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Abstract. The applications of RFID (Radio Frequency ldentificatioayé be-
come more important and diversified in recent years due tdatler cost of
RFID tags and smaller tag sizes. One promising area for aggpthie technology
is in Supply Chain Management (SCM) in which the manufactuneed to anal-
yse product and logistic information in order to get the tighantity of products
arriving at the right time to the right locations.

In this paper, we present a holistic framework that suppdats: querying and
analysis of raw datasets obtained from different RFID abiéen points managed
by supply chains. First, the framework provides repair raacsms to preprocess
raw RFID data from readers. Second, we present a databasel mwochapture
SCM information at various abstraction levels such as ite¢imee and locations,
and then discuss the use of SQL query language to manipuldi2 databases.
Finally, we present a graph data model called a Tag Movemespt&(TMG) to
capture the moving information of tagged objects.

1 Introduction

RFID (Radio Frequency ldentificatidris a technology that allows a sensor @Rk
readel) to read, from a distance, and without line of sight, a unigf Electronic
Product Codgassociated with a tag [19, 20,5, 17]. The applications dCRkave be-
come more important and diversified in recent years due tdatlver cost of RFID
tags and smaller tag sizes. One promising area for applimtechnology is ifSupply
Chain Managemen{SCM) [15] in which the manufacturers need to analyse prbduc
and logistic information in order to get the right quantitfiypvoducts arriving at the
right time to the right locations.

However, the amount of RFID data in SCM is noisy and massivg #almart’s
warehouse data can be up to the size of petabytes in scalp [HEre still lacks
of a unifying model that is able to capture information argsirom multi-level and
multi-dimensional RFID data. Importantly, we need to depeh framework that sup-
ports managing, querying and analysing the informatioaioletd from different RFID
sources. All these new RFID features and requirements hengchallenges for provid-
ing seamless integration of techniques of data cleanirtg,rdadeling and data mining.

In this paper, we present a holistic framework that enatilesmhanagement of
RFID information and facilitates advanced analysis of thierimation. We establish



data models for RFID data obtained from SCM in the framewdnictv supports tack-
ling the following RFID data problems:

— How to clean massive RFID raw data and store the data in actigBfelatabase?

— How to support storing RFID information arising from SCM?

— How to support querying RFID information arising from SCM?

— How to discover useful tag movement trails and correlatettepas in different
levels and dimensions of logistic information?

Figure 1 shows the blueprint of the framework, which canme&cess, repair, and
store the data collected from multi-RFID data streams. Withe framework, we use
a relational DBMS to store RFID data and develop a query laggwhich is translat-
able into SQL expressions. This approach is practical tdRRtustrials, since they
usually have a relational DBMS as one of the SCM infrastmaguThe new query lan-
guage can also be employed to manipulate the scope of theedd®FID graph called
Tag Movement GrapH¥MGSs). The framework supports discovering the tag moveamen
relationships from the TMG and RFID databases. Our propne#&dns ofTag Move-
ment Trails(TMTs) andLogistic Correlated Patternd.CPs) take data abstraction and
the SCM logistic information, such as location topologyjeabgrouping and temporal
hierarchies, into consideration.
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Fig. 1. A system view of our proposed framework to support analy8lR¢D data

The main contributions of this work are related to many ie$éing modeling and
algorithmic issues arising from our proposed framework.

In the modeling aspect, we design the database model as svéleaTMG data
model to handle the RFID data obtained from multi-streamDRi€laders. Figure 2(a)
show the setup of the-gate portal that we used to detect RFID tags from threerdiffie
readers, thereby generating three RFID data streams thablected in the detection
system in which the connection of the components are predémFigure 2(b) [21].

In the algorithmic aspect, we develop the coding scheméstipgort the execution
of RFID queries. The algorithm for finding TMTs is an applicatof the the state-of-
the-art research work of graph mining. However, we enriehtéthniques to cater for



cases of different abstraction levels in TMG data model. a@lgerithms for finding
LCPs are the interesting application of the research dextoy correlated patterns in
graph databases [14].
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Fig. 2. (a) RFID three-streamx( y, andz axes) data collection by-gate portal (b) The setup of
the detection system (More details can be consulted frof) [21

The rest of the paper is organised as follows. Section 2 pteseir cleaning strate-
gies to pre-process RFID raw data obtained from@gate portal. Section 3 presents
the RFID database model and the coding scheme. We illustrat@pplication of SQL
to support various kinds of RFID queries in Section 4 andgmethe TMG data model
that supports mining of TMTs and LCPs in Section 5. We reviegvrelated work of
handling RFID data in Section 6. Finally, we give our conéhgdbemarks in Section 7.

2 Preprocessing Multi-Stream Raw RFID Data

In this section, we present the cleaning methods and iltesthe repairing mechanism
that preprocesses multi-stream raw RFID Data collectelténigate portal and the de-
tection system shown in Figures 2(a) and (b). The main prolitethis task related to
the RFID raw data preprocessing module presented in Figigad follows. Given an
SCM environment with possibly RFID signal interferencesioises, we devise effec-
tive tactics of cleaning multi-RFID data streams obtairmedthe portal.

In contrast to most existing approaches that focus mainlpwrievel data [4, 23],
we pre-process the data into two phases of physical cleamddpgical cleaning.

Physical cleaning is firstly imposed at the raw data levelvhich a smoothing
window is employed to remove noises sucliegsiammingtag failing to respond to two
different reader signals coming at similar time)}ag blocking(tag signal is blocked by
moisture or metal objects), and logical cleaning is thendsgual at the record level to
remove multiple, missing or incorrect readings. The clmgjteis that there is a tension
in setting the window size for tracking tags. On the one h#ngle choose a smaller



window, we are able to capture the tag movement more actyrbit@wever, it gives
rise to more false negatives and undercounting the tags.due to the fact that raw
data readings can only be picked up by the reader irreguiartiie period of tag’s
presence. On the other hand, if we choose a larger windowrevalde to correct more
reader’s unreliability due to tag jamming or blocking. (cThe read rate reported in
[12] is roughly 70% of total tag readings in sensor networkimments.) However, it
gives rise to more false positives and missed tag transition

To address the noise problem, we usedhgate portal shown in Figure 2(a) to de-
velop tactics to clean and repair multi-stream RFID dataadépt a different approach
of “smoothing filter” from SMURF [13], since it is not effegt to determine a vari-
able window for all possible RFID data streams. The undegyilea is that we impose
a voting system for readings from different window sizesrdR€ID data streams in
order to compensate (i) undercounting tags (missing tad) r@ad overcounting tags
(repeated tag read) and (ii) removing false negatives dse fesitives.
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Fig. 3. Using three different smoothing windows for tracking a tatggreamsS 4 from a small win-
dow avoids most false positives. Stre&mn from a medium window avoids some false positives
and some false negatives. Stredmfrom a large window avoids most false negatives. Finally, a
voting procedure that obtains “votes” from all streams déecévely remove errors

To illustrate the idea of the voting strategy on the dataasiig we show a simplified
diagram in Figure 3 tha$ 4 (small window) has a bigger voting weight whenever the
conflict of false positives happens (e.g. poiffisand Ps). However,S¢ (large window)
has a bigger voting weight whenever the conflict of false tiegahappens (e.g. point
Pp). Sp (medium window) can be“neutral” such that it carries mediueight on vot-
ing. The idea of the voting algorithm is adapted from ourieaxork of [16]. We find
that the voting strategy is very effective if using more womg of different size that
are set on the multi-streams obtained by different antenaaggurations (e.g. varying
x,y, z and angle settings of the antennas ofdhgate portal in Figure 2).

Logical cleaning following physical cleaning is more irgsting. The challenge is
how to continue the data cleaning by developing inferentesmo repair data (e.g. the
EPC is missing in a reader). We classify the logical erroiRBID data into five differ-
ent classes of (i) missing time - no tracing time data arerdamh (i) missing location
- no location information are recorded, (iii) conflictingtba multiple impossible loca-
tion location information are recorded, (iv) ambiguougpanultiple possible location
information are recorded, and (v) repeated reading - regalia repeatedly recorded.



Due to the space limit, we only highlight two interestingrsagos using three repairing
classes in Figure 4, where the pattéffime, Sec}[t1, t2]{ Spot, A} denotes the fact
that a tag is detected within a time interval;[t2]” measured in seconds at spét
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Fig. 4. Logical Cleaning: Repair Schemes for (a) Missing locatimnAmbiguous Path

Missing location repairdeals with the following scenario shown in Figure 4(a):
When a tag goes through a sequence of readers (or locatigri$)and C, B fails
to detect the tag. The error may be due to many reasons sucdagdding angles,
blocked signals or signal dead zones, which result in weakoasignal readings that
are eliminated by the physical cleaning [12, 13]. To red@érérror, one rule is to make
reference to other location information. For example, bgaking the connectivity of
the readers, we can deduce that a tag going frfota C' must pas$3. Another rule is
to check the group information. For example, in most SCMirsgdt tags are moving
in groups (e.g. items are contained in boxes or pallets) lamslit is possible to repair
some missing tag readings in certain locations if otheritatfse same group or a group
ID are recorded. Furthermommjssing time repaireferences other tags that go frotn
to C and then estimates the relative staying time in the detgeogéigion of a reader.
Ambiguous path repaideals with a usual scenario shown in Figure 4(b): A tag
goes fromA to C passing throughB but it is accidentally detected by an abutting
readerD placed in another possible path. In this case, we may not lectallecide
if the tag passed througB or D. In general, we accommodate the uncertainty in a
probability node which represents a possible set of lonatiodes, each of which is
attached a probability as shown in the figure. The assignofahe probability values
in the probability nodes is deduced by the rules establifiyestatistical methods that
evaluate the sample distribution of the responding tagadign3 and D. An example
of such a rule is “ifT’ag; to T'agyy passedD, then the probability of"ag11 to T'agog
going toD is 0.7".



3 RFID Database Model

In this section we develop an RFID database model that stgpgoerying and mining
and discuss the implementation issues of database storage.

3.1 RFID Database modeling

We design an RFID database model and implement a scalabdgstsystem for RFID

data to support querying and mining. An RFID system consikteree main objects:

tags, antennas and readers. ATam a location reflects (if” is a passive tag) or emits
(if T'is an active tag) RF signals within its detection region. Wtie antenna detects
the signal, the reader analyses the signal and stores theidPtbe current timestamp
into the database. We represent paths, tags, times andiotbenation in the model

and develop path coding schemes for the movemefit iof a stored data model. We
also incorporate logistic hierarchies and relevant prothformation into the product

data model and the logistic hierarchy data model respdgtimdnich are depicted in

Figure 5. This serves as a foundation for the database ingpittion.
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Fig. 5. RFID Database Model with Logistic Hierarchies and Relernaiduction Information

To explain the database model in Figure 5, we start by asguangimple model of
RFID raw data in SCM. An RFID reader detects a tag and gersfRatey Data Record
having three attributes (EPC, LOC, TIME) where EPC is a uaiduof a tag and LOC
is the location of the (unique) RFID reader and TIME is theetimstant of detecting
the tag. We then collapse the raw data into$iey Recorantity having four attributes
(tag.id, loc_code, timein, time_out) where timein and timeout are the time instants of
the first detection and the final detection of the tag. A stagmrepresents an RFID tag
moving through a location during a specific time intervalwéwer, using a stay record
as a stored data model is too simplistic to support the etiatuaf path queries that



track objects, particularly for those path queries invafyinany locations, which need
to perform self-joining of the table many times. Thus, weelep various sophisticated
coding techniques and incluéath RecordandPath Codeentities into the model.

The basic idea of the coding scheme is that a tag movement paths Lo — - -
— L,,” can be coded by assigning a unique prime numbBgrto represent all locations
(or all readers) and another prime numitey, to represent the location order. To gen-
erate a unique integer pdiP;, P,), we rely on theUnique Factorization Theoreifior
coding locations and théhinese Remainder Theordar coding their order. However,
due to the scarcity of prime numbers, the state-of-the-athod in [15] which supports
neither long path coding (e.g. encode a long path of more 8hanations) nor cyclic
path coding (e.g. encode a path in which a tag passed a Indatfice). The first prob-
lem is due to the fact that most programming languages usgnetsintegers (32 bits)
that only suppor23? — 1, which is less than the product of the first nine prime numbers
2x3x5xT7x11x13x 17 x 19 x 23. Even for 64 bit unsigned integerg’¢-1),
it can only support the first 15 prime numbers. In additioppmse a tag goes through
the path ‘L;— Lo— L3 — L1 — Lo — L3". In this case, the coding method in [15]
fails, since the system of simultaneaztengruencesf Chinese remainder theorem is
not applicable here and thuB)( P,) fails to code 2»3—5—2—3—5.

3.2 RFID Data Coding Schemes

To tackle the two problems illustrated in Section 3.1, wedheeaeview some important
results from number theory, which is the necessary backgtéor understanding our
proposed path coding schemes. Theorem 1 summaries allévameresults.

Theorem 1. The following theorems are well-established mathematesllts [10].

1. (The Fundamental Theorem of Arithmetic) Any natural number greater than 1 is
uniquely expressed by the product of prime numbers.

2. (The Chinese Remainder Theorem) Suppose thaty, no, ..., ni are pairwise rel-
atively prime numbers. Then, there existsetween 0 an@n; - nz - n3---ni — 1)
by solving the following system of simultaneous congrugnce

r modn; =a; forl <i<k.

3. (Euler Formula for Prime Generation) For every integerz between0 and 40,
2% — z + 41 is a prime number.
4. (Finite Continued Fraction) Given a finite sequence of positive integ@rs, zo, . . . , ),
there exists a rational numbéf given by
1

Y:
Il+

1
such thafY” uniquely expresses, za, . . ., Zp).

To solve the long path coding problem, we first partition tHele set of locations
into different clusters having roughly the same number céitions. Using finite contin-
ued fraction in Theorem 1 we are able to represent a clusiege denoted a5 (having



a unique positive integer as its id) together with its refiped P}, P,). Notably, the
clustering can be straightforwardly extended into morea thrae level within each clus-
ter, which therefore removes the constraint of having noatioan 8 prime numbers for
coding a path in a cluster.

Suppose there are two clusters coded by two positive irgggeandCs. The sub-
path in cluster 1 can be computed as tmirle 1 and ordecode 1 and similarly notations

for the subpath in cluster 2. If a path goes from cluster 1 tstelr 2, we generate the
1

fullpath.codeP as T

Ch +

loc_codel +
order_codel +

1

Co +
loc_code2 +
. . . _order_code2
When decoding?, we first check whether it is smaller than 1. If this is the calsen
the path covers more than one cluster. We then decomprés®xtract loccode and
ordercode in each cluster.

To solve the cyclic path coding problem, we apply Euler'smainumber generation
formula in Theorem 1. For example, the cyclic path 2—+5—2—3—5is coded as “2
— 3= 5— 43@=2) — 47@=3)— 61(x = 5) which can be used to form the system
of congruences required by the Chinese remainder theordinexfrem 1.

We are now ready to present our algorithms to handle long giolicgaths. For
simplicity in presentation, we assume one reader for eacéitiin and one level of
clustering. We divide the whole set of locations imta@lusters, each of which has less
than 8 locations. We then code each cluster by an integer dhihveach cluster a
location is coded by a unique prime numlgr We now represent a path with three in-
tegers (loccodeP;, ordercodeP,, clustercodeN.) only. Loc.code can be computed
by using theFundamental Theorem of Arithmeiic Theorem 1, which by definition
P, is the product of all prime numbers associated with the patdercode exists ac-
cording to theChinese Remainder Theoram Theorem 1 and?, can be computed
by Euclid’s algorithm [22]. For example, considgi; = 2,n, = 3,n3 = 5} and
(P, mod 2) =1, (P, mod 3) =2, (P, mod 5) = 3, thenP, can be computed as
(1 x3x54+2x5%x2+2x%x3x3)mod2 x 3 x5))=23.

As we are not able to make ordeode P, congruent to the same location twice in
the Chinese Remainder Theorem, we need to assign more tlegpriome number to
those repeatedly visiting locations. Here is our proposédtien to this problem. First,
we code each location with a prime number as said and this eummimot anEuler
Formula Prime We call this set of location prime numbers thendamental Location
Setand denote the set b¥. Given that theStay Recordsan be sorted by timan, if a
specific location occurs twice, the first occurrence will lbe prime code: from F and
then the second occurrence can be coded by applying Eulendi@by puttingr = n.
The new generated Euler prime numbers do not belor#. id/e now ready to present
the ideas of path coding in Algorithm 1.

The underlying idea of the decoding process is as followst,Rive decompress the
fullpath.code (if it is found to be larger than 1) to identify clustersldor each cluster
C decompose lacode into its corresponding list of all locatiopsSecond, we know



whether there is a cycle in an encoded path by comparinigh 7. If there are cycles,
after sortingp, we decode those prime numbers that are noFihy reversing Euler
Theorem to get their original set of prime numbers. Findfig, path can be constructed
by sortingp by using ordercode. We now present the ideas in Algorithm 2.

Algorithm 1 Encoding
Input: A fullpath p, Fundamental Location S&; for each clustee;
Output: Fullpath.codeP
Assign a positive integet; to each clustee;
for each clustee; do
if there are repeated Stay Records;ithen
Encode these Repeated locations by Euler Theorem
Update&; by including the Euler’'s prime numbers
end if
loc_code := Product of all prime number jf; U &;
ordercode := Output by using; U &; in the Chinese remainder theorem
end for
fullpath.code := Result of a finite continued fraction{t;, loc_code, ordercode} for all ¢;

Algorithm 2 Decoding
Input: A fullpath_-code’?, Fundamental Location S&; for each clustee;
Output: A full path defined byp := | p; for all path segmeng; in the clusters
Decompres$ to identify the ordered set of locode and ordecode in each cluster
for each cluster; where: preserves the order of the decompressed integer sequenc@®fr
do
for all prime numbers, < loc_codedo
if loc_code %n,, equals to O (i.e. the remainder for dividing loode byn,, is 0)then
Add n,, into p; with an order
end if
end for
for all n, in p; do
Remainder SeR := R U {ordercode %n,, }
end for
Sortp, according to the order iR
if there are cycles (i.e; — F; # 0) then
Inverse Euler Theorem to all, in (p; — F3)
end if
end for

Example 1.Suppose that a tagged object goes though locatibrs B - A — B —
C'in the same cluster. We haye= {1, 2, 3}. We use prime numbers to represent these
locations as followsC is denoted as 2B is denoted as 3, and is denoted as 5. Then,
clustercode = 1, loccode =2 x 3 x 5 x Euler (3) x Euler (2) = 2x3x5x47x43 =
60630, and ordercode= 24773. To decode the path, we first decomposedode into

P ={2,3,5,47,43}. Then we can get their order by dividing ord=yde by all the
elements inP and the remainder set (in order) &g 2,3,4,5}. We sortP by this
order and thus g& — 3 — 5 — 47 — 43. As the numberg7 and43 do not belong to

F, we decode them by reversiimller Theorento get original prime numbers 2 and 3.



4 RFID Manipulation Languages

In this section we present RFID Manipulation Languages asclds their SQL pro-
cessing. The architecture shown in Figure 1 provides agtatto translate different
classes of RFID queries into their corresponding SQL statesn

The language for formulating RFID queries is defined by being the notation
of XML path expressions. We consider queries and the recafide expressed by the
syntax elements such as parent axis (/), ancestor axisnff/preedicate ([]). Let us con-
sider the following RFID raw data and the corresponding staprds in Table 1.

Raw Data Record S{Tagl,Ll,l), (Tag1,L1,2), (Tagl,L2,3), (Tagl,L2,4),
(Tagl,L3,5), (Tag1,L3,6), (Tagg,L1,3), (Tagg,L1,6),
(Tagg,L2,7), (Tagg,Lg,S), (Tagg,L3,9), (Tagg,L3,lO)
Stay Records ||[T'ag:: L1[1, 2] — L2[3, 4] — L3[5, 6]

Tags: L1[3, 6] — Lo[7, 8] — L3[9, 10]

Table 1. RFID Raw Data and Stay Record

SQL is employed to support three types of querigsaafking queriespath-oriented
queries containment queries

— Tracking queries aim to obtain the path information for segitag.

— Path-oriented queries aim to obtain information in a givathgxpression.

— Containment queries aim to obtain information from thetieteships between tags,
boxes and pallets.

To support processing of above three classes of querieglyerrthe RFID database
model presented in Figure 5 for handling the path and tagnmdtion. We illustrate the
language by using the following RFID queries and their cgponding SQL translation.

We can formulate tracking queries that require tag locatmrocation history. The
query results are given according to Table 1.

Query@;: Find the path for tagd = T'ag;.

Results:L1/L+/ L3 (decoded from the path code by Algorithm 2).

Tracking queries require tag locations or location hist@y tracesT'ag; and the
query can be translated into an SQL statement by assumintaltihes correspond-
ing to Figure 5: pathrecord(tad, pathid, movestart, moveend), pathcode(patidl,
loc_code, ordercode, clustecode) and stayrecord(tad, loc_code, timein, time_out)
as the following SQL expression.

SELECT decode(lacode, ordercode, clustecode)
FROM pathrecord P, pathcode C
WHERE tagid = "T'ag;” AND P.path.id = C.pathid

We are able to formulate path oriented queries to obtairrin&ion in a given path
expression. We assume = Prime(L;) and the MOD function provided by Oracle
DBMS in SQL translation.

Query@-: Find the tagids that go tal3 via L.

Expression: Expressions (based on XPath conventidiri)/L3)

ResultsT'agy, T'ago



SELECT tagid

FROM pathrecord P, pathcode C

WHERE MOD(C.loccode,n; x n3) =0 AND

MOD(C.ordercode,n;) < MOD(C.ordercode,ns) AND P.pathid = C.pathid

Query@Qs: Find the tagids going fromL; to L, where the duration ak, is less
than 2.

Expression{//L,[(EndTime— StartTime)< 2]/ L»)

ResultsTag,

SELECT S.tagd

FROM pathrecord P, pathcode C, stayrecord S

WHERE MOD(C.loccode,n; x ns) =0 AND

MOD(C.ordercode;n;) + 1 = MOD(C.ordercodens) AND P.pathid = C.pathid
AND P.tagid = S.tagid AND S.loc.code =n; AND (S.Timein - S.Timeout) < 2

For containment queries that involves product informagind manufacturer details,
SQL expressions can be formulated in a similar way as usualwiarehouse queries
[9], which are well-known SQL work and therefore are not dethhere.

5 Tag Movement Graph (TMG) Model

In this section, we present a graph-theoretic data modeituce RFID tag trail infor-
mation and discuss how to discovag movement trailéTMTs) andlogistic correlated
patterns(LCP) defined within the model.

5.1 Capture Frequent Tag Movement Trails in a TMG

We establish a graph-theoretic data model to capture RFjIntavement information.
This can be achieved by decomposing the RFID database iftGavia adapting some
established “tables to graph” algorithms such as BANKSB&ked on the logistic hier-
archy model in Figure 5, a node in the TMG graph is annotatéd 8CM information
along three dimensions of the object tags (i.e. with an ER@hthy: object> box —
case— pallet), locations (i.e. with a location hierarchy: spetsite — store— region)
and time (i.e. with a temporal hierarchy: minutehour— day — week).

For example, a node in a TMG at the lowest level of the mentidheee hierar-
chies is annotated §§EPC,object), (Loc,Spot), (Time,Sédp store the object coded
as EPC. A higher level annotation on the node can be fornilase{ (EPC,Box),
(Loc,Store), (Time,Day)or a further higher level aEPC,Pallet), (Loc,Region), (Time,
Month)}. We implement data warehouse operators such as roll up ddbavn to con-
trol different levels of abstraction in each dimension. émtrast to the RFID Cuboid
[9], each node of TMG can be annotated with the data in all threedsions and each
edge with the aggregated information of transitions sucthastotal number of tag
read. We can restrict the TMG on a focused dataset obtainéarinulating an RFID
manipulation language expression as discussed in Section 4
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Fig. 6. A TMG Graph viewed at multi-levels of location: Spet Site — Store— Region

We now show a simplified location view of a TMG in Figure 6. Viitithe TMG
graph model, we discover frequent Tag Movement Trails (TMAat meet some thresh-
old criteria in various abstraction levels. We can see ttstrgple form of a TMT trail
can be defined a(sE, Sy — S1 — Sy — 53 — Sg — 510 — S11 — S —
S1s, Tspot) Which represents a trajectory of té&grunning in different location spots at
different times specified b¥’s,.:. The TMT trail can be rolled up to the site level as
(E, Sitey — Siteg — Sitea — Sitec — Sitep, Tsite), OF to the warehouse level
as(E, Storey — Stores, Tstore). The abstraction for tags and timeT" (e.9.Tspot iN
second{s;. in minute, andls;,,-. in hour) can also be rolled up similarly.

The TMTs can be explored by performing a generalization ofesgtandard graph
exploration methods such as DFS (depth-first search) or Bieadth-first search) [22].
The parameters that judge various approaches are defirexdis 6f memory consump-
tion and number of iterations. We define a stopping conditiftthe exploration as fol-
lows: using BFS-like algorithm we construct a tree-likeausture with the start node
as its root wherein each branch of the tree is explored ustjriobability falls below
a cut-point. A branch of the tree having probability abowe ¢hit-point is a candidate
trail if it still has some expansions to be evaluated. Thegss continues until a longest
TMT can be found. There is also a trade-off between miningentiails by lowering
the cut-point and improving the efficiency by reducing thpttieof exploration.

5.2 Logistic Correlated Patterns on TMG

A Logistic Correlated Patterifor simply an LCP) is a nonempty set of correlated items
having distinct logistic attributes (time, trails and athproduct quality parameters),
which are both multi-level and quantitative in nature [14h example item is “(Time,
minute)[100, 200]" representing from 100 to 200 minutes an@&xample of 2-patterns
is “(Time, minute)[100, 200](Trail, spot)[S1, S5]” withéHogistic attribute sef(Time,
minute), (Trail, spot) and the interval sef[100, 200], [S1, S51}.

LCPs reveal the fact that “The time (100 to 200 sec) spentérntridil S, — Sp
(coded as 4»2) is too long and makes the milk spoil” or “The number of tagsging
through the trailSy — S — S¢ (coded as 4:2—3) is between 1K and 2K in the
first day”. They can be expressed as LCPs “(Time, minute)[200](Trail, Spot)[1,
2](quality)[spoil]” and “Sum(Object, tag)[1K, 2K](Traikpot)[1, 3](Time, day)[0, 1]".
Mining the RFID database and the TMG graph together givetas@e discovery of
rich hidden SCM information for further analysis.



6 Related Work

Initial studies of RFID technologies focused mainly on thsuies arising from low
level abstraction such as signal filtering and resolutioRlORsensitivity tuning and
RFID benchmarking and standardization [8, 2]. As the amofiRFID data becomes
extremely large (e.g. Walmart generates RFID data in thelyyée scale each day [17]),
the problem of applying database and data mining techneddgihandle RFID data is
increasingly necessary and important. There are manyestiag issues for handling
RFID data such as stream processing [24, 5, 13], managing Béta [23, 9], cleaning
raw RFID data and RFID data mining [18, 7]. However, therélatiks of an integrated
framework to support more advanced data analysis.

The work related to event processing can be found in Wang g4 which con-
siders temporal RFID events and formalizes the specificatiml semantics of RFID
events and rules. Also, they proposed a method to detect R&iplex events effi-
ciently. Bai et al. [4, 5] explored the limitation of SQL ingoorting the temporal event
detection and discussed an SQL-based stream query lantupgevide comprehen-
sive temporal RFID event detection. The system architedturmanaging RFID data
is also discussed in [3, 6, 11].

An importantissue for RFID applications is that the cokettaw data has different
sorts of errors such as duplicate readings and missingngsdio clean the raw data,
SMURF [13] was proposed to control the window size of the sthiog filter adap-
tively using statistical sampling. [4] also proposed salarethods to filter RFID data.
However, there is still a lack of work to address the erroisigh level abstraction and
handling multi-streams of raw RFID data.

In the area of RFID data modeling, Wang et al. [23] proposeddiinamic Rela-
tionship ER Model (DRER) which includes a new relationstipramic relationship).
They also proposed methods to express temporal queried badBRER. Gonzalez et
al. [9] proposed a new data warehousing model for the objansition and a method
to process a path selection query. Lee and Chung [15] prd@ostorage scheme to aid
processing a set of RFID queries such as tracking and pahted queries. The cod-
ing schemes apply some important results from the prime earthizory. Unlike our
coding schemes presented in Algorithms 1 and 2, only veryideation nodes can be
handled due to the scarcity nature of prime numbers and He tyallowed to happen
in their scheme. There are few works related to mining RFI[b[it still many issues
such as analysing patterns and trails that have not beenatidgiexplored.

7 Concluding Remarks

We present a holistic framework that supports collectingj@malysing RFID raw data
in a SCM setting. Within the framework, we illustrate thehmifjues of modeling and
storing RFID data and discuss how to make RFID queries @#atde into SQL expres-
sions. This approach is practical to RFID industrials, sitieey usually have relational
DBMSs as one of the SCM infrastructures. To discover moreré@sting SCM infor-
mation, we also propose the notions of TMTs and LCPs, whika thata abstraction
and the SCM logistic information, such as location topolaghject grouping and lo-
gistic hierarchies, into consideration. The proposed &aork provides much stronger



support to business activities that involve complex movetef goods in large quan-
tities. This work also demonstrates the application of mfangamental research areas
such as data warehouse operations and data mining on giidplsighout the paper,
we have discussed various issues from modeling and sysmpaoints. To further
demonstrate the feasibility of the framework, we are callating with our RFID lab
industrial partners (see [20], Partners) to gain user faekibs a future work.
AcknowledgementsThis work is partially supported by Hong Kong RGC GRF under
project number 617610.
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