
Developing RFID Database Models for Analysing
Moving Tags in Supply Chain Management

Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong
wilfred@cse.ust.hk

Abstract. The applications of RFID (Radio Frequency Identification) have be-
come more important and diversified in recent years due to thelower cost of
RFID tags and smaller tag sizes. One promising area for applying the technology
is in Supply Chain Management (SCM) in which the manufacturers need to anal-
yse product and logistic information in order to get the right quantity of products
arriving at the right time to the right locations.
In this paper, we present a holistic framework that supportsdata querying and
analysis of raw datasets obtained from different RFID collection points managed
by supply chains. First, the framework provides repair mechanisms to preprocess
raw RFID data from readers. Second, we present a database model to capture
SCM information at various abstraction levels such as items, time and locations,
and then discuss the use of SQL query language to manipulate RFID databases.
Finally, we present a graph data model called a Tag Movement Graph (TMG) to
capture the moving information of tagged objects.

1 Introduction

RFID (Radio Frequency Identification) is a technology that allows a sensor (anRF
reader) to read, from a distance, and without line of sight, a uniqueEPC (Electronic
Product Code) associated with a tag [19, 20, 5, 17]. The applications of RFID have be-
come more important and diversified in recent years due to thelower cost of RFID
tags and smaller tag sizes. One promising area for applying the technology is inSupply
Chain Management(SCM) [15] in which the manufacturers need to analyse product
and logistic information in order to get the right quantity of products arriving at the
right time to the right locations.

However, the amount of RFID data in SCM is noisy and massive (e.g. Walmart’s
warehouse data can be up to the size of petabytes in scale [17]). There still lacks
of a unifying model that is able to capture information arising from multi-level and
multi-dimensional RFID data. Importantly, we need to develop a framework that sup-
ports managing, querying and analysing the information obtained from different RFID
sources. All these new RFID features and requirements bringnew challenges for provid-
ing seamless integration of techniques of data cleaning, data modeling and data mining.

In this paper, we present a holistic framework that enables the management of
RFID information and facilitates advanced analysis of the information. We establish



data models for RFID data obtained from SCM in the framework which supports tack-
ling the following RFID data problems:

– How to clean massive RFID raw data and store the data in an effective database?
– How to support storing RFID information arising from SCM?
– How to support querying RFID information arising from SCM?
– How to discover useful tag movement trails and correlated patterns in different

levels and dimensions of logistic information?

Figure 1 shows the blueprint of the framework, which can pre-process, repair, and
store the data collected from multi-RFID data streams. Within the framework, we use
a relational DBMS to store RFID data and develop a query language which is translat-
able into SQL expressions. This approach is practical to RFID industrials, since they
usually have a relational DBMS as one of the SCM infrastructures. The new query lan-
guage can also be employed to manipulate the scope of the derived RFID graph called
Tag Movement Graphs(TMGs). The framework supports discovering the tag movement
relationships from the TMG and RFID databases. Our proposednotions ofTag Move-
ment Trails(TMTs) andLogistic Correlated Patterns(LCPs) take data abstraction and
the SCM logistic information, such as location topology, object grouping and temporal
hierarchies, into consideration.

Fig. 1. A system view of our proposed framework to support analysingRFID data

The main contributions of this work are related to many interesting modeling and
algorithmic issues arising from our proposed framework.

In the modeling aspect, we design the database model as well as the TMG data
model to handle the RFID data obtained from multi-stream RFID readers. Figure 2(a)
show the setup of theα-gate portal that we used to detect RFID tags from three different
readers, thereby generating three RFID data streams that are collected in the detection
system in which the connection of the components are presented in Figure 2(b) [21].

In the algorithmic aspect, we develop the coding schemes that support the execution
of RFID queries. The algorithm for finding TMTs is an application of the the state-of-
the-art research work of graph mining. However, we enrich the techniques to cater for



cases of different abstraction levels in TMG data model. Thealgorithms for finding
LCPs are the interesting application of the research discovering correlated patterns in
graph databases [14].

(a) (b)

Fig. 2. (a) RFID three-stream (x, y, andz axes) data collection byα-gate portal (b) The setup of
the detection system (More details can be consulted from [21])

The rest of the paper is organised as follows. Section 2 presents our cleaning strate-
gies to pre-process RFID raw data obtained from ourα-gate portal. Section 3 presents
the RFID database model and the coding scheme. We illustratethe application of SQL
to support various kinds of RFID queries in Section 4 and present the TMG data model
that supports mining of TMTs and LCPs in Section 5. We review the related work of
handling RFID data in Section 6. Finally, we give our concluding remarks in Section 7.

2 Preprocessing Multi-Stream Raw RFID Data

In this section, we present the cleaning methods and illustrate the repairing mechanism
that preprocesses multi-stream raw RFID Data collected in theα-gate portal and the de-
tection system shown in Figures 2(a) and (b). The main problem in this task related to
the RFID raw data preprocessing module presented in Figure 1is as follows. Given an
SCM environment with possibly RFID signal interferences ornoises, we devise effec-
tive tactics of cleaning multi-RFID data streams obtained from the portal.

In contrast to most existing approaches that focus mainly onlow level data [4, 23],
we pre-process the data into two phases of physical cleaningand logical cleaning.

Physical cleaning is firstly imposed at the raw data level, inwhich a smoothing
window is employed to remove noises such astag jamming(tag failing to respond to two
different reader signals coming at similar time) ortag blocking(tag signal is blocked by
moisture or metal objects), and logical cleaning is then imposed at the record level to
remove multiple, missing or incorrect readings. The challenge is that there is a tension
in setting the window size for tracking tags. On the one hand,if we choose a smaller



window, we are able to capture the tag movement more accurately. However, it gives
rise to more false negatives and undercounting the tags. It is due to the fact that raw
data readings can only be picked up by the reader irregularlyin the period of tag’s
presence. On the other hand, if we choose a larger window, we are able to correct more
reader’s unreliability due to tag jamming or blocking. (c.f. The read rate reported in
[12] is roughly 70% of total tag readings in sensor network environments.) However, it
gives rise to more false positives and missed tag transitions.

To address the noise problem, we use theα-gate portal shown in Figure 2(a) to de-
velop tactics to clean and repair multi-stream RFID data. Weadopt a different approach
of “smoothing filter” from SMURF [13], since it is not effective to determine a vari-
able window for all possible RFID data streams. The underlying idea is that we impose
a voting system for readings from different window sizes over RFID data streams in
order to compensate (i) undercounting tags (missing tag read) and overcounting tags
(repeated tag read) and (ii) removing false negatives and false positives.

Fig. 3.Using three different smoothing windows for tracking a tag:StreamSA from a small win-
dow avoids most false positives. StreamSB from a medium window avoids some false positives
and some false negatives. StreamSC from a large window avoids most false negatives. Finally, a
voting procedure that obtains “votes” from all streams can effectively remove errors

To illustrate the idea of the voting strategy on the data streams, we show a simplified
diagram in Figure 3 thatSA (small window) has a bigger voting weight whenever the
conflict of false positives happens (e.g. pointsP2 andP3). However,SC (large window)
has a bigger voting weight whenever the conflict of false negatives happens (e.g. point
P1). SB (medium window) can be“neutral” such that it carries mediumweight on vot-
ing. The idea of the voting algorithm is adapted from our earlier work of [16]. We find
that the voting strategy is very effective if using more windows of different size that
are set on the multi-streams obtained by different antennaeconfigurations (e.g. varying
x, y, z and angle settings of the antennas of theα-gate portal in Figure 2).

Logical cleaning following physical cleaning is more interesting. The challenge is
how to continue the data cleaning by developing inference rules to repair data (e.g. the
EPC is missing in a reader). We classify the logical errors ofRFID data into five differ-
ent classes of (i) missing time - no tracing time data are recorded, (ii) missing location
- no location information are recorded, (iii) conflicting path - multiple impossible loca-
tion location information are recorded, (iv) ambiguous path - multiple possible location
information are recorded, and (v) repeated reading - reading are repeatedly recorded.



Due to the space limit, we only highlight two interesting scenarios using three repairing
classes in Figure 4, where the pattern{T ime, Sec}[t1, t2]{Spot, A} denotes the fact
that a tag is detected within a time interval “[t1, t2]” measured in seconds at spotA.

Fig. 4.Logical Cleaning: Repair Schemes for (a) Missing location (b) Ambiguous Path

Missing location repairdeals with the following scenario shown in Figure 4(a):
When a tag goes through a sequence of readers (or locations)A,B andC, B fails
to detect the tag. The error may be due to many reasons such as bad reading angles,
blocked signals or signal dead zones, which result in weak orno signal readings that
are eliminated by the physical cleaning [12, 13]. To repair the error, one rule is to make
reference to other location information. For example, by checking the connectivity of
the readers, we can deduce that a tag going fromA to C must passB. Another rule is
to check the group information. For example, in most SCM settings, tags are moving
in groups (e.g. items are contained in boxes or pallets) and thus it is possible to repair
some missing tag readings in certain locations if other tagsin the same group or a group
ID are recorded. Furthermore,missing time repairreferences other tags that go fromA
toC and then estimates the relative staying time in the detecting region of a reader.

Ambiguous path repairdeals with a usual scenario shown in Figure 4(b): A tag
goes fromA to C passing throughB but it is accidentally detected by an abutting
readerD placed in another possible path. In this case, we may not be able to decide
if the tag passed throughB or D. In general, we accommodate the uncertainty in a
probability node which represents a possible set of location nodes, each of which is
attached a probability as shown in the figure. The assignmentof the probability values
in the probability nodes is deduced by the rules establishedby statistical methods that
evaluate the sample distribution of the responding tag signal in B andD. An example
of such a rule is “ifTag1 to Tag10 passedD, then the probability ofTag11 to Tag20
going toD is 0.7”.



3 RFID Database Model

In this section we develop an RFID database model that supports querying and mining
and discuss the implementation issues of database storage.

3.1 RFID Database modeling

We design an RFID database model and implement a scalable storage system for RFID
data to support querying and mining. An RFID system consistsof three main objects:
tags, antennas and readers. A tagT in a location reflects (ifT is a passive tag) or emits
(if T is an active tag) RF signals within its detection region. When the antenna detects
the signal, the reader analyses the signal and stores the EPCand the current timestamp
into the database. We represent paths, tags, times and otherinformation in the model
and develop path coding schemes for the movement ofT in a stored data model. We
also incorporate logistic hierarchies and relevant product information into the product
data model and the logistic hierarchy data model respectively, which are depicted in
Figure 5. This serves as a foundation for the database implementation.

Fig. 5. RFID Database Model with Logistic Hierarchies and RelevantProduction Information

To explain the database model in Figure 5, we start by assuming a simple model of
RFID raw data in SCM. An RFID reader detects a tag and generatesRaw Data Record
having three attributes (EPC, LOC, TIME) where EPC is a unique ID of a tag and LOC
is the location of the (unique) RFID reader and TIME is the time instant of detecting
the tag. We then collapse the raw data into theStay Recordentity having four attributes
(tag id, loc code, timein, time out) where timein and timeout are the time instants of
the first detection and the final detection of the tag. A stay record represents an RFID tag
moving through a location during a specific time interval. However, using a stay record
as a stored data model is too simplistic to support the evaluation of path queries that



track objects, particularly for those path queries involving many locations, which need
to perform self-joining of the table many times. Thus, we develop various sophisticated
coding techniques and includePath RecordandPath Codeentities into the model.

The basic idea of the coding scheme is that a tag movement path“L1 → L2 → · · ·
→ Ln” can be coded by assigning a unique prime number,Pl, to represent all locations
(or all readers) and another prime number,Po, to represent the location order. To gen-
erate a unique integer pair(Pl, Po), we rely on theUnique Factorization Theoremfor
coding locations and theChinese Remainder Theoremfor coding their order. However,
due to the scarcity of prime numbers, the state-of-the-art method in [15] which supports
neither long path coding (e.g. encode a long path of more than8 locations) nor cyclic
path coding (e.g. encode a path in which a tag passed a location twice). The first prob-
lem is due to the fact that most programming languages use unsigned integers (32 bits)
that only support232− 1, which is less than the product of the first nine prime numbers
2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23. Even for 64 bit unsigned integers (264-1),
it can only support the first 15 prime numbers. In addition, suppose a tag goes through
the path “L1→ L2→ L3 → L1 → L2 → L3”. In this case, the coding method in [15]
fails, since the system of simultaneouscongruencesof Chinese remainder theorem is
not applicable here and thus (Pl, Po) fails to code 2→3→5→2→3→5.

3.2 RFID Data Coding Schemes

To tackle the two problems illustrated in Section 3.1, we need to review some important
results from number theory, which is the necessary background for understanding our
proposed path coding schemes. Theorem 1 summaries all the relevant results.

Theorem 1. The following theorems are well-established mathematicalresults [10].

1. (The Fundamental Theorem of Arithmetic) Any natural number greater than 1 is
uniquely expressed by the product of prime numbers.

2. (The Chinese Remainder Theorem) Suppose thatn1, n2, . . . , nk are pairwise rel-
atively prime numbers. Then, there existsx between 0 and(n1 · n2 · n3 · · ·nk − 1)
by solving the following system of simultaneous congruences

x mod ni ≡ ai for 1 ≤ i ≤ k.

3. (Euler Formula for Prime Generation) For every integerx between0 and 40,
x2 − x+ 41 is a prime number.

4. (Finite Continued Fraction) Given a finite sequence of positive integers〈x1, x2, . . . , xn〉,
there exists a rational numberY given by

Y =
1

x1 +
1

x2+... 1

xn

such thatY uniquely expresses〈x1, x2, . . . , xn〉.

To solve the long path coding problem, we first partition the whole set of locations
into different clusters having roughly the same number of locations. Using finite contin-
ued fraction in Theorem 1 we are able to represent a clustercode denoted asC (having



a unique positive integer as its id) together with its respective (Pl, Po). Notably, the
clustering can be straightforwardly extended into more than one level within each clus-
ter, which therefore removes the constraint of having no more than 8 prime numbers for
coding a path in a cluster.

Suppose there are two clusters coded by two positive integersC1 andC2. The sub-
path in cluster 1 can be computed as loccode 1 and ordercode 1 and similarly notations
for the subpath in cluster 2. If a path goes from cluster 1 to cluster 2, we generate the

fullpath codeP as
1

C1 +
1

loc code1 +
1

order code1 +
1

C2 +
1

loc code2 +
1

order code2

.

When decodingP , we first check whether it is smaller than 1. If this is the case, then
the path covers more than one cluster. We then decompressP to extract loccode and
ordercode in each cluster.

To solve the cyclic path coding problem, we apply Euler’s prime number generation
formula in Theorem 1. For example, the cyclic path 2→3→5→2→3→5 is coded as “2
→ 3 → 5 → 43(x=2)→ 47(x=3)→ 61(x = 5) which can be used to form the system
of congruences required by the Chinese remainder theorem ofTheorem 1.

We are now ready to present our algorithms to handle long and cyclic paths. For
simplicity in presentation, we assume one reader for each location and one level of
clustering. We divide the whole set of locations inton clusters, each of which has less
than 8 locations. We then code each cluster by an integer and within each cluster a
location is coded by a unique prime numbernp. We now represent a path with three in-
tegers (loccodePl, ordercodePo, clustercodeNc) only. Loc code can be computed
by using theFundamental Theorem of Arithmeticin Theorem 1, which by definition
Pl is the product of all prime numbers associated with the path.Ordercode exists ac-
cording to theChinese Remainder Theoremin Theorem 1 andPo can be computed
by Euclid’s algorithm [22]. For example, consider{n1 = 2, n2 = 3, n3 = 5} and
(Po mod 2) ≡ 1, (Po mod 3) ≡ 2, (Po mod 5) ≡ 3, thenPo can be computed as
((1× 3× 5 + 2× 5× 2 + 2× 3× 3)mod(2× 3× 5)) ≡ 23.

As we are not able to make ordercodePo congruent to the same location twice in
the Chinese Remainder Theorem, we need to assign more than one prime number to
those repeatedly visiting locations. Here is our proposed solution to this problem. First,
we code each location with a prime number as said and this number is not anEuler
Formula Prime. We call this set of location prime numbers theFundamental Location
Setand denote the set byF . Given that theStay Recordscan be sorted by timein, if a
specific location occurs twice, the first occurrence will be the prime coden fromF and
then the second occurrence can be coded by applying Euler Formula by puttingx = n.
The new generated Euler prime numbers do not belong toF . We now ready to present
the ideas of path coding in Algorithm 1.

The underlying idea of the decoding process is as follows. First, we decompress the
fullpath code (if it is found to be larger than 1) to identify clusters and for each cluster
C decompose loccode into its corresponding list of all locationsp. Second, we know



whether there is a cycle in an encoded path by comparingp with F . If there are cycles,
after sortingp, we decode those prime numbers that are not inF by reversing Euler
Theorem to get their original set of prime numbers. Finally,the path can be constructed
by sortingp by using ordercode. We now present the ideas in Algorithm 2.

Algorithm 1 Encoding
Input: A fullpath p, Fundamental Location SetFi for each clusterci
Output: FullpathcodeP

Assign a positive integerni to each clusterci
for each clusterci do

if there are repeated Stay Records inci then
Encode these Repeated locations by Euler Theorem
UpdateEi by including the Euler’s prime numbers

end if
loc code := Product of all prime number inFi ∪ Ei

ordercode := Output by usingFi ∪ Ei in the Chinese remainder theorem
end for
fullpath code := Result of a finite continued fraction of{ni, loc code, ordercode} for all ci

Algorithm 2 Decoding
Input: A fullpath codeP , Fundamental Location SetFi for each clusterci
Output: A full path defined byp :=

⋃
pi for all path segmentpi in the clusters

DecompressP to identify the ordered set of loccode and ordercode in each cluster
for each clusterci wherei preserves the order of the decompressed integer sequence fromP
do

for all prime numbersnp ≤ loc codedo
if loc code %np equals to 0 (i.e. the remainder for dividing loccode bynp is 0) then

Add np into pi with an order
end if

end for
for all np in pi do

Remainder SetR := R ∪ {order code %np}
end for
Sortpi according to the order inR
if there are cycles (i.e.pi − Fi 6= ∅) then

Inverse Euler Theorem to allnp in (pi − Fi)
end if

end for

Example 1.Suppose that a tagged object goes though locationsC → B → A → B →
C in the same cluster. We haveF = {1, 2, 3}. We use prime numbers to represent these
locations as follows:C is denoted as 2,B is denoted as 3, andA is denoted as 5. Then,
clustercode = 1, loccode =2×3×5×Euler (3)×Euler (2) = 2×3×5×47×43 =
60630, and ordercode= 24773. To decode the path, we first decompose loccode into
P = {2, 3, 5, 47, 43}. Then we can get their order by dividing ordercode by all the
elements inP and the remainder set (in order) are{1, 2, 3, 4, 5}. We sortP by this
order and thus get2 → 3 → 5 → 47 → 43. As the numbers47 and43 do not belong to
F , we decode them by reversingEuler Theoremto get original prime numbers 2 and 3.



4 RFID Manipulation Languages

In this section we present RFID Manipulation Languages and discuss their SQL pro-
cessing. The architecture shown in Figure 1 provides a platform to translate different
classes of RFID queries into their corresponding SQL statements.

The language for formulating RFID queries is defined by borrowing the notation
of XML path expressions. We consider queries and the resultscan be expressed by the
syntax elements such as parent axis (/), ancestor axis (//) and predicate ([]). Let us con-
sider the following RFID raw data and the corresponding stayrecords in Table 1.

Raw Data Records(Tag1,L1,1), (Tag1,L1,2), (Tag1,L2,3), (Tag1,L2,4),
(Tag1,L3,5), (Tag1,L3,6), (Tag2,L1,3), (Tag2,L1,6),
(Tag2,L2,7), (Tag2,L2,8), (Tag2,L3,9), (Tag2,L3,10)

Stay Records Tag1: L1[1, 2] → L2[3, 4] → L3[5, 6]
Tag2: L1[3, 6] → L2[7, 8] → L3[9, 10]

Table 1.RFID Raw Data and Stay Record

SQL is employed to support three types of queries oftracking queries, path-oriented
queries, containment queries.

– Tracking queries aim to obtain the path information for a given tag.
– Path-oriented queries aim to obtain information in a given path expression.
– Containment queries aim to obtain information from the relationships between tags,

boxes and pallets.

To support processing of above three classes of queries, we rely on the RFID database
model presented in Figure 5 for handling the path and tag information. We illustrate the
language by using the following RFID queries and their corresponding SQL translation.

We can formulate tracking queries that require tag locations or location history. The
query results are given according to Table 1.

QueryQ1: Find the path for tagid = Tag1.
Results:L1/L2/L3 (decoded from the path code by Algorithm 2).
Tracking queries require tag locations or location history. Q1 tracesTag1 and the

query can be translated into an SQL statement by assuming thetables correspond-
ing to Figure 5: pathrecord(tagid, pathid, movestart, moveend), pathcode(pathid,
loc code, ordercode, clustercode) and stayrecord(tagid, loc code, timein, time out)
as the following SQL expression.

SELECT decode(loccode, ordercode, clustercode)
FROM pathrecord P, pathcode C
WHERE tagid = ’Tag1’ AND P.path id = C.pathid

We are able to formulate path oriented queries to obtain information in a given path
expression. We assumeni = Prime(Li) and the MOD function provided by Oracle
DBMS in SQL translation.

QueryQ2: Find the tagids that go toL3 viaL1.
Expression: Expressions (based on XPath convention)〈//L1//L3〉
Results:Tag1, Tag2



SELECT tagid
FROM pathrecord P, pathcode C
WHERE MOD(C.loccode,n1 × n3) = 0 AND
MOD(C.ordercode,n1) < MOD(C.ordercode,n3) AND P.pathid = C.pathid

QueryQ3: Find the tagids going fromL1 to L2 where the duration atL1 is less
than 2.
Expression:〈//L1[(EndTime− StartTime)≤ 2]/ L2〉
Results:Tag1

SELECT S.tagid
FROM pathrecord P, pathcode C, stayrecord S
WHERE MOD(C.loccode,n1 × n2) = 0 AND
MOD(C.ordercode,n1) + 1= MOD(C.ordercode,n2) AND P.pathid = C.pathid
AND P.tagid = S.tagid AND S.loc code =n1 AND (S.Time in - S.Timeout)< 2

For containment queries that involves product informationand manufacturer details,
SQL expressions can be formulated in a similar way as usual data warehouse queries
[9], which are well-known SQL work and therefore are not detailed here.

5 Tag Movement Graph (TMG) Model

In this section, we present a graph-theoretic data model to capture RFID tag trail infor-
mation and discuss how to discovertag movement trails(TMTs) andlogistic correlated
patterns(LCP) defined within the model.

5.1 Capture Frequent Tag Movement Trails in a TMG

We establish a graph-theoretic data model to capture RFID tag movement information.
This can be achieved by decomposing the RFID database into a TMG via adapting some
established “tables to graph” algorithms such as BANKS [1].Based on the logistic hier-
archy model in Figure 5, a node in the TMG graph is annotated with SCM information
along three dimensions of the object tags (i.e. with an EPC hierarchy: object→ box→
case→ pallet), locations (i.e. with a location hierarchy: spot→ site→ store→ region)
and time (i.e. with a temporal hierarchy: minute→ hour→ day→ week).

For example, a node in a TMG at the lowest level of the mentioned three hierar-
chies is annotated as{(EPC,object), (Loc,Spot), (Time,Sec)} to store the object coded
as EPC. A higher level annotation on the node can be formulated as{(EPC,Box),
(Loc,Store), (Time,Day)}or a further higher level as{(EPC,Pallet), (Loc,Region), (Time,
Month)}. We implement data warehouse operators such as roll up and drill down to con-
trol different levels of abstraction in each dimension. In contrast to the RFID Cuboid
[9], each node of TMG can be annotated with the data in all the dimensions and each
edge with the aggregated information of transitions such asthe total number of tag
read. We can restrict the TMG on a focused dataset obtained byformulating an RFID
manipulation language expression as discussed in Section 4.



Fig. 6.A TMG Graph viewed at multi-levels of location: Spot→ Site→ Store→ Region

We now show a simplified location view of a TMG in Figure 6. Within the TMG
graph model, we discover frequent Tag Movement Trails (TMTs) that meet some thresh-
old criteria in various abstraction levels. We can see that asimple form of a TMT trail
can be defined as(E, S2 → S1 → S4 → S3 → S9 → S10 → S11 → S12 →
S15, TSpot) which represents a trajectory of tagE running in different location spots at
different times specified byTSpot. The TMT trail can be rolled up to the site level as
(E, SiteA → SiteB → SiteA → SiteC → SiteD, TSite), or to the warehouse level
as(E, Store1 → Store2, TStore). The abstraction for tagsE and timeT (e.g.TSpot in
second,TSite in minute, andTStore in hour) can also be rolled up similarly.

The TMTs can be explored by performing a generalization of some standard graph
exploration methods such as DFS (depth-first search) or BFS (breadth-first search) [22].
The parameters that judge various approaches are defined in terms of memory consump-
tion and number of iterations. We define a stopping conditionof the exploration as fol-
lows: using BFS-like algorithm we construct a tree-like structure with the start node
as its root wherein each branch of the tree is explored until its probability falls below
a cut-point. A branch of the tree having probability above the cut-point is a candidate
trail if it still has some expansions to be evaluated. The process continues until a longest
TMT can be found. There is also a trade-off between mining more trails by lowering
the cut-point and improving the efficiency by reducing the depth of exploration.

5.2 Logistic Correlated Patterns on TMG

A Logistic Correlated Pattern(or simply an LCP) is a nonempty set of correlated items
having distinct logistic attributes (time, trails and other product quality parameters),
which are both multi-level and quantitative in nature [14].An example item is “(Time,
minute)[100, 200]” representing from 100 to 200 minutes andan example of 2-patterns
is “(Time, minute)[100, 200](Trail, spot)[S1, S5]” with the logistic attribute set{(Time,
minute), (Trail, spot)} and the interval set{[100, 200], [S1, S5]}.

LCPs reveal the fact that “The time (100 to 200 sec) spent in the trail SA → SB

(coded as 1→2) is too long and makes the milk spoil” or “The number of tags passing
through the trailSA → SB → SC (coded as 1→2→3) is between 1K and 2K in the
first day”. They can be expressed as LCPs “(Time, minute)[100, 200](Trail, Spot)[1,
2](quality)[spoil]” and “Sum(Object, tag)[1K, 2K](Trail, spot)[1, 3](Time, day)[0, 1]”.
Mining the RFID database and the TMG graph together give riseto the discovery of
rich hidden SCM information for further analysis.



6 Related Work

Initial studies of RFID technologies focused mainly on the issues arising from low
level abstraction such as signal filtering and resolution, RFID sensitivity tuning and
RFID benchmarking and standardization [8, 2]. As the amountof RFID data becomes
extremely large (e.g. Walmart generates RFID data in the petabyte scale each day [17]),
the problem of applying database and data mining technologies to handle RFID data is
increasingly necessary and important. There are many interesting issues for handling
RFID data such as stream processing [24, 5, 13], managing RFID data [23, 9], cleaning
raw RFID data and RFID data mining [18, 7]. However, there still lacks of an integrated
framework to support more advanced data analysis.

The work related to event processing can be found in Wang et al. [24], which con-
siders temporal RFID events and formalizes the specification and semantics of RFID
events and rules. Also, they proposed a method to detect RFIDcomplex events effi-
ciently. Bai et al. [4, 5] explored the limitation of SQL in supporting the temporal event
detection and discussed an SQL-based stream query languageto provide comprehen-
sive temporal RFID event detection. The system architecture for managing RFID data
is also discussed in [3, 6, 11].

An important issue for RFID applications is that the collected raw data has different
sorts of errors such as duplicate readings and missing readings. To clean the raw data,
SMURF [13] was proposed to control the window size of the smoothing filter adap-
tively using statistical sampling. [4] also proposed several methods to filter RFID data.
However, there is still a lack of work to address the errors inhigh level abstraction and
handling multi-streams of raw RFID data.

In the area of RFID data modeling, Wang et al. [23] proposed the Dynamic Rela-
tionship ER Model (DRER) which includes a new relationship (dynamic relationship).
They also proposed methods to express temporal queries based on DRER. Gonzalez et
al. [9] proposed a new data warehousing model for the object transition and a method
to process a path selection query. Lee and Chung [15] proposed a storage scheme to aid
processing a set of RFID queries such as tracking and path-oriented queries. The cod-
ing schemes apply some important results from the prime number theory. Unlike our
coding schemes presented in Algorithms 1 and 2, only very fewlocation nodes can be
handled due to the scarcity nature of prime numbers and no cycle is allowed to happen
in their scheme. There are few works related to mining RFID [7] but still many issues
such as analysing patterns and trails that have not been adequately explored.

7 Concluding Remarks

We present a holistic framework that supports collecting and analysing RFID raw data
in a SCM setting. Within the framework, we illustrate the techniques of modeling and
storing RFID data and discuss how to make RFID queries translatable into SQL expres-
sions. This approach is practical to RFID industrials, since they usually have relational
DBMSs as one of the SCM infrastructures. To discover more interesting SCM infor-
mation, we also propose the notions of TMTs and LCPs, which take data abstraction
and the SCM logistic information, such as location topology, object grouping and lo-
gistic hierarchies, into consideration. The proposed framework provides much stronger



support to business activities that involve complex movements of goods in large quan-
tities. This work also demonstrates the application of manyfundamental research areas
such as data warehouse operations and data mining on graphs.Throughout the paper,
we have discussed various issues from modeling and system view points. To further
demonstrate the feasibility of the framework, we are collaborating with our RFID lab
industrial partners (see [20], Partners) to gain user feedback as a future work.
Acknowledgements.This work is partially supported by Hong Kong RGC GRF under
project number 617610.

References

1. B. Aditya, et al. Sudarshan: BANKS: Browsing and Keyword Searching in Relational
Databases. In Proc. of VLDB, pp. 1083-1086, 2002.

2. R. Angeles, RFID Technologies: Supply-chain Apps. and Implementation Issues, 2005.
3. C. Bornhövd, et al. Integrating Automatic Data Acquisition with Business Processes - Expe-

riences with SAP’s Auto-ID Infrastructure. In: Proc. of VLDB, 2004.
4. Y. Bai, F. Wang, and P. Liu. Efficiently Filtering RFID DataStreams. In: Proc. of VLDB

Workshop on Clean Databases, 2006.
5. Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu. RFID Data Processing With a Data Stream

Query Language. In: Proc. of ICDE, 2007.
6. S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S.Sarma. Managing RFID data.

In: Proc. of VLDB 2004.
7. Elio M., ”A Framework for Outlier Mining in RFID data”, In:Proc. of IDEAS, 2007.
8. EPCGlobal, Inc. http://www.epcglobalinc.org/home.
9. H. Gonzalez, J.i Han, X. Li, D. Klabjan, Warehousing and Analysing Massive RFID Data

Sets, In: Proc. of ICDE 2006.
10. Hardy, G. H.; Wright, E. M. ,An Introduction to the Theory of Numbers, 1979
11. J. E. Hoag and C. W. Thompson. Architecting rfid middleware. IEEE Internet Computing,

10(5): 88-92, 2006.
12. S. R. Jeffery, et al. A Pipelined Framework for Online Cleaning of Sensor Data Streams. In:

Proc. of ICDE. 2006.
13. S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive Cleaning for RFID Data

Streams. In: Proc. of VLDB, pages 163-174, 2006.
14. Y. Ke, J. Cheng and W. Ng. Correlated Pattern Mining in Quantitative Databases. ACM

Transactions on Database Systems, 33(3), 2008.
15. C-H Lee, C-W Chung, Efficient Storage Scheme and Query Processing for Supply Chain

Management using RFID, In: Proc. of SIGMOD 2008.
16. W. Ng, L. Deng and D.L. Lee. Spying Out Real User Preferences in Web Searching. ACM

Transactions on Internet Technology, 2007.
17. Palmer M, Principles of Effective RFID data management,Enterprise System, March 2004.
18. J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A Deferred Cleansing Method for RFID

Data Analytics. In: Proc. of VLDB, pages 175-186, 2006.
19. http://www.hk-rd.com/, Hong Kong RFID.
20. http://www.rflab.org, HKUST RFID Lab.
21. http://www.cse.ust.hk/News/RFIDAward2008,α-Gate Portal Award News.
22. R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms.
23. F. Wang and P. Liu. Temporal Management of RFID Data. In: Proc. of VLDB, pages 1128-

1139, 2005.
24. F. Wang, S. Liu, P. Liu, and Y. Bai. Bridging physical and virtual worlds: Complex event

processing for rfid data streams. In: Proc. of EDBT, 2006.


