendencies (FDs) has been studied and analyzed extensively within tra-
ditional database settings. There have also been many probabilistic data
models proposed in the past decades. However, the problem of maintain-
ing consistency in probabilistic relations via FDs is still unclear. In this
paper, we clarify the concept of FDs in probabilistic relations and present
an efficient chase algorithm LPChase(r,F) for maintaining consistency
of a probabilistic relation r with respect to an FD set F . LPChase(r,F)
adopts a novel approach that uses Linear Programming (LP) method to
modify the probability of data values in r. There are many benefits of
our approach. First, LPChase(r,F) guarantees that the output result
is always the minimal change to r. Second, assuming that the expected
size of an active domain consisting data values with non-zero probability
is fixed, we demonstrate the interesting result that the LP solving time
in LPChase(r,F) decreases as the probabilistic data domains grow, and
becomes negligible for large domain size. On the other hand, the I/O time
and modeling time become stable even when the domain size increases.

1 Introduction

There have been a rapid growth of important applications that operate on proba-
bilistic data, such as sensor monitoring network and mobile object tracking. The
data in these applications are inherently uncertain due to signal noises or instru-
mental errors. Various recent work on probabilistic DBMSs has been developed
to support the management of uncertain data [3, 12, 8].

Integrity constraints ensure that changes made to the database do not result
in a loss of data consistency. Functional dependencies (FDs) are known to be the
most fundamental integrity constraints in relational databases [9]. Thus, repair-
ing data inconsistency with respect to FDs has become an important problem as
studied in the context of crisp databases such as [14]. However, there still lacks
study of using FDs to maintain consistency of probabilistic databases.

In this paper, we study how to maintain consistency of a probabilistic rela-
tion when given a set of FDs. Our main objectives are twofold. First, we clarify
the concept of a consistent probabilistic relation r with respect to F . We intro-
duce Manhattan distance measure, rather than Euclidean distance measure, in

defining the semantics of an FD and show that Manhattan distance captures
better our intuition of probabilistic difference between data. Second, we aim at
developping an effective and efficient means to modify a probabilistic relation
from inconsistent status to consistent status. By effectiveness we mean that the
method should only impose minimal possible changes on r. By efficiency we
mean that the method should be efficient when the probabilistic domains and
other database parameters scale up.

Informally, the problem is described as follows: Given a probabilistic relation
r and a set of functional dependencies F , we modify the probability of the data
values in r such that the modified relation r′ is consistent with respect to F .
There is no insertion or deletion of tuples in r in the process of modification.

Table 1: An example of a probabilistic relation r

A B C Tuple Frequency

t1 <0, 1.0> <0, 0.3>, <1, 0.7> <0, 0.1>, <1, 0.9> 1
t2 <0, 1.0> <1, 0.5>, <2, 0.5> <0, 0.6>, <2, 0.4> 2
t3 <1, 0.7>, <2, 0.3> <2, 1.0> <0, 1.0> 3
t4 <3, 0.8>, <4, 0.2> <3, 1.0> <3, 1.0> 4

Table 1 shows a probabilistic relation r having four tuples t1 to t4, and
three attributes A, B and C, in which each attribute value is associated with a
probability distribution on a set of data values {0, 1, 2, 3, 4}. (We only show data
values having non-zero probability.) The last column describes the occurring
frequency of a tuple in r. Assume a given FD A → B. As the first two tuples
are identical over A, they should be identical over B as well, but they are not
indeed. We may modify the attribute values B of both tuples to {<0, 0.1>, <1,
0.567>, <2, 0.333>}, thus making these two tuples consistent with respect to
A → B. This modification is the minimal possible one (and the only possible
one) if we want to maintain the relative value frequency of each attribute value
over attribute B (see Def. 4). It essentially changes the probability distribution
on the involved data values in {0, 1, 2}. Notably, r is general enough to address
the features of probabilistic data models with attribute or tuple level uncertainty.

Our main contributions are threefold.
– We define the consistency problem having minimal possible change on prob-

abilistic relations and call the problem MCP. We transform MCP into a
standard LP problem. This approach of maintaining consistency in proba-
bilistic relations with respect to F is novel, effective and efficient.

– Given an inconsistent relation r and an acyclic FD set F , we present a
polynomial time algorithm LPChase(r, F) that returns the best possible
consistent relation, in the sense that the minimal change of r is guaranteed.

– We verify our complexity analysis on LPChase(r,F) by a set of experiments
on various database parameters. We show the interesting result that the
running time of LPChase(r,F) decreases as the probabilistic data domain
size grows, and becomes nearly negligible for large domain size. On the other
hand, the I/O and modeling time is stable even if the domain size increases.

The rest of the paper is organized as follows. Formal definitions of our prob-
abilistic model and other necessary background concepts are given in Sect. 2. In
Sect. 3, we clarify the notion of FD satisfaction in r. In Sect. 4, we define the
Minimal Consistency Problem (MCP) and explain how to solve the problem by
LP transformation. In Sect. 5, we present a polynomial time chase algorithm.
Experiment results will be shown in Sect. 6. In Sect. 7, we discuss the related
work. Finally, we conclude our work in Sect. 8.

2 Background

In this section, we formally define probabilistic relations and introduce a vectorial
representation for data domains. We denote by IR the set of real numbers and
by ZZ the set of integers throughout the paper.

Definition 1. (Probabilistic Data Domain) Given a data domain D. Let
ED = {(v, p) | v ∈ D and p ∈ [0, 1] ∩ IR} be a probability distribution over D.
ED is said to be valid if all the v values of (v, p) ∈ ED are pairwise distinct and∑

(v,p)∈ED p = 1. A probabilistic data domain of D, denoted by Dpr is the set of
all valid ED.

The requirement that all the p values for a valid ED should sum up to 1 is im-
portant for data consistency. This also conforms to the possible world semantics
for attribute level uncertainty model discussed in [2].

For simplicity in presentation, we assume in this paper all data domains are
denoted by D with |D| = k such that there is a linear order on D. However, it
is straightforward to generalize the subsequent results by using heavier notation
if distinct domains are considered.

Example 1. {<1, 0.3>, <2, 0.7>} is a valid ED for D = {1, 2}, since 0.3+0.7=1,
while {<1, 0.3>, <2, 0.6>} and {<1, 0.3>, <1, 0.7>} are not, since the former
has 0.3+0.6=0.9 6=1 and the latter has the same v value equal to 1.

Definition 2. (Probabilistic Relation) A probabilistic tuple (or simply a tu-
ple) t over a relational schema R with respect to D is a tuple where ∀A ∈ R,
t[A] ∈ Dpr. Each tuple is attached with a non-negative integer value Ft (tuple
frequency). A probabilistic relation (or simply a relation) r over R with respect
to D is a finite set of tuples over R. The total frequency T of r is given by
T =

∑
t∈r Ft. The relative frequency of a tuple t ∈ r is given by Ft/T .

The concept of tuple frequency in r is useful in many scenarios involving un-
certain data. This represents the importance of readings from uncertain sources.

Next, we introduce a vectorial representation of an attribute value in r, which
helps to manipulate the tuples.

Definition 3. (Vectorial Representation) The vectorial representation of
t[A], where t is a tuple over a relational schema R and A ∈ R, denoted by Vt,A,
is (p1, p2, . . . , pk), with pi being the probability of the ith value vi ∈ D.

Given an attribute A, we define how likely a value in domain D appears by using
tuple frequencies.

Definition 4. (Relative Value Frequency) Let r be a relation over R and
A ∈ R, VA =

∑
t∈r Vt,A · Ft/T = (f1,A, f2,A, . . . , fk,A). For i ∈ [1, k] ∩ ZZ, fi,A

is the relative value frequency of domain value vi over attribute A.

Example 2. Table 2 shows the corresponding vectorial representation of the
probabilistic relation r shown in Table 1. We assume domain D = {0, 1, 2, 3, 4}.
For example, t1[B] = (0.3, 0.7, 0, 0, 0) means that this probability distribution
consists of five value-probability pairs, namely, <0, 0.3>, <1, 0.7>, <2, 0>, <3,
0> and <4, 0>. It can be checked that t1[B] is a valid probability distribution,
since the probabilities for the first two non-zero probability pairs are 0.3 and
0.7, which are added up to 1. We also have VA = (0.3, 0.21, 0.09, 0.32, 0.08).

Table 2: An example of a vectorial representation of a probabilistic relation r

A B C Ft
T

t1 (1, 0, 0, 0, 0) (0.3, 0.7, 0, 0, 0) (0.1, 0.9, 0, 0, 0) 0.1
t2 (1, 0, 0, 0, 0) (0, 0.5, 0.5, 0, 0) (0.6, 0, 0.4, 0, 0) 0.2
t3 (0, 0.7, 0.3, 0, 0) (0, 0, 1, 0, 0) (1, 0, 0, 0, 0) 0.3
t4 (0, 0, 0, 0.8, 0.2) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) 0.4

3 FUNCTIONAL DEPENDENCY

In this section, we introduce a distance measure for comparing tuples and rela-
tions, and define satisfaction of FDs in a relation.

In conventional relational model, a functional dependency (FD) is in the
form of X → Y . Two tuples t1 and t2 are said to satisfy the FD X → Y if
t1[X] = t2[X]⇒ t1[Y] = t2[Y]. We follow the same spirit and propose that if two
probabilistic tuples are “probabilistically similar” over X, they should also be
“probabilistically similar” over Y . In literature, Euclidean distance is commonly
adopted when measuring the distance between uncertain data objects, such as
[6]. However, we argue that the Euclidean distance is not a good distance measure
used for maintaining consistency in probabilistic relations. We now illustrate this
point with the following example.

Example 3. Let the size of D be 200. Let t[A] and t′[A] be two tuples projected
over attribute A. Let Vt,A = (p1, p2, . . . , p200) and Vt′,A = (p′1, p

′
2, . . . , p

′
200),

where ∀i ∈ [1, 100] ∩ ZZ and ∀j ∈ [101, 200] ∩ ZZ, pi = p′j = 0, pj = p′i = 0.01. It
is easy to verify that the normalized Euclidean distance (ranges between 0 and
1, inclusive) between t[A] and t′[A] is given by

DistEuc(t[A], t′[A]) =
√

0.5 · 0.012 · 200 = 0.1.

Clearly, the normalized Euclidean distance is too small to convey the fact that
the probability distributions of t1[A] and t2[B] have no common data value
having non-zero probability. The result strongly violates the intuition that the
distance between these two disjoint ED should be far from each other.

We now introduce the concept of normalized Manhattan distance, which
intuitively expresses the change in probability between ED more accurately.

Definition 5. (Manhattan Distance: Single Attribute) The distance be-
tween two tuples t1 and t2 over an attribute A with respect to D is given by

Dist(t1[A], t2[A]) = 1
2

∑k
i=1 |p1,i − p2,i|,

where k = |D| and Vt1,A = (p1,1, p1,2, . . . , p1,k), Vt2,A = (p2,1, p2,2, . . . , p2,k) are
the vectorial representations of t1[A] and t2[A] respectively.

Proposition 1. The following statements are true.
1. 0 ≤ Dist(t1[A], t2[A]) ≤ 1.
2. Dist(t1[A], t2[A]) = 1 if and only if t1[A] and t1[A] have no common value
with non-zero probability.
3. Dist(t1[A], t2[A]) = 0 if and only if t1[A] and t2[A] are exactly the same.

The following example illustrates the distance measure defined in Def. 5.

Example 4. Consider Example 3 again. Dist(t[A], t′[A]) = 1
2 · 0.01 · 200 = 1.

This example shows that normalized Manhattan distance reflects the distance
between two disjoint ED more accurately.

We need to generalize the distance measure for the case of multiple attributes.

Definition 6. (Manhattan Distance: Multiple Attributes) The distance
between two tuples t1 and t2 over a set of attributes X is given by

Dist(t1[X], t2[X]) = maxA∈X{Dist(t1[A], t2[A])}.

The distance we adopted enjoys the property of triangle inequality. As will be
shown in our later analysis, the modeling time is dominating the running time in
the chase algorithm. Using this property, reference points can be used to identify
similar tuples so that the number of comparisons will be greatly reduced, thus
saving the modeling time.

Proposition 2. Manhattan distance satisfies triangle inequality:

Dist(t1[X], t2[X]) ≤ Dist(t1[X], t3[X]) +Dist(t3[X], t2[X]).

We now formally define the notion of an FD.

Definition 7. (Functional Dependency) A Functional Dependency (FD for
short) over R is a statement of the form Xα → Yβ, where X,Y ⊆ R and α, β ∈
[0, 1] ∩ IR. Given a relation r over R, if ∀t1, t2 ∈ r,

Dist(t1[X], t2[X]) ≤ α ⇒ Dist(t1[Y], t2[Y]) ≤ β,

we say FD Xα → Yβ is satisfied in r, or equivalently, r is consistent with respect
to Xα → Yβ. Given a set of FDs F , we say F is satisfied in r, or equivalently,
r is consistent with respect to F if and only if r satisfies every FD in F .

Given an FD Xα → Yβ , whether two tuples are similar over X and/or Y is
determined by the two parameters α and β. Our model reduces to conventional
relational model when α = β = 0 and all ED values contain a single value with
probability equal to 1. The setting of α and β in an application depends on the
specific setting of the application or the discretion of domain experts.

In this paper, we assume all FDs are non-trivial, that is, for a given FD
Xα → Yβ , Y ∩X = ∅. The following result justifies that we only need to consider
single attribute on the right-hand side of an FD in subsequent discussion.

Proposition 3. Decomposition rule holds for FD satisfaction:

Given r, r satisfies Xα → Yβ iff r satisfies Xα → Aiβ for all Ai ∈ Y .

Def. 7 does not involve tuple frequencies. Thus, we modify the probability
of data values in tuples of r in order to fix inconsistency. A tuple t ∈ r is said
to be modified to t′ whenever the probability of data values in some attributes
are changed. However, as will be shown later in our chase procedure, tuples
with higher frequencies (heavier tuples) will be modified less. This brings us the
benefit of imposing minimal change for the whole relation.

The following definition will be used to measure the effectiveness of our al-
gorithm in terms of the distance between the input relation r and its modified
result r′. Note that Ft is taken into consideration to define the distance but the
tuple frequencies remain the same throughout the modification, i.e. Ft′

i
= Fti .

Definition 8. (Distance Between Modified Relations) Let r be modified
to r′. We assume a fixed linear order imposed on the tuples of r, i.e. (t1 > t2 >
· · · > tn) in r and (t′1 > t′2 > · · · > t′n) in r′, where t′i ∈ r′ is the modified tuple
corresponding to ti ∈ r. The distance between r and r′ is then given by

Dist(r, r′) = c ·
∑n
i=1

∑
A∈R Dist(ti[A], t′i[A]) · Fti

where constant c = 1
|R|·T .

4 MINIMAL CONSISTENCY PROBLEM

In this section, we briefly review the underlying idea of Linear Programming (LP)
technique and define the Minimal Consistency Problem (MCP) in relations. We
show how to solve MCP by transforming the problem into standard LP setting.

4.1 Linear Programming Algorithm

Linear programming (LP) is a technique that optimizes a linear objective func-
tion, subject to a given set of linear equality and linear inequality constraints.
The standard form (or the canonical form) of a linear programming problem

is that, given a variable vector −→X = (x1, x2, . . . , xn), a constant vector −→C =

(c1, c2, . . . , cn) and a linear objective function G = −→C
T
· −→X which is subject

to a set of constraints expressed in a matrix equation M·−→X ≤ −→B (or ≥ −→B)
where M is an m × n matrix with constant entries and −→B is a constant vector
(b1, b2, . . . , bm), we are able to optimize G by using the simplex algorithm. We
employ an LP solver lp solve detailed in [10] to tackle the consistency problem
in this work.

4.2 Minimal Consistency Problem and LP Transformations

In subsequent discussion, we denote r the input relation and r′ the output re-
lation where r and r′ conform to the same schema. The variables xi,j and x′i,j
will carry the same meaning as defined in Defs. 9, 10, 11 and 12.

We now define the problem of generating a consistent relation with respect
to a given FD F where the right-hand side of all FDs is A and the left hand side
of no FD has A. Suppose we modify r to r′. There are several requirements for
the modification. First, the modification should change nothing over attribute
values of X. Second, r′ should satisfy F . Third, it does not change the tuple
frequencies in r. Fourth, it does not change the relative value frequency of any
domain value over attribute A (recall Def. 4). Finally, r′ should differ as little
as possible from r according to the distance measure in Def. 8. We formalize all
the requirements of the modification and call the problem MCP.

Definition 9. (Minimal Consistency Problem MCP). Let X be a finite
set of attributes and A be a single attribute. Let F = {Xiαi → Aβi |Xi ⊆ X}
be a finite set of FDs. Let k be the size of domain of attribute A. Let Vti,A =
(xi,1, xi,2, . . . , xi,k) and Vt′

i
,A = (x′i,1, x

′
i,2, . . . , x

′
i,k), i = 1, 2, . . . , n. The Minimal

Consistency Problem (MCP) is to find r′ that minimizes Dist(r, r′) and satisfies
the following four conditions (C1 to C4).

C1. r[X] = r′[X].
C2. r′ is consistent with respect to F .
C3. ∀i ∈ [1, n] ∩ ZZ,Fti = Ft′

i
.

C4. ∀i ∈ [1, k] ∩ ZZ, fi,A = f ′i,A.

In the above definition, C1 to C4 correspond to our first four requirements.
The last requirement is realized by minimizing Dist(r, r′) as already stated. Let
T denote the sum of tuple frequencies of all tuples of r, i.e., T =

∑n
i=1 Fti . We

now transform MCP into the first version of its equivalent LP problem. We start
by assuming the special case F = {Xα → Aβ} (i.e. singleton F).

Definition 10. (1LPMCP: First LP Transformed MCP). We minimize
the objective function: 1

(|X|+1)·T ·
∑n
i=1(

∑k
j=1 |x′i,j − xi,j |) · Fti , which is subject

to the following constraints:

1. ∀i ∈ [1, n] ∩ ZZ,
∑k
j=1 x

′
i,j = 1.

2. ∀i ∈ [1, n] ∩ ZZ, j ∈ [1, k] ∩ ZZ, 1 ≥ x′i,j ≥ 0.
3. ∀j ∈ [1, k] ∩ ZZ,

∑n
i=1 x

′
i,j · Fti =

∑n
i=1 xi,j · Fti .

4. ∀i, j ∈ [1, n] ∩ ZZ, 1
2

∑k
l=1 |x′i,l − x′j,l| ≤ β if Dist(ti[X], tj [X]) ≤ α.

Notably, the four conditions in Def. 9 are addressed in the above definition:
C1 and C4 in Def. 9 are satisfied, since all the involved values in these two
conditions remain constant in the LP formulation. C3 is realized by the third
1LPMCP constraint and finally C2 is realized by the fourth 1LPMCP constraint.
The objective function of 1LPMCP is employed to find minimal Dist(r, r′). The
first two 1LPMCP constraints in Def. 10 simply ensure the modified relation r′

is a valid one.
There is still a problem in 1LPMCP: we need to convert the absolute expres-

sions of the fourth 1LPMCP constraint and the objective function into standard
linear form in order that 1LPMCP can be solved by a linear programming algo-
rithm. To achieve the conversion, we need to introduce more technical variables
and define another version of LPMCP as follows.

Definition 11. (2LPMCP: Second LP Transformed MCP) We minimize
the objective function: 1

(|X|+1)·T ·
∑n
i=1(

∑k
j=1 di,j) · Fti , which is subject to the

following constraints:

1. ∀i ∈ [1, n] ∩ ZZ,
∑k
j=1 x

′
i,j = 1.

2. ∀i ∈ [1, n] ∩ ZZ, j ∈ [1, k] ∩ ZZ, 1 ≥ x′i,j ≥ 0.
3. ∀j ∈ [1, k] ∩ ZZ,

∑n
i=1 x

′
i,j · Fti =

∑n
i=1 xi,j · Fti .

4. ∀i, j ∈ [1, n] ∩ ZZ,
a. ∀l ∈ [1, n] ∩ ZZ, Di,j,l ≥ x′i,l − x′j,l and Di,j,l ≥ x′j,l − x′i,l.
b. if Dist(ti[X], tj [X]) ≤ α, 1

2

∑k
l=1Di,j,l ≤ β.

5. ∀i ∈ [1, n] ∩ ZZ, j ∈ [1, k] ∩ ZZ, di,j ≥ x′i,j − xi,j and di,j ≥ xi,j − x′i,j.

In Def. 11, di,j and Di,j,l are the newly introduced variables that replace the
absolute expressions in Def. 10. Clearly, the objective function and all the con-
straints in 2LPMCP are in standard setting of a linear programming problem.
Therefore, the minimal value of the objective function can be obtained by using
the simplex algorithm.

The following theorem formally shows that the minimal value of the 2LPMCP
objective function is equal to the minimal possible distance Dist(r, r′) in MCP.

Theorem 1. Let m1 be the minimal value of the objective function in 2LPMCP.
Let m2 be the minimal possible distance Dist(r, r′) in MCP. Then m1 = m2.

By Theorem 1, we establish the result that MCP having a single FD (Xα →
Aβ) can be solved in polynomial time. Next, we consider transforming MCP to
the general case of multiple FDs having the same attribute on the right-hand
side.

Definition 12. (3LPMCP: Third Transformed MCP). We minimize the
objective function: 1

(|X|+1)·T ·
∑n
i=1(

∑k
j=1 di,j) · Fti , which is subject to the fol-

lowing constraints:

1. ∀i ∈ [1, n] ∩ ZZ,
∑k
j=1 x

′
i,j = 1.

2. ∀i ∈ [1, n] ∩ ZZ, j ∈ [1, k] ∩ ZZ, 1 ≥ x′i,j ≥ 0.
3. ∀j ∈ [1, k] ∩ ZZ,

∑n
i=1 x

′
i,j · Fti =

∑n
i=1 xi,j · Fti .

4. ∀i, j ∈ [1, n] ∩ ZZ
a. ∀l ∈ [1, k] ∩ ZZ, Di,j,l ≥ x′i,l − x′j,l and Di,j,l ≥ x′j,l − x′i,l.
b. 1

2

∑k
l=1Di,j,l ≤ minXpαp→Aβp⊆F {[[Dist(ti[Xp], tj [Xp]) ≤ αp]] · βp + (1−

[[Dist(ti[Xp], tj [Xp]) ≤ αp]]) ·+∞}.
5. ∀i ∈ [1, n] ∩ ZZ, j ∈ [1, k] ∩ ZZ, di,j ≥ x′i,j − xi,j and di,j ≥ xi,j − x′i,j.

The essential difference between 3LPMCP and 2LPMCP is in the right-hand
side of the inequality in Constraint 4b. The square bracket [[E]] is a notation
that returns 1 if the boolean expression E is evaluated to be true, otherwise 0.
The expressions in the constraint contain only known values, so the right-hand
side is still a constant expression. The following corollary immediately follows
from Theorem 1.

Corollary 1. Let m1 be the minimal value of the objective fucntion in 3LPMCP.
Let m2 be the minimal possible distance Dist(r, r′) in MCP. Then m1 = m2.

From Corollary 1, we can see that 3LPMCP is an effective means to obtain
a consistent relation r′ modified from r, since it guarantees minimal possible
change from the original (inconsistent) relation r with respect to F .

Complexity Note. The worst case running time of the simplex algorithm is
exponential. However, Spielman and Teng [13] used smoothed analysis to show
that the algorithm has a polynomial complexity in terms of the input size and
magnitude of perturbation, where small random perturbation can be caused by
noises or instrumental errors. In our problem setting, the smoothed complexity
for solving 3LPMCP is O(n8k4 lnnk). The modeling time for transforming the
input of MCP to the input of 3LPMCP is O(n2k||F||). Corollary 1 implies that
solving 3LPMCP is equivalent to solving MCP. Therefore, the total time for
solving MCP is O(n8k4 lnnk + n2k||F||).

4.3 Further Improving the evaluation of 3LPMCP

The time for solving 3LPMCP (O(n8k4 lnnk)) dominates the modeling time
(O(n2k||F||)) asymptotically. However, the running time for solving 3LPMCP
can be further reduced as follows.

We construct an undirected weighted graph G where each vertex vi corre-
sponds to tuple ti of input relation r for i = 1, 2, . . . , n. An edge of weight d
exists between two vertices vi and vj if and only if d(≤ 1) is the maximum dis-
tance allowed between ti and tj according to F (cf. Constraint 4b in Def. 12). It
is clear that two tuples in different connected components of G will not violate
any FD in F . We partition r into sub-relations where tuples belong to the same
sub-relation if and only if their corresponding vertices are in the same connected
component of G. Then 3LPMCP of the original relation r can be solved by
solving 3LPMCP of all the sub-relations.

In fact, the running time for solving 3LPMCP becomes negligible compared
to I/O time and modeling time as domain size increases, because each sub-
relation becomes smaller and the coefficient matrix of 3LPMCP is very sparse
(most entries are zero). This interesting point will be further discussed using the
empirical results presented in Sect. 6.

5 CHASE ALGORITHM: LPCHASE

Chase algorithms are a commonly used technique to deal with consistency prob-
lems in databases [9, 14]. Our chase also takes a relation r and an FD set F
as inputs and outputs a consistent relation r′ with respect to F . In contrast to
others, our chase algorithm is developed by solving 3LPMCP which guarantees
minimal change to r.

Before presenting our chase algorithm, we define a specific class of FD sets,
called acyclic FD sets. We will show that acyclic FD sets are a necessary as-
sumption in constructing the algorithm.

Definition 13. (Acyclic FDs). Let F be a set of FDs over a relational schema
R. Let GF = (V,E) be a directed graph, where V = R and E = {(A,B)|∃Xα →
Yβ ∈ F , such that A ∈ X and B ∈ Y }. F is said to be acyclic iff GF is acyclic.

Notably, the definition of an acyclic FD set is more general than that of a
canonical FD set [7]. Obviously, a canonical set should be acyclic. However,
the reverse is not true. For example, F = {A → B,B → C} is acyclic but it is
not canonical, since B occurs on both the left-hand side and the right-hand side.

We now present our chase algorithm based on solving MCP in Algorithm 1.
This algorithm, denoted by LPChase(r,F), takes a relation r and an acyclic FD
set F as inputs. In Algorithm 1, MCPSolve(F ′′, A, r[XA]) is defined to be a
function that chases r[XA] over FD set F ′′ by modifying tuples over attribute
A, MCPSolve uses the 3LPMCP model described in Sect. 4.

Algorithm 1 LPChase(r,F)
1: V ← R
2: E ← {(A,B)|∃(Xα → Bβ) ∈ F , such that A ∈ X}
3: (A1, A2, . . . , A|R|)← TopoSort(V,E)
4: F ′ ← Decompose(F)
5: for i = 1 to |R| do
6: F ′′ ← {(Xα → Aiβ) ∈ F ′}
7: if F ′′ 6= ∅ then
8: X i ←

⋃
{X|∃Xα → Aiβ ∈ F ′}

9: MCPSolve(F ′′, Ai, r[X iAi])
10: F ′ ← (F ′ −F ′′)
11: end if
12: end for
13: return r

The underlying idea of LPChase is that we first generate the acyclic graph
(V,E) from the input FD set F (acyclic FDs) in Lines 1 and 2 and impose an

topological order (A1 < A2 < · · · < A|R|) on the attributes of the schema R by
TopoSort(V,E) in Line 3. Then in Line 4 we decompose F into F ′ s.t. all FDs
in F ′ contain only one attribute on their right-hand sides. The “for” loop from
Lines 5 to 12 is a chase that essentially checks the consistency of r with respect
to the set of FDs according to the topo order of the right-hand-side attribute Ai.
In each round the subrelation r[X iAi] and all the FDs having Ai on the right-
hand side are passed to MCPSolve(F ′′, Ai, r[X iAi]) in Line 9. The remaining
FDs (F ′ −F ′′) which may contain Ai+1 on the right-hand side are generated in
Line 10 for preparing the chase of next round.

The following theorem presents important properties of LPChase.

Theorem 2. The following statements are true.

(1) ∀i ∈ [1, k] ∩ ZZ, fi,A (the relative value frequency of domain value vi) does
not change in LPChase(r,F).

(2) r is consistent with respect to F after LPChase(r,F).
(3) LPChase(r,F) terminates in polynomial time.

Example 5. Given r over {A,B,C,D} and an FD set F = {Aα1 → Bβ1 , Bα2 →
CDβ2 , ABα3 → Dβ3}. We have F ′ = Decompose(F) = {Aα1 → Bβ1 , Bα2 →
Cβ2 , Bα2 → Dβ2 , ABα3 → Dβ3}. According to Def. 13, GF can be topologically
sorted as ABCD (another possibility is ABDC). Thus, Algorithm 1 chases for
the first attribute A1 = A but gets F ′′ = ∅ in round 1. It chases for A2 = B
and gets F ′′ = {Aα1 → Bβ1}, X 2 = A and F ′ = {B → C,B → D,AB → D}.
It chases for A3 = C and gets F ′′ = {Bα2 → Cβ2}, X 3 = B and F ′ = {Bα2 →
Dβ2 , ABα3 → Dβ3}. Finally, it chases for A4 = D and gets F ′′ = {Bα2 →
Dβ2 , ABα3 → Dβ3}, X 4 = AB and F ′ = ∅.

6 EXPERIMENTS

We implemented Algorithm 1 in Microsoft Visual C++. All experiments were
conducted on a Windows-based machine with 2.66GHz CPU and 1GB RAM.
We use a set of synthetic data generated according to Gaussian distribution. For
LP algorithm, we use the lp solve library [10] as discussed in Sect. 4.1.

The main goal in our experiments is to study the efficiency of LPChase.
Specifically, we examine the running time against various database parameters
related to data domain, tuples and FD sets. The total running time of LPChase
consists of three main components: modeling time that generates the 3LPMCP
setting as described in Def. 12, I/O time that transfers tuples to memory and
MCP solving time that runs the LP solver.

6.1 Domain Size k

In this study, we observed that the number of data values that have non-zero
probabilities in the data domain D is important to the running time of LPChase.
To understand the impact better, we define the set of all data values that have

non-zero probability in r the active domain (or simply AD), which is computed
by the expected size of AD derived from Gaussian distribution. We call D the
physical domain (or simply PD). Clearly AD ⊆ PD = D.

We fix n = 20000 and ||F|| = 2 (a single FD A0.05 → B0.05) throughout
this experiment. As shown in Fig. 1(a), the time for solving the modeled LP
decreases drastically as k increases and become negligible around k = 10 (i.e.
PD = AD = 10). As k is normally much larger than 10, the time for solving
MCP is negligible. The total running time then becomes linear to k due to the
modeling time in LP transformation (recall the complexity note in Sect. 4.2).
The running time of Algorithm 1 for various ADs is shown in Fig. 1(b). It
unanimously shows that when k (i.e. PD) is larger than AD, the running time
decreases as k increases. This is because when the PD size is increased, with
all other parameters unchanged, tuples are less likely to be similar. Hence, each
sub-relation (i.e. r[XAi] used in Line 9 of Algorithm 1) is small and thus the sum
of all the MCPSolve running time (each is quadratic to n) decreases. Intuitively,
this gain is due to the “divide-and-conquer” strategy as explained in Sect. 4.3.

(a) Solving time for MCP (b) Total running time

Fig. 1: Running time of LPChase with different domain size k

6.2 Size of FDs || F ||
We fix n = 20000, k = 10 and α = β = 0.05 for each FD in this experiment.
Fig. 2 shows the running time of Algorithm 1 with different sizes of FD set. The
running time is linear with ||F||, since the modeling time is linear to ||F|| and
the time for solving LP is negligible compared to I/O and modeling time.

Fig. 2: Running time of
LPChase with different ||F||

Fig. 3: Running time of
LPChase with different n

6.3 Size of Relation n

We fix k = 10, ||F|| = 2 and α = β = 0.05 for each FD in this experiment.
Fig. 3 shows the running time of LPChase with different number of tuples. The

running time is non-linear, since the time for solving LP is negligible at k = 10
compared to the I/O time (in O(n)) and the modeling time (in O(n2)) and thus
the modeling time, which is non-linear, is dominating.

6.4 Sensitivity of FD α

(a) Total running time (b) Time for solving MCP

Fig. 4: Running time of LPChase with different α

We fix k = 10 and ||F|| = 2 in this experiment. Fig. 4 shows the running time
against different α values when n = 1000, 2000 and 3000 respectively. As shown
in Fig. 4(a), when α increases from 0.08 to 0.09, the running time increases
significantly. The running time is very sensitive to α at the critical point (0.08-
0.09 in Fig. 4). Fig. 4(b) shows the total running time of LPChase (α = 0.05−
0.08). It is clear that the sizes of 3LPMCP sub-problems increase monotonically
with the increase of α and so does the running time. However, in this experiment
setting, k is only 10 (i.e. PD = AD = 10). When k becomes larger, non-zero
probability values are distributed over more domain values and the critical point
of α will increase rapidly because tuples are less likely to be similar. Admittedly,
this is an issue deserved further study. We may perform a binary search on
α, model the 3LPMCP sub-problems for a fixed α without solving them, and
examine the sizes of the sub-problems until an acceptable α value is found.

7 RELATED WORK

The problem of maintaining the consistency of a conventional relational database
is well-known [14]. When dealing with uncertain information (data are missing,
unknown, or imprecisely known), probability theory, fuzzy set and possibility
theory-based treatments have been applied to extend classic relational databases.
For example, stochastic dependency [5] is the generalization of the concept of
functional dependency in probabilistic databases, and fuzzy functional depen-
dencies [1] have been proposed to handle the integrity constraints problem in the
context of fuzzy databases. Demetrovics proposed the error-correcting functional
dependency [4] in a deterministic database containing erroneous data. However,
the mentioned work is for checking data consistency rather than developing an
effective and efficient means to maintain consistency for uncertain data. Levene
[9] introduces the notion of imprecise relations and employs FDs to maintain
imprecise relations. An imprecise data model is to cater for relational data ob-
tained from different equally likely and noise-free sources, and therefore may
be imprecise. Lu and Ng [11] use vague sets that assume data sources are not
equally likely to address similar issues.

8 CONCLUSIONS

We have studied the problem of maintaining consistency of probabilistic relations
with respect to acyclic FD sets, which are stronger than the canonical form of
FDs [7]. We developed an LP-based chase algorithm, called LPChase, which
can be employed to maintain the consistency by transforming MCP into an LP
setting. LPChase has a polynomial running time and it is efficient in practice
if the domain size is not extremely small (say | D |= 10) and the α values are
chosen before a critical point. The output of LPChase is also effective in the
sense that it is the minimally modified input relation as proved in Corollary 1.
As shown in Sect. 6, the time for solving the modeled LP problems becomes
negligible compared to the time for constructing them and the I/O time, when
the physical domain is reasonably larger than the active domain of r. Then the
running time of LPChase is bounded by O(n2k||F||).

References
1. P. Brown and P.J. Haas, BHUNT: automatic discovery of fuzzy algebraic constraints

in relatoinal data, VLDB, 668–679 (2003)
2. G. Cormode, F. Li, and K. Yi, Semantics of ranking queries for probabilistic data

and expected ranks, ICDE, 305–316 (2009)
3. N. Dalvi and D. Suciu, Efficient query evaluation on probabilistic databases, VLDB

Journal, 16(4), 523–544 (2007)
4. J. Demetrovics et al., Functional dependencies distorted by errors, DAM, 156(6),

862–869 (2008)
5. D. Dey and S. Sarkar, Generalized normal forms for probabilistic relational data,

TKDE, 14(3), 485–497 (2002)
6. C. Faloutsos and K. I. Lin, FastMap: a fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets, SIGMOD, 163–174 (1995)
7. S. Greco and C. Molinaro, Approximate Probabilistic Query Answering over Incon-

sistent Databases, ER, 311–325 (2008)
8. J. Huang et al., MayBMS: a probabilistic database management system, SIGMOD,

1071–1074 (2009)
9. M. Levene, Maintaining consistency of imprecise relations, Comput. J. 39(2), 114–

123 (1996)
10. lp solve, http://lpsolve.sourceforge.net/5.5/
11. A. Lu and W. Ng, Maintaining consistency of vague databases using data depen-

dencies, DKE, 68(7), 622–651 (2009)
12. S. Singh et al., Orion 2.0: native support for uncertain data, SIGMOD, 1239–1242

(2008)
13. D.A. Spielman and S.H. Teng, Smoothed analysis of algorithms: why the simplex

algorithm usually takes polynomial time, JACM, 51(3), 385–463 (2004)
14. J. Wijsen, Database repairing using updates, TODS, 30(3), 722–768 (2005)

