
Finding Distance-Preserving Subgraphs in Large
Road Networks

Da Yan#, James Cheng∗, Wilfred Ng#, Kin Sum Liu#

#Hong Kong University of Science and Technology ∗Nanyang Technological University, Singapore
{yanda, wilfred}@cse.ust.hk j.cheng@acm.org

tm lksac@stu.ust.hk

Abstract— Given two sets of points, S and T , in a road
network, G, a distance-preserving subgraph (DPS) query returns
a subgraph of G that preserves the shortest path from any
point in S to any point in T . DPS queries are important in
many real world applications, such as route recommendation
systems, logistics planning, and all kinds of shortest-path-related
applications that run on resource-limited mobile devices. In this
paper, we study efficient algorithms for processing DPS queries in
large road networks. Four algorithms are proposed with different
tradeoffs in terms of DPS quality and query processing time, and
the best one is a graph-partitioning based index, called RoadPart,
that finds a high quality DPS with short response time. Extensive
experiments on large road networks demonstrate the merits of
our algorithms, and verify the efficiency of RoadPart for finding
a high-quality DPS.

I. INTRODUCTION

Given two point sets S and T in a road network G, a
distance-preserving subgraph (DPS) query returns a sub-
graph of G that preserves the shortest path distance between
any two points s ∈ S and t ∈ T . The query set S (or T) may
be specified by a region (e.g., a district or a city), in which
case S (or T) contains any point in G that is within the region.

In this paper, we assume that a server maintains a large
road network, and processes DPS queries posed by different
applications. The applications may then perform different tasks
locally on the DPS obtained from the server. Here we describe
two possible real world applications of DPS queries:

Example 1: Consider a French logistics company providing
services between Paris and three other European cities: Mu-
nich, Rome, and Madrid. Given the European road network,
the company can pose three DPS queries with S being the
set of involved locations in Paris, and T being the set of
involved locations in Munich, Rome, and Madrid, respectively.
The query answers are three small subgraphs, which are then
merged as a small graph. The company can then arrange the
delivery routes efficiently using the graph.

Example 2: Consider the development of a route search
engine for people who travel in Southern California. Given
the USA road network, the search engine may pose a DPS
query with S = T being the set of travel spots in Southern
California. The obtained subgraph can then be used by the
search engine to process route queries posed by travelers.

Using a DPS in an application has many benefits compared
with using the original large road network, including smaller
space requirement and faster query processing.

Space reduction. Disk-resident graph traversal is costly
since it requires many random I/O operations. As a result,
many studies advocate to hold the graph in memory [14], [17].
However, an entire road network is often too large to fit in the
limited memory space of a mobile device.

A recent study [6] suggests to have mobile devices answer
navigational queries locally, as a way of addressing the scal-
ability limitations of servers that may need to answer heavy
workloads of location queries online. In their model, the server
partitions the road network into regions (or graph fragments),
and repeatedly broadcasts the regions on the air. Given a
source and a destination, the clients only receive the necessary
regions, and store the resulting subgraph for query processing.

Note that [6] requires a mobile device to receive the relevant
regions to process each point to point shortest path (PPSP)
query individually. On the other hand, if a mobile device
downloads a DPS, it can be used to compute any shortest
path between points of interest locally.

Query efficiency. Processing a PPSP query often accesses
a large portion of vertices that are irrelevant (i.e., they are
not on the shortest path), especially when the source and the
destination are far apart. Computing the shortest paths in a
DPS avoids visiting a large number of irrelevant vertices in
the original road network.

Most state-of-the-art shortest path indices on road networks
rely on pre-computing all-pair shortest paths [7], [8], [9], [10],
which is not practical for large road networks. If the region of
interest is constrained, one can issue a DPS query and build the
indices on the DPS returned by the query. Since the subgraph
is distance-preserving, the shortest paths between points of
interest are correctly obtained from the indices.

In addition to answering shortest path queries, the DPS can
also be used to efficiently process many other queries whose
definitions are based on the network distance, such as optimal
location queries [2], aggregate nearest neighbor queries [3],
and optimal meeting point queries [4].

Contribution. In this paper, we propose the DPS query.
We develop efficient algorithms to answer the DPS queries.
We first propose two basic algorithms, one quality-centric
algorithm that finds the smallest DPS and one efficiency-
centric algorithm that finds a loose DPS in one pass over
the graph. Then, we develop a graph-partitioning based index,
called RoadPart, that considers both query answer quality

and query efficiency. Finally, we propose a convex hull based
method to further improve the quality of the DPS obtained by
RoadPart. Our experiments show that our algorithms scale to
road networks with tens of millions of vertices, and RoadPart
is able to compute a high quality DPS efficiently.

Organization. The rest of the paper is organized as follows.
We formally define the DPS query in Section II. Section III
introduces two basic algorithms. Section IV presents the
RoadPart index for planar road networks, while Section V
extends RoadPart to handle general road networks. Section VI
discusses the convex hull method. We report the experimental
results in Section VII, review the related work in Section VIII,
and conclude the paper in Section IX.

II. NOTATIONS AND PROBLEM DEFINITION

In this paper, we model a road network as an undirected,
weighted and connected graph, G = (V, E), where each vertex
v ∈ V is associated with Cartesian coordinates (v.x, v.y),
and each edge (u, v) ∈ E has a weight equal to the physical
length of (u, v). In addition, G has bounded vertex degree,
i.e., the maximum vertex degree in G is a small constant,
and |E| = O(|V |). Many existing works also treat G as a
planar graph. However, we do not make this assumption, since
a real road network is only a near-planar graph with a small
portion of crossover edges (called bridges) modeling flyovers
and tunnels.

We denote the length of an edge (u, v) by |uv|, and the
Euclidean distance between points u and v by ∥uv∥. We also
denote the shortest path between vertices u and v by sp(u, v),
and the length of sp(u, v) by dist(u, v).

Problem definition. Given a road network, G = (V, E), and
two query point sets, S and T , where the points are locations
in G, find a subset of vertices V ′ ⊆ V such that for any two
points, s ∈ S and t ∈ T , sp(s, t) exists in the subgraph G′ of
G induced by V ′.

The subgraph G′ is called a distance-preserving subgraph
(DPS) of G for (S, T). We call such a query an (S,T)-DPS
query. In the special case when S = T = Q, we call the
query a Q-DPS query.

From now on, we assume S, T ⊆ V . If a query point q is
on an edge (u, v), we only need to include both u and v into
the query set instead of q.

To handle some spatial operations efficiently in our query
processing algorithms, we construct two R-trees, Rtree(V)
and Rtree(E), bulkloaded over the vertex set V and edge set
E, respectively [12]. Note that each vertex in a road network
is a 2D point with coordinates and each edge is a line segment.
The R-trees are built once for all as a pre-processing step, and
they can be used in the processing of any DPS query.

The DPS G′ is not unique, and our objective is to find a
tight DPS efficiently, which we will discuss in the following
sections.

III. BASELINE ALGORITHMS FOR FINDING A DPS

There are two main performance metrics for answering a
DPS query: (1) the quality of query answer (i.e., the DPS),
and (2) the efficiency of query processing. Based on these two
performance metrics, we develop two baseline algorithms for
answering DPS queries, one focusing on attaining the smallest
DPS, while the other focusing on finding a DPS in short
processing time.

A. Quality Centric Baseline

The smallest DPS for query (S, T) is the DPS G′ =
(V ′, E′) such that V ′ contains only the vertices on sp(s, t) for
all s ∈ S and t ∈ T . We propose a baseline algorithm, named
BL-Quality (BL-Q), to compute this DPS, which requires
min{|S|, |T |} rounds of single-source shortest path (SSSP)
computation.

Without loss of generality, assume |S| ≤ |T |. Then, we
need to run the SSSP algorithm (such as Dijkstra’s algorithm)
for all s ∈ S. To avoid accessing the entire graph, we can
terminate the SSSP computation as soon as the shortest paths
from s to all vertices in T are computed.

BL-Q takes O(min{|S|, |T |} · |V | log |V |) time, since
for road networks, each SSSP computation takes only
O(|V | log |V |) time. The algorithm finds the smallest DPS;
however, it is very slow when |S| and |T | are large.

Vertex collection. After running SSSP computation for each
s ∈ S, we need to include the vertices on sp(s, t) into V ′ for
all t ∈ T . Here we show that this operation can be carried out
in O(|E|) = O(|V |) time, and thus does not increase the time
complexity of BL-Q: We maintain a set C containing all the
vertices that are already added to V ′. For each vertex t ∈ T ,
we add the vertices on sp(s, t) to V ′ starting with v = t, and
stop either when a vertex v ∈ C is reached (since the vertices
on sp(s, v) are already added to V ′), or when s is reached.
The O(|E|) time complexity follows from the fact that each
edge in G is visited at most once.

B. Query Efficiency Centric Baseline

To achieve high efficiency in query processing, we want
to minimize the number of rounds of the SSSP computation.
We present another baseline algorithm, called BL-Efficiency
(BL-E), that uses only one round of SSSP computation.

BL-E first locates a vertex vc in the middle of Q (we set
Q = S ∪ T for query (S, T)). Then, we run SSSP from vc

until sp(vc, q) is computed for all q ∈ Q. Let r be the length
of the longest sp(vc, q). We continue to run the SSSP from vc

to obtain all the other shortest paths from vc with length no
greater than 2r. Finally, we include into V ′ the vertices on all
shortest paths from vc with length no greater than 2r.

We find vc by first computing the minimum bounding
rectangle (MBR) of Q, based on the Cartesian coordinates
of the vertices in Q. Let us denote the center of the MBR
by pc. We then find vc as the vertex nearest to pc, through a
nearest neighbor query over the R-tree Rtree(V).

We now prove the correctness of BL-E.

(a) (b)

b1

b2

b

a

c

Fig. 1. A contour of a road network and the cuts

Lemma 1: ∀s, t ∈ Q, dist(s, t) ≤ 2r.
Proof: dist(s, t) ≤ dist(s, vc) + dist(vc, t) ≤ 2r.

Theorem 1: ∀v ∈ V , if dist(vc, v) > 2r, then v is not on
sp(s, t) for any s, t ∈ Q.

Proof: Since dist(vc, v) ≤ dist(vc, s) + dist(s, v), we
have dist(s, v) ≥ dist(vc, v) − dist(vc, s) > 2r − r = r.
Similarly, we have dist(t, v) > r. Suppose on the contrary
that ∃s, t ∈ Q, such that v is on sp(s, t), then dist(s, t) =
dist(s, v) + dist(v, t) > 2r, which contradicts Lemma 1.

According to Theorem 1, it is not necessary to add v to
the DPS if dist(vc, v) > 2r. However, this DPS is at least
((2r)2/r2) = 4 times as large as the smallest DPS; thus, it is
a low-quality query answer. On the other hand, the algorithm
is very efficient since it only takes O(|V | log |V |) time.

IV. AN INDEX FOR ANSWERING DPS QUERIES

In Section III, we introduced the two main performance
metrics for answering DPS queries. We also presented two
baseline algorithms and identified their weaknesses. In this
section, we propose an index to answer DPS queries efficiently
with high answer quality.

We name our index as RoadPart, since our approach
is based on road network partitioning. In this section, we
first present our solution for planar road networks. Then in
Section V, we extend our solution to handle non-planar road
networks.

A. An Overview of RoadPart

We first present an overview of RoadPart, which consists of
two phases: (1) offline indexing phase, which partitions the
input road network into small regions and assigns vertices with
region IDs; and (2) online querying phase, which answers any
DPS query using the region IDs of the vertices in a query.

In the indexing phase, we first compute a contour of the
road network G = (V, E) and partition G by shortest paths
between vertices on the contour (such shortest paths are called
cuts). A contour of G is an ordered sequence of vertices,
C = ⟨v1, . . . , vk, vk+1 = v1⟩, where each vi ∈ V , such that all
vertices in G are contained in the polygon formed by linking
each vi to vi+1, for 1 ≤ i ≤ k. A cut is a shortest path
(in G) connecting two vertices in C. For example, the dashed
outline shown in Figure 1(a) represents the contour of the road
network, and the shortest path sp(b1, b2) shown in Figure 1(b)
is a cut.

We select a set of border vertices B = {b1, . . . , bℓ} ⊆ C
evenly on the contour C. Then, we use the cuts sp(bi, bj),

1

2
3 4

5

6

[3, 3]

[2, 3]

[4, 6]

(a) (b)

v1

v2

b
i

v3

b
i

Fig. 2. Vertex labeling in one dimension, w.r.t. bi

where bi, bj ∈ B to partition G. As shown in Figure 2(a),
the cuts from bi to the other border vertices partition the
whole road network into zones. We assign each zone with
a unique label. Given the border vertex bi, we then assign
a label [l(v), h(v)] to each vertex v ∈ V , indicating that v
belongs to Zones l(v)-h(v) derived by the cuts from bi. For
example, in Figure 2(b), v2 is assigned a label [3, 3] since v2

is contained in Zone 3, while v3 is assigned a label [4, 6] since
v3 is on the boundaries of Zones 4, 5 and 6.

For each border vertex bi ∈ B, each vertex v is assigned
a label determined by the zones that are derived by the cuts
from bi; thus, altogether we assign |B| labels to each vertex.
We associate each vertex v ∈ V with a |B|-dimensional label
vector vec(v), such that its i-th dimension vec(v)[i] is the
label determined by bi.

Note that zones may overlap with each other if they are
partitioned by cuts from different border vertices. Moreover, a
vertex may belong to different zones with respect to different
border vertices. Thus, we define a region R as a set of vertices
that have the same label vector, i.e., ∀u, v ∈ R, vec(u) =
vec(v).

The output of our partitioning algorithm is a set of regions,
R, such that each vertex v ∈ V belongs to exactly one region
R ∈ R. Since all the vertices in a region R have the same label
vector, we assign each region R ∈ R a unique ID and keep
only the region ID, instead of vec(v), with v. On the other
hand, we keep the label vector with R, denoted by vec(R),
i.e., vec(R) = vec(v) for all v ∈ R. In this way, we reduce
the space cost for keeping the label vectors from O(|B| · |V |)
to O(|V | + |B| · |R|), which is a significant reduction since
|R| ≪ |V |.

Let R(v) be the region that a vertex v belongs to. Then, the
label vector of v can be obtained by vec(R(v)). For simplicity,
we simply use vec(v) to mean vec(R(v)) in the remainder of
this paper.

Finally, given a DPS query, Q or (S, T), we retrieve vec(v)
for all v ∈ Q or v ∈ (S ∪ T), and then compute the DPS for
the query from these label vectors.

B. Indexing by Graph Partitioning

We now discuss the details of the indexing algorithm, which
consists of three main parts: contour computation, border
vertex selection, and vertex labeling.

1) Contour Computation: A contour of a road network G
is like a bounding polygon of G. Thus, a tighter bounding
polygon captures the shape of the entire road network more

vxmin

vnext

vcur

vpre

vnext
v’

vcur

vnext = vpre (a)

A

B

C

vcur

vpre
vnext

v’

(b)

v”

Fig. 3. Contour computation

accurately and hence gives a partitioning of higher quality. We
compute a tight contour of G as follows.

Let vxmin be the vertex in G with the minimum x-
coordinate. Let vpre, vcur and vnext be the previous, current
and next vertices processed, respectively.

We start with vcur = vxmin, and keep finding the next
vertex vnext on the contour until vcur becomes vxmin again.
When vcur = vxmin, we choose the edge, (vcur, vnext), that
is the most downward in the plane, as shown in Part A of
Figure 3(a).

When vcur ̸= vxmin, we pick the edge (vcur, vnext) that
maximizes the clockwise angle ∠vprevcurvnext, where tie is
broken by choosing the shortest edge, as shown in Part B
of Figure 3(a). A special case is when vcur is a dangling
point as shown in Part C of Figure 3(a), in which case we set
vnext = vpre. This case finds a sub-sequence in the contour,
such as ⟨a, b, c, b, a⟩ in Figure 1(a).

Extension to non-planar graphs. For a non-planar graph,
which we will discuss in Section V, vnext may not be a vertex
adjacent to vcur due to the presence of bridges. For example,
in Figure 3(b), the edge (vcur, v

′) does not imply that the
correct choice of vnext is v′. The correct vnext that gives a
tight contour, however, is not a vertex of the graph, but the
point ‘◦’ as shown in Figure 3(b).

We compute this vnext as follows. We first find the edge
(vcur, v

′) with maximum ∠vprevcurv
′. Then, we find all the

edges that cross (vcur, v
′), among which we find the edge

(uint, vint) whose intersection point vint is closest to vcur.
We set vnext = vint if (uint, vint) exists, and set vnext =
v′ otherwise. The edges crossing (vcur, v

′) are found by an
intersection query on the R-tree Rtree(E).

Note that the new vertex vint is only added temporarily
to compute the correct contour; however, since vint is not a
vertex in G, it cannot be a border vertex for graph partitioning
and is hence removed at the end of contour computation.

Complexity analysis. The contour contains approximately
O(

√
|V |) vertices (as implied from the relationship between

circumference and area). Let us use d to denote the maximum
vertex degree of G, and use d′ to denote the maximum number
of edges checked in an intersection query on Rtree(E). Note
that d and d′ are usually small constants in a road network,
and thus, it takes O((d+d′ log |E|)

√
|V |) = O(

√
|V | log |V |)

time to compute the contour.

2) Border Vertex Selection: The contour computation re-
turns a vertex sequence, i.e., the contour C = ⟨v1 =
vxmin, . . . , vk, vk+1 = vxmin⟩, which constitutes a polygon.

(a) (b)

1

2
3 4

5

6

b1

b2

b3 b4

b5

b6

sp1

sp2 sp3 sp4

sp5

cs1

cs2

cs3

cs4

cs5

cs6

* * *
* * *

Fig. 4. Vertex labeling

We define the circumference of the contour to be L =∑k
i=1 ∥vivi+1∥, where we use Euclidean distance rather than

edge length because the edge (vi, vi+1) may not exist. For
example, in Figure 3(b), vcur and v′′ are two consecutive
vertices of the contour but (vcur, v

′′) is not an edge in G. The
length of a subsequence ⟨vi, vi+1, . . . , vj⟩ is defined similarly.

We select ℓ border vertices, B = {b1, . . . , bℓ}, evenly on
the contour. We apply the equi-length method to divide the
contour into disjoint subsequences such that each subsequence
has length close to L/ℓ, and select the first vertex in each
subsequence as a border vertex. We apply the equi-length
method instead of the equi-frequency method1 because road
networks are distance-based.

3) Vertex Labeling: We now present how to compute the
labels of all the vertices determined by a border vertex b.
Consider b1 in Figure 4(a), where the cuts, i.e., the shortest
paths sp(b1, bi) for 2 ≤ i ≤ 6, divide the graph into 6 zones.
We compute the cuts using the A* algorithm [13].

From now on, given a border vertex b, we use spi to denote
the cut from b that divides Zone i and Zone (i + 1), for 1 ≤
i < ℓ, which is illustrated in Figure 4(b).

The border vertices also divide the contour into disjoint
vertex subsequences {cs1, . . . , csℓ}, where csi belongs to
Zone i. For example, in Figure 4(a), cs3 corresponds to the
contour segment between b3 and b4.

Since a vertex v may belong to several zones, if v already
has label [l(v), h(v)], and it is newly found to belong to Zone i,
we need to insert i into [l(v), h(v)]. The insertion operation
is defined as follows:

• Case 1: no update is necessary if i ∈ [l(v), h(v)].
• Case 2: if i < l(v), update l(v) to be i.
• Case 3: if i > h(v), update h(v) to be i.

Given a border vertex b, we assign the labels determined by
b to all the vertices in the three steps given below:

Step 1: for 1 ≤ i < ℓ, we process each vertex v on spi

as follows: if v is not labeled, we assign label [i, i + 1] to v;
otherwise, v is already labeled by another cut, and we insert
i and i + 1 to the label of v.

Step 2: for each vertex subsequence csi of the contour, we
assign label [i, i] to the unlabeled vertices in csi, and put them
in a queue Q. Then, we start an in-zone BFS from Q, i.e., a
bread-first search that only visits the vertices within Zone i,
and assign label [i, i] to each unlabeled vertex reached.

1Equi-frequency divides the contour into disjoint subsequences such that
each subsequence contains k/ℓ vertices.

vec: <[3, 3], [3, 4], ? , ?>

v1: <[3, 3], [3, 4], ? , ?>

v2: <[3, 3], [3, 4], ? , ?>

v3: <[3, 3], [3, 4], ? , ?>

v4: <[3, 3], [3, 4], ? , ?>

v5: <[3, 3], [3, 4], ? , ?>

v6: <[3, 3], [3, 4], ? , ?>

vec: <[3, 3], [3, 4], [2, 2], ?>

v1: <[3, 3], [3, 4], [2, 2], ?>

v2: <[3, 3], [3, 4], [2, 2], ?>

vec: <[3, 3], [3, 4], [2, 3], ?>

v3: <[3, 3], [3, 4], [2, 3], ?>

v4: <[3, 3], [3, 4], [2, 3], ?>

vec: <[3, 3], [3, 4], [3, 3], ?>

v5: <[3, 3], [3, 4], [3, 3], ?>

v6: <[3, 3], [3, 4], [3, 3], ?>

Fig. 5. Region splitting

In-zone BFS avoids visiting a vertex in another zone by
stopping BFS propagation at labeled nodes, including those
on spi−1 and spi. Furthermore, it ignores bridges to ensure
that label [i, i] does not propagate across spi−1 and spi through
a bridge.

Steps 1 and 2 may not label all the vertices in Zone i. For
example, in Zone 3 of Figure 4(a), Step 1 assigns label to the
vertices (marked by ‘△’) on sp2 and sp3, while the in-zone
BFS from cs3 will only reach the vertices that are marked
by ‘∗’ within Zone 3, leaving all the other vertices that are
marked by ‘⋄’ unlabeled.

Step 3: Since Zone i is a polygon consists of the edges of
spi−1, csi and spi, we can determine whether a vertex v is in
Zone i using the ray casting algorithm.

To ensure that all vertices are marked, for each unlabeled
vertex v, we determine its zone using the ray casting algorithm
(let it be Zone i), and assign label [i, i] to each unlabeled vertex
reached from v by the in-zone BFS. Note that computing the
zone that a vertex falls in is more expensive than labeling
it through in-zone BFS from other vertices. For example, in
Zone 3 of Figure 4(a), when we find any ‘⋄’ vertex, we can
assign the label [3, 3] to all the other ‘⋄’ vertices reachable
from it via in-zone BFS.

Vertex labeling, along with graph partitioning, is performed
in ℓ rounds, where round i is for border vertex bi ∈ B.

In round 1, we partition G into ℓ regions by (ℓ − 1) cuts,
sp(b1, bj) for 2 ≤ j ≤ ℓ, and assign vec(v)[1] for each v ∈ V .
Then, in round 2, we further partition G into smaller regions
by (ℓ − 1) cuts, sp(b2, bj) for 1 ≤ j ≤ ℓ and j ̸= 2, and
assign vec(v)[2] for each v ∈ V . This process repeats until
we process all the ℓ border vertices.

In fact, instead of keeping vec(v) for each v ∈ V , we only
need to keep vec(R) for each region R obtained in each round,
since vec(v) = vec(R) if v is in R. When R is partitioned into
k smaller regions in a following round, we split vec(R) into
k label vectors by adding another dimension. For example,
Figure 5 illustrates the splitting of a region in round 2 into
three regions in round 3, where we add the 3-rd dimension to
the label vectors to distinguish among the new regions created
in round 3.

At the end of round ℓ, we obtain the region set R, where
each region R has a distinct vec(R) with ℓ dimensions.

Complexity analysis. Recall that computing the contour
takes O(

√
|V | log |V |) time. Since we have ℓ border ver-

tices, computing all the cuts from the border vertices takes
O(ℓ2|V | log |V |) time. For the vertex labeling, since most ver-
tices are assigned label by in-zone BFS, it takes approximately

O(|V | + |E|) = O(|V |) time; and since we have ℓ rounds of
vertex labeling, we need O(ℓ|V |) time in total. Therefore, the
overall time complexity of graph partitioning is approximated
by O(ℓ2|V | log |V |).

C. Query Processing by Finding Regions

Given an (S, T)-DPS query (similarly for a Q-DPS query),
we use the region set R to construct a DPS G′ = (V ′, E′)
that preserves dist(s, t) for any s ∈ S and t ∈ T . Since we
consider only planar road networks in this section, sp(s, t)
does not contain a bridge edge.

The DPS G′ is computed by the following two steps:
1) Compute an ℓ-dimensional label vector, called a window

W , from the query sets S and T , such that all points in
(S ∪ T) are contained in the region represented by W .

2) Find all the regions in R that are contained in the region
represented by W , and add their vertices to V ′.

While all the vertices in a region R ∈ R have the same
label vector, we define the region represented by W differently.
Let us use the label vector W to directly refer to the region
represented by W . Then, a vertex v is in W , if and only if for
each dimension i (let W [i] = [lW , hW]), v belongs to at least
one of Zones lW –hW determined by border vertex bi. Thus,
vertices in W can have different label vectors.

Before we discuss the details of query processing, we first
give the following two label operations that are used in the
subsequent discussion. Let [l, h] and [l′, h′] be two zone labels.

• Label union: [l, h] ∪ [l′, h′] = [min(l, l′),max(h, h′)].
• Label intersection: if max(l, l′) ≤ min(h, h′), [l, h] ∩

[l′, h′] = [max(l, l′),min(h, h′)]; otherwise, [l, h] ∩
[l′, h′] = ∅.

Next, we present a pruning strategy employed in our query
processing. A region R ∈ R can be pruned by checking
vec(R) against W as stated in Theorem 2 below.

We first give Lemma 2 which is used in the proof of
Theorem 2.

Lemma 2: Given a cut sp that divides a road network into
two sides, let s and t be two vertices that are both on one side
of the cut, then there exists a shortest path sp(s, t) that does
not go across sp to the other side.

Proof: Consider the example in Figure 6(a) where s and
t are on the right side of the cut sp2. Suppose on the contrary
that sp(s, t) (i.e., the bold path) goes across sp2 to the other
side of the cut. Since in this section we consider G as a planar
graph, sp(s, t) and sp2 must intersect at two points m1 and
m2 as shown in Figure 6(a). Since sp2 is a shortest path,
the sub-path between m1 and m2 on sp2 is also a shortest
path, denoted by sp(m1,m2). Therefore, the path composed
of sp(s,m1), sp(m1,m2) and sp(m2, t) is not longer than
sp(s, t), which gives another shortest path from s to t that
does not go across sp2 to the other side.

Theorem 2: A region R ∈ R can be pruned if there exists
a dimension i such that vec(R)[i] ∩ W [i] = ∅.

Proof: We prove that if vec(R)[i]∩W [i] = ∅, then ∀s ∈ S
and t ∈ T , sp(s, t) does not contain any vertex in R.

R

(a) (b)

T

1

2

3 4
5

6

S
W

t
t’

R 1

2

3 4
5

6

W

t

s
m1

m2

Fig. 6. Query processing by finding regions

Let W [i] = [lW , hW] and vec(R)[i] = [lR, hR], then W
is bounded by cuts splW −1 and sphW with respect to bi. For
example, in Figure 6(a), W [i] = [3, 4] is bounded by cuts sp2

and sp4.
Since vec(R)[i]∩W [i] = ∅, we have hR < lW or hW < lR.

Without loss of generality, let us assume hR < lW . Since W
covers all points in S ∪ T , ∀s ∈ S and t ∈ T , s and t are
one side of splW −1 and all vertices in R are on the other side.
According to Lemma 2, sp(s, t) does not contain any vertex
in R.

To illustrate, Figure 6(b) shows the process of computing
the i-th dimension of the window W : since all points in S
and T are contained in Zones 3 and 4, we have W [i] = [3, 4].
We can prune a region R if vec(R)[i] = [2, 2], since sp(s, t)
does not pass through Zone 2. However, we cannot prune R
if vec(R)[i] = [2, 3], since R is contained in Zone 3.

Theorem 2 implies that a region R ∈ R is not pruned only
if ∀i, vec(R)[i] ∩ W [i] ̸= ∅, i.e., R is contained by W .

The above discussion shows that it is critical to compute a
tight window. Given query Q (we set Q = (S ∪ T) for query
(S, T)), let R(Q) = ∪q∈Q R(q) be the set of regions in R
that contain some vertices in Q. A simple way to compute the
window is given below:

W [i] = ∪R∈R(Q) vec(R)[i],∀i. (1)

However, the window computed by Equation (1) can be
quite loose. Consider the example shown in Figure 6(b), where
there are two vertices t, t′ ∈ T , with vec(t)[i] = [4, 6] and
vec(t′)[i] = [4, 4]. Due to the presence of t, by Equation (1)
we have W [i] ⊇ [4, 6], i.e., W [i] contains Zones 4, 5 and 6.
As a result, the region R with vec(R)[i] = [6, 6] cannot be
pruned using Theorem 2 since [4, 6] ∩ [6, 6] ̸= ∅. However,
W [i] = [3, 4] is sufficient for the example in Figure 6, and
R can be safely pruned since [3, 4] ∩ [6, 6] = ∅. Although
vec(t)[i] = [4, 6], it is not necessary to include Zones 5 and
6 into W since t is contained in Zone 4. On the other hand,
Zone 4 must be included in W because vec(t′)[i] = [4, 4].

We propose to obtain a tight window by the following steps:
1) Window initialization: For each dimension i, if there

exists R ∈ R(Q) such that vec(R)[i] = [l, l], we
set W [i] = vec(R)[i]; otherwise, we pick an arbitrary
region R ∈ R(Q) with vec(R)[i] = [l, h] and set
W [i] = [l, l]. Let W [i] = [lW , hW]. In either case, we
initialize lW = hW for each dimension i.

2) Window expansion: given the current window W and a
region R ∈ R(Q), let vec(R)[i] = [lR, hR]. We expand
W for each R ∈ R(Q) in turn as follows:

Case 1: if W [i] ∩ vec(R)[i] ̸= ∅, W [i] remains un-
changed. For example, consider the case when W [i] =
[3, 4] and vec(R)[i] = [4, 6].
Case 2: if lW > hR, we set W [i] = [hR, hW]. For
example, when W [i] = [3, 4] and vec(R)[i] = [1, 2],
W [i] is updated to [2, 4].
Case 3: if lR > hW , we set W [i] = [lW , lR]. For
example, when W [i] = [3, 4] and vec(R)[i] = [5, 6],
W [i] is updated to [3, 5].

The following theorem proves the correctness of query
processing.

Theorem 3: Given a Q-DPS query (set Q = (S ∪ T) for
an (S, T)-DPS query), let G′ be the subgraph of G induced
by the set of vertices that are in the regions contained by W .
Then, G′ is a DPS for Q when G is planar.

Proof: The correctness of this method follows from the
fact that all regions in R(Q) are contained in W .

Complexity analysis. It takes O(|Q|) = O(|V |) time to
compute R(Q), O(ℓ|R(Q)|) = O(ℓ|R|) time to compute W ,
O(ℓ|R|) time to find the regions contained by W , and O(V)
time to add the vertices in these regions into V ′. Thus, query
processing takes O(ℓ|R| + |V |) time.

V. HANDLING NON-PLANAR ROAD NETWORKS

In this section, we extend RoadPart to process DPS queries
in non-planar road networks.

A. Finding Bridges

A real road network usually contains a small portion of
bridges, i.e., edges that cross other edges (modeling flyovers,
tunnels, etc.). We need to find all the bridges in the indexing
phase of RoadPart, which are then used for answering DPS
queries.

Given a non-planar road network G = (V, E), the problem
of finding all the bridges of G is actually a self-spatial-join of
the edge set E, where the spatial predicate is edge intersection.

We use indexed-nested-loop join to find the bridges, where
the index is the R-tree Rtree(E). We check each edge (u, v) ∈
E, and if it is not yet marked as a bridge, we find its crossing
edges by an intersection query on Rtree(E); if there exists
a crossing edge, we mark (u, v) and its crossing edges as
bridges.

B. DPS Construction Using Bridges

Referring to Lemma 2 in Section IV-C again, we can see
that as long as sp(s, t) does not pass through a bridge (and
thus m1 and m2 in its proof exist), sp(s, t) does not need to
go across cut sp. Thus, we have the following corollary of
Lemma 2 in the context of a non-planar road network.

Corollary 1: Given a cut sp, let s and t be two vertices on
one side of sp. If sp(s, t) does not pass through a bridge, it
does not go across sp to the other side of sp.

Corollary 2: Given a cut sp, let s and t be two vertices
inside W . If sp(s, t) does not pass through a bridge, then
sp(s, t) is inside W .

(a) (b)

u v
UD VD

u v

S T

u v
S T

(c)

Fig. 7. Bridge domain

Proof: Suppose that sp(s, t) does not pass through a
bridge. For any cut sp that forms a boundary of W , sp(s, t)
does not go across sp according to Corollary 1. The corollary
follows since sp is an arbitrary cut that forms a boundary of
W .

We now compute a DPS G′ such that G′ contains sp(s, t)
for all s ∈ S and t ∈ T , whether or not sp(s, t) passes through
a bridge. We assume that all the vertices contained in the
window W computed in Section IV-C are already added into
V ′, before we consider the bridges.

1) Bridge Domain: To include the shortest paths passing
through a bridge (u, v) into the DPS G′, we need the concept
of bridge domain: a bridge (u, v) has two domains UD =
{x ∈ V |dist(x, u) = dist(x, v) + |vu|} and V D = {x ∈
V |dist(x, v) = dist(x, u) + |uv|}.

Intuitively, UD contains all the vertices x ∈ V with sp(x, u)
passing through v, and V D contains all the vertices x ∈ V
with sp(x, v) passing through u. Figure 7(a) shows an example
of UD and V D of the bridge (u, v).

We now present two properties of the bridge domains.

Theorem 4: UD and V D are disjoint, i.e. UD ∩ V D = ∅.
Proof: We first prove that if x ∈ UD, then x ̸∈ V D: if

x ∈ UD, dist(x, u) = dist(x, v)+|vu|, and thus dist(x, v) <
dist(x, u) < dist(x, u)+|uv|, i.e., x ̸∈ V D. Similarly, we can
prove that x ̸∈ UD if x ∈ V D, and thus UD ∩ V D = ∅.

Theorem 5: If s ̸∈ V D or t ̸∈ UD, sp(s, t) does not pass
through (u, v).

Proof: If sp(s, t) passes through (u, v), then (1)sp(s, v)
must pass through (u, v), and thus s ∈ V D; and (2)sp(u, t)
must pass through (u, v), and thus t ∈ UD.

Since the graph is undirected, we also have: if s ̸∈ UD or
t ̸∈ V D, sp(s, t) does not pass through (v, u) = (u, v).

We use UD∗ to denote UD ∩ (S ∪ T), and use V D∗ to
denote V D ∩ (S ∪ T). Theorem 5 implies that if UD∗ = ∅
or V D∗ = ∅, the bridge (u, v) can be safely pruned, i.e., we
do not need to consider (u, v) in computing the DPS.

Figure 7(c) shows an example where V D∗ = ∅ and thus
(u, v) is pruned. Figure 7(b) shows an example where V D∗ ̸=
∅ and UD∗ ̸= ∅, in which case bridge (u, v) cannot be pruned.

Since the graph is undirected, there are two cases for each
bridge (u, v): (1)s ∈ V D and t ∈ UD, and (2)s ∈ UD and
t ∈ V D. We include the paths sp(x, u) and sp(v, x), for all
x ∈ UD∗∪V D∗, into the GPS G′ computed in Section IV-C.
This operation can be done in O(|V |) time using the vertex
collection method presented in Section III-A.

u
4

u
1 v

1

u
2

v
2

u
3

v
3

v
4

Fig. 8. Bridge pruning

2) Domain Computation: Given a bridge (u, v), we com-
pute UD∗ and V D∗ simultaneously by Dijkstra’s algorithm.
In Dijkstra’s algorithm, we use a min-heap to keep those
vertices whose distance from the source vertex has not been
determined, where the key is the estimated distance of each
vertex in the heap. We maintain two min-heaps, Qu and Qv ,
for running Dijkstra’s algorithm from u and v, respectively,
and compute UD∗ and V D∗ as follows.

Each time, we compare the minimum keys of Qu and Qv .
Assume that Qu has a smaller minimum key than Qv (the case
when Qv has a smaller minimum key is symmetric), then we
remove the vertex, x, that has the minimum key from Qu. The
exact distance of x from u, i.e., dist(x, u), is then computed.
If dist(x, v) has been computed, i.e., x is removed from Qv

before it is removed from Qu due to dist(x, v) ≤ dist(x, u),
then x ̸∈ V D and we only check whether x ∈ UD, i.e.,
dist(x, u) = dist(x, v) + |vu|. If so, x is put into UD∗ only
if x ∈ S ∪ T .

Since we only compute UD∗ and V D∗, we may stop
running Dijkstra’s algorithm as soon as the distance from u
and v to all the vertices in S ∪ T are computed.

C. Bridge Categorization and Pruning

So far, we prune a bridge (u, v) only if UD∗ or V D∗ is
empty. However, it is too expensive to compute UD∗ and
V D∗ for every bridge (u, v). We now show that only a small
fraction of the bridges needs to be examined, while the others
can be pruned directly without computing UD∗ and V D∗.

Bridge categorization. With respect to the window W
computed in Section IV-C, a bridge (u, v) belongs to one of
the following three types:

• Interior bridge: (u, v) is inside W , e.g., (u1, v1) in
Figure 8.

• Cut bridge: (u, v) crosses a cut that forms a boundary
of W , e.g., (u2, v2) and (u3, v3) in Figure 8.

• Exterior bridge: (u, v) is neither an interior bridge nor
a cut bridge, e.g., (u4, v4) in Figure 8.

We can determine the bridge type using vec(u), vec(v), and
W . Consider the case when the cuts from bi divide the road
network into zones. Given a vertex v with label vec(v)[i] =
[lv, hv], and suppose that W [i] = [lW , hW], we define a
comparison operation comp(vec(v)[i],W [i]) as follows:

• If lv > hW , comp(vec(v)[i],W [i]) = 1:
◦ e.g., if vec(v)[i] = [5, 6] and W [i] = [3, 4], then
comp(vec(v)[i], W [i]) = 1, meaning that vec(v)[i] is strictly
larger than W [i].

• If lW > hv , comp(vec(v)[i],W [i]) = −1:
◦ e.g., if vec(v)[i] = [1, 2] and W [i] = [3, 4], then
comp(vec(v)[i], W [i]) = −1, meaning that vec(v)[i] is strictly
smaller than W [i].

• Otherwise, comp(vec(v)[i],W [i]) = 0:
◦ e.g., if vec(v)[i] = [2, 3] and W [i] = [3, 4], then
comp(vec(v)[i], W [i]) = 0, meaning that v is in Zone 3, which
is contained by W [i].

We now present how to determine whether a bridge (u, v)
is a cut bridge, using vec(u), vec(v), and W :

Observation 1: Given a bridge (u, v), Let us use
compu and compv to denote comp(vec(u)[i],W [i]) and
comp(vec(v)[i], W [i]), respectively. We also use sp1 and
sp2 to denote the two cuts that form the boundary of
W [i] in dimension i. Then, (u, v) is a cut bridge if one
of the following three cases is true for some dimension i:
(1) compu · compv = −1; or (2) compu = 0 and compv ̸= 0;
or (3) compu ̸= 0 and compv = 0.

Proof: Note that the cuts sp1 and sp2 (from a border
vertex bi) divide the space into three parts, assuming that the
three sub-spaces are: Space 1 (which is the side of sp1 that
does not contain W), Space 2 (which is between sp1 and sp2,
i.e., W [i]), and Space 3 (which is the side of sp2 that does
not contain W).

In Case (1), u falls in Space 1 (or Space 3) and v falls in
Space 3 (or Space 1). In Case (2), u falls in Space 2 and v
falls in either Space 1 or Space 3. In Case (3), v falls in Space
2 and u falls in either Space 1 or Space 3. Since u and v are
in two different spaces in each of the three cases, (u, v) is a
cut bridge crossing sp1 or/and sp2.

Bridge pruning. Although we can also find interior and
exterior bridges, we show that it is not necessary to find these
bridges: they can be pruned directly since only cut bridges
need to be examined.

Lemma 3: Given a cut sp, let s and t be two vertices on
one side of sp. If sp(s, t) needs to go across sp to the other
side, then sp(s, t) passes through a bridge crossing sp.

Proof: Referring to the proof of of Lemma 2: since
sp(s, t) needs to go across sp to the other side, m1 and m2

cannot both occur. Therefore, sp(s, t) passes through a bridge
crossing sp.

Theorem 6: Interior and exterior bridges can be pruned.
Proof: We first prove that interior bridges do not need to

be examined. For any s ∈ S and t ∈ T , suppose that sp(s, t)
passes through n interior bridges (u1, v1), (u2, v2), . . . , (un,
vn). Let us define SP = {sp(s, u1), sp(v1, u2), . . . , sp(vn,
t)}, then all the sources and destinations of the paths in SP
are inside W . Case 1: if any path in SP passes through a
non-interior bridge (u′, v′), sp(s, t) is already included into
G′ when we process (u′, v′). Case 2: otherwise, any path in
SP does not pass though a bridge (interior or non-interior),
and according to Corollary 2, all the paths in SP are inside
W . Therefore, sp(s, t) is inside W and thus inside G′.

Next, we prove that external bridges do not need to be
examined. For any s ∈ S and t ∈ T , suppose that sp(s, t)
passes through an external bridge (u, v), meaning that u and
v are on one side of some cut (which can be any cut that forms
a boundary of W), while W is (and thus s and t are) on the
other side of the cut. According to Lemma 3, sp(s, t) passes
through a bridge (u′, v′) crossing the cut. Note that (u′, v′)
is a cut bridge, and thus sp(s, t) is already included into G′

when we process the cut bridge (u′, v′).

For the cut bridges, we further show that only a small
portion of them need to be examined. We identify those cut
bridges by running the BL-E algorithm presented in Sec-
tion III-B, as stated by the following corollary of Theorem 1:

Corollary 3: A cut bridge (u, v) can be pruned if
dist(vc, u) > 2r or dist(vc, v) > 2r.

Finally, we present our last pruning rule for cut bridges.
Let L be a list of cut pairs (spi

1, sp
i
2) that form the boundary

of W , where spi
1 and spi

2 are the two cuts from the border
vertex bi that bounds W [i]. Assume that the cut pairs in
L are in the same order as the label dimension index, i.e.
L = {(sp1

1, sp
1
2), . . . , (sp

ℓ
1, sp

ℓ
2)}. Then, we have the following

pruning rule for cut bridges:
Theorem 7: Given a cut bridge (u, v), let (spj

1, sp
j
2) be the

first cut pair in L such that (u, v) crosses spj
1 (or spj

2). Then,
(u, v) can be pruned if there exists i < j, such that u and v
are both on the side of spi

1 (or spi
2) that does not contain W .

Proof: Let Sk be the set of cut bridges (u′, v′) that are
not pruned by Theorem 7, such that (spk

1 , spk
2) is the first cut

pair in L with (u′, v′) crossing spk
1 (or spk

2). Thus, S1 consists
of all the cut bridges crossing sp1

1 or sp1
2.

Now consider a cut bridge (u, v) described in Theorem 7
and assume that u and v are both on the side of spi

1 that
does not contain W (the case for spi

2 is symmetric). For
any s ∈ S and t ∈ T , suppose that sp(s, t) passes through
(u, v). Then, according to Lemma 3, sp(s, t) passes through
a bridge (u1, v1) crossing the cut spi

1. If (u1, v1) ∈ Si, then
sp(s, t) is already included into G′ when (u1, v1) is processed.
Otherwise, there must exist i′ < i, such that u1 and v1 are both
on the same side of spi′

1 (or spi′

2) that does not contain W . A
recursive analysis will find a cut bridge (u′, v′) in some Si′

such that (u′, v′) includes sp(s, t) into G′ when it is processed,
since when i′ = 1, we have all the cut bridges crossing sp1

1

or sp1
2 in S1.

We can determine that u and v are both on the side of spi
1

(or spi
2) that does not contain W , if comp(vec(u)[i],W [i]) ·

comp(vec(v)[i],W [i]) = 1.
Theorem 7 also implies that we can further reduce the

number of cut bridges to examine by ordering the cut pairs
in L in non-decreasing number of cut bridges crossing either
cut in a pair, instead of being simply ordered by the label
dimension index.

D. Complexity Analysis

Let d be the maximum number of edges checked in an
intersection query on Rtree(E). Then, finding the bridges

s t

y x

s t

y
x

(a) (b)

y x

(c)

s

t

Fig. 9. An illustration of the convex hull based algorithms

by the indexed-nested-loop join takes O(|E| · (d log |E|)) =
O(|V | log |V |) time, since d is a small constant for road
networks. Thus, the overall O(ℓ2|V | log |V |) time complexity
of index construction obtained in Section IV-B remains.

Let b be the number of bridges that require domain com-
putation. Since examining a bridge takes O(|V | log |V |) time,
computing W takes O(ℓ|R|) time and constructing G′ from
W takes O(V), processing a DPS query with bridges takes
O(ℓ|R|+ b|V | log |V |) ≈ O(b|V | log |V |) time. Note that b is
a small number since only a small portion of cut bridges need
to be examined after pruning, as verified by our experiments.

VI. A CONVEX HULL METHOD

In this section, we propose a convex hull based method to
further tighten the DPS obtained by RoadPart.

The convex hull of a finite point set P in a plane, denoted
hull(P), is the minimal convex polygon containing P , and
hull(P) can be computed in O(|P | log |P |) time, using An-
drew’s Monotone Chain algorithm [11].

A. Processing Q-DPS Queries

Algorithm 1 shows our convex hull method for processing
Q-DPS queries. The input H is a DPS obtained by RoadPart,
and the output is a tightened DPS G′. The input H can also
be the original road network, but the computation is expensive
when the road network is large.

The algorithm first computes hull(Q) by Andrew’s Mono-
tone Chain algorithm [11]. For example, in Figure 9(a) the
4-sided polygon is hull(Q). We add into V ′ those vertices of
H that are contained in polygon hull(Q). (e.g., the vertices
inside the 4-sided polygon such as s and t). Then, we add the
vertices of the polygon to border(Q) (e.g., the four vertices
at the four corners of the 4-sided polygon). We also find the
edges in H that intersect with each edge qiqj on the polygon,
and add the intersection points into border(Q). We use qiqj

to denote a polygon edge to distinguish it from a graph edge
(u, v). Finally, we compute the shortest paths sp(s, t) for all
s, t ∈ border(Q), and add the vertices on the paths to V ′. We
return the subgraph of H induced by V ′ as the DPS G′.

We now prove the correctness of Algorithm 1.

Theorem 8: The graph G′ returned by Algorithm 1 is a DPS
for Q.

Proof: We prove that ∀s, t ∈ Q, the vertices on sp(s, t)
are in V ′. We have two cases. Case 1: if all the vertices
on sp(s, t) are contained in polygon hull(Q), then they are
included in V ′ in Line 2. Case 2: otherwise, there exists a
vertex x (and y) being the first (and last) point on sp(s, t)
that passes across hull(Q) (see Figure 9(a)). The vertices on
sp(s, x) and sp(y, t) are added to V ′ in Line 2, and the vertices

Algorithm 1 Convex Hull Method for Q-DPS Query
Input: a road network H , and a query set Q
Output: a DPS G′ = (V ′, E′) for Q

1: Compute a convex polygon hull(Q);
2: Add vertices of H that are contained in polygon hull(Q) to V ′;
3: border(Q)← the set of vertices of polygon hull(Q);
4: for each edge qiqj on polygon hull(Q) do
5: Find the edges in H intersecting with qiqj ;
6: Add the intersection points to border(Q);
7: for any two points s, t ∈ border(Q) do
8: Add the vertices on sp(s, t) to V ′;
9: Return G′ as the subgraph of H induced by V ′;

Algorithm 2 Convex Hull Method for (S, T)-DPS Query
Input: a road network H , and query sets S and T
Output: a DPS G′ = (V ′, E′) for (S, T)

1: Compute convex polygons hull(S) and hull(T);
2: Add vertices of H that are contained in polygon hull(S) to V ′;
3: Add vertices of H that are contained in polygon hull(T) to V ′;
4: Compute border(S) and border(T) using Lines 3-6 of

Algorithm 1, by replacing Q with S and T , respectively;
5: for any two points s ∈ border(S), t ∈ border(T) do
6: Add the vertices on sp(s, t) to V ′;
7: Return G′ as the subgraph of H induced by V ′;

on sp(x, y) are added to V ′ in Lines 7-8. Thus, the vertices
on sp(s, t) are all in V ′.

The time complexity of Algorithm 1 is dominated by that
of the SSSP computations in Lines 7-8, i.e., computing the
shortest paths from each v ∈ border(Q) to all other vertices
in border(Q), which takes O(|border(Q)| · |V | log |V |) time.
Since |border(Q)| is approximately

√
|Q|, Algorithm 1 takes

O(
√

|Q| · |V | log |V |) time.

B. Processing (S, T)-DPS Queries

The convex hull algorithm for processing (S, T)-DPS
queries, as given in Algorithm 2, is similar to Algorithm 1,
except that we process two point sets S and T .

The time complexity of Algorithm 2 is dominated by
that of computing the shortest paths from each s ∈
border(S) to each t ∈ border(T) in Lines 5-6, which takes
O(min{|border(S)|, |border(T)|} · |V | log |V |) time. Thus,
Algorithm 2 takes O(

√
min{|S|, |T |} · |V | log |V |) time.

We now prove the correctness of Algorithm 2.

Theorem 9: The graph G′ returned by Algorithm 2 is a DPS
for (S, T).

Proof: We prove that ∀s ∈ S, t ∈ T , the vertices on
sp(s, t) are in V ′. We have two cases. Case 1: if all the vertices
on sp(s, t) are inside the regions bounded by polygons hull(S)
or hull(T), then they are added to V ′ in Lines 2-3. Case 2:
otherwise, there exists a vertex x (and y) being the first (and
last) point on sp(s, t) that passes across hull(S) (and hull(T)).
This may happen as shown in Figure 9(b), i.e., y is not on
sp(s, x), in which case the vertices on sp(s, x) and sp(y, t)
are added to V ′ in Lines 2-3, and the vertices on sp(x, y) are
added to V ′ in Lines 5-6. Or it may happen as in Figure 9(c),

TABLE I
REAL ROAD NETWORK DATASETS AND INDEX CONSTRUCTION RESULTS

Name Data Size |V | |E| |Eb| |Eb|/|E| ℓ = |B| Indexing Time (sec) Index Size |R|
COL (Colorado) 32.7 MB 435,666 521,200 2,691 0.516% 20 22.8 3.1 MB 969

NW (Northwest USA) 76.1 MB 1,207,945 1,410,387 10,530 0.747% 50 372.5 9.5 MB 3014
EAST (Eastern USA) 235.7 MB 3,598,623 4,354,029 15,919 0.366% 45 1066.8 28.9 MB 4242

USA (Full USA) 1.63 GB 23,947,347 28,854,312 108,808 0.377% 70 26341 210 MB 11629

i.e., y is on sp(s, x), in which case the vertices on sp(s, y)
and sp(y, t) are added to V ′ in Lines 2 and 3, respectively.
Thus, in all cases, the vertices on sp(s, t) are added to V ′.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our algo-
rithms using large real road networks. All the experiments are
run on a Linux server with eight 3GHz Intel CPU and 32GB
memory.

Datasets. The experiments are conducted on four real road
network datasets from [18]. Table I summarizes the datasets,
where |E| corresponds to the number of undirected edges,
and |Eb| corresponds to the number of bridges. We can see
that only a very small fraction of the edges are bridges.
Furthermore, we scale the edge weights to ensure that |uv| ≥
∥uv∥ for each edge (u, v) [3], which is required by the A*
algorithm used for cut computation.

A. Results on Graph Partitioning for RoadPart Indexing

To partition a road network, we first need to determine
the number of border vertices ℓ (or |B|). We measure the
evenness of the region size, by the size of the largest region,
M , where the size of a region refers to the number of vertices
it contains. Starting from ℓ = 20, we increase ℓ by 5 each
time and partition the road network using ℓ. As ℓ increases,
the maximum region size M decreases sharply when ℓ is small,
and becomes stable when ℓ is reasonably large.

We report the performance of graph partitioning for various
values of ℓ. Figure 10(a) shows the partitioning time of
RoadPart on the EAST dataset for various values of ℓ, and
Figure 10(b) shows the number of regions |R| obtained by
partitioning. The results on other datasets are similar and
thus omitted. Although the theoretical time complexity of our
partitioning algorithm is quadratic in ℓ, in practice our results
show that the partitioning time and the number of regions
increase almost linearly as ℓ increases. This is because, in each
of the ℓ rounds of vertex labeling, the time for computing ℓ
cuts using the A* algorithm is insignificant compared with the
time for the in-zone BFS based vertex labeling.

We increase ℓ until the maximum region size M becomes
stable, and choose the value of ℓ that leads to the smallest M
for partitioning. The obtained region set R is then used for
later experiments. Table I reports the value of ℓ we set for each
dataset, the indexing time (mostly for graph partitioning), the
index size, and the number of regions partitioned. We can see
that the offline indexing time and the index size are acceptable
even for a road network with tens of millions of vertices.

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 30 35 40 45 50 55 60

E
xe

c
T

im
e

(s
ec

)

Number of Border Vertices

RoadPart

(a) Running Time

 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

 30 35 40 45 50 55 60

N
um

be
r

of
 R

eg
io

ns

Number of Border Vertices

RoadPart

(b) Number of Regions |R|

Fig. 10. Effect of ℓ on graph partitioning for RoadPart indexing

Compared with the size of the road networks, the size of our
index is about an order of magnitude smaller.

B. Results on DPS Query Processing

To assess the performance of our algorithms for processing
DPS queries, we first discuss how we generate the queries
and the measures we use to record the performance. Then, we
present the performance results.

Query generation. To study the scalability of our algorithms
for answering DPS queries, for each road network dataset G =
(V,E), we generate a query set S and T (or Q) as follows.
Let us denote the MBR of all the vertices in V by mbr(V),
and denote the width (height) of mbr(V) by W (H). We first
generate a εW ×εH rectangular window over G, where ε < 1
is a parameter that controls the window size, and then put all
the vertices in the window into the query set.

For an (S, T)-DPS query, we generate both S and T using
the same ε. Furthermore, we use another parameter ε′ to
control how far S and T are: the distance between the window
centers is equal to ε′W .

Measures. During the query processing of RoadPart, we
call a bridge (u, v) as examined if it is not pruned by the
rules described in Section V-C, and thus UD∗ and V D∗ are
computed as discussed in Section V-B.2; we call (u, v) valid
if it introduces vertices into V ′ (i.e., when UD∗ ̸= ∅ and
V D∗ ̸= ∅).

We use the following measures to evaluate the performance
of our algorithms: (1) query processing time; (2) DPS size;
(3) the number of examined bridges; and (4) the number of
valid bridges.

Query processing time. Table II shows some representa-
tive results about the performance of our algorithms on the
real datasets. The complete results are given in an online
appendix [19]. For Q-DPS queries, we vary ε (and thus |Q|);
while for (S, T)-DPS queries, we fix ε and vary ε′ (and thus,
how far apart S and T are).

TABLE II
RESULTS ON QUERY PROCESSING TIME (WALL CLOCK TIME IN SEC) AND DPS QUALITY

ε |Q| BL-E RoadPart Convex Hull Method BL-Q
Time |V ′| Time b bv |V ′| Time |border| |V ′| Time |V ′|

Q-DPS queries on USA
2% 16,562 0.4 194,095 2.3 3 0 103,633 102 (13.9) 369 18,497 3,838 17,561
4% 66,443 0.8 930,999 42.7 25 0 345,524 441 (120) 853 74,018 29,455 71,542
6% 177,876 1 1,450,931 86.2 40 0 536,824 1,567 (336) 1,701 190,441 129,088 184,809
8% 347,308 1.9 2,693,966 154 49 0 729,538 2,400 (476) 1,708 363,336 419,529 355,026
10% 507,807 2.7 3,892,420 319 76 0 894,506 3,534 (696) 1,833 528,258 866,048 521,651

Q-DPS queries on EAST
5% 21,190 0.3 423316 7 10 0 106,750 49 (17.9) 448 24,787 1,831 22,974
10% 90,567 1 1369625 18.1 18 0 154,456 347 (89.4) 691 96,432 29,773 95,009
15% 241,118 1.5 2606948 45.9 45 5 503,897 920 (233) 1,134 251,748 164,159 245,934
20% 448,735 1.7 3010128 35.7 37 1 865,989 1,644 (645) 1,774 466,701 403,426 457,645
25% 665,259 1.8 3193448 82.1 72 2 1,136,570 2,378 (882) 1,956 688,826 737,853 677,231

Q-DPS queries on COL
10% 6,112 0.1 98,251 1.4 14 0 44,909 3.1 (1) 156 6,999 96.5 6,665
20% 30,968 0.2 286,347 5.7 37 1 108,670 52 (17.1) 598 37,679 2,364 34,089
30% 81,574 0.2 399,698 4.9 30 1 162,404 86.9 (36.8) 787 94,122 9,875 86,310
40% 156,485 0.2 435,079 4.9 29 2 263,346 93.4 (59.9) 749 165,820 23,533 159,623
50% 204,812 0.2 435,666 4.9 28 1 287,775 95.6 (60.3) 709 212,930 38,011 208,885

ε′ |S| |T | BL-E RoadPart Convex Hull Method BL-Q
Time |V ′| Time b bv |V ′| Time |border| |V ′| Time |V ′|

(S, T)-DPS queries on USA (ε=0.04)
2% 60,011 84,939 1 1,255,634 55 30 0 419,391 487 (108) 818 120,747 40,400 116,744
4% 54,413 87,808 1.6 2,062,571 141 52 0 606,434 619 (173) 738 152,790 41,170 147,808
6% 47,055 110,622 2.2 3,101,715 149 52 1 729,539 4,409 (171) 689 203,071 58,828 172,256
8% 40,416 102,353 2.7 3,959,442 346 79 0 854,078 1,016 (194) 688 168,401 61,957 162,493
10% 30,361 88,547 3.4 4,951,731 499 85 1 913,247 2,082 (274) 711 147,233 60,415 141,731

For RoadPart, we report the number of examined bridges,
denoted by b, and the number of valid bridges, denoted by
bv , in Table II. For the convex hull method, we report its
running time on the original road network, as well as that
on the DPS obtained by RoadPart (in the parentheses). We
also report |border(Q)| (or min{|border(S)|, |border(T)|}),
denoted by |border|, in Table II. We find in our experiments
that |border| and |V ′| are the same for the convex hull method
whether the input is the original road network or the DPS,
which shows that the DPS found by the convex hull method
is strictly tighter than the one found by RoadPart.

The results show that BL-E answers a Q-DPS query in
seconds, RoadPart in minutes, the convex hull method in less
than an hour, and BL-Q in many hours. For RoadPart, only
a small number of bridges need to be examined, which is a
very small fraction of all the bridges (see the “|Eb|” column
in Table I). Besides, at most a few of these bridges introduce
vertices into V ′. The results thus verify the effectiveness of
our bridge pruning rules.

RoadPart is over one order of magnitude faster than the
convex hull method on the original road network, and scales
well with |Q|. This result is because examining a bridge (u, v)
requires SSSP computation with sources u and v, for which
RoadPart performs 2b rounds of SSSP computation if b bridges
are examined, while the convex hull method requires |border|
rounds of SSSP computation. As shown in Table II, |border|
is much larger than 2b and thus the convex hull method is
much more expensive.

 0
 2
 4
 6
 8

 10
 12
 14

 2 3 4 5 6 7 8 9 10

R
at

io
 o

f
|V

’|

ε

Hull
RoadPart

BL-E

(a) Results on USA

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20 25

R
at

io
 o

f
|V

’|
ε

Hull
RoadPart

BL-E

(b) Results on EAST

Fig. 11. DPS quality comparison

We also note that running the convex hull method on the
DPS obtained by RoadPart is several times faster than running
it on the original road network, even if we include the query
processing time of RoadPart in the total running time.

DPS quality/size. We can see from Table II that |Q| is
quadratic in ε. This is because, the size of the query window
is εW × εH , which is quadratic in ε.

Recall that BL-Q returns the smallest DPS; thus, we com-
pare the DPS size of the other three algorithms using that
of BL-Q as the baseline. Given a query set Q, suppose that
algorithm A returns a DPS G′

A = (V ′
A, E′

A) and BL-Q returns
a DPS G′

∗ = (V ′
∗ , E

′
∗), then we define the V-ratio of algorithm

A as |V ′
A|/|V ′

∗ | (≥ 1). Smaller V-ratio implies higher DPS
quality.

Figure 11 shows the V-ratio of our algorithms on datasets
USA and EAST for Q-DPS queries, where the V-ratio of all
the algorithms decreases as ε increases. The V-ratio of BL-E
is large, which shows that although BL-E finds a DPS in just

several seconds, the DPS is usually too loose to be useful.
On the other hand, the V-ratio of the convex hull method is

always close to 1 (never exceeds 1.1), which verifies that the
method finds a very high-quality DPS. Note that the convex
hull method always finds a DPS within an hour, while BL-
Q takes over a week to find the smallest DPS when |Q| is
moderately large.

As for RoadPart, the DPS returned is already tight (the V-
ratio is smaller than 2) when ε is up to 10%. But when |Q|
is too small, the DPS returned by RoadPart is not sufficiently
tight. This is because each region R ∈ R has certain granu-
larity, and as long as a vertex v ∈ R is in Q (or S ∪ T), all
the vertices in R are included in V ′. For (S, T)-DPS queries,
the DPS returned is not as tight as the convex hull method,
especially when S and T are far apart (see Table II). This is
because all the vertices in the window W determined by (S, T)
are included in V ′, although for any s ∈ S, t ∈ T , sp(s, t) only
go through several highway paths between S and T .

C. Results on Query Processing over a DPS

We now compare the performance of query processing on
the DPS with that on the original road network. Table II has
already shown that the convex hull method is much more
efficient on the DPS returned by RoadPart than on the original
road network.

We now compare the performance of PPSP computation
(i.e., the A* algorithm) on a DPS with that on the original
road network. We randomly generate 1000 vertex pairs (s, t)
according to the DPS query set, and compare the time for
computing the shortest paths sp(s, t) for all the pairs.

We find that PPSP computation is much faster on a DPS.
For Q-DPS queries on the USA dataset, when ε is 2%, it takes
173 seconds to find all the 1000 paths on the road network, 4.2
seconds on the DPS returned by RoadPart, and 1.8 seconds on
the DPS returned by the convex hull method. When ε is 6%,
it takes 394 seconds on the original road network, 55 seconds
on the DPS returned by RoadPart, and 31 seconds on the DPS
returned by the convex hull method. The complete results are
reported in our online appendix [19].

Shortest path computation is faster on a DPS because
vertices in (V − V ′) are neither initialized (by setting the
distance estimations to +∞) nor visited. Since network dis-
tance computation is basic to many other queries in road
networks [2], [3], [4], we expect that it is also much faster
to process these queries on the DPSs than on the original road
network.

VIII. RELATED WORK

Road network partitioning has been used for point to point
shortest path query indexing [6] and monitoring proximity
relations [1]. [6] proposed to partition the road network by
a vertex k-d tree, while [1] proposed to partition the road
network by cuts like RoadPart. However, [1] adopts a grid-
like partitioning scheme that only allows graph pruning on two
dimensions, while RoadPart allows pruning on ℓ dimensions.
Furthermore, the partitioning scheme of [1] may not be correct

for real road networks since it assumes that a road network
is planar. Finally, [1] does not give an algorithm for finding a
contour and labeling the vertices.

Convex hull has been applied in [4] to process optimal
meeting point queries. In this work, we use convex hull to
help find a tight DPS.

A large number of shortest path indices have been proposed
for road networks, including [7], [8], [9], [10] that require pre-
materialization of all-pair shortest paths, and [15], [16] that
focus on techniques for processing queries online efficiently.
Our work is orthogonal to these works, since we find a DPS
for a query point set, and the existing shortest path indices
can be built on the DPS.

IX. CONCLUSIONS

In this paper, we propose four algorithms to answer
distance-preserving subgraph (DPS) queries. Among the al-
gorithms, BL-E is fast but the DPS it computes is too loose,
while BL-Q computes the smallest DPS but is too slow. On
the contrary, our RoadPart framework provides a nice tradeoff
between DPS quality and query processing time, and can be
used at the server-end for finding DPS, which fits many real
life application scenarios (see Section I for the details). At the
client-end, we recommend to use the convex hull method to
refine the DPS returned from the server, which is considerably
faster than BL-Q and returns a very tight DPS.

REFERENCES

[1] Z. Xu and H.-A. Jacobsen. “Processing Proximity Relations in Road
Networks”. In SIGMOD, 2010.

[2] X. Xiao, B. Yao and F. Li. “Optimal Location Queries in Road Network
Databases”. In ICDE, 2011.

[3] M. L. Yiu, N. Mamoulis and D. Papadias. “Aggregate Nearest Neighbor
Queries in Road Networks”. In TKDE, 2005.

[4] D. Yan, Z. Zhou and W. Ng. “Efficient Algorithms for Finding Optimal
Meeting Point on Road Networks”. In VLDB, 2011.

[5] Z. Xu. “Efficient Location Constraint Processing for Location-Aware
Computing”. Ph.D. Thesis, Univ. of Toronto, 2009.

[6] G. Kellaris and K. Mouratidis. “Shortest Path Computation on Air
Indexes”. In VLDB, 2010.

[7] H. Samet, J. Sankaranarayanan and H. Alborzi. “Scalable Network
Distance Browsing in Spatial Databases”. In SIGMOD, 2008.

[8] J. Sankaranarayanan, H. Samet and H. Alborzi. “Path Oracles for Spatial
Networks”. In VLDB, 2009.

[9] E. Cohen, E. Halperin, H. Kaplan and U. Zwick. “Reachability and
Distance Queries via 2-Hop Labels”. In SODA, 2002.

[10] R. Jin, N. Ruan, Y. Xiang and V. E. Lee. “A Highway-Centric Labeling
Approach for Answering Distance Queries on Large Sparse Graphs”. In
SIGMOD, 2012.

[11] F. P. Preparata and M. I. Shamos. “Computational Geometry: An
Introduction”. Springer-Verlag, 1985.

[12] S. T. Leutenegger, J. M. Edgington and M. A. Lopez. “STR: A Simple
and Efficient Algorithm for R-tree Packing”. In Technical Report,
Institute for Computer Applications in Science and Engineering, 1997.

[13] S. Shekhar, A. Kohli and M. Coyle. “Path Computation Algorithms for
Advanced Traveller Information System (ATIS)”. In ICDE, 1993.

[14] S. Yang, X. Yan, B. Zong and A. Khan. “Towards Effective Partition
Management for Large Graphs”. In SIGMOD, 2012.

[15] R. Geisberger, P. Sanders, D. Schultes and D. Delling. “Contraction Hi-
erarchies: Faster and Simpler Hierarchical Routing in Road Networks”.
Experimental Algorithms, 2008.

[16] Y. Tao, C. Sheng and J. Pei. “On k-skip Shortest Paths”. In SIGMOD,
2011.

[17] http://research.microsoft.com/en-us/projects/trinity
[18] http://www.dis.uniroma1.it/challenge9/download.shtml
[19] http://www.cse.ust.hk/˜yanda/papers/partApp.pdf

