
Personalized Query Suggestion With

Diversity Awareness

Di Jiang, Kenneth Wai-Ting Leung, Jan Vosecky, Wilfred Ng

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{dijiang, kwtleung, jvosecky, wilfred}@cse.ust.hk

Abstract— Query suggestion is an important functionality
provided by the search engine to facilitate information seeking
of the users. Existing query suggestion methods usually focus
on recommending queries that are the most relevant to the
input query. However, such relevance-oriented strategy cannot
effectively handle query uncertainty, a common scenario that the
input query can be interpreted as multiple different meanings. To
alleviate this problem, the concepts of diversification and person-
alization have been individually introduced to query suggestion
systems. These two concepts are often seen as incompatible
alternatives, because diversification considers multiple aspects of
the input query to maximize the probability that some query
aspect is relevant to the user while personalization aims to
adapt the suggestions to a specific aspect that aligns with the
preference of a specific user. In this paper, we refute this
antagonistic view and propose a new query suggestion paradigm,
Personalized Query Suggestion With Diversity Awareness (PQS-
DA) to effectively combine diversification and personalization
into one unified framework. In PQS-DA, the suggested queries
are effectively diversified to cover different potential facets of
the input query while the ranking of suggested queries are
personalized to ensure that the top ones are those that align with
a user’s personal preference. We evaluate PQS-DA on a real-life
search engine query log against several state-of-the-art methods
with respect to a variety of metrics. The experimental results
verify our hypothesis that diversification and personalization can
be effectively integrated and they are able to enhance each other
within the PQS-DA framework, which significantly outperforms
several strong baselines with respect to a series of metrics.

I. INTRODUCTION

Query suggestion is an important functionality provided

by contemporary web search engines to help users formulate

more effective search queries [1]. Most of the existing query

suggestion methods [2][3][4][1][5] belong to the category

of relevance-oriented query suggestion, which focuses on

maximizing the overall relevance of the suggested queries in

response to an input query. However, since search queries are

typically short and ambiguous [6], the simplistic relevance-

oriented methods usually fail in the face of query uncertainty,

which widely exists in the scenario of general web search.

Consider the following example of query uncertainty: When

the search query “sun” is submitted to the search engine, the

underlying information need can be related to at least one of

the three facets: the star of the solar system, the computer

manufacturer named Sun Microsystems or a newspaper in

the United Kingdom. In this case, the relevance-oriented

approaches usually generate suggestions that cover a few

or even one facet, such as only suggesting queries about

Sun Microsystems. Obviously, the results are unsatisfactory

when the user is searching for information about the other

interpretations.

To alleviated the aforementioned problem, the recent strands

of query suggestion research can be broadly separated into two

categories: introducing either diversification or personalization

to the conventional query suggestion. Some researchers have

introduced diversification to web search results [7][8][9], rec-

ommendation systems [10][11] and query suggestion systems

[6][12]. The logic of diversification is to cover as many facets

of the input query as possible with a single query sugges-

tion list. More specifically, diversification aims to minimize

the number of the totally unsatisfied users, trading degrees

of satisfaction in exchange for increasing the size of the

satisfied population. The downside of diversification is that,

for a specific user, the query suggestion lists may contain

irrelevant suggestions and the irrelevant ones may even be

ranked much higher than the relevant ones. For instance, when

a user submits the query “sun” to search for some information

about Sun Microsystems, presenting a suggestion list in which

queries such as “solar energy” or “sun daily uk” are ranked

higher than “oracle sun” or “sun solaris” is disappointing.

As an alternative approach to tackle query uncertainty, some

researchers propose to apply personalization in order to iden-

tify the suggestion candidates that are most similar to the

user’s search history [13][14]. In contrast to diversification,

personalization strives to get further knowledge through a

user’s search history, in order to reduce the uncertainty of

the input query. Essentially, personalization narrows down the

scope of the possible interpretations to those that only align

with the a user’s personal preference. However, web search

is essentially dynamic and a user’s preference changes over

time. For example, when a computer scientist submits “sun”

to search for information about a hot topic of solar energy,

suggesting queries that are only focused on Sun Microsystems

is rather unsatisfactory. Therefore, traditional personalization

approaches risk over-personalization and cannot effectively

handle the dynamic change of a user’s preference.

From the above discussion, we can see that both diversi-

fication and personalization have their own advantages and

drawbacks. The result of diversification can be overly broad

for a specific user but is flexible to handle the dynamic

Search

Engine

Query Log

Query Log

Representation

Component

UserUser

Search

Engine

Input

Query Input Query

Suggested

Queries
Suggested

Queries

Multi-Bipartite

Representation

Diversification

Component

Two-Phase

Diversification

Method

Personalization

Component

Offline User

Profiling

Online

Personalization

Fig. 1: System Architecture of PQS-DA

changes of a user’s preference. In contrast, the result of

personalization is too rigid to handle the changes of a user’s

preference but is effective for those who are looking for

information relevant to his or her long-term preference. In

order to achieve better query suggestion performance than

only applying one of the two concepts, we propose a new

query suggestion paradigm, Personalized Query Suggestion

With Diversity Awareness (PQS-DA) to unify the two concepts

which have been perceived to be incompatible so far. We

hypothesize that a good query suggestion paradigm needs to

integrally consider diversification and personalization, i.e., the

suggested queries need to be diversified to cover different

facets of the input query and the ranking of the suggested

queries also needs to be personalized to align with the user’s

preferences. Consider the case of “sun” again: we cannot

aggressively deny the probability that a computer scientist may

search for information about solar energy, thus, the suggestions

should be diversified to cover different facets such as Sun

Microsystems, the solar system, the solar energy, etc. Further-

more, to improve a specific user’s searching experience, the

ranking of the suggested queries should be further personalized

to align with the user’s preference, e.g., ranking the queries

such as“sun oracle”, “sun java” higher than “sun solar system”

higher for a computer scientist, since we know that the queries

about computer science have better chance to be relevant

to the user’s current information need. In this way, we can

better capture the broadness of a user’s information needs

and also facilitate the user’s information seeking when the

information need aligns with his or her long-term preference.

While this seems to be a simple idea, we are not aware

of any previous work that explores how to integrate both

diversification and personalization to improve the performance

of query suggestion.

As shown in Fig. 1, the architecture of PQS-DA can be

divided into three major components: the query log repre-

sentation component, the diversification component and the

personalization component. We now outline the utility of

each component. Conventionally, researchers utilize the click

graph, which is a bipartite composed of the queries and

URLs, to model the information in the query log. However,

the simplistic query-URL bipartite has limitations such as

low information coverage and being noise-prone [15], which

limits its effectiveness in query suggestion. In the query

log representation component, we propose a multi-bipartite

representation for the query log data and this representation

significantly improves the richness of the information available

for the downstream query suggestion. In the diversification

component, we propose a two-phase method to obtain a

list of diversified query suggestion candidates. At the first

phase, we utilize a context-aware regularization framework to

identify the most relevant suggestion candidate by considering

both the local and global information in the multi-bipartite

representation. At the second phase, we iteratively identify

the remaining suggestion candidates via a hitting time [14]

based approach. In the personalization component, we employ

a generative model named User Profiling Model (UPM) to

integrate information such as search sessions, web dynamics

and each individual user’s preference of word usage and

URL clicking. Based on the user profiles obtained from the

UPM, the ranking of the suggested queries is organized to

align with the current information need as well as the user’s

personal preference. To evaluate the effectiveness of PQS-

DA, we conduct extensive experiments on a large-scale search

engine query log. Compared with several strong baselines, the

proposed framework demonstrates superior performance with

respect to a variety of metrics.

The contributions of this paper are summarized as follows:

• We propose a new query suggestion paradigm, Personal-

ized Query Suggestion With Diversity Awareness (PQS-

DA), which paves the way for providing better query

suggestions for each individual search engine user.

• We propose a new representation for query log data.

The proposed multi-bipartite representation can compre-

hensively capture different kinds of relations between

search queries in query log. A sophisticated mechanism is

also designed to differentiate the importance of different

relations between search queries.

• We design a novel two-phase method to obtain query

suggestion candidates. This method utilizes technique

of hitting time and the multi-bipartite representation to

enhance both the relevance and diversity of the set of

query suggestion candidates.

• We develop a new generative model, the User Profiling

Model (UPM), to profile search engine users through

integrating search sessions, web dynamics as well each

user’s preference of word usage and URL clicking. The

user profile generated by the UPM provides concise

and effective summary of each user’s preference, which

further personalizes the ranking of query suggestion can-

didates and generates the final query suggestion list.

The rest of this paper is organized as follows. In Section

II, we review the related work. In Section III, we discuss the

query log representation component. In Sections IV and V, we

present the diversification component and the personalization

component. In Section VI, we report the experimental results.

Finally, the paper is concluded in Section VII.

sun

sun

java

solar

cell

sun

oracle

java

www.java.com

java.sun.com

www.suncellular

.com.ph

en.wikipedia.org

/ /

www.oracle.com

(a) Query-URL Bipartite (Click Graph)

sun

sun

java

solar

cell

sun

oracle

java

session1

session2

session3

jvm

download

(b) Query-Session Bipartite

sun

sun

java

solar

cell

sun

oracle

java

sun

java

jvm
jvm

download
download

solar

cell

oracle

(c) Query-Term Bipartite

Fig. 2: Multi-Bipartite Query Log Representation of Table I

II. RELATED WORK

Relevance-oriented query suggestion attracts much attention

in recent years. Most of the relevance-oriented methods rely on

the click graph to represent the information in query log. Mei

et al. [14] proposed an algorithm using hitting time to make

query suggestion on a click graph. Also based on the click

graph, Cao et al. [2] proposed a query suggestion approach

by using the concept sequence suffix tree. Youngho et al.

[16] proposed a boolean query suggestion technique, which

generates boolean queries by exploiting decision trees learned

from pseudo-labeled documents. There also exists some work

that focus on specific types of queries. For example, Szpektor

et al. [5] proposed a method to extend the reach of query

recommendation to long-tail queries by reasoning about rules

between query templates rather than individual query transi-

tions. Kato et al. [4] proposed an approach to present query

suggestions to the user and the method was designed to help

query reformulation actions such as specialization and parallel

movement. Markov random walk on the click graph was

studied in [15][17] for ranking documents and discovering

search tasks. Deng et al. [18] proposed a new framework for

modeling the click graph, in which the various query-URL

pairs are treated differently. Besides viewing query log as

click graph, probabilistic topic modeling technique is gaining

momentum in text mining [19][20] and researchers have

developed different topic models[21][22] to analyze search

engine query log.

Recently researchers have been aware of the limitations

of relevance-oriented query suggestion and explored several

strategies to incorporate either diversification or personaliza-

tion into query suggestions. Ma et al. [6] proposed a method

based on Markov random walk and hitting time to diversify

the query suggestion results. Song et al. [12] introduced a

query suggestion framework which works in a post-ranking

fashion. This framework is essentially different from those

proposed in [6][14] because it relies on external knowledge

such as the search results from the search engine. Leung et al.

[13] introduced an approach that captures the user’s conceptual

preferences in order to provide personalized query suggestions.

Mei et al. [14] also proposed a personalized query suggestion

method by employing hitting time and creating pseudo query

nodes in the click graph.

The differences between our work and the previous ones

lie in two aspects: First, rather than introducing external

knowledge bases, we aim to take full advantage of the rich

information in query log and design a new representation

to comprehensively capture the knowledge in the query log.

Compared with the conventional click graph, the proposed

multi-bipartite representation is more suitable for the task of

query suggestion. Second, we propose a new query suggestion

paradigm which takes both diversification and personalization

into consideration. To the best of our knowledge, the two

concepts have only been studied independently so far in the

field of query suggestion and the present work is the first one

seamlessly integrating both of them in a unified framework.

III. MULTI-BIPARTITE QUERY LOG REPRESENTATION

TABLE I: Example of Search Engine Query Log

ID UserID Query Clicked URL Timestamp

q1 u1 sun www.java.com 2012-12-12 11:12:41

q2 u1 sun java java.sun.com 2012-12-12 11:13:01

q3 u1 jvm download 2012-12-12 11:14:21

q4 u2 sun www.suncellular.com 2012-12-13 07:13:01

q5 u2 solar cell en.wikipedia.org/.../ 2012-12-13 07:14:21

q6 u3 sun oracle www.oracle.com 2012-12-14 14:35:14

q7 u3 java www.java.com 2012-12-14 14:36:26

As shown in Table I, a typical query log entry includes

the query identifier, the user identifier, the search query, the

clicked URL (if any) and the timestamp. Query log represen-

tation usually works as the basis of the downstream query

suggestion. In existing work, the de facto representation of

query log is the click graph (e.g., Fig. 2(a)). However, since

two random queries rarely share the same clicked URLs [23],

the click graph only captures a small portion of the rich infor-

mation in query log. The narrow information coverage of the

click graph heavily limits the downstream query suggestion’s

performance in capturing the different facets of the original

input query and diminishes the chance of obtaining highly

relevant candidates. Furthermore, clickthrough information is

inherently noisy [15] and may also be biased by users or robots

with malicious intents [18]. In order to alleviate the aforemen-

tioned problem, we propose a multi-bipartite representation

that models the relations between search queries via three

different bipartites: the query-URL bipartite (e.g., Fig. 2(a)),

the query-session bipartite (e.g., Fig. 2(b)) and the query-

term bipartite (e.g., Fig. 2(c)). The query-URL bipartite and

the query-term bipartite can be straightforwardly constructed

based upon the raw query log. Constructing the query-session

bipartite is more complicated and we present the definition of

the session in Definition 1. Deriving sessions from raw query

log is well studied in literature [24][25] and we employ the

method in [25] to deriving sessions in the present work.

Definition 1: The session is a series of search queries

that are submitted to satisfy a single information need. For

example, in the example of Table I, {q1, q2, q3}, {q4, q5} and

{q6, q7} are three different sessions.

The superiority of the multi-bipartite representation is il-

lustrated as follows. Consider the query “sun” in Table I. By

using the query-URL bipartite of Fig. 2 (a), “sun” can only

reach the query “java”. By using the query-session bipartite of

Fig. 2 (b), “sun” can reach the queries such as “sun java”, “jvm

download” and “solar cell”. Through the query-term bipartite

of Fig. 2 (c), “sun” can reach the queries such as “sun java”,

“sun oracle” and “java”. By employing the three bipartites

collectively, we can obtain more suggestion candidates for the

query “sun”. More importantly, we have a better chance to

cover different facets of the input query “sun”. The example

above illustrates the structural superiority of the multi-bipartite

representation. The remaining issue of applying the multi-

bipartite representation to real-life usage is how to determine

the weights for the edges of the three bipartites. Although

we can simply utilize the raw relation frequency to assign

weights to the edges, it causes loss of important information,

since different relation pairs of the three bipartites are not

sufficiently distinguished. Therefore, it is more reasonable to

weigh the edges differently by considering their distinguishing

capability. For instance, in the query-URL bipartite, it is intu-

itive that a heavily clicked URL with a high query frequency is

less discriminative. This motivates us to propose an important

concept, referred to as the inverse query frequency of URL

(iqfU), to measure the discriminative ability of the URLs.

Suppose |Q| is the total number of search queries in the query

log, the inverse query frequency for the URL uj is defined as

follows:

iqfU (uj) = log |Q| − log nU (uj) = log
|Q|

nU (uj)
, (1)

where nU (uj) is the total number of queries that are connected

with the URL uj and it can be calculated by nU (uj) =∑
i∈Q 1int(qi,uj).

Similarly, a session containing many different queries is less

discriminative in terms of its underlying information need and

a frequently used query term is less discriminative in terms

of its semantic meaning. We further define the inverse query

frequency of session (iqfS) for a session sj and the inverse

query frequency of term (iqfT) for a term tj as follows:

iqfS(sj) = log |Q| − log nS(sj) = log
|Q|

nS(sj)
, (2)

iqfT (tj) = log |Q| − log nT (tj) = log
|Q|

nT (tj)
, (3)

where nS(sj) is the total number of queries that are connected

with the session sj , nS(sj) =
∑

i∈Q 1int(qi,sj), n
T (tj) is the

total number of queries that are connected with the term tj
and nT (tj) =

∑
i∈Q 1int(qi,tj).

In the multi-bipartite representation, we calculate the

weights of the edges by multiplying the inverse query fre-

quencies iqfU , iqfS and iqfT with the raw frequencies cU ,

cS and cT in a unified way, namely,

cfiqfU (qi, uj) = cUij × iqfU (uj). (4)

cfiqfS(qi, sj) = cSij × iqfS(sj). (5)

cfiqfT (qi, tj) = cTij × iqfT (tj). (6)

The intuition behind the aforementioned edge weighing mech-

anism is that different edges are treated differently according

to their corresponding inverse query frequencies, so that the

common relations with less frequent yet more specific URLs,

sessions or terms are of greater value than the common

relations on frequent ones.

IV. DIVERSIFICATION OF QUERY SUGGESTION

CANDIDATES

In this section, we discuss how to obtain diversified query

suggestion candidates through the diversification component of

PQS-DA. In Section IV-A, we discuss the method of building

compact multi-bipartite representation to reduce the overall

computational cost of the downstream query suggestion. In

Section IV-B, we discuss the approach of identifying the most

relevant suggestion candidate. In Section IV-C, we discuss

how to iteratively identify the remaining query suggestion

candidates while achieving diversification.

A. Build Compact Multi-Bipartite Representation

In terms of the computational cost of query suggestion,

two main concerns arise when we use the entire query log.

First, the multi-bipartite representation can be very large.

Most queries are actually irrelevant to the original input

query but they increase the computational cost. Second, the

mathematical calculation can be very time-consuming when

the number of variables that need to handle with is in the

millions. Thus, we now present a method of building a com-

pact multi-bipartite representation. We consider the original

input query and those in its search context (Definition 2) as

the starting compact representation and iteratively expand this

representation by Markov random walk via the full multi-

bipartite representation, until the total number of queries in the

compact one reaches a desired size Q. Then the downstream

query suggestion algorithm is performed on the compact

representation rather than the full one. Similar approaches have

been successfully applied in previous work such as [26][14].

Based on the edge weights of the compact representation, we

apply normalization and derive the query-URL matrix WU ,

the query-session matrix WS and the query-term matrix WT

to represent the query relations.

Definition 2: The search context of a query q is defined

as the set of the previously submitted queries within the same

search session. For example, in the session composed of q1, q2
and q3 in Table I, {q1} is the search context of q2 and {q1, q2}
is the search context of q3.

B. Find the First Query Suggestion Candidate

We adopt an iterative approach to identify the suggestion

candidates, i.e, selecting one candidate at each time and then

finding the next one based on those that have been selected

so far. In the iterative approach, identifying the first candidate

is the cornerstone of the whole candidate selection process.

Therefore, the goal of the technique here is to find the most

relevant suggestion candidate with respect to the input query.

To better capture the underlying information need of the input

query, we take both the input query and its search context

into consideration. Given the input query q, we form a 1×Q

vector F 0, with the entry of q equal to 1, the entries of the

queries in the search context of q are assigned with values

according to a backward decay function [27], and all the other

entries are equal to 0. The intuition of the decay function is

that the semantic similarity between q and those in its search

context decays with respect to the elapsed time. Assume that

the timestamp of the input query is tq, then the entry value of

a query q′ in search context is initialized as follows:

F 0
q′ = eλ(tq′−tq), (7)

where tq′ is the timestamp of query q′ and λ is a scaling

parameter.

In order to identify the most relevant suggestion candidate,

we propagate the information stored in F 0 via the multi-

bipartite representation and identify suggestion candidate that

demonstrates the highest similarity with q. More specifically,

we utilize a regularization framework to take into account both

the fitting constraint and the smoothness constraint, which are

defined based on the multi-bipartite representation. The fitting

constraint is defined by Equation (8), which constrains that

the estimated entry values for q and those in its search context

should not differ too much from those stored in F 0.

1

2

Q
∑

i

||Fi − F 0
i ||2. (8)

The smoothness constraint is defined by Equation (9), which

constrains that the queries in close relations tend to have

similar values in F .

1

2

Q
∑

i,j

X
∑

k

WX
ikW

X
jk ||

Fi
√

DX
ii

− Fj
√

DX
jj

||2, (9)

where X ∈ {U, S, T} and DX is a diagonal matrix in

which the element DX
i,i equals the sum of all elements in the

ith row of WXWX>
. By incorporating the two constraints

by a positive trade-off parameter µ, we formally define a

minimization problem to estimate the relevance of the queries

in the multi-bipartite representation:

min
F,γ

1

2

Q
∑

i

||Fi − F 0
i ||2 + µγ, (10)

such that the following expressions hold, ∀X ∈ {U, S, T}

1

2

Q
∑

i,j

X
∑

k

WX
ikW

X
jk ||

Fi√
Dii

− Fj
√

Djj

||2 ≤ γ. (11)

This procedure amounts to taking the upper bound of the

smoothness constraint over all the three bipartite and applying

it for regularization. Then, we derive the dual problem and

rewrite the convex optimization problem with the following

equation:

max
α,π

min
F,γ

1

2

Q
∑

i

||Fi − F 0
i ||2 + µγ+

∑

X∈{U,S,T}

αX(
1

2

Q
∑

i,j

X
∑

k

WX
ikW

X
jk ||

Fi√
Dii

− Fj
√

Djj

||2 − γ)− πγ,

(12)

where the Lagrange multipliers satisfy αX ≥ 0 and π ≥ 0.

The above formula can be simplified as follows:

max
α,π

min
F,γ

1

2
||F − F 0||2F + µγ+

∑

X∈{U,S,T}

αX(
1

2
tr(F>(I − LX)F)− γ)− πγ.

(13)

where I is the identity matrix, LX = DX
1
2WXWX>

DX
1
2

and || · ||F is the Frobenius norm1. In order to solve the inner

optimization problem, we set the derivative with respect to γ

to zero and obtain the following equation:

µ−
∑

X∈{U,S,T}

αX = π. (14)

By substituting Equation (14) into Equation (13) and setting

the derivative with respect to F to zero, we obtain a large

sparse linear system as follows:

((1 +
∑

X∈{U,S,T}

αX)I −
∑

X∈{U,S,T}

αXLX)F ∗ = F 0. (15)

1http://mathworld.wolfram.com/FrobeniusNorm.html

The numerical problem of Equation (15) has been intensively

studied and there exist efficient algorithms, whose computa-

tional time is linear in the number of the non-zero entries

in the coefficient matrix [28]. Moreover, when the linear

system solver is parallelized and distributed on a computing

cluster, the proposed algorithm easily scales to much larger

datasets. Equation (15) is not very sensitive to αX and can

be empirically tuned in a similar approach as the previous

work [26]. After getting F ∗ and excluding the entries that

correspond to the input query and those in the search context

of the input query, the most relevant candidate can be directly

obtained by choosing the query that has the largest entry value

in F ∗.

C. Find the Remaining Query Suggestion Candidates

After determining the most relevant suggestion candidate,

we need to find the remaining K-1 ones if in total K queries

need to be recommended to the user. The remaining candidates

need to be relevant to the input query but also be different from

each other to cover different facets of the input query. We now

propose the cross-bipartite hitting time to achieve this goal.

Imagine a random walker on the multi-bipartite representation.

At each step, the walker can do one of two following things:

it moves to a neighbor query according to the edge weights

in the current bipartite or it is teleported to another bipartite

and moves to a neighbor query. To represent the cross-bipartite

transition, we use a 3×3 matrix Nk to store the cross-bipartite

transition probabilities for the query qk, in which Nk[i, j]
is p(Xj |qk, Xi). Then the cross-view transition probabilities

for all queries can be stored in a Q × Q diagonal transition

matrix N in which the kth diagonal element N [k, k] = Nk.

Without any prior knowledge, we utilize equal weights for the

three bipartite. We further utilize a three-dimension row vector

P [b, a] to denote the intra-bipartite transition probabilities.

In P [b, a], the entry pX(qa|qb) to denote the intra-bipartite

transition probabilities in the bipartite X (X ∈ {U, S, T})

from qb to qa. The value of pX(qa|qb) can be straightforwardly

obtained from the compact representation obtained in Section

IV-A.

At the starting point, we set M0 as a diagonal matrix with

each element being a uniform three-dimension row vector in

which each element is 1/3. Therefore, M [i, j] is also a three-

dimensional row vector which can be calculated as follows:

M[i, j] =

Q∑

k=1

(M0[i, k] ·Nk)
−→
×P (qj |qk). (16)

After the initialization, we then employ the cross-bipartite hit-

ting time to iteratively identify the remaining K-1 suggestion

candidates. Let S be the set of candidates that have been

selected, the expected hitting time h(qi|S) of the random walk

is the expected number of steps before the query qi visits the

starting set S. It can be easily verified that the hitting time

satisfies the following system of linear equations:

{

h(qi|S) = 0 if qi ∈ S
h(qi|S) = 1 +

∑

qj∈N (qi)

∑

X MX(i, j)h(qj |S) if qi /∈ S.
(17)

where N (qi) denotes the neighbors of the query qi. The

recurrence relations in Equation (17) can be used to iteratively

compute the expected hitting time. We skip the inference of the

hitting time equation in this paper due to the space limitation.

Interested readers can refer to [14] to find more details about

hitting time.

We select the second suggestion candidate q2 as the one

having the largest expected hitting time to the current set S.

This naturally inhibits queries closely connected to those in S,

hence encourages diversity. If we need the third suggestion, we

can simply add q2 into the subset S and compute the expected

hitting time once more. The whole process of obtaining the

K query suggestion candidates is presented in Algorithm

1. Based on the discovering sequence of each candidate,

we actually obtain a ranked list of K candidates, which is

sorted with a descending relevance to the input query and

potentially covers different facets of the input query. In the

diversification component, the relevance between the input

query and the suggested query is evaluated via their affinity

in the multi-bipartite representation. In the next section, we

discuss how to incorporate the relevance from each individual

user’s perception.

Algorithm 1 Diversification of Query Suggestion Candidates

Input: The input q, the search context Cq and the number of

iterations l.

Output: A ranked list of K query suggestion candidates.

1: Initialize F 0 according to q and Cq;

2: Compute F ∗ via Equation (15);

3: Identify the first candidate q1 based on F ∗;

4: repeat

5: Set h0(k) = 0 for the existing candidate k;

6: for t = 0; t < l; t++ do

7: ht+1(v) =
∑

u6=v

∑
X MX [u, v]ht(u) + 1;

8: end for

9: j = argmaxi hi;

10: Select qj as the next candidate;

11: until K-1 candidates are picked.

V. PERSONALIZATION OF QUERY SUGGESTION LIST

In this section, we discuss the personalization component

and illustrate how it determines the final ranking of the

suggestion candidates for each individual user. In Section V-A,

we provide the details about User Profiling Model (UPM) for

offline user profiling. In Section V-B, we discuss the details

of online personalization through the user profiles generated

by UPM.

A. Offline User Profiling

Profiling search engine users for the purpose of personal-

ization is challenging since query log contains multiple types

of information, such as the words, URLs and timestamps,

which collectively reflect the user’s preference. Since all these

types of information are strictly coupled, an effective model

needs to capture the latent relations between different types

of information. In the face of this challenge, we propose the

User Profiling Model (UPM) and it does not only incorporate

multiple types of information in a principled way, but also

reduces the data dimension of the plain text of query log data

and make the user profiles concise enough for offline storage

and efficient online personalization.

Algorithm 2 Generative Process of the UPM

1: for document d ∈ 1, ..., D do
2: Draw d ’s topic distribution θd ∼ Dirichlet(α);
3: for topic k ∈ 1, ...,K do
4: Draw a word distribution φkd ∼ Dirichlet(βk);
5: Draw a URL distribution Ωkd ∼ Dirichlet(δk);
6: end for
7: for each session s in d do
8: Choose a topic z ∼ Multinomial(θd);
9: Generate the words w ∼ Multinomial(φzd);

10: if URL existence indicator Xds = 1 then
11: Generate the URLs u ∼ Multinomial(Ωzd);
12: end if
13: Generate the timestamps t ∼ Beta(τz);
14: end for
15: end for

The generative process of the UPM is presented in Algo-

rithm 2. We organize the query log entries of each user as a

document and assume that each document has a Multinomial

distribution over a set of latent topics. For personalized query

suggestion, some unique features of web search need to be

incorporated in the generative process of the UPM. (1) As

discussed in Section III, the session is the basic unit to satisfy

a single information need. The words and URLs in the same

session have coherent meanings. As a result, in the UPM, we

constrain that the words and URLs in the same session are

generated from the same topic. (2) Web search is essentially

dynamic and the prominence of a topic changes over time.

Hence, similar to [29], we introduce the Beta distribution to

capture the temporal prominence of each topic in the UPM. (3)

For a specific topic, each user has his or her own preferences

in terms of word usage and URL clicking. For example,

two users Ua and Ub are both interested in a topic about

cars. Ua prefers Japanese cars, and she frequently submits

search queries containing the word “Toyota” and clicks URLs

referring to websites about Toyota cars. In contrast, Ub prefers

American cars, and she frequently submits search queries

containing the word “Ford” and clicks URLs referring to

websites about Ford cars. In this case, for the same topic Cars,

Ua and Ub have different perceptions of the importance of

the words “Toyota” and “Ford”. Therefore, in the generative

process of UPM, we assume that each user has customized

Multinomial distributions over words and URLs for a specific

topic, in order to capture different users’ intra-topic preference

of the words and the URLs, which are essential for query

suggestion personalization.

Given a set of documents prepared from query log, we

can learn the appropriate values for the latent variables by

alternating between optimizing the topic parameters given the

hyperparameters, and optimizing the hyperparameters given

the topic parameters. We adopt a sampling based approach

for parameter estimation and start by factoring the complete

likelihood as follows:

P (w,u, t, z|α, β, δ, τ) = P (u|z, δ)P (w|z, β)P (z|α)P (t|τ).
(18)

The probability P (z|α) is given as:

P (z|α) = (
Γ(

∑K

k=1 αk)
∏K

k=1 Γ(αk)
)

D D
∏

d=1

∏K

k=1 Γ(C
DK
dk + αk)

Γ(
∑K

k=1(C
DK
dk + αk))

, (19)

where CDK
dk is the number of sessions that are assigned

to topic k in document d. The probability P (w|z, β) and

P (u|z, δ) are as follows:

P (w|z, β) =
D
∏

d=1

K
∏

k=1

(Γ(
∑W

w=1 βkw)
∏W

w=1 Γ(βkw)

∏W

w=1 Γ(C
KWD
kwd + βkw)

Γ(
∑W

w=1(C
KWD
kwd + βkw))

)

,

(20)

P (u|z, δ) =
D
∏

d=1

K
∏

k=1

(Γ(
∑U

u=1 δku)
∏U

u=1 Γ(δku)

∏U

u=1 Γ(C
KUD
kud + δku)

Γ(
∑U

u=1(C
KUD
kud + δku))

)

,

(21)

where CKWD
kwd is the number of times that the word w are

assigned to topic k in document d and CKUD
kud is the number

of times that the URL u are assigned to topic k in document

d. The probability P (t|τ) is as follows:

P (t|τ) =
D
∏

d=1

Td
∏

i=1

((1− tdi)
τzdi1

−1t
τzdi2

−1

di

B(τzdi1, τzdi2)

)

. (22)

After combining the formula terms, applying Bayes rule and

folding terms into the proportionality constant, we get the

following conditional probability for Gibbs sampling:

P (zi = k|z−i,w,u, t, α, β, δ, τ) ∝

CDK
dk + αk

∑

K
k′=1

(CDK
dk′

+ αk′)

Ti
∏

j=1

(
(1 − tj)

τzj1
−1

t
τzj2

−1

j

B(τzj1, τzj2)

)

Γ(
∑W

w=1(C
KWD
kwd + βwk))

Γ(
∑

W
w=1(C

KWD
kwd

+ βw + Niw))

W
∏

w=1

Γ(CKWD
kwd + βwk + Niw)

Γ(CKWD
kwd

+ βwk)

(Γ(
∑U

u=1(C
KUD
kud + δuk))

Γ(
∑

U
u=1(C

KUD
kud

+ δuk + Niu))

U
∏

u=1

Γ(CKUD
kud + δuk + Niu)

Γ(CKUD
kud

+ δuk)

)I(Xi=1)
.

(23)

Different from convention topic models such as Latent Dirich-

let Allocation (LDA) [19], it is imperative to learn the hy-

perparameters of UPM. The information contained in the φ

values of LDA is captured by the β and δ values of UPM.

The complete likelihood P (w,u, t, z|α, β, δ, τ) is presented

as follows:

P (w,u, t, z|α, β, δ, τ) =
∏

d

((
Γ(

∑K

k=1 αk)
∏K

k=1 Γ(αk)
)

∏T

k=1 Γ(C
DK
dk + αk)

Γ(
∑K

k=1(C
DK
dk + αk))

∏

d,k

(

(
Γ(

∑W

w=1 βwk)
∏W

w=1 Γ(βwk)
)

∏W

w=1 Γ(C
KWD
kwd + βwk)

Γ(
∑W

w=1(C
KWD
kwd + βwk))

(
Γ(

∑U

u=1 δuk)
∏U

u=1 Γ(δuk)
)

∏U

u=1 Γ(C
KUD
kud + δuk)

Γ(
∑U

u=1(C
KUD
kud + δuk))

)

∏

d,s,i

(

p(tdsi|τkdsi
))
)

.

(24)

Now we convert the formula above to its log-likelihood and get

the following optimization formulas for each hyperparameter:

α
′

. = argmax
∑

d,k

(log Γ(CDK
dk + αk)− log Γ(αk))

+
∑

d

(log Γ(
∑

k

αk)− log Γ(
∑

k

CDK
dk + αk)).

(25)

β
′

.k = argmax
∑

d,k,w

(log Γ(CKWD
kwd + βwk)− log Γ(βwk))

+
∑

d,k

(log Γ(
∑

w

βwk)− log Γ(
∑

w

CKWD
kwd + βwk)).

(26)

δ
′

.k = argmax
∑

d,k,u

(log Γ(CKUD
kud + δuk)− log Γ(δuk))

+
∑

d,k

(log Γ(
∑

u

δuk)− log Γ(
∑

u

CKUD
kud + δuk)).

(27)

Each equation above defines a vector, either α
′

. , β
′

.k or

δ
′

.k. We use limited memory BFGS [30] to perform the

maximization. We run Gibbs sampling to steady-state and

then choose α., β.. and δ.. to maximize complete likelihood

p(w,u, t, z|α, β, δ, τ). After the sampling on the user ui’s

query log, the temporal parameters of topic k are updated as

follows:

τk1 = t̄k(
t̄k(1− t̄k)

s2k
− 1), (28)

τk2 = (1− t̄k)(
t̄k(1− t̄k)

s2k
− 1), (29)

where t̄k and s2k denote the sample mean and biased sample

variance of topic k’s timestamps.

The process above is repeated until the convergence of α.,

β.. and δ... Note that the UPM can take advantage of parallel

Gibbs sampling paradigms such as the one proposed in [31]

and it can scale to very large datasets. After processing each

user’s search history by the UPM, the dth user’s search inter-

ests are represented by a topic vector (θd1, θd2, ..., θdk) where

θdk is a real number that indicates the user’s endorsement for

the kth topic. The value of θdk is calculated based on the

final states of the Markov chain after Gibbs sampling and the

formula is given as follows:

θdk =
CDK

dk + αk∑K
k′=1(C

DK
dk′ + αk′)

. (30)

B. Online Personalization

According to the user d’s profile, we can easily obtain the

user’s preference score of a suggestion candidate q via the

following equation:

P (q|d) =

∑
w∈q

∑
k

B(nwkq+βwk)
B(βwk)

· θdk∑
w∈q 1

, (31)

where B(·) is the multidimensional Beta function. Based on

the personalized preference score P (q|d), we introduce a

strategy to personalize the query suggestion list. We first rank

the query candidates according to their personalized preference

scores. Then, we aggregate this ranking list with the ranking

list from the diversification component via Borda’s method

[32]. Note that the original ranking of the candidates from

the diversification component is ranked via their relevance

to the input query from the perspective of query affinity in

the multi-bipartite representation while the ranking of the

personalization component organizes the queries according to

their relevance to a specific user’s search preference. There-

fore, we utilize ranking aggregation to combine these two

perspectives of relevance and generate the final personalized

query suggestion lists.

VI. EXPERIMENTS

In this section, we compare the performance of PQS-DA

with several the state-of-the-art query suggestion methods.

In Section VI-A, we describe the experimental setup. Then

we evaluate the effectiveness of the diversification component

in Section VI-B and the performance of the personalization

component in Section VI-C. Finally, in Section VI-D, we

provide an efficiency analysis of PQS-DA.

A. Experimental Setup

We prepare the experimental dataset by a real-life query

log obtained from a major commercial search engine. The

query log contains search queries that were submitted by

a total of 12,085 users. The raw query log data contain a

lot of noises which will potentially affect the effectiveness

of the query suggestion algorithms. Therefore, we conduct

cleaning in a similar way as [33]. In order to enhance the

reproducibility of the experimental results, we implement

several well-known query suggestion methods as the baselines

to gauge the performance of PQS-DA.

As shown in Fig. 1, the query suggestions of PQS-DA

are generated by sequentially applying diversification and

personalization. In order to reveal the details about the internal

mechanism of PQS-DA, we will present the query suggestion

results in a step-by-step fashion. In Section VI-B, we present

the evaluation of the intermediate query suggestion results that

are obtained by applying the diversification component. Then,

in Section VI-C, we present the evaluation of the final query

suggestion results that are generated by sequentially applying

personalization for the intermediate query suggestion results

obtained from the diversification component.

(a) Diversity (Raw) (b) Diversity (Weighted) (c) Relevance (Raw) (d) Relevance (Weighted)

Fig. 3: Evaluation of Query Suggestion After Diversification

B. Query Suggestion After Diversification

We first compare the quality of the intermediate query

suggestion results obtained from the diversification component

with those generated by four state-of-the-art query sugges-

tion methods: the Forward Random Walk (FRW) [15], the

Backward Random Walk (BRW) [15], the Hitting Time (HT)

[14] and the Diversifying Query Suggestion (DQS) [6]. We

utilize the Diversity and Relevance metrics proposed in [6] to

gauge the performance of the methods under study. The two

metrics can be automatically calculated by using query log

and the Open Directory Project2 (ODP). To make the paper

self-contained, we detail the definitions of the two metrics in

the following two paragraphs.

We first discuss the Diversity metric. Assume that qi and

qj are two suggested queries. Let P(qi) and P(qj) denote

the corresponding clicked Web page sets of qi and qj . The

diversity of qi and qj , d(qi, qj), is defined as:

d(qi, qj) = 1−

∑M
m=1

∑N
n=1 sim(pim, pjn)

M ×N
, (32)

where pim ∈ P(qi), pjn ∈ P(qj), M and N are the sizes of

P(qi) and P(qj) and sim(pim, pjn) measures the similarity

between pim and pjn. Then the diversity of a query suggestion

list L is further defined as:

D(L) =

∑|L|
i=1

∑|L|
j=1,i6=j d(qi, qj)

|L| × (|L| − 1)
, (33)

We proceed to discuss the Relevance metric. To measure the

relevance of two queries, we can use a notion of similarity be-

tween the corresponding categories provided by ODP. Assume

that qi and qj are two search queries and Ai and Aj are their

corresponding ODP categories. We can measure the relevance

of the two queries as the length of their longest common prefix

PF (Ai, Aj) divided by the length of the longest path between

Ai and Aj . More precisely, the relevance metric is defined as:

R(qi, qj) =
|PF (Ai, Aj)|

max (|Ai|, |Aj |)
. (34)

In order to see the extent to which the edge weighing

mechanism in Section III affects the performance, we conduct

2http://www.dmoz.org/

experiments on both the raw and the weighted multi-bipartite

representations for PQS-DA while conduct experiments on

both the raw and the weighted click graphs for the four

baselines. To objectively reflect each method’s performance in

real-life scenario, we randomly select 10,000 testing queries

from the search engine query log and report the average values

of the results of all the testing queries.

The diversity evaluation of the top-k suggested queries are

shown in Fig. 3(a) and (b). From these two figures, we can see

that PQS-DA generates more diverse suggestions than FRW,

BRW, HT and DQS. This result verifies the effectiveness of

the diversification component in identifying diversified query

suggestion candidates. The superiority of our diversification

component is achieved by integrally applying the multi-

bipartite representation and the cross-bipartite hitting time,

which make much more search queries accessible and thus the

result can cover much more facets of the original input query.

We further show the relevance of the top-k suggested queries

in Fig. 3(c) and (d). By comparing the top-1 relevance of the

query suggestion candidate generated by these methods, we

can see that PQS-DA is better at identifying the most relevant

suggestion candidate than all the four baselines. The advantage

of PQS-DA in finding the most relevant candidate verifies the

effectiveness of our regularization framework which utilizes

two constraints to integrate the information of the multi-

bipartite representation and the search context. Besides the

top-1 relevance, the relevance of PQS-DA still outperforms

those of the baselines at other ranks, since the proposed multi-

bipartite representation can effectively reduce the bias from a

single bipartite and thus improves the overall relevance. The

experimental results unequivocally show that using the multi-

bipartite representation and the cross-bipartite hitting time

can effectively discover highly relevant suggestion candidates.

More importantly, the degradation of the relevance of PQS-DA

is modest as k increases.

Through comparing the results of the raw multi-bipartite

representation (i.e., Fig. 3(a) and (c)) with those of the

weighted multi-bipartite representation (i.e., Fig. 3(b) and (d)),

we observe that the weighted multi-bipartite representation is

effective to improve the overall performance of PQS-DA. The

insights gained from this comparison verify our assumption

that differentiating the importance of different relations by

Fig. 4: Perplexity of Search Engine Query Log

their discriminative capabilities can better model the latent

relations between queries in query log. Similarly, using the

weighted click graph can also improve the performance of

FRW, BRW, HT and DQS. In the rest of this paper, we utilize

the weighted multi-bipartite representation and the weighted

click graph to conduct the experimental evaluations. Astute

reader may wonder why we do not apply the baselines on

the multi-bipartite representation. The reason is that these

baselines are primarily proposed for the click graph. Hence,

transferring them to a multi-bipartite scenario is not trivial and

a lot of tricky issues which are beyond the scope of this paper

need to be solved. Therefore, we utilize the original methods

described in literature as the baselines and this choice also

contributes to the reproducibility of our experimental results.

C. Query Suggestion After Diversification and Personalization

In this subsection, we first quantitatively gauge the perfor-

mance of the proposed UPM against several existing gener-

ative models. Then we present the experimental results of

comparing PQS-DA against a wide range of existing query

suggestion methods..

1) Quantitative Evaluation of UPM: We compare UPM

with a variety of existing generative models. The first baseline

is the widely used Latent Dirichlet Allocation (LDA) [19], the

second one and third one, PTM1 and PTM2 are designed for

search engine query log analysis [21], the fourth one is the

Topic-Over-Time (TOT) model [29]. We also compare UPM

with the Meta-word Model (MWM), the Term-URL Model

(TUM), the Clickthrough Model (CTM) [34] and the SSTM

model [35]. We compare the strength of the baseline models

with the UPM in terms of how well the models can predict the

remaining query words after observing a portion of the user’s

web search history. Suppose we observe the query words w1:P

from a user’s query log , this experiment aims to find out which

model can provide better predictive distribution p(w|w1:P) of

the remaining query words. We use Equation (35) to calculate

the perplexity of the remaining unseen data. The experimental

results are presented in Fig. 4. UPM demonstrates the best

performance with an average perplexity of 1933. The result

shows the UPM is better at predicting the user’s future search

activity based on his or her search history. Compared with the

other models, the UPM effectively integrates the query words,

the URLs, the sessions, the timestamps as well as the users’

preferences in word usage and URL clicking. Therefore, its

generative process can better align with the latent structure

of query log data and its result demonstrates better predicting

performance.

Perplexityportion(M) = (

D
∏

d=1

Nd
∏

i=P+1

p(wi|M, w1:P))
−1

∑D
d=1

(Nd−P) .

(35)

where M is the model learned from the training process and

Nd is the length of document d.

2) Evaluation of Query Suggestion Lists: After quantita-

tively verifying the effectiveness of the UPM, we now evaluate

whether the user profiles generated by UPM can achieve

good personalization performance for query suggestion. In

Section VI-B, the experimental results already show that the

diversification component has achieved better performance

against several baselines. A natural question arising here is

whether PQS-DA keeps its advantages over the baselines after

collectively applying diversification and personalization. To

answer this question, we provide a detailed evaluation of the

query suggestion results after applying both diversification

and personalization. Although we can still use the same

Diversity metric as that proposed in Section VI-B to evaluate

the diversity of the query suggestion lists, the relevance

after personalization is primarily based on a specific user’s

perception. Hence, we need to design a new metric for gauging

relevance and propose Pseudo Personalized Relevance (PPR)

as the metric.

For each user in the query log, we select ten most recent

sessions as the testing sessions and consider the remaining

ones as the historical sessions. Based on the historical ses-

sions, we build the user profile via the UPM. Then we utilize

the first query in each testing session as the input query,

obtain the query suggestion candidates from the diversification

component and personalize the ranking of the suggestion

candidates via the personalization component. The PPR value

is then calculated as the cosine similarity between the word

vectors of the suggested query and the high-quality fields

[36] (i.e., the HTML title and document title) of the clicked

Web pages in the same session. A higher PPR value suggests

a higher correlation between the suggested query and the

specific user’s information need. Hence, PPR is a valid metric

to gauge the relevance of query suggestion from each search

engine user’s perspective. Another advantage of using PPR

as a metric is that no human involvement is required during

the evaluation and thus the evaluation can be conducted on a

large scale dataset. We present the average of the PPR values

over all testing sessions as the evaluation results. We first

apply our personalization method to the results of the methods

studied in the previous subsection and we add the suffix (P)

to them to indicate that their results have been personalized

by our personalization approach. We also compare PQS-DA

with two existing personalized query suggestion methods: the

(a) Diversity (b) Diversity Comparison with PHT and
CM

(c) PPR (d) PPR Comparison with PHT and CM

Fig. 5: Evaluation of Query Suggestion After Diversification and Personalization

Personalized Hitting Time (PHT) [14] and the concept-based

method (CM) [13].

We randomly select 5,000 users from the query log and

calculate the average diversity and the average PPR value.

The diversity after personalization is shown in Fig. 5(a) and

(b). We can see that PQS-DA still maintains high diversity for

all ranks after personalization. PQS-DA gets higher diversity

than the personalized results of the methods studied in Section

VI-B and this result again verifies the effectiveness of the

diversification component, which can identify much more

diversified results than the baselines. More importantly, we

find that the personalization does not necessarily degrade the

diversity of the query suggestion lists. The diversity of PQS-

DA also significantly outperforms the methods that focus on

personalized query suggestion such as PHT and CM. The

results of the PPR evaluation are presented in Fig. 5(c) and

(d). We observe that for the top suggested queries, PHT

and CM demonstrate higher PPR than the other baselines,

indicating that personalization is generally effective to im-

prove the relevance of query suggestions for a specific user.

Notably, the personalized results of PQS-DA outperform those

generated by the baselines in terms of PPR. This shows that

our personalization strategy can capture each user’s preference

and boost the overall relevance of query suggestion for each

search engine user. The main advantage of PQS-DA is that it

can maintain high relevance while achieving diversity, which is

not achievable by the other two personalized query suggestion

methods, PHT and CM.

Compared with utilizing the historical information stored

in query log to evaluate the relevance of query suggestions,

human experts can better emulate real web search process and

give explicit relevance feedback. Thus, we design a metric

named Human Personalized Relevance (HPR) to evaluate

the effectiveness of the personalized ranking from the users’

explicit feedbacks. Similar to [37], this experiment introduces

human experts to conduct real web search in a period of four

months. A web search middleware is implemented to record

the experts’ query log and suggest queries through different

methods. The human experts are required to submit search

queries to middleware and rate the suggested queries on a

6-point scale (0, 0.2, 0.4, 0.6, 0.8, and 1), where 0 means

(a) HPR (b) HPR Comparison with PHT and
CM

Fig. 6: Evaluation of Query Suggestion After Diversification

and Personalization (Human Personalized Relevance)

“totally irrelevant” and 1 indicates “entirely relevant”. We

report the average HPR in Fig. 6. We can see that PQS-DA

generates query suggestions that better align with the users’

latent information needs and it significantly outperforms the

baselines with respect to the HPR. The results support our

idea that a better query suggestion paradigm should be able

to personalize the ranking of the suggested queries according

to each individual user’s preferences.

D. Efficiency Analysis of PQS-DA

Query suggestion is primarily deployed in an online fashion.

Thus, an important issue is the efficiency of the suggestion

process. We proceed to gauge the amount of time that PQS-DA

typically consumes to generate the top-10 query suggestions

for an input query. Most of the computational cost of PQS-DA

is from the diversification component while the personalization

component is very efficient, since we only need to reorganize

the top-k suggestions, where k is usually set to a relatively

small integer (e.g., 10 in our experiments). Fig. 7 shows

the relative consumed time of different methods against the

numbers of utilized queries. We can see that the efficiency of

PQS-DA is comparable with the state-of-the-art diversification

method DQS, and significantly better than that of CM, which

relies on a large ontology for personalized query suggestion.

More importantly, as the number of queries increases, the

consumed time of PQS-DA increases moderately, indicating

that PQS-DA can perform well even when the numbers of

Fig. 7: Efficiency of Different Query Suggestion Methods

queries is large. The good efficiency of PQS-DA enables it

to be online deployed and generate better query suggestions

while keeping the consumed time comparable with the existing

query suggestion methods.

VII. CONCLUSION

In this paper, we present a new query suggestion paradigm,

Personalized Query Suggestion with Diversity Awareness

(PQS-DA) to effectively integrate diversification and personal-

ization, which are previously viewed as incompatible concepts,

into one unified framework. We first propose a multi-bipartite

representation to take full advantage of the rich information

in the search engine query log. Based on the multi-bipartite

representation, we design a regularization framework, which

is effective to identify the most relevant suggestion candidate.

Then an algorithm based on cross-bipartite hitting time is

proposed to explore the latent structure of the multi-bipartite

representation and identify the remaining suggestion candi-

dates with diversity-awareness. Finally, the User Profiling

Model (UPM) is proposed to personalize the ranking of the

query suggestion lists for each individual user. Experimental

results based on a large-scale query log clearly show that

our approach outperforms several state-of-the-art methods in

terms of diversity, relevance and ranking quality of the query

suggestions. The insights obtained from this work pave the

way for designing more effective query suggestion system in

contemporary search engines.

ACKNOWLEDGMENT

This work is partially supported by GRF under grant num-

bers HKUST 617610. We also wish to thank the anonymous

reviewers for their comments.

REFERENCES

[1] M. Kato, T. Sakai, and K. Tanaka., “When do people use query
suggestion?” Information Retrieval, 2013.

[2] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li, “Context-
aware query suggestion by mining click-through and session data,” in
SIGKDD, 2008.

[3] S. Cucerzan and R. W. White, “Query suggestion based on user landing
pages,” in SIGIR, 2007.

[4] M. Kato, T. Sakai, and K. Tanaka, “Structured query suggestion for
specialization and parallel movement: effect on search behaviors,” in
WWW, 2010.

[5] I. Szpektor, A. Gionis, and Y. Maarek, “Improving recommendation for
long-tail queries via templates,” in WWW, 2011.

[6] H. Ma, M. R. Lyu, and I. King, “Diversifying query suggestion results,”
in AAAI, 2010.

[7] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying
search results,” in WSDM, 2009.

[8] R. L. Santos, J. Peng, C. Macdonald, and I. Ounis, “Explicit search
result diversification through sub-queries,” in Advances in information

retrieval, 2010.
[9] D. Vallet and P. Castells, “Personalized diversification of search results,”

in SIGIR, 2012.
[10] C. Yu, L. Lakshmanan, and S. Amer-Yahia, “Recommendation diversi-

fication using explanations,” in ICDE, 2009.
[11] ——, “It takes variety to make a world: diversification in recommender

systems,” in EDBT, 2009.
[12] Y. Song, D. Zhou, and L. He, “Post-ranking query suggestion by

diversifying search results,” in SIGIR, 2011.
[13] K. W. T. Leung, W. Ng, and D. L. Lee, “Personalized concept-based

clustering of search engine queries,” TKDE, 2008.
[14] Q. Mei, D. Zhou, and K. Church, “Query suggestion using hitting time,”

in CIKM, 2008.
[15] N. Craswell and M. Szummer, “Random walks on the click graph,” in

SIGIR, 2007.
[16] Y. Kim, J. Seo, and W. Croft, “Automatic boolean query suggestion for

professional search,” in SIGIR, 2011.
[17] J. Cui, H. Liu, J. Yan, L. Ji, R. Jin, J. He, Y. Gu, Z. Chen, and

X. Du, “Multi-view random walk framework for search task discovery
from click-through log,” in Proceedings of the 20th ACM international

conference on Information and knowledge management, 2011.
[18] H. Deng, I. King, and M. R. Lyu, “Entropy-biased models for query

representation on the click graph,” in SIGIR, 2009.
[19] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” Journal of

machine Learning research, 2003.
[20] G. Doyle and C. Elkan, “Accounting for burstiness in topic models,” in

ICML. ACM, 2009.
[21] M. Carman, F. Crestani, M. Harvey, and M. Baillie, “Towards query log

based personalization using topic models,” in CIKM, 2010.
[22] D. Jiang, J. Vosecky, K. W.-T. Leung, and W. Ng, “G-wstd: A framework

for geographic web search topic discovery,” in CIKM. ACM, 2012.
[23] D. Beeferman and A. Berger, “Agglomerative clustering of a search

engine query log,” in SIGKDD, 2000.
[24] J. Huang and E. N. Efthimiadis, “Analyzing and evaluating query

reformulation strategies in web search logs,” in CIKM, 2009.
[25] D. Jiang, K. W. T. Leung, and W. Ng, “Context-aware search personal-

ization with concept preference,” in CIKM, 2011.
[26] X. Li, Y. Wang, and A. Acero, “Learning query intent from regularized

click graphs,” in SIGIR, 2008.
[27] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, “Forward decay:

A practical time decay model for streaming systems,” in ICDE, 2009.
[28] D. Spielman and S. Teng, “Nearly-linear time algorithms for graph

partitioning, graph sparsification, and solving linear systems,” in STC,
2004.

[29] X. Wang and A. McCallum, “Topics over time: a non-markov
continuous-time model of topical trends,” in SIGKDD, 2006.

[30] C. Zhu, R. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrained optimization,”
TOMS, 1997.

[31] D. Newman, P. Smyth, and M. Steyvers, “Scalable parallel topic
models,” Journal of Intelligence Community Research and Development,
2006.

[32] F. Schalekamp and A. van Zuylen, “Rank aggregation: Together were
strong,” ALENEX, 2009.

[33] X. Wang and C. X. Zhai, “Learn from web search logs to organize
search results,” in SIGIR, 2007.

[34] D. Jiang, K. W.-T. Leung, W. Ng, and H. Li, “Beyond click graph: Topic
modeling for search engine query log analysis,” in DASFAA, 2013.

[35] D. Jiang and W. Ng, “Mining web search topics with diverse spatiotem-
poral patterns,” in SIGIR, 2013.

[36] Z. Bao, B. Kimelfeld, and Y. Li, “Automatic suggestion of query-rewrite
rules for enterprise search,” in SIGIR, 2012.

[37] K.-T. Leung, D. L. Lee, and W.-C. Lee, “Personalized web search with
location preferences,” in ICDE, 2010.

