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Abstract sizen has(2™ — 1) non-empty subset FIs, mining MFIs ef-
fectively addresses the problem of too many FIs. However,
In this paper, we study an inherent problem of mining most applications are not only interested in the pattens re
Frequent Itemsets (Fts}the number of FIs mined is often resented by the FlIs, but also require their occurrence fre-
too large. The large number of FIs not only affects the min- quency in the database for further analysis. For example,
ing performance, but also severely thwarts the application we need the frequency of the FIs to compute the support
of FI mining. In the literatureClosed Fls (CFIsand Max- and confidence of association rules. MFIs, however, lose
imal FIs (MFIs)are proposed asoncise representations of the frequency information of most Fls.
Fls. However, the number of CFls is still too large in many On the contrary, the set of CFls is a lossless representa-
cases, while MFIs lose information about the frequency of tion of FIs. CFls are Fls that have no proper superset with
the Fls. To address this problem, we relax the restrictive the same frequency. Thus, we can retrieve the frequency
definition of CFIs and propose th&Tolerance CFls §- of the non-closed Fls from their closed supersets. However,
TCFIs). Mining 6-TCFIs recursively removes all subsets of the definition of the closure of CFls is too restrictive, sirgc
a¢-TCFl that fall within a frequency distance boundedlby ~ CFI covers its subset only if the CFl appeargirerytrans-
We propose two algorithm&FI2TCFland MineTCF|, to action that its subset appears in. This is unusual when the
mined-TCFIs. CFI2TCFI achieves very high accuracy on database is large, especially for a sparse dataset.
the estimated frequency of the recovered Fls but is less effi- In this paper, we investigate the relationship between the
cient when the number of CFls is large, since it is based on frequency of an itemset and its superset and propose a re-
CFI mining. MineTCFl is significantly faster and consumes laxation on the rigid definition of CFls. We motivate our
less memory than the algorithms of the state-of-the-art con approach by the following example.
cise representations of FIs, while the accuracy of MineTCFI
is only slightly lower than that of CFI2TCFI.

1 Introduction

Frequent Itemse(Fl) Mining [1, 2] is fundamental to
many important data mining tasks such as associations [1],
correlations [6], sequences [3], episodes [13], emergatg p
terns [8], indexing [17] and caching [18], etc. Over the last Figure 1. FIs and Their Frequency
decade, a huge amount of research has been conducted on
improving the efficiency of mining FIs and many fast algo- Example 1 Figure 1 shows 15 FIs (hodes) obtained from
rithms [9] have been proposed. However, the mining oper- a real-world retail dataset, wheadcd abbreviates for the
ation can easily return an explosive number of FIs, which itemset{a, b, ¢, d} and the number following " is the
not only severely thwarts the application of FlIs, but also di frequency ofabcd.
rectly affects the mining efficiency. Although we have only 1 MFI, i.eabcd, the best esti-

To address this problemyiaximal Frequent Itemsets mation for the frequency of the 14 proper subsetalot d
(MFIs) [4] and Closed Frequent Itemse{€FIs) [14] are is that they have frequency at least 100, which is the fre-
proposed asoncise representations of FI8/IFIs are also  quency ofabcd. However, we are certainly interested in
Fls but none of their proper supersets is an Fl. Since an Fl ofthe knowledge that the Fls, d andbd have a frequency




significantly greater than that of other FIs. On the contrary considerably lower thad. Most importantly, MineTCFI
CFls preserve the frequency information but all the 15 Fls is significantly faster than all other algorithms, while the
are CFls, even though the frequency of many Fls only differ memory consumption of MineTCFI is also small and in
slightly from that of their supersets. most cases smaller than that of the other algorithms.

We investigate the relationship between the frequency of  Another important finding of mining-TCFls is when
the Fls. In Figure 1, the number on each edge is computed increases, the error rate only increases at a much slower
asd = (1 — dreauency of ¥y "\wherey is X's smallest su-  rate. Thus, we can further reduce the numbe¥BCFlIs by

frequency of X

perset that has the greatest frequency. For CFls, if we wantusing a larges, while still attaining high accuracy.

to removeX from the mining resultj has to be equal t0, Organization. Section 2 gives the preliminaries. Then,
which is a restrictive condition in most cases. However, if Section 3 defines the notion @¢TCFEIs and Section 4
we relax this equality condition to allow a small tolerance, presents the algorithms CFI2TCFI and MineTCFI. Section
sayd < 0.04, we can immediately prune 11 Fls and retain 5 reports the experimental results. Section 6 discusses re-

only abcd, bcd, bd andb (i.e., the bold nodes in Figure  |ated work and Section 7 concludes the paper.
1). The frequency of the pruned Fls can be accurately es-

timated as the average frequency of the pruned Fls that ar&)  preliminaries
of the same size and covered by the same superset. For ex-
ample,ab, ac andad are of the same size and covered by

the same supersabcd; thus, their frequency is estimated
as 106+1g8+107 —=107. O

LetZ = {x1,22,...,2, } be a set of items. Aitemset
(also called gattern) is a subset of. A transactionis an

itemset. We say that a transactiBrsupportsan itemsetX
We find that a majority of the FIs mined from most of if v > X. For brevity, an itemsefzy, , 2k, , . . ., 2k, } iS

the well-known real datasets [9], as well as from the preva- yritten aswy, I, . . - Tk, in this paper.
|ent|y used SynthetiC datasets [12], exhibit the above-char Let D be a database of transactions. 'ﬂ}wuencwf an
acteristic in their frequency. Therefore, we propose tvall  jtemsetX, denoted agreq(X), is the number of transac-

tolerance, bounded by a threshéldn the conditionforthe  tions inD that support. X is called aFrequent ltemset
closure of CFls, and define a new concise representation ofFl) if freq(X) > o|D|, whereo (0 < o < 1) is a user-

Fls called thej-Tolerance CFIg4-TCFls). The notion ob- specifiedminimum support threshaldX is called aMaxi-

tolerance greatly alleviates the restrictive definitioCéls, mal Frequent ItemsegiMFI) if X is an Fl and there exists

as revealed in the above example. no FIY such that” > X. X is called aClosed Frequent
We propose two algorithms to mideTCFlIs. Our algo-  Itemset(CFI) if X is an Fl and there exists no K such

rithm, CFI2TCFI, is based on the fact that the set of CFIs thaty > X andfreq(Y) = freq(X).

is a lossless representation of FIs. CFI2TCFI first obtains

the CFls and then generates th@CFls by checking the 3 5_Tolerance Closed Frequent Itemsets
condition ofé-tolerance on the CFIs. However, CFI2TCFI
becomes inefficient when the number of CFls is large.

We study the closure of thé&TCFIs and propose an-
other algorithm,MineTCF|, which makes use of thé-
tolerance in the closure to perform greater pruning on the
mining space. Since the pruning condition is a relaxation
on the pruning condition of mining CFIs, MineTCFl is al-
ways more efficient than CFI2TCFI. The effectiveness of 3 {  TLe Notion of §-TCFIs
the pruning can also be inferred from Example 1 as the ma-

jority of the itemsets can be pruned when the closure defi- 5qfinition 1 (5-Tolerance Closed Frequent ItemsetAn

nition of CFls is relaxed. _ itemsetX is ad-tolerance closed frequent items&t{CFI)
'We compare our algorithms wiiPclose[10], NDI [7], if and only if X is an Fl and there exists no Bf such that
MinEx [5] and RPlocal[16], which are the state-of-the-art y - x Y| = [X|+1, andfreq(Y) > ((1—0) - freq(X))

algorithms for mining the four respective concise represen \yhere § (0 < & < 1) is a user-specifiefequency toler-
tations of Fls. Our experimental results on real dataséts [9 gnce factar

zhow that the number @ TCFIs is many times (up to or- We can define CFls and MFIs by ofsTCFls as follows.
ers of magnitude) smaller than the number of itemsets ob-
tained by the other algorithms. We also measure the error-€mma 1 An itemsetX is a CFl if and only ifX is a 0-
rate of the estimated frequency of the Fls that are recovered! CFl.

from the-TCFls. In all cases, the error rate of CFI2TCFI Lemma 2 An itemsetX is an MFI if and only ifX is a
is significantly lower thad while that of MineTCFlisalso  1-TCFI.

In this section, we first define the notion 6{TCFlIs.
Then, we discuss how we estimate the frequency of the Fls
that are recovered from theTCFIs. Finally, we give an
analysis on the error bound of the estimated frequency of
the recovered Fls.



Corollary 1 The set of all CFIs and the set of all MFIs while bcd is the closest-TCFI superset obc, cd andc.
form theupper boundind thelower boundof the set of all O

0-TCFls, respectively. To estimate the frequency of the Fls with the same clos-
Example 2 Referring to the 15 Fls in Figure 1. Let €std-TCFlsuperset’, we group the Fls according to their
§ = 0.04, then the set of).04-TCFls is {b, bd, bcd, size and define the frequency extensiorYads follows.
abcd}. For example,b is a 0.04-TCFI sinceb does Definition 4 (Frequency Extension)Given ad-TCF1Y, let
not have a proper superset that has frequency greater tha; = {X : | X| = |Y|—i andY is the closesi-TCFI super-

((1 —0.04) x 139) = 133. The Fla is not a0.04-TCFI setof X'}, wherel <i < mandm = MAX{i: X; # (}.
since(1 — M) = 0.027 < 0.04, and similarly forac Thefrequency extensioof Y, denoted agzt(Y), is a list

req(a
since(l — ;Te‘?((agd)) = 0.037 < 0.04 and foracd since (e:m_t(Y, 1?’ - eat(Y,m)), whereext (Y, 1), for 1 < 4 <
freq (ab-érgf)l(afi m, is defined as

(1- W)—) = 0.038 < 0.04. Thus, they are recur- freq(X)
sively covered by their superset that has 1 more item and . 2xex freq(Y")
then finally covered by the.04-TCFl abcd. ect(Yoi) = — 3]

The set 00).07-TCFlIs is{bd, abcd}, while the set of -
TCFls, i.e., MFls, iabcd}. However, the set df-TCFls, The size of the frequency extension &f, denoted as
i.e., CFls, is all the 15 Fls.O |ext(Y)], is defined agext(Y)| = m.

In the rest of the paper, we ugeto denote the set of all The frequency extension of is essentially a list of aver-
Fls and7 to denote the set of al- TCFlIs, for a givery. aged frequency ratio grouped by the size of the Fis. With the

frequency extension df, we can estimate the frequency of

3.2 Frequency Estimation eachX € X, as(freq(Y) - ext(Y,4)). We illustrate the

frequency estimation by Example 4.

Given 7, we can recovefr (when demanded by appli- Example 4 Referring to Example 3, leY' = abcd, then
cations). The frequency of an &I € F can be estimated X, = {abc, abd, acd}, &, = {ab, ac, ad} andA3 =
from the frequency of its supersets i We discuss the {a}. We have exzt(abcd, 1) = (12 + 133 + 194)/3 =
frequency estimation in this subsection. 1.03, ezt(abcd,2) = (108 + 105 + %)/3 = 1.07 and

It is possible that for an FK, there are more than one ext(abed,3) = 1L /1 = 1.11

— ) 100 oo
FIY, whereY S X, [Y] = |.X| + 1 andfreq(Y) > ((1 — Thus, the frequency afbc, abd andacd are estimated
d) - freq(X)). Among all these supersets &f, the one that as(freg(abcd)-ext(abcd, 1)) — 103, the frequency odb,
has the greatest frequency can best estimate the frequency. 424 are estimated l’slsfreq(abcd)-ext(abcd 2)) =

of X. Thus, we define this superset as the closest superse{m’ while the frequency od is estimated as freq(abcd) -

of X as follows. ext(abed,3)) = 111, O
Definition 2 (Closest Superset)Given an itemsefX, let
y={y Y o> X |Y| = |X|+1 andfreq(Y) = 3.3 Error Bound of Frequency Estimation

MAX{freq(Y') : Y' > X, |Y'| = |X|+1}}. Y is the
closest supers@f X if Y € Y andY is lexicographically

) We now analyze the error bound of the frequency esti-
ordered before all other itemsets jn

mation. We first give Lemmas 3 and 4, which we use to
Given an itemsef, we can follow a path of closest su- define the error bound.
'FIJ'eCrlilet\SN a”dd ;?”a'g’]_?"j‘r‘g‘lz‘l’”e C'OsetSt Sliﬁerslet'g";iéifs 4 Lemma3VX e (F —7),3Y € T such that¥ > X and
. We define thig- superset as the closés Freq(Y) > (1 — OYIZIXT L freq(X)).
superset ofX as follows.

. 1
Definition 3 (Closests-TCFI Superset) Givenn itemsets, ~ -€mma4Foranyd-TCHY', 1 < eat(Y, 1) < =gy

X1,..., Xy, where forl < i < n, X; C X;4; and Lemma 5 (Error Bound of Estimated Frequency) Given

| Xit1| = [Xi| + 1. Xy, is theclosest)-TCFI supersedf  an FI X and X's closests-TCFI superset’, where|Y| —

Xy, if X, € Tandforl <i <n, X; € (F-T)and  |x| = i. Letfreq(X) be the exact frequency df and

Xit1 is the closest superset ;. freq(X) = (freq(Y)- ext(Y, 1)) be the estimated frequency

Example 3 Referring to Figure 1, the closest superset of of X. Then,

a is ac, that ofac is acd and that ofacd is abcd. For

the two supersets afb that have the same frequency, we freg(X) — freq(X)

chooseabc as the closest supersetalh sinceabc is or- $-1< T feqx)
req(X)

dered beforeabd. Whené = 0.04, abcd is the closest

5-TCFI superset of all its subsets that contain the iem  where¢ = (1 — §)°.

Sl_la
¢



Proof. Sincefr\e?](X) = (freq(Y) - ext(Y,7)), by Lemma  frequency among all other CFI supersetsofiIf X’s clos-
4, we have) < freq(Y) < freq(X) < £24¥) By emma €St CFl superset is not found, théhis a4-TCFI and we
’ - N . includeX in 7 (Line 10). If X has a closest CFI superset
3, we haved < freq(Y) < freg(X) < Z900 Thys ' Pt
: = Jreglt) = e = e © Ybutfreq(Y) < (1= &)YIZIXE L freq(X)), we also in-
0 < (freq(y)/frez;(Y)) < {C:zggg < (fm;(Y) /freq(Y)), cludeX in 7 (Line 1Q). Otherwise, we updata@z?(Y) W_I'[h
freq(X) andezt(X), if any, and then delet& (Lines 7-8).

le,¢ < % < 3. Hence(p—1) < %&m}q(x) < CFI2TCFI computes the exact set of &TCFls and as
(% ~1). O we show in Section 5, the estimated frequency of the FIs re-

] ] covered from thé-TCFIs obtained by CFI2TCFI is highly

Lemma 5 gives the theoretical error bound of the fre- accurate in all cases. However, the search for the closest
quency of an Fl estimated from the frequency of its closest cF| superset of each CFl is costly when the number of CFls
o-TCFI superset. However, according to Definition 4, each s jarge. Thus, we propose a more scalable algorithm whose
ext(Y, 1) of ad-TCFI Y is taken as the average of the fre- efficiency is not affected by the number of CFls.
guency ratio of the Fls ii; over the frequency of, while
the relative difference in the frequency of any two Flstin 4.2 Algorithm MineTCFI
is bounded by. Thus, in practice, the estimated frequency
is highly accurate and the error bound is much smaller than In this section, we discuss a very efficient algorithm,

the_ t_heoretlcal bound_ def|ned_|n Lemma 5, which is also MineTCF|, for mining 6-TCFIs. We first describe the data
verified by our extensive experiments. structures used in MineTCFI in Sections 4.2.1 and 4.2.2.

o Then, we discuss an effective pruning in Section 4.2.3 and
4 Mining 0-TCFls present the main algorithm in Section 4.2.4.

In this section, we first present an algorithm that com- 4 2 1 Fp-Tree and FP-Growth
putess-TCFls from the set of CFls. Then, we propose a
more efficient algorithm that employs pruning based on the The pattern-growth methad-P-growth by Han et al. [11]

closure of theJ-TCFls. is one of the most efficient methods for mining Fls, CFls
and MFIs [10]. We adopt the pattern-growth procedure as
4.1 Algorithm CFI2TCFI the skeleton of our algorithm MineTCFI.

FP-growth mines Fls using an extended prefix-tree struc-
Mining CFls is in general much more efficient than min- ture called thé=P-tree As an example, Figure 2 shows the
ing Fls. Since the set of CFls is a lossless representation of P-tree.lj, constructed from a database excerpt which gen-
Fls, we devise an algorithm which takes advantage of theerates the Fls in Figure 1.
efficiency of mining CFls. The algorithm first generates the

CFls and then computes thel CFls from the CFls. Hesderene
item: freq node-links
Algorithm 1 CFI2TCFI 139 | e
1. Mine the set of all CFls; d 134 .
2. LetC; be the set of CFls of size S
3.foreachi > 1do clis | e o
4 foreach X € C; do . ; ey
5. Find X's closest CFI supersgl’; w b
6. ifAY s.t. freq(Y) > (1 — &)Y I=IXT. freg(X))
7 Updateezt(Y') with freq(X) and ext(X);
8. DeleteX: Figure 2. The FP-Tree Tj of Figure 1
9. else
10. T —TU{X} FP-growth mines the set of Fls as follows. Given an FP-
11.return 7, treeT'x, where initially X = () andT} is constructed from

the original database. For each itanin T'x.header, FP-
Our algorithm CFI2TCFI, is shown in Algorithm 1. We  growth follows the list of pointers to extract all paths from
first generate all CFIs and partition them according to the the root to the node representingn 7'y . These paths form
size of the CFls. Lef; be the set of CFls of size Starting the conditional pattern basef Y = X U {z}, denoted
fromi = 1, we find theclosest CFl superseif each CFLX as By, from which FP-growth constructslacal FP-tree,
(Line 5). Here, theclosest CFI supersetf X is defined as  called theconditional FP-tree denoted ady. First, the
X's CFl superset that has the smallest size and the greatedrequent items inBy form Ty .header. Then, FP-growth



re-orders the frequent items in each pattBip (the infre-
guent items are discarded) and inserts the new patlTipto
Figure 3 shows the conditional FP-trég,, which is con-
structed from the FP-treg; in Figure 2.

Header Table

head of
node-links

item: freq

d: 111

b: 110

Figure 3. The Conditional FP-Tree T,

The above procedure is applied recursively until the con-
ditional FP-tree consists of only a single path, from

which FP-growth generates the itemsets represented by all

sub-paths of°.

4.2.2 Thes-TCFI Tree

A crucial operation in MineTCFI is the search for the su-
persets of an itemset in the set®TCFls already discov-

ered. Performing a subset testing by comparing the itemse

with every existing)-TCFl is clearly inefficient. In mining

CFls, the subset testing can be efficiently processed by an

FP-tree-like structure [10]. We thus develop a similarstru
ture, called th@-TCFI treg to be used for mining-TCFls.

To avoid testing all existing-TCFIs with X, a condi-
tional 6-TCFl treg C'x, is created corresponding to the con-
ditional FP-tre€l’x in each of the recursive pattern-growth
procedure calls. Eaofi’x is local since it contains only-
TCFls that are supersets &f. Thus, this local’y is much
smaller than a global-TCFI tree that contains adt TCFls.

Each nodev in Cx has three fieldsitem labe) level
andd-TCFI-link, where the item label indicates which item
v represents, the level is the level ofin Cx (the root is
at Level 0), and thé-TCFI-link is a pointer to th&-TCFI
represented by the root-topath. Since each-TCFI has
a frequency extension, we keep #hd CFls in an array so
that the frequency extension will not be duplicated in each
of the conditionab-TCFlI trees.

Like Tx, Cx also has a header table, denoted as
Cx.header. The items inC'x.header are the same as the
items inT'x.header and in the same order. Each itemn
Cx .header is associate with an arrayl,. Each entry in
A, A.[l], is an array of pointers to all nodes @y that
have item labek and level.

Example 51f 6 = 0.027, we obtain seveia-TCFIs after
processing the itera. Figure 4 shows the globalTCFI
tree,Cy, which contains the sevenTCFIs, and Figure 5(a)
shows the conditiondlTCFI tree,C., which contains only
0-TCFIs that are supersets of Cy andC. correspond to

Header Table

item: Ailem

b: (L))

d: (1:vg),(2:v,)

e (1)), (2:v,,v0),(3:vy)

Figure 4. The Global §-TCFI Tree Cy

Header Table

item: A,

d: (1:v,)

b: (1:v)),(2:v,)

(a) C, (Before Inserting cbd)

(b) C, (After Inserting cbd)

Figure 5. The Conditional 6-TCFI Tree C.

the FP-tree§; andT in Figures 2 and 3, respectively. Note
thata is not inCy.header and no node irCy represents.
t'I'his is because all-TCFls containinga have already been
generated and hence there is no need to inciuiteCy.

In Cy.header in Figure 4, €: (1 : v7),(2 : vy, v6), (3 :
v3)” means thatd. has three entriesd.[1] has a pointer to
vy at Level 1,A.[2] has pointers te, andvg at Level 2, and

A.[3] has a pointer te; at Level 3. O

Update and Construction of 6-TCFI Tree.  To insert a
0-TCFI Z = X UY into Cx, we first sort the items ik as
the order of the items i0'x .header. Then, the sorted” is
inserted intaC'x . If a prefix of the sorted” already appears
as a path iC'x, we share the prefix but change th& CFI-
link, link, of each node on the path as follows. Assumk
currently points tdV, thenlink will point to Z if either (1)
|Z] < |[W|or(2)|Z] = |W|andfreq(Z) > freq(W). If a
new node is created for an item 1, then its§-TCFI-link
points toZ.

To construct a conditionaTCFI tree,Cy, for an item
x in Cx.header, i.e., Y = X U {z}, we first initialize
Cy .header based on the set of items-.header. Then,
we access each noden Cx via its pointer inA4, and ex-
tract the root-tow path, P. After discarding the nodes o
that do not correspond to an itemdR-.header, we re-order
the remaining nodes af according ta”y . header and then
insert the path intd’y-. The insertion is the same as the way
we insertZ into C'x that we just discussed above.

Example 6To insert thed-TCFIcbd into C. in Figure 5(a),
we first sortbd asdb according toC..header in Figure
5(a). Then, we share the path,, v3). But thed-TCFI-
link of v andwvz will be changed to point tedb, since
freq(cdb) > freq(acd) and|cdb| < |acdb|. The -



TCFl tree after the insertion a@fbd is shown in Figure 5(b),
whereC..header remains unchanged as in Figure 5(8).

4.2.3 Closure-Based Pruning

The efficiency of CFI mining is mainly due to the pruning

lext(Z")| > (|Z'| — |Y| — 1), which means thaZ’ has
already covered subsets of size fr¢j¥i|+ 1) to (]2’| — 1).

Let U andV be any two such subsets coveredtiywhere
|[V| = |U| + 1, then the difference between the frequency
of U and that ofi’ is bounded by. Since the Fls itF (Ty)
also share the same supergétthis proximity of frequency

based on the closure of CFls. We make use of the toleranc@f other subsets of” implies a high probability that the Fls

in the closure of thé-TCFls to achieve greater pruning in
MineTCFI.

The pruning is described as follows. Given an¥kand
X’s conditional FP-tre€’x. LetY = X U {z}, wherez
is an item inT'x .header, andF (Ty ) be the set of Fis to be
generated fronY’s conditional FP-tredy-. We say thal”
is coveredif there exists &-TCFI Z such thatZ > Y and
freq(Z) > (1 = &)IZI=IY1 . freq(Y)). At the time when
we generat&’, if Y is already covered, then we prune all
Fls in F(Ty) and thusTy will not be constructed.

The above pruning can be directly applied to mine 0-
TCFls (i.e., CFls), since the Fls ifi(Ty ) must already be

covered by some 0-TCFls that are found before we generat

Y. However, wher > 0, a minority of FIs inF(Ty) may
not be covered by any existidgTCFI due to the frequency
tolerance in the closure. Some of this minority of FIs may
later becom@-TCFIs. However, only a very small number
of these Fls will becomé-TCFls. Missing thesé-TCFls
will only slightly degrade the accuracy of the estimated fre
guency of the recovered Fls, while we can still recover all
Fls from their othe®-TCFI supersets. But to improve the

in F(Ty) are also covered. Thus, we obtain Heuristic 3.
We first define thal™’ is conditionally coveredy aJ-
TCHRI Z'if Z’ DY and|ext(Z")| > (|1Z'| — |Y] - 1).

Heuristic 3 If Y is covered and there existsiaTCFl, Z’,
such thatY”’ is conditionally covered by’, then we prune
allFls in F(Ty).

Example 7 Based oni} in Figure 2, if §=0.07, we first
find abdc is a 0.07-TCFI after processirey Then, when
we procesg in Ty.header, there are two frequent items
{d, b} in B, from which we can generatb, cbd and
cd. Sincec is covered byabdc, (c U {d, b}) C abdc
@nd|ext(abdc)| = 3 > (Jabdc| —[c| — 1) = 2, we can be
sure that the frequency ob, cbd andcd can be estimated
with ext(abdc). Thus, we can pruneb, cbd andcd.

Note that ifd=0.04, thenabdc does not cover. Hence,
we will continue fromec and find the)-TCFlcbd. O

Coverage Testing. We now discuss how Heuristic 3 can
be efficiently processed using thelCFl tree.

Given an FIX andX's 6-TCFl treeCx, letY = X U
{z}, wherez is an item inC'x .header. We find the superset

accuracy of the estimated frequency, we apply an additionalof v in C'x as follows. We accesd,. in Cx.header and

checking to prevent pruning these potendidCFls, as de-
scribed by the following heuristic.

Heuristic 1 Let H be the set of frequent items¥fis condi-
tional pattern baseBy, andY’ =Y U H. If Y is covered
andY” is also covered, then we prune all FISF(Ty ).

Heuristic 1 is based on the proximity of frequency of
the itemsets found in most datasets:Yifis covered and
Y’, which is the largest possible supersetrothat can be
generated fromy, is also covered, then most likely other
Fls in-betweerY” andY” are also covered.

However, at the time when we generatethe frequency

follow the pointers inA,[i] (¢ > 1, starting fromi = 1)
to visit the nodes that have item labelnd are at Level
of Cx. For each node visited, letv's §-TCFI-link point
to Z, we check ifY is covered byZ by testingfreq(Z) >
(1= 8)1Z7IY1 - freq(Y)).

If Y is covered byZ, then Heuristic 3 requires us to
check ifY’ = Y U H is conditionally covered, wheré&l
is the set of frequent items iBy. To check this, we first
sort the items inH as their order inC'x.header. Let the
sortedH be H = z1z9 - - x1. We accessﬁlmk of the item
xr in Cx.header.

We first processd,; [k], which contains the pointers to

of Y’ has not been determined and hence we cannot checkhe nodes at Leve! in C'x. For each node accessed via a

the condition whetheY” is covered. However, we find that
if there exists a-TCFI, Z’, which is a superset df’, then
in most casey”’ is covered (due to the proximity of fre-
guency). Thus, we obtain the following heuristic.

Heuristic 2 If Y is covered and there existséalCFl, Z/,
such thatZ’ > Y”, then we prune all FIs itF (Ty ).

pointerinA; [k], we check if the root-tar path represents

a superset of/. The checking starts from's parent up to
the root and we compare both the item label and the level
of each node along the path. When we comparél <

1 < k — 1) with a nodeu, if u’s level is smaller than, we
stop the comparison and move on to process the next node
pointerinA, [k], and then the pointersiA, [k+ 1] when

Heuristic 2 implies that we only need to check the subset- we finish A, [k] and so on.

superset condition without knowing the frequencydf To
further increase the probability that other FISAi{Ty ) are

SinceCy is alocald-TCFI tree containing only-TCFIs
that are supersets &f, the number of comparisons is usu-

also covered, we can add one more level of checking thatally small. In addition, thosé-TCFls that are accessed via



pointers inA; [i] (Vi < k) are not compared, since the Algorithm 2 MineTCFI
paths from the root to those nodes have less nodes than the. Construct the global FP-tre®;;
number of items i and hence cannot be supersetgiof 2. Initialize the globab-TCFI tree,Cy;
In the same way, the level of a node also helps terminate3. 7 « 0;
many of the subset testings earlier. 4. Invoke GenTCFI(Ty, Cy, T);
When a root-tos path is found to be a supersetif let 5. ReturnZ;
v's §-TCFI-link point to Z’, we check ifY” is conditionally
covered byZ’ by testinglext(Z')| > (|Z'|—|Y|-1). If Y’ Procedure 1 GenTCF(Tx,Cx,T)
is conditionally covered byz’, Heuristic 3 is then applied 1 (7 is a single pathpP)

and all FIs inF(Ty) are pruned. 2. Generate all local-TCFls from P;

In MineTCFI, if Y is covered byZ andY” is condition- 3. for eachlocal §-TCFI, Y, generatedio
ally covered (byZ’), we need to determine # isthe closest 4. if ( IsCovered (Y,Cx) = true)
5-TCFI superset ot in order to update the frequency ex- 5. FindY's closest-TCFI supersety;
tension ofZ. To do this, we need to check whether the size 6- Updateezt (Z) with freq(Y);
of Z is the smallest among altTCFIs that are supersets /- else

T—TUu{Y}
InsertY into all C'x’s predecessa¥-TCFI
trees in the recursive-call stack;

of Y. But this does not mean that we need to process all®
0-TCFIs that are supersets bf. We do not process any of S
the 5-TCFIs that are accessed via the pointerslifj], Vj 10. else
> |Z]—|X|, because the pointers i, [j] link to 6-TCFlIs 11.  foreachz in Tx.header do

of size at least|X| + j) > |Z|. In most casesy’s closest 1o Y« X U {z)};
d-TCFI superset is found via a pointer i, [1] and rarely 13, LetH be the set of frequent items By ;
do we go through many entries 4f,. 14. if ( IsCovered (Y,Cx) = true)

15. if ( IsCondCovered(Y U H,Cx ) = true)

/% Prune all supersets af */
4.2.4  Algorithm MineTCFI 16. FindY's closest-TCFI supersety;
We now present our algorithniViineTCFl, as shown in i; elseUpdateext(Z) with freg(Y);
Algorithm 2 After constructing the global FP-treg), 19. Construch”’s conditional FP-treeTy,
MineTCFI invokes the recursive pattern-growth procedure andY"s conditionals-TCFI tree,Cy
GenTCF| which is shown irProcedure 1 20. GenTCFI(Ty,Cy,T);
In Procedure 1, the processingls€overedLines4and  21. else /x IsCovered(Y,Cx) = false I

14),IsCondCoveredLine 15) and the search for the closest 22. Construct’’s conditional FP-treely,
5-TCFI superset (Lines 5 and 16) are discussed in Coverage andY”s conditionald-TCFl tree,C'y;

Testing in Section 4.2.3. Procedure 1 can be divided into 23 GenTCFI(Ty, Cy, 7);

two parts: when the input conditional FP-trég;, consists
of only one single path (Lines 1-9), and whEg has more
than one path (Lines 10-23).

WhenTx consists of only one single pafh, GenTCFI
generates all itemsets which satisfy locally the conditibn
adé-TCFI. Then, for each local- TCFI Y, GenTCFI checks
if Y is covered. IfY is not covered, thel is ad-TCFl and
we add it to7 (Line 8). GenTCFlalsoinseriintoallthe 5 EXxperimental Results
conditional§-TCFI trees which are constructed along the

path of the previous recursive calls of GenTCFI (Line 9), 0 \we now evaluate our approach of minisgl CFls. We

that the future recursive calls can construct their coadl run all experiments on a PC with an Intel P4 3.2GHz CPU
0-TCFl trees correctly. It is covered, GenTCFlI findg's and 2GB RAM, running Linux 64-bit.

closests-TCFI supersetZ from Cx and updates’’s fre-
guency extension with the frequency¥f(Lines 5-6).

When T'x consists of more than one path, GenTCFI
processes each item in T'x.header as follows. First,
GenTCFI constructs the conditional pattern bdse of
Y = X U {z}. Let H be the set of frequent items By . e pumsb+: the number of CFls is orders of magnitude
If Y is covered andY U H) is conditionally covered, by smaller than that of Fls, but is orders of magnitude
Heuristic 3, GenTCFI prunes all supersetsrothat are to larger than that of MFls.

be generated frorfiy (Lines 14-17). Otherwise, GenTCFI
constructsY’s conditional FP-treelyy and conditionab-
TCFI treeCy (Lines 19 and 22). The recursive procedure
is then called to process @iy andCy (Lines 20 and 23).

Datasets. We use the real datasets from the popular FIMI
Dataset Repository [9]. We choose three datasets with the
following representative characteristics. For a wide eng
of values ofo:



e acci dent s: the number of CFls is almost the same 10T Frclose
as that of FIs, and is orders of magnitude larger than = Minex
10°f - RPlocal
that of MFls. — MineTCFI
e nushr oom the number of CFls is orders of magni-
tude smaller than that of Fls, but is only a few times
larger than that of MFIs.

—+— CFI2TCFI
-©- MFI
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Number of Itemsets
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Algorithms for Comparison. We compare our algorithms
CFI2TCFI and MineTCFI with the following algorithms:

e FPclose[10]: the winner ofFIMI 2003 [9] and one of
the fastest public implementations for mining CFls.

i
[S=N

.5 0.1
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Minimum Support Threshold

Figure 6. Number of Iltemsets (punsb=*)

e NDI [7]: the algorithm (the faster DFS approach) for 10 e
computing the set afion-derivable FI{NDIs). Ll = N

e MiInEx[5]: the algorithm for mining the set of frequent 2 Ninercr :
o-free-sets 1) & e

e RPlocal [16]: the faster algorithm (thaiRPgloba)
for computing therepresentative patterns of the
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5.1 Performance at Different Minimum Minimum Support Threshold
Support Thresholds Figure 7. Number of ltemsets (acci dent s)
5
We first study the performance of the different algo- e

-5 MinEx 'y
- RPlocal
% MineTCFI
— CFI2TCFI
© MFI

— 7

rithms by varying the minimum support threshetd We
fix 6=0.05 for both punmsb* and acci dents. For
nmushr oom since the difference between the number of
CFls and that of MFIs is much smaller than the other two
datasets, we set a larger= 0.2 to obtain a greater reduc-
tion for the algorithms with the parameter

We use the samé&for CFI2TCFI, MineTCFIl and RPlo- 183(
cal. However, the defined in MinEx is an absolute value. 05 wiftum sudport ThreShtid
Thus, in each case we compare with MinEx, we find a
for MinEx such that the error rate of MinEx approximately
matches that of MineTCFI.

Number of Itemsets
B
(e}

0.01

Figure 8. Number of Iltemsets (mushr oon

of MineTCFl is higher than CFI2TCFI because MineTCFI

5.1.1 Number of ltemsets and Error Rate is only able to include partially the frequency of the subset
. ) _of aé-TCFl in its frequency extension, as some of the sub-
We compare the size of each of the concise representationgets are pruned. The error rate of MinEx is the same as that

of Fls. For simplicity, we us&/um(alg) to denote the num- ¢ MineTCFI. NDIs and CFls are lossless representations

ber of itemsets obtained by the algoritiatg. of Fls, while the error rate of RPlocal is boundeddby
Figures 6 to 8 report the number of itemsets returned

by each algorithm. In most caseNumCFI2TCFI) and punsbx | acci dents | nushroom

Num(MineTCFI) are about an order of magnitude smaller (6 =0.05) | (6 =0.05) (6 =0.2)

than Num(FPclos¢ and Num(NDI), many times smaller CFI2TCFI 0.01 0.01 0.01

than NumMinEx), and on average 2 times smaller than MineTCFI 0.03 0.04 0.02

Num(FPclosg. In all cases, the number 6t TCFIs ob- i
tained by both MineTCFI and CFI2TCFI is very close to Table 1. Error Rate of Estimated Frequency
the number of MFls.

Table 1 shows the error rate of the estimated frequency
of the Fls recovered from th& TCFIs. We can see the er-
ror rate of CFI2TCFI is much lower thanin all cases. The  Figure 9 reports the running time and memory consumption
error rate of MineTCFl is higher but still lower thanespe- of the algorithms. We truncate the time and memory that are
cially that formushr oomis only 1/10 ofé. The error rate  orders of magnitude larger than the largest points predente

5.1.2 Running Time and Memory Consumption



897" Fpoiose O Frciose andacci dent s. We fix ¢ at 0.3 and vary from 0.001
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2+ RPoca < 5 + Rplocal (a sufficiently low error rate in our opinion) to 0.2 §aat
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in the respective figures, since most of the time and memory 10" T MineTar oeen
i i i i i —— CFI2TCFI (accidents
usage are small and will be squeezed into a single line if we o CHIZTCH! (et

use a logarithmic scale. 1901

It is obvious from Figures 9 (al), (b1) and (cl) that
MineTCFI, which is the lowest line in all figures, is sig-
nificantly faster than all other algorithms. The runningdim Figure 11. Error Rate of Different &
of RPlocal is the closest to that of MineTCFI but still about
3 times longer on average. CFI2TCFl is also fast in most of
the cases, except when the number of CFls is large.

The memory consumption of the algorithms is small in
most cases, except that CFI2TCFI and FPclose use mor
memory when the number of CFls is large. Rorshr oom
as shown in Figure 9 (c2), MineTCFI consumes more mem-
ory than other algorithms but the difference is only 2MB.
However, in most of the other cases, MineTCFI has the low-
est memory consumption among all algorithms, as shown in
Figures 9 (a2) and (b2).

0.01  0.05 0.1 0.15 0.2
Frequency Tolerance Factor

Figure 11 shows the error rate of CFI2TCFI and
MineTCFI for punsb* andacci dents. At § = 0.001,
the error rate of CFI2TCFI and MineTCFl is significantly
?up to 20 times) smaller thafy, except that of MineTCFI
for punsb+* which is approximately 0.001. The error rate
increases only slightly for large values &f For punsb=
at0.05 < § < 0.2andacci dents at0.1 < 4§ < 0.2, the
error rate increases only within the range of 0.01.

This result shows that the actual error rate does not grow
with the theoretical error bound given in Lemma 5, but re-
mains to be small whe®becomes large. This is an impor-

5.2 Effect of Different Values of § tant finding since for many applications the user is allowed
to specify a large), while we can still achieve high accu-
We now study the effect of different values®bn min- racy, which is not largely affected by and obtain a very

ing 5-TCFls. We test on the two larger datasptens b+ concise set 0b-TCFIs. The small error rate also demon-



strates the need for the frequency extension &T&CFI in of CFI2TCFI; however, MineTCFI is significantly faster

maintaining high accuracy of the estimated frequency. than all other algorithms [10, 7, 5, 16] in all cases and also
consumes less memory in most cases.
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