
A Co-Training Framework for Searching XML

Documents

Wilfred Ng and Lau Ho Lam

Department of Computer Science

The Hong Kong University of Science and Technology

Hong Kong

Email: {wilfred, lauhl}@cs.ust.hk

Abstract

In this paper, we study the use of XML tagged keywords (or simply key-tags) to

search an XML fragment in a collection of XML documents. We present techniques

that are able to employ users’ evaluations as feedback and then to generate an adap-

tive ranked list of XML fragments as the search results. First, we extend the vector

space model as a basis to search XML fragments. The model examines the relevance

between the imposed key-tags and identified fragments in XML documents, and de-

termines the ranked result as an output. Second, in order to deal with the diversified

nature of XML documents, we present four XML Rankers (XRs), which have dif-

ferent strengths in terms of similarity, granularity, and ranking features. The XRs

are specially tailored to diversified XML documents. We then evaluate the XML

search effectiveness and quality for each tailored XR and propose a Meta-XML

Ranker (MXR) comprising the four XRs. The MXR is trained via a machine learn-

ing training scheme, which we term the Ranking Support Vector Machine (RSVM)

in a Co-training Framework (RSCF). The RSCF takes as input two sets of labelled

fragments and feature vectors and then generates as output adaptive rankers in

Preprint submitted to Elsevier Science

a learning process. We show empirically that, with only a small set of training

XML fragments, the RSCF is able to improve after a few iterations in the learning

process. Finally, we demonstrate that the RSCF-based MXR is able to bring out

the strengths of the underlying XRs in order to adapt the users’ perspectives on

the returned search results. By using a set of key-tag queries on a variety of XML

documents, we show that the precision of the result of the RSCF-based MXR is

effective.

1 Introduction

As the amount and use of XML data continue to grow, simple but effec-

tive XML searching facilities are important for users to find their target in-

formation. XML searching is different from HTML searching in two main

aspects. First, XML documents differ from HTML documents in syntacti-

cal specification. In particular, XML allows the use of tags to capture data

semantics. Therefore, the conventional method of using simple keywords to

search XML documents is not effective. The problem has just started to be

addressed in both the database and information retrieval (IR) communities

[26,11,21,13,22,1,3]. Second, the tasks in XML searching are fundamentally dif-

ferent from those in HTML searching. Searching HTML documents belongs

to the “document paradigm”, which relies on a pure information retrieval

approach, such as matching the important words (or keywords) between the

submitted query, which is specified in a list of keywords, and the documents,

which are presented in an index database. However, searching XML documents

depends on how the keywords are placed in a context specified by a simple

path expression. Fragments can be generic or specific in different searched

contextual paths. Furthermore, XML documents are known to be diverse by

2

nature: they vary from regularly structured documents, such as DBLP data

[30], to heavily textual-oriented documents, such as Shakespeare play data [9].

Searching for information via a search engine is crucial to the experience of

both casual users and professional Web programmers. In practice, most users

do not actually use complicated search strategies and the advanced search

options that rely on complex query formulations are therefore simply ignored.

Therefore, XQuery [38] expressions are not appropriate in XML document

searching, although this type of query is known to be expressive enough to

derive any fragment of a given XML document precisely. The reason for this

is that XQuery fulfils different goals in XML searching. XQuery is expected

to return a precise XML fragment as an answer, so it focuses on evaluation

efficiency when processing a submitted query. In XML searching, we focus

on returning an effective ranked list of XML fragments or documents as an

answer to the query. Such searching is concerned with different dimensions of

relevance as well as ranking effectiveness. Given an XML search query, the

prime tasks are to devise an innovative way to estimate the relevance between

the query and XML documents and to rank the possible returned fragments

in the search result.

In the IR research community, there have been many searching techniques de-

veloped that essentially rely on a set of weighted keywords in a search query

to determine the proximity of the query and a document in the feature space.

Searching XML documents, however, departs from the conventional “informa-

tion retrieval” strategy, in the sense that XML documents have nested XML

elements and semantics of data values indicated by tags. As a result, the no-

tion of keyword proximity used in IR is too simple to be effective in XML

searching. On the one hand, we should preserve the simplicity of search query

3

expressions in order to facilitate the wider use of XML search engines. On

the other hand, we should take into account the importance of tag semantics,

document diversity and the structural complexity in XML data along with

evaluations of the returned results.

We propose to study the use of a list of keywords enclosed with tags, which

we term a list of key-tags or a key-tag search query, such as “〈journal〉 ACM

〈/journal〉”, to search XML documents. Our method differs from the tradi-

tional keyword search, which only uses the keywords “ACM”or “ACM jour-

nal” in a search engine. A key-tag is a simple means to provide more accurate

semantics for searching XML data; in this example, the key-tag means that

ACM is a journal in the search query. However, using an arbitrary combination

of these two words may give rise to inaccurate interpretations when matching

relevant fragments or documents.

We demonstrate the viability and the benefits of using key-tags in search-

ing XML data by devising four ranking schemes. These schemes take into

account different similarities in XML contexts and granularity and lead to

the development of four corresponding XML Rankers (XRs). We evaluate the

proposed XML rankers via experiments using a spectrum of real XML bench-

mark datasets. We show that each XML ranker has its individual strengths in

attaining good precision and ranking quality in different XML documents. In

order to adapt the XML rankers to a wider spectrum of XML databases and

users’ evaluations, we use a limited training data set to train a Meta-XML

Ranker (MXR) comprising the four XRs, in a machine learning framework

called the RSCF. Essentially, the RSCF algorithm requires only a small set of

training data of returned results to adapt the rankers in the learning process.

4

RSCF is an enhancement of the Ranking Support Vector Machine algorithm

(the RSVM algorithm) proposed in [7], which is a machine learning tech-

nique that is applied here to optimize the performance of XML searching via

key-tags. RSCF incorporates the ranking support vector machine into the co-

training framework [8] to make the learning process efficient, when the amount

of training data is relatively small and sparse. RSCF analyzes the ranking re-

sults of the Meta-XML Ranker by users and categorizes the results into labelled

and unlabelled data sets. The labelled data sets contain a few search items that

have been classified as relevant and the unlabelled data set contains the data

items that have not yet been classified. We then augment the labelled data

with the unlabelled data and rerank the results according to their relevance

to obtain a larger data set for training the rankers in RSCF.

Our main contributions related to searching XML data are as follows:

• We develop a novel Meta-XML Ranker (MXR), which evolves from four

XML rankers that have different strengths to various XML document cat-

egories such as data-centric and document-centric ones. The MXR is thus

able to cater to mixed searching needs when given a corpus of diversified

XML datasets.

• We propose a training framework based on a co-training technique called

RSCF, which refines the rankers in a progressive but non-intervening man-

ner by learning users’ feedback on the returned search results. The required

samples of labelled fragments are small, which means very low cost in train-

ing. The search performance of the trained ranker is shown to be able to

adapt to the users’ preferences in XML searching.

• We extend the Vector Space Model (VSM) that supports searching via key-

tags. The extension includes the important features in XML data such as

5

key-tag proximity, data granularity and contextual paths as basic indexing

units. The notion of similarity in the context of XML searching that is

commonly used in traditional IR theory has been extended to a range of

similarity features.

• We illustrate various techniques concerning practical and effective key-tag

searching to compute the ranking of XML fragments as the answer to an

imposed query. We then develop four XML Rankers (XRs) that satisfy de-

sirable features of some XML datasets. We study their effectiveness with a

variety of XML datasets.

In the rest of this section, we discuss related work on XML searching and

co-training techniques. In Section 2, we clarify the fundamentals of key-tags.

In Section 3, we discuss the technique of matching XML fragments with key-

tags and the development of the four proposed ranking schemes. We define

the four ranking schemes in order to deal with the diversity of real XML

datasets. In Section 4, we discuss the co-training strategies for the rankers

and the development of an RSCF-based Meta-XML ranker. In Section 5, we

discuss the experimental results that show the effectiveness of the RSCF and

the rankers. Finally, we offer concluding remarks in Section 6.

1.1 Related Work

XRANK [21] is a recently proposed XML search engine to generate ranked

results for keyword search queries of hyperlinked XML documents. The en-

gine adopts a ranking formula based on the PageRank algorithm [33] used by

an existing Web search engine. The proposed formula measures extensive hy-

perlinks and containment edges (referencing properties) of XML elements. As

6

XRANK treats tag names and data values uniformly, it is not clear how the

system is able to cater to the semantics of tagged data or fragments with dif-

ferent granularities in the search process. In contrast, we take into account the

granularities of XML tags in ranking XML fragments. The referencing prop-

erties can also be captured as one of the feature components. We also aim

at obtaining quality ranking results via a novel application of the co-training

technique.

We share a similar spirit with XSEarch [13] in using a simple query language

that is based on key-tags for XML searching. The work presents the experimen-

tal results concerning the search quality of XSEarch. However, the datasets

tested are only two XML datasets, SIGMOD and DBLP, which are typical

data-centric documents. The performance of XSEarch when used to search

more diverse XML datasets is not clear. Compared with XSEarch, we devel-

ope four different rankers that take into account a wide spectrum of features

of XML data. However, XSEarch only adopts a few ranking features and the

interconnection relationship of XML nodes. We also carry out experiments on

an extensive set of XML documents which consist of both data-centric and

document-centric XML benchmarks.

The very recently proposed FleXPath [1] considers XPath queries of structures

as a “template” and finds the best matching between the template and the

full-text search. FleXPath provides ranging schemes for “top-K queries” that

are interpreted in a formalized notion of relaxation semantics. The seman-

tics essentially approximate a given query expression and retrieve the answers

for a more general class of queries in the sense of query containment. Ad-

mittedly, the relaxation queries are more expressive than our key-tag search

queries. However, our approach is not comparable to this work, since we do

7

not aim to develop a soft interpretation of an existing class of precise queries

such as XPath or XQuery. Another essential difference between FleXPath (or

XSEarch) and our method is that we propose and study the use of the RSCF

technique, which is an effective mechanism to bring out appropriate strengths

of individual rankers with respect to users’ searching preferences.

Support Vector Machine (SVM) [7] falls into the category of supervised learn-

ing algorithms in machine learning theory, which have been applied to improve

search engines. The basic principle is as follows. First, SVM receives a set of

training data in which each item is marked with a class label. Then, by us-

ing the labelled data, the learning algorithm generates an effective classifier.

Co-training [8] is a new semi-supervised learning technique proposed by Blum

and Mitchell. This technique provides a framework to augment the labelled

data with unlabelled data and then the learning algorithm is run on the aug-

mented training data set. Analyzing labelled data is a useful means to improve

the ranking, since this method conveys partial relative relevance judgments on

the fragments. Joachims proposed a ranking SVM algorithm that uses click-

through data to optimize the performance of a retrieval function in search

engines [28]. The limitation of Joachims’ algorithm is that it requires a large

set of training data to make the algorithm effective. In contrast, our work

takes only a very small set of labelled XML fragments to train a combination

of rankers in a progressive manner.

2 XML Key-Tag Queries

In this section, we discuss how to search XML fragments via a list of tagged

keywords (or simply key-tags).

8

2.1 Key-Tag Searching

In defining the search queries, we maintain the spirit of using a simple combi-

nation of key-tags, since complicated search functions are largely ignored by

people in reality. We now formalize the ideas related to key-tag queries.

Definition 2.1 (Key-Tag and Key-Tag Search Query) Let Π be the set

of tags or element names and Σ be the set of tagged data values (i.e., PC-

DATA) in an XML database. Let t ∈ Π ∪ {∗} and w ∈ Σ ∪ {∗}. We define a

key-tag, k = (t, w), which can be viewed as a usual tagged form of an XML

element “k = 〈t〉 w 〈/t〉”. A key-tag search query, denoted as Q (or simply

a search query whenever no ambiguity arises), is a sequence of non-repeated

key-tags.

The semantics of a search query is that a fragment, F , is considered as a result

candidate if at least one key-tag, k, is found in the XML fragment. In this case

we say that F contains k or k is contained in F . An XML fragment can be

regarded as a subtree of a given XML document that is viewed as a DOM

tree. If there is more than one fragment containing the same key-tag, we only

consider the fragment with the longest path from the root to the matched

key-tag as a result candidate. The following definition describes the key-tag

query semantics, which can be regarded as a special case of the relaxation

query semantics that were recently proposed in [1].

Definition 2.2 (Search Query Semantics) Let K be a non-empty subset

of key-tags that are listed in the query, Q. We define an XML fragment, F ,

in a given document, to be a result candidate in the answer with respect to Q,

if there exists some K such that all key-tags in K are contained in F . Let F1

and F2 be two fragments containing K. If F1 is a subtree of F2, we allow F1

9

to be the only result candidate.

For example, the search query in Figure 1 aims at finding the XML data

of papers entitled “XML” written by “Mary” in year “2003” Note that the

ordering of key-tags conveys a top-down view of searching. However, the query

is still valid, even when the order does not match with the hierarchy of the

searched XML documents. We take into account the matching between the

key-tag order in a given query and the usual order in an XML data tree

such as the parent-child order or the sibling order, which will be detailed in

the defining feature selection. We will also show later that different ranking

schemes make use of the document hierarchy to generate different ranking

results.

(〈author〉 Mary 〈/author〉,
Q = 〈title〉 XML 〈/title〉

〈year〉 2003 〈/year〉)
Figure 1. An example of a key-tag search query

The main advantage of using a key-tag query is that the simple query ex-

pression relieves much burden on the majority of users, who might have been

used to usual searching via keywords, to formulate more complex query ex-

pressions such as in XPath and XQuery. Compared with standard XML query

languages such as XQuery, the set of key-tags is an imprecise query expres-

sion, rather than an expressive query expression that is formulated to obtain

a precise XML fragment. Relatively speaking, the expressiveness of tagged

search query expressions is very limited. However, the objective of this work

for studying key-tag search queries is to provide an intuitive and convenient

syntax to specify the search requirement.

10

Note that the key-tag search query offers much flexibility in terms of repre-

sentation and users’ search needs. We are able to provide a simple interface

for entering key-tag words, which is not very different from the usual practice

of entering simple keywords in existing search engines. For example, we are

able to design a simple form-based interface as shown in Figure 2(a) for en-

tering both tag names and textual data information. In this case, we call it

a complete key-tag. Some tags can be left empty as shown in Figure 2(b). In

this case, we call it an incomplete key-tag, which reduces to the usual case of

a usual HTML search using the keywords “Mary”, “XML” and “2003”. An

interesting case shown in Figure 2(c) is that we may leave the word column

empty; then, only the element names in the XML database will be matched

with the query. Finally, we could also have the wildcard symbol “∗” in both

tag and word components as shown in Figure 2(d), which captures both “raw”

text and required matching tags.

Tag Word

author Mary

title XML

year 2003

Tag Word

∗ Mary

∗ XML

∗ 2003

Tag Word

author ∗
title ∗
year ∗

Tag Word

∗ Mary

∗ XML

year ∗
(a) (b) (c) (d)

Figure 2. Key-tag search queries in a form-based interface

2.2 Comparison with XQuery Full-Text Searching

The essential difference between RSCF MXR and the recently proposed XQuery

full-text search [1,31,2] is twofold. First, we aim to support simple search (key-

tag) queries and to provide an intuitive and convenient syntax for searching.

The ranking mechanism in our work is important but hidden from the users.

Second, the MXR ranker is intelligent enough to be adaptive, in the sense that

11

the ranker is able to learn the user preferences in a non-intervening manner.

Comparatively, the extension of XQuery full-text search provides a sophisti-

cated language syntax in XQuery expressions in order to support very fine

searches. However, it is still a big challenge to determine efficient query opti-

mization and evaluation techniques to deal with the interactions between exact

querying (via the core XQuery declarative constructs) and inexact searching

(via the FullMatch primitives).

At the time of writing this paper, none of the XQuery engines supported

the full text expression and the score clause, including the recently developed

MonetDB [16]. With TeXQuery and GalaTex [2,1], the authors introduce the

precursor of the full-text search extension to XQuery. TeXQuery contains func-

tions to express queries including phrase matching, order specifications, para-

graph scope, stemming and the full-text operations used by the Information

Retrieval (IR) community, such as distance predicates, synonyms, and the-

sauri. As mentioned in the official W3C document [39], the extension of full

text searching primitives in XQuery is still in a preliminary state and there

are many open issues and controversial areas that may be subject to change.

For easy comparison, we list the differences between our RSCF-based key-tag

searching and full text searching primitives in XQuery in Figure 3.

3 Matching Search Queries in XML Documents

In this section, we adapt the commonly used Vector Space Model (VSM) [4]

in the context of XML documents and key-tag queries. The VSM measures

the relevance between a key-tag and a target XML fragment and provides the

12

RSCF-Based Key-Tag Searching XQuery Full Text Searching

The main focus is on user-centered
searching: RSCF MXR emphasizes
simple search queries. User preference
is a prime consideration in our study of
the MXR. The ranker can learn from
and adapt to users.

The main focus is on language ex-
tension: XQuery FT emphasizes de-
veloping a seamless integration with
XQuery semantics. Language confor-
mance and query optimization are the
main issues for developing the FT
search primitives.

A spectrum of sophisticated ranking
schemes are developed and defined.
The meta-ranker is adaptive to users
and does not require users’ interfer-
ences in the ranking.

User-intervention is needed in defining
the ranking schemes. The score clause
is not specified and thus the user needs
to define the score computation.

The search is based on a list of simple
key-tags. The search result may not be
effective at the very beginning. How-
ever, it relies on SVM features to cap-
ture the searching primitives. We have
four pre-defined rankers that represent
very comprehensive needs.

A rich set of searching primitives is de-
fined in the W3C draft. The system
relies on the users who formulate the
search expressions. Users can formu-
late very sophisticated and fine search-
ing expressions according to their ap-
plication needs.

The aim is not to integrate di-
rectly with XML declarative query
languages. RSCF MXR needs different
phases of process searching and usual
declarative XML querying. However,
RSCF MXR can be straightforwardly
extended to capture some primitives
such as word weights.

Query optimization and evaluation
techniques on the proposed extension
are needed. The interaction between
XQuery and the Fullmatch data model
is still under study. The implementa-
tion details for XQuery text searching
facilities are not clear at the time of
writing.

Experimental details about the effec-
tiveness of the proposed rankers are
provided.

There are no implementation or eval-
uation prototypes.

The language has limited expressive-
ness but is as simple as using a Web
search engine. It is independent of any
declarative XML queries.

The language is expressive but com-
plex to learn and use. The ultimate
goal is to develop the search primitives
as part of XQuery syntax.

Figure 3. A Comparison of RSCF MXR and Query Text Searching

basis for XML searching. As XML documents are diversified in nature, we

propose a set of XML features from which four ranking schemes are defined.

13

RSCF

Training

Module

(feature

subvectors)

Meta

XMLRanker

(MXR)

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

XML Databases

Search Engine

(Relevance Score)

k

1

,...,k

n

Fragments

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>
<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>
<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

XR

1

XR

2

XR

3

XR

4

Ranking

schemes

Key-Tag Queries

Figure 4. Overview of searching XML documents by key-tags

Figure 4 shows the basic ideas of how we search XML documents by using key-

tags with the RSCF-based ranker. When the user submits a query, the search

engine will search the databases for query results. We do not describe the

implementation details of the XML databases and the associated searching

process but remark that the query tools provided by the database vendor,

such as the XML SQL Utility in Oracle [37], serve to build our prototype.

We assume that the low-level search operations are efficient and thus the

searching mechanism is not in the scope of our work. For each fragment in the

returned result, we measure the relevance scores and pass them to the four

XML Rankers (XRs). The result sets returned by the four XRs are then passed

to the Meta-XML Ranker (MXR). The MXR collects user preferences and uses

the RSCF algorithm to optimize the ranking functions. We can reiterate the

training many times in the searching process until the MXR adapts to the

user’s search preferences. The effectiveness of RSCF training will be further

studied in Section 5.

14

3.1 Indexed Contextual Paths and Fragments

We first describe the indexing scheme of contextual paths in an XML corpus

and then introduce the concept of an XML fragment. Intuitively, a contextual

path is a sequence of tags that represents a navigation through the tree struc-

ture of the fragment starting from the root r. A contextual path expression

of length n is expressed as “r/t1/t2/ · · · /tn”. This path expression specifies

finding a tag, t1, anywhere in the document, and nested in it finding a tag t2,

and so on until we find a tag tn. Basically, a fragment, F , in the corpus can be

regarded as a subtree of an XML document labelled by a contextual path in

the corpus. We adopt a simple indexing scheme that numerically encodes the

tag name and its occurrence in a depth-first search order of the corresponding

fragment tree.

Definition 3.1 (Indexed Contextual Path and XML Fragment) Let t

be the tag name in an XML document tree, D, rooted at r. Let at and nt be the

corresponding numeric encoding of t and the order of occurrence of a tag in D.

An indexed tag is denoted as at.nt. Let “p = r/t1/t2/ · · · /tk” be a contextual

path consisting of k tags (r may be ignored if it is understood in the context).

We define the indexed contextual path by ρ = “/at1 .nt1/at2 .nt2/ · · · /ank
.ntk”

to encode an occurrence of p in D. An XML fragment, F , specified by ρ, is

the subtree of D rooted at the corresponding tk node. We may also say that F

is labelled by p, since a given indexed contextual path, ρ, corresponds to the

occurrence of only one path, p.

Following from Definition 3.1, an indexed contextual path can be as specific

as a leaf element, tl, using “ρ = /at1 .nt1/at2 .nt2/ · · · /ank
.ntl”. In practice, at

is a system-assigned identity of t and nt is the same as the depth-first search

order of the corresponding target node in the document tree. For example, in

15

Figure 5 the tags “dblp”, “www” and “author” are assigned with the encod-

ings 1, 21, and 7, respectively. The indexed tag path, ρ = “/1.1/21.14/7.14”,

encodes the path, p = “/dblp/www/author”, where the order of occurrence

of the tags “dblp”, “www”, “author” in the document fragment indexed by ρ

are 1, 14, and 14, respectively.

We now introduce the algorithm that extracts and stores the index information

of a collection of XML documents. The index information is stored in the

following three relational tables:

(1) documentTable (doc ID, URL, no of element, max depth,

max child), where doc ID is a system-generated ID (being incremented

by one each time) for each parsed XML document, URL is the URL of

the XML document, no of element is the number of the XML element

of this document, max depth is the length of the deepest path, and

max child is the maximum number of child elements.

(2) tagTable (tag ID, tag name, cur ins), where tag ID is a system

assigned number encoding for the tag, tag name is the label of the tag,

and cur ins is the count of occurrence of the tag.

(3) keyTable (indexed tag path, keyword, inLink, outLink, Rank),

where indexed tag path is the path for this keyword in the form of

indexed tag path, keyword is the PCDATA of the element, inLink is

the incoming references, including IDREF and XLink, outLink is the

outgoing reference, and rank is the rank of the words defined by the

user.

The underlying idea of Algorithm 1 is that, when an XML document is loaded

and parsed, a row is inserted into the documentTable to store the informa-

16

Algorithm 1. Extracting the Contextual Path Index Information

Input: Td: documentTable

Tt: tagTable

Tk: keyTable

D: an input XML document

L: a list variable for holding path data

Procedure:

1: Parse the XML document starting from the root in a depth-first search

manner;

2: Assign D with a new doc ID = (max(Td.doc ID) + 1)

Case open tag or attribute, t, in D:

if t is a component in tuple u of Tt

Concatenate (u.tag ID).(u.cur ins) to L;

Increment u.cur ins in Tt;

else

Concatenate (max(tag ID)+1).(1.0) to L;

Insert (max(tag ID)+1) and other attributes into Tt;

Case PCDATA, w, in D:

Insert w and L and other attributes into Tk;

Increment cur ins in Tt;

Case end tag, t, in D:

Remove (t.tag ID).(t.cur ins-1) from L;

3: Store the information of D in Td

Output: Td, Tt and Tk.

17

tion. The SAX parser then extracts the tags and converts the path into a

corresponding indexed tag path based on the tagTable. When a tag, t, is

encountered in the parser, we perform a search in the tagTable. If it is found

with numeric encoding, at, and current instance, nt, we assign an indexed tag

code, at.nt, to the tag. If it is not found, we insert it into the tagTable and

assign an indexed tag code, at.0, to the tag. Whenever the parser meets a

text value, we store its indexed tag path, the text and link information in the

keyTable. During the parsing, information, such as the number of elements or

the maximum path depth, is collected and stored in the documentTable. Fig-

ure 5 presents an example that shows the tables, Td, Tt, and Tk, immediately

after two XML fragments have been parsed by the system using Algorithm 1.

<catalog>

...

<product>

 <title>Beginning XML</title>

 <asin>1861005598</asin>

 <author>David Hunter</author>

 <binding>Paperback</binding>

</product>

...

</catalog>

keyTable

indexed path
 kw

...
 ...

/1.1/21.14/7.10
 Alin...

/1.1/21.14/7.14
 Dan...

/1.1/21.14/5.32
 Xml-ql...

/1.1/21.14/35.5
 http://...

...
 ...

/38.1/40.23/5.33
 Beginning...

/38.1/40.23/46.2
 Paperback

...
 ...

tagTable

7.10

21.14

1.1
 38.1

40.23

7.11
 7.12
 7.13
 7.14
 5.32
 35.5

Alin

...

Mary

...

Daniela

...

Alon

...

Dan

...

Xml-ql

...

5.33
 45.15
 7.15
 46.2

Beginning

...

1861

...

David

...

Paperback

<dblp>

...

<www >

<author>Alin Deutsch</author>

<author>Mary F. Fernandez</author>

<author>Daniela Florescu</author>

<author>Alon Y. Levy</author>

<author>Dan Suciu</author>

<title>Xml-ql: A Query Language for XML</title>

<url>http://www.w3.org/TR/NOTE-xml-ql/</url>

<year>2003</year>

</www>

...

</dblp>

documentTable

docID

18

19

...

...

URL

dblp.xml

amazon.xml

...

...

max path

6

4

...

...

max child

39

28

...

...

no. element

589231

23571

...

...

tagID

1

5

21

7

35

40

45

46

38

tname

dblp

title

www

author

url

product

asin

binding

catalog

instance

1

32

14

15

5

23

15

2

1

inLink

...

...

...

outLink

...

...

...

rank

...

...

...

fragment of dblp.xml

fragment of amazon.xml

36
 year
 11

http://

...

2003

36.8

/1.1/21.14/36.8
 2003

Figure 5. The index tables corresponding to two parsed XML fragments

18

3.2 Relevance Measure

We now extend the Vector Space Model (VSM), which adopts key-tags as an

indexing unit, in order to determine the relevance between a search query and

an XML fragment. We assume that a key-tag, k, is related to a fragment, F ,

specified by an indexed contextual path, ρ. The relevance score is determined

by various index weights given by the function, Ω, as follows, which essentially

extends the well-known normalized cosine measure formula (cf. [4]) to take

account of key-tags and XML data in this context.

Definition 3.2 (Relevance Score) Let Q and F be a query and an XML

fragment, where F is specified by an index contextual path, ρ and p is the

corresponding contextual path. Let Ω be a weight function that maps a given

key-tag, k, from Q (or F) into an indexing weight (a positive constant). The

mapping takes into account the two components of k = (t, w). The relevance

score of F to Q, denoted as Sim(Q,F), is evaluated by using a similarity

between the weight vectors of F and Q given by the following expression.

Sim(Q,F) =
Σk∈(Q∩F) Ω(k, Q)× Ω(k, F)×G(k, p)

| Q | × | F | . (1)

The weights associated with the fragment are calculated based on the prod-

uct of two frequency parameters, Ω(k, Q) and Ω(k, F), which indicate the

statistical importance, and one path parameter, G(k, p), which indicates the

importance of granularity of the fragment.

(1) The key-tag frequency, Ω(ki, Q), represents the frequency of occurrence

of a key-tag, ki, within a query Q = (k1, k2, . . . , kn), and is defined as

19

follows:

Ω(ki, Q) =
2(n− i + 1)

(n + 1)n
,

where n is the total number of key-tags in Q. Here the equation is simply

a normalization of the position index, i, of the key-tag with respect to

the sum of all position indexes, given by Σi = n(n+1)
2

. As shown in the

denominator, the fraction represents our consideration that a higher order

of the occurrence of ki with respect to Q, ki, should then have a higher

weight.

(2) The fragment frequency, Ω(k, F), represents the content discrimination

factor, which means that if a key-tag appears often in a fragment, then

it describes well the fragment contents. However, if a key-tag appears in

many fragments, then it is not useful for distinguishing a fragment. We

now give the definition of the fragment frequency as follows:

Ω(k, F) =





(Nk/NF)× log(N/NC) where k is a key-tag in F ;

0 otherwise,

where NF is the total number of key-tags in F , Nk is the number of

occurrences of k in F , NC is the number of fragments in the collection

that contain k, and N is the total number of fragments in the collection.

Here the equation is analogous to the well-known tf-idf definition (cf.

[4]) in order to represent our consideration that if a key-tag is frequent in

the fragment (the first fraction) and infrequent in other fragments (the

second fraction), then ki should have a higher weight with respect to F .

(3) The degree of granularity matching of k in p, G(k, p) = t/lp, where t is

the number of occurrences of tag in p and lp is the length of p in F . Here,

20

the equation is a simple ratio to represent the specificity of k in the path

p, which will be further illustrated in Figure 8.

<dblp>

...

<www>

<author>Alin Deutsch</author>

<author>Mary F. Fernandez</author>

<author>Daniela Florescu</author>

<author>Alon Y. Levy</author>

<author>Dan Suciu</author>

<title>Xml-ql: A Query Language for XML</title>

<url>http://www.w3.org/TR/NOTE-xml-ql/</url>

<year>2003</year>

</www>

...

</dblp>

Figure 6. An example XML fragment

Consider the Query, Q, in Figure 1 and the XML fragment, F , in Figure 6.

We have Ω((author,Mary), Q) = 2(3−1+1)
(3+1)3

= 0.5 and Ω((author,Mary), F) =

1/8 · log(10/1) = 0.125, assuming 10 fragments in the collection. The path,

p = “/dblp/www/author” contains the key-tag (author, Mary). The length of

p is 3 and thus G(k, p) = (1/3) = 0.3333. It follows that the product of the

three terms, Ω(k, Q), Ω(k, F), and G(k, p), in the nominator of Sim(Q,F) is

(0.5 · 0.125 · 0.3333) = 0.02083. Similarly, we compute the nominator for the

key-tags (title, XML) as (0.3333·0.125·0.3333) = 0.01389 and for (year, 2003)

as (0.1667 ·0.125 ·0.3333) = 0.006945. Finally, we have the following relevance

21

score.

Sim(Q,F) =
0.02083 + 0.01389 + 0.006945

3× 8
= 0.001736.

It is worth pointing out that if G(k, p) = 1 and we ignore the tag compo-

nent, k.t, in the weight functions, then the cosine measure formula given in

Definition 3.2 becomes a simple relevance measure of searching usual flat doc-

uments. There are some considerations that affect the relevance measures in

the granularity matching between a key-tag and the contextual path. Let us

illustrate the point by assuming p = “/c1/ · · · /cm/”, where “cm” is the leaf

element with (textual) data value “a”, Q = {k1, . . . , kn}, and ki = (ti, vi) for

i ∈ {1, . . . , n}.

There are three cases to consider as below.

• Case 1 (key-tag matching): ∃ki, cj such that ti = cj and vi = a.

• Case 2 (word matching): ∀ki, cj, ti 6= cj but ∃ki such that vi = a.

• Case 3 (tag matching): ∀ki, vi 6= a but ∃ki, cj such that ti = cj.

In Case 1, the path granularity leads to two further choices as follows. If we

prefer to have a shorter distance between the tag name, t, and its associated

keyword, w, in p, then more specific results will be returned in the high ranks.

In contrast, if we prefer to have a longer distance between t and w, then more

generic results will be returned in the high ranks. This motivates us to devise

different ranking schemes introduced later in Section 3.4.

22

3.3 Features Extraction

The ranking of fragments can be calculated by using the vector equation,

−→ω × φ, where −→ω is a weighting vector, which specifies the weight of different

features and φ is the feature vector. The following are the features we extract

and apply to define the feature vector mapping, φ(Q, F), in different ranking

schemes, which are classified into the three categories of: ranking, similarity,

and granularity features. These features are all essential to evaluating an XML

fragment in the search result.

(I) Ranking Features:

Let E ∈ {DOC, DAT,DFT, CUS} (DOC stands for document-centric rank-

ing, DAT stands for data-centric ranking, DFT stands for system default

ranking, and CUS stands for customized ranking) 1 and the rank parameter,

T ∈ {1, 3, 5, 10}. We define the function Ranking Features, Rank, as follows:

Rank(E, T) =





1 if F is ranked top T in E;

0 otherwise.

The combination between E and T results in a total of 16 binary ranking

features. We restrict T in {1, 3, 5, 10}, since we consider that the top-10 frag-

ments are the most important returned results (cf. the discussion on Zipf’s

law effect in [23]). The other numbers are obtained by repeatedly perform-

ing a simple binary division on 10. Essentially, the feature provides a boolean

variable that indicates whether a ranker scheme, E, is capable of positioning

1 These four rankers will be detailed in Section 3.4. However, we need their names

here to specify the basic features and explain the feature vector.

23

a target fragment within various top-T ranges that satisfy the user.

(II) Similarity Features:

Let Q.ω and F.ω as the sets of words (i.e., the textual values only) appearing

in a query, Q, and an XML fragment, F , respectively, where ω ⊆ Σ. Similarly,

we define Q.τ and F.τ be the sets of tags in Q and F , respectively, where

τ ⊆ Π (recall the meaning of Σ and Π in Definition 2.1).

(1) Keyword similarity: SimK(Q, F).

Let N be the number of non-stop words occurring in F.ω. Here, stop

words are those words that have no meaning from the point of view of

searching, such as the definite and indefinite articles in English. Other-

wise, words are non-stop words. We denote P+ as the frequency of the

words in F.ω belonging to Q.ω (positive samples) and P− as the frequency

of the terms in F.ω not belonging to Q.ω (negative samples). We define

the keyword similarity, denoted as SimK(Q,F), between the query, Q,

and the retrieved fragment, F , as follows:

SimK(Q, F) =





logN if ∀wi ∈ F.ω, wi ∈ Q.ω;

−logN if ∀wi ∈ F.ω, wi 6∈ Q.ω;

1
2
log (1−P−)P+

(1−P+)P−
otherwise.

The equation defined above is analogous to the formulae developed in

text searching [4,18]. There are three exclusive cases in the above for-

mula. First, all the keywords in the fragment are found in the query.

Second, none of the keywords in the fragment is in the query. Thus, we

need to suppress this feature by a negative log formula. Finally, for the

intermediate case, we compute the feature by using the log ratio measure-

24

ment, which takes the frequency of both positive and negative samples

into consideration. The formula is derived from Baye’s theorem for prob-

abilistic information retrieval in [19]. The log function is introduced to

dampen the effect of the increase in the involved set size.

(2) Access similarity: SimA(Q,F).

We maintain the set of n most frequently accessed key-tags, M , in the

system. Let M.τ be the set of tag names in M . We define the access

similarity, denoted as SimA(Q,F), between Q, M.τ , and F , as follows:

SimA(Q,F) =





1 if F.τ overlaps (M.τ ∩ Q.τ);

0 otherwise.

This feature provides a Boolean variable that indicates if there exists a

frequently accessed key-tag in Q that can also be found in the fragment.

(3) Path similarity: SimP (Q,F).

Let F.ρ be the set of all paths running from the root to leaf nodes in F .

Let Q.ρ = {y ∈ F.ρ | ∃x ∈ Q.τ such that x is a tag occurring in the path

y}. We define the path similarity, denoted as SimP (Q,F), between the

query, Q, and the fragment, F , as follows:

SimP (Q,F) =
|Q.ρ|
|F.ρ| .

The SimP (Q,F) is a simple ratio of the number of paths containing

some key-tags of the query in the fragment to the total number of paths

in the fragments. Essentially, the feature indicates the fraction of paths

in the fragment that are related to the query.

(4) Element similarity: SimE(Q,F).

We define the element similarity, denoted as SimE(Q,F), between the

25

query, Q, and the fragment, F , as the fraction of tags or words in F that

overlaps those in Q:

SimE(Q,F) =
|(Q.τ ∪Q.ω) ∩ (F.τ ∪ F.ω)|

|F.τ |+ |F.ω| .

The feature treats both tags and keywords uniformly as usual words and

computes a simple ratio of the number of common words in the query

and fragment to the total number of words in the fragment.

(5) Order similarity: SimAO(Q,F) and SimSO(Q,F).

The order similarity can be further divided into the ancestor order sim-

ilarity, AO, and the sibling order similarity, SO. Let BQ be the set of

all possible ordered pairs of tags extracted from Q, which matches the

ordering of the key-tags given in Q (recall that Q is a sequence of key-

tags by Definition 2.1), and let F.AO and F.SO be the sets of ancestor

and the sibling ordered pairs of tags extracted from F . The ordered pairs

in F.AO and F.SO match either the ancestor order or the sibling order

of the searched document. We define the ancestor order similarity and

sibling order similarity, denoted as SimAO(Q,F) and SimSO(Q,F), be-

tween the query, Q, and the fragment, F , as the fraction of F.AO and

F.SO that overlaps those in BQ:

SimAO(Q,F) =
|BQ ∩ F.AO|

|BQ| , SimSO(Q,F) =
|BQ ∩ F.SO|

|BQ| .

Both SimAO(Q,F) and SimSO(Q,F) features represent the fractions of

ordered pairs of tags in the query that match with their counterparts

in their fragments according to AO and SO of the fragment tree. The

extreme case happens when the fragment contains the query tags that

are in the same order with the query. SimAO(Q,F) and SimSO(Q,F)

then become one. On the other hand, if the fragment contains no tags

26

of the query or the query tag order totally mismatches with that of the

fragment, then SimAO(Q,F) and SimSO(Q,F) then become zero.

(III) Granularity Featurefs:

Let F.r be the root of F . We measure the granularity of a retrieved fragment,

F , by the following granularity features:

(1) Sib : The order of occurrence of fragments whose roots are siblings of

F.r.

(2) Chi : The order of occurrence of tags whose parent is F.r.

(3) Dis+ : The distance from F.r to the farthest leaf node.

(4) Dis− : The distance from F.r to the nearest leaf node.

(5) Tag : The order of occurrence of tags in F.r.

(6) Att : The order of occurrence of attributes of F.r.

The granularity measure of a feature, X, for a given fragment, F , denoted as

GrnX(F), is defined as follows:

GrnX(F) =
X(F)− avg(X)

avg(X)
,

where X is one of the above granularity features and avg(X) is the average

value of the feature, X, in the XML document where F is embedded. The

granularity feature is a simple ratio of various parameters to their average

value of the fragments in the search result.

We now use the following example to illustrate some computation of the above

features. Assume F to be the DBLP fragment, which is shown in Figure 6. Let

Q = (k1, k2) where k1 = 〈author〉Dan〈/author〉 and k2 = 〈title〉XML〈/title〉.
The keyword similarity is SimK(Q,F) = 1

2
log (1−0.55)0.25

(1−0.25)0.55
= −0.2821. Assume

27

that the tags 〈title〉 and 〈author〉 are the most frequently accessed tags and

that the access similarity, SimA(Q,F) = 1. There are eight paths in F and six

of them contain tags from Q. The path similarity is SimP (Q,F) = 6
8

= 0.75.

The element similarity is SimE(Q, F) = 6
14

= 0.4286. Q.τ = {author, title}
and BQ = {〈author, title〉}. F.τ = {dblp, www, author, title, url, year}. We

thus have F.AO = {(dblp, www), (dblp, author), (dblp, title), (dblp, url), (dblp, year),

(www, author), (www, title), (www, url), (www, year)} and F.SO =

{(author, title), (author, url), (author, year), (title, url), (title, year), (url, year)}.
The ancestor and sibling order similarities are SimAO(Q,F) = 0

1
= 0 and

SimSO(Q,F) = 1
1

= 1.

author

Alin

...

dblp

author

Mary

...

author

Daniela

...

author

Alon

...

author

Dan

...

title

Xml-ql

...

url

http://

...

www

title

XML

query

...

author

John

url

http://

...

article

title

XML

data

...

author

Dan

...

url

http://

...

article

first
 last

Daniel

F

1

F

2

F

3

year

2003

Figure 7. Three fragments, F1, F2 and F3, returned by the query, Q′

Figure 7 shows the three fragments, F1, F2 and F3, which are returned by

the query, Q′ = (〈author〉Dan〈/author〉, 〈title〉XML〈/title〉). Consider F1.

Its siblings are F2 and F3. Therefore, Sib(F1) is 2. Similarly, Sib(F2) and

Sib(F3) are also 2. We have GrnSib(F1) = Sib(F1)−(Sib(F1)+Sib(F2)+Sib(F3)/3
(Sib(F1)+Sib(F2)+Sib(F3))/3

=

2−(2+2+2)/3
(2+2+2)/3

= 0, which means that the number of siblings of F1 is just average

(i.e. positive GrnSib means relatively more siblings and negative means other-

wise). As F1 has 7 children, F2 and F3 have 3 children. We have GrnChi(F1) =

7−(7+3+3)/3
(7+3+3)/3

= 0.6154. In F1, the distance from F1.r to the farthest leaf nodes

is 1. Both Dis+(F1) and Dis−(F1) are 1. Similarly, Dis+(F2) and Dis−(F2)

are 2 and 1, and Dis+(F3) and Dis−(F3) are both 1. We have GrnDis+(F1) =

1−(1+2+1)/3
(1+2+1)/3

= −0.25 and GrnDis−(F1) = 1−(1+1+1)/3
(1+1+1)/3

= 0. A negative GrnDis+(F1)

28

means that the farthest distance from leaf nodes to F1.r is below the average

distance from the root to the leaf nodes. The total number of tag occurrences

in F1, F2, and F3 are 9, 6, and 4. GrnTag(F1) = 9−(9+6+4)/3
(9+6+4)/3

= 0.4211. The

calculation for GrnAtt(F1) is similar to GrnTag(F1), whose value is 0, since all

the fragments do not have attributes.

It is worth mentioning that we allow users to choose, further, a wider or a

more specific view of the output fragments. This is due to the fact that the

zooming effect can be achieved by moving the view on the indexed contex-

tual path and then controlling the scope of a fragment in the document tree

(e.g., “1.0/2.0/3.1” can be rolled up to “1.0/2.0”). Figure 8 shows an example

that demonstrates the meaning of specificity and genericity (i.e., roll up and

drill down views are possible). In this example, we assume that, in a search

result, the fragment of the indexed contextual path, “/1.1/21.14/7.13”, which

is the author context, is returned. Then, the user is able to roll up the result.

The parent fragment specified by the contextual path “/1.1/21.14”, which is

the WWW context, will be returned. The user may drill down by selecting

any of the corresponding child fragments, for instance, the one specified by

“/1.1/21.14/5.32”, which is the title context as shown in Figure 8.

3.4 Ranking Schemes for XML Fragments

XML documents are commonly classified into two broad categories of document-

centric and data-centric documents. Roughly, document-centric documents are

for human consumption and contain relatively more textual data than struc-

tural data, such as books, email messages, and some XHTML documents.

Document-centric documents have irregular structures, large-grained data and

29

<dblp>

...

<www >

<author>Alin Deutsch</author>

<author>Mary F. Fernandez</author>

<author>Daniela Florescu</author>

<author>Alon Y. Levy</author>

<author>Dan Suciu</author>

<title>Xml-ql: A Query Language for

XML</title>

<url>http://www.w3.org/TR/NOTE-xml-ql/

</url>

<year>2003></year>

</www>

...

</dblp>

<dblp>

...

<www >

<author>Alon Y. Levy</

author>

</www>

...

</dblp>

p = /1.1/21.14/7.13

p = /1.1/21.14
 � � select Xml-ql

drill down
roll up

/1.1/21.14/7.10?

/1.1/21.14/7.11?

/1.1/21.14/7.12?

/1.1/21.14/7.13?

/1.1/21.14/7.14?

/1.1/21.14/5.32?

/1.1/21.14/35.5?

/1.1/21/14/35.8?

p = /1.1/21.14/5.32

<dblp>

...

<www >

<title>Xml-ql: A Query Language for

XML</title>

</www>

...

</dblp>

7.13

Alon

...

7.10

Alin

...

7.11

Mary

...

7.12

Daniela

...

21.14

1.1

5.32

Xml-ql

...

35.5

http://

...

7.14

Dan

...

� �
� �

roll up

drill down

36.8

2003

� � �

Figure 8. Controlling specificity by rolling up and drilling down the contextual path

lots of mixed content. Data-centric documents are for machine consumption

and XML as a data transport means is adopted. Data-centric data conform

to regular structures, such as publishing relational data in XML. The order

in which sibling elements occur in data-centric XML documents is generally

not significant. Examples of data-centric documents are sales orders, flight

schedules, scientific data, and stock quotes.

In practice, the boundary between document-centric and data-centric docu-

ments is not always clear. For example, Shakespeare [9] is commonly regarded

as document-centric but DBLP is regarded as data-centric [30]. Most XML

documents actually lie between these two extreme classifications. In order to

optimize the ranking quality and to deal with the different categories of XML

documents, we devise four ranking schemes as described below.

Document-centric ranking (DOC). In this ranking scheme, we mark a

set of pre-defined tags in the tag tables (i.e., DT). For example, in Shake-

speare [9], we mark the tags of act, play, speech. Since this ranking scheme

gives preference to document-centric data, we implement the following rank-

30

ing rule: the smaller the path difference between the keywords and prefixes,

the more specific the result. In addition, in document-centric documents, the

depth of the path is considered to be less significant. We define the document-

centric ranking, φDOC , as (SimK , SimA, SimP , SimE, SimAO, SimSO, GrnSib,

−GrnDis+).

Data-centric ranking (DAT). In this ranking scheme, we do not use a

set of predefined tags, since we may not know the meaning of the tags. An

example is the DNA jargon used in SwissProt [17]. In contrast to the DOC

scheme, the DAT scheme gives preference to tags specified by longer paths in

the data-centric document, since such paths provide more specific information.

We define the data-centric ranking, φDAT , as (SimK , SimA, SimE, GrnDis+).

System default ranking (DFT). In this ranking scheme, we consider a mix

of the DOC and DAT schemes. When the documents are loaded in the system,

some statistical data are collected, including the average path length and the

average number of children. We rank the result that is near the highest rank

as the system default. We define the system default ranking, φDFT , as (SimK ,

SimP , SimAO, SimSO, GrnSib, GrnChi, GrnDis+ , GrnDis− , GrnTag, GrnAtt).

Customized ranking (CUS). In this ranking scheme, we allow users to

pre-define the weighting for their query. The user can control the weighting

of those factors listed in the draft. The feature, φCUS, and the weight vector,

−−−→wCUS, are supplied by the users.

We implement the above four ranking schemes and develop four respective

XML Rankers (XRs), each of which is able to generate its own list of search

results. In order to reinforce the strength and reduce the weakness of individual

rankers with respect to a collection of mixed XML data, we develop a Meta-

31

XML ranker (MXR) which combines the returned results of each ranker in

a round-robin manner. We adopt the Ranking Space vector machine and Co-

training Framework (RSCF) to train the MXR, which is described in Section

4. We depict the general idea of the RSCF-based MXR in Figure 9.

Labelled and

Unlabelled XML fragments

rank 1

rank 2

rank 19

rank 20

Meta

Ranker

(MXR)

Ranker

DAT

Ranker

 DOC

Ranker

DFT

Ranker

CUS

RSCF

Co-training
Four XRs

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

Unlabelled

XML fragments

Figure 9. A conceptual view of the RSCF-based Meta-XML Ranker

4 The RSCF-Based XML Ranker

In this section, we describe a Meta-XML Ranker (MXR) based on the RSCF

algorithm. RSCF addresses the problem that the training set of preference

feedback extracted from a single query is relatively small.

4.1 Preference Fragments

We now first introduce the notion of training fragments. Given a query, Q, the

returned list of ranked result is classified into two categories of labelled and

non-labelled fragments. We use the set of labelled fragments as the training

data. Formally, a labelled fragment is denoted as a triplet, (Q, R,C), where

Q is the input search query, R is a list of ranked fragments, (F1, . . . , Fn), and

C is the set of labelled fragments that are considered to be relevant to the

32

query. Figure 10 illustrates the submitted query, Q = (〈Title〉XML〈/T itle〉,
〈Y ear〉2001〈/Y ear〉), and the returned list of the ranked result. In this ex-

ample, we assume that a user scans the rankings from top to bottom. The

three fragments, F1, F7, and F10, are “labelled”, which means that they are

considered to be relevant with respect to some user preferences and thus the

labelled fragments serve as the training data in the RSCF.

It is useful to make use of labelled data to improve the ranking. This is due to

the fact that the data convey partial relative relevance judgments on the frag-

ments. Our proposed learning function requires only a few labelled fragments

to start the co-training framework. Suppose the fragments F2, F3, F4, F5, and

F6 are scanned before fragment F7 is labelled, i.e., implying the decision that

F2 to F6 are not so relevant. Therefore, F7 is more relevant than the other

fragments according to the sample judgment. In other words, F7 should rank

ahead of these five links in the target ranking. Similarly, F10 should rank ahead

of F2, F3, F4, F5, F6, F8, and F9. We now denote the ranking from the sample

data as r′ and call the ordered pair deduced from the partial relative relevance

judgment the preference fragment pair. It is straightforward to check that the

three sets of preference fragment pairs according to the three fragments, F1,

F7, and F10, can be obtained as shown in Figure 11. These three sets represent

the relevance judgments collectively, where some links are incomparable (e.g.,

F1, F7 and F10 are incomparable with respect to <r′).

4.2 Ranking SVM Techniques

We now discuss how to apply Ranking SVM (RSVM) to training a ranker. The

RSVM first takes the set of labelled fragment pairs as input and then returns

33

Fragments ID XML fragments in the search results

F1 <dblp><www>

(labelled)
<title>XML Query Use Cases< /title>
<year>2001</year></www></dblp>

F2 <play><fm>

.....
<p>XML version by Jon Bosak, 1996-1999.</p>

<p>The XML markup in this version is Copyright</p></fm></play>

F3 <datasets><dataset><year>
.....
2001
</year></dataset></datasets>

F4 <datasets><dataset>
.....
<year>2001</year></dataset></datasets>

F5 <datasets><dataset><identifier>
.....
I 5.xml

</identifier></dataset></datasets>
F6 <datasets><dataset><identifier>

.....
I 98A.xml

</identifier></dataset></datasets>
F7 <dblp><www>

(labelled)
<title> XQuery: A Query Language for XML < /title>
<year> 2001 </year>
</www> </dblp>

F8 <dblp><article>
.....
<year> 2001 </year>
</article> </dblp>

F9 <root><entry><ref><cite>
.....
Submitted (JAN-1997) to the EMBL/ GenBank/DDBJ databases
</cite></ref></entry></root>

F10 <dblp><www>

(labelled)
<url><www key=“www/org/w3/TR/NOTE-xml-ql”>< /url>
<year> 2001 </year>
</www> </dblp>

Figure 10. The labelled and unlabelled data for the query Q

34

Set of preference frag-
ment pairs arising from
F1

Set of preference frag-
ment pairs arising from
F7

Set of preference frag-
ment pairs arising from
F10

Empty Set F7 <r′ F2 F10 <r′ F2

F7 <r′ F3 F10 <r′ F3

F7 <r′ F4 F10 <r′ F4

F7 <r′ F5 F10 <r′ F5

F7 <r′ F6 F10 <r′ F6

F10 <r′ F8

F10 <r′ F9

Figure 11. Sets of preference fragment pairs derived from the labelled data

a trained ranker. The RSVM algorithm needs to tolerate some ranking errors

in the training process.

Suppose r∗ is the target ranking in the search result of Q. Although r∗ is

optimal with respect to the documents, it is not fully observable in practice.

However, we are able to obtain r′ from the labelled data, which is, in fact, a

subset of r∗. Given the training set, {(Q1, r
′
1), (Q2, r

′
2), . . . , (Qn, r

′
n)}, we aim

to find a rank that holds as many preference feedback fragment pairs in r′ as

possible.

The principle of achieving an optimal ranking with respect to a given training

set is as follows. First, by extracting a feature vector, we can rank the docu-

ments in the search result by giving different weights to the features. Then,

we find a weight vector, −→ω , that makes the set of inequalities given in (2) hold

for 1 ≤ k ≤ n:

∀(Fi, Fj) ∈ r′k : −→ω φ(Qk, Fi) >−→ω φ(Qk, Fj). (2)

Here, (Fi, Fj) ∈ r′k is a fragment pair that corresponds to the preference pair,

(Fi <r′
k

Fj), with respect to the submitted query, Qk; φ(Qk, Fi) is a mapping

that maps Qk onto a sequence of features (or a feature vector) that describes

35

the match between Qk and Fi. Figure 12 illustrates how the weight vector,

−→ω , determines the ordering of the three fragments, F1, F2, and F3, in two

dimensions. The documents are ordered as (F1, F2, F3) according to −→ω1 and as

(F2, F1, F3) according to −→ω2. The former is better than the latter if the target

ranking is F1 <r∗ F2 <r∗ F3.

1

F

1

F

2

F

3

2

1

2

Figure 12. Ranking F1, F2, and F3 according to the weight vectors, −→ω1 and −→ω2

The problem of solving −→ω using the set of inequalities given in (2) is NP-

hard. However, an approximated solution can be obtained by introducing a

non-negative slack variable, ξijk, to tolerate some ranking errors [7]. Recall

that r′k is a subset of the target ranking, r∗k, for the search result of the query,

qk. Algorithm 2 outlines the RSVM algorithm based on the approximation.

The basic idea is that if we consider that δ is the distance between the two

closest projected fragments, then the larger the value of δ, the more definite

the ranking, and hence the better the quality of the training result (see Figure

12). Thus, if there are several weight vectors that are able to make all the

rankings subject to the condition mentioned in the RSVM algorithm, we will

choose the one that can maximize margin δ. Minimizing 1
2
−→ω ·−→ω in Algorithm

2 can be viewed as maximizing margin δ. In addition, minimizing Σξijk can

be viewed as minimizing the ranking errors. Parameter C is introduced here

to allow for a trade-off between the margin size and the training errors in

Algorithm 2.

36

Algorithm 2. RSVM Algorithm

Input: A ranked list r′k (1 ≤ k ≤ n) extracted from the set of labelled fragment

pairs;

Procedure:

Minimize: V (−→ω , ξ) = 1
2
−→ω · −→ω + CΣξijk;

Subject to: for all i, j, and k,

∀(Fi, Fj) ∈ r′k : −→ω φ(Qk, Fi) > −→ω φ(Qk, Fj) + 1− ξijk;

ξijk ≥ 0;

Output: −→ω .

4.3 A Co-training Framework for Effective Rankers

We now analyze the labelled data set through the RSCF algorithm and apply

a co-training framework to optimize the ranking functions. The key idea of

co-training is to augment the set of labelled fragments with the set of unla-

belled fragments when the labelled training fragments are limited and sparse.

As the training data set is enlarged, the classification errors are significantly

decreased.

In the RSCF algorithm, we enhance the RSVM algorithm and incorporate

the co-training framework. First, the feature vector, φ(Q,F), discussed in

Section 3.3 is first divided into two feature subvectors, φA(Q,F) and φB(Q,F).

Then, the two rankers, αA and αB, are incrementally built over these two

feature subvectors. Both rankers use the RSVM algorithm to learn the weight

vectors. Each ranker is initialized with a few labelled preference fragment

pairs extracted from the sample data (e.g., (F7, F3) in Figure 10). In each

iteration of co-training, each ranker chooses several preference fragment pairs

37

(e.g., (F9, F8) in Figure 10) from the unlabelled data set and adds them to

the labelled data set. The chosen fragment pairs are those with the highest

ranking confidence as given by the underlying rankers. Then, each ranker is

rebuilt from the augmented labelled set. In the next iteration, the new rankers

are used to rank the unlabelled preference fragment pairs again. The ranking

preference fragment pairs process and the building rankers repeat until all

unlabelled preference fragment pairs are labelled or a terminating criterion

is satisfied. Figure 13 illustrates the process and the underlying idea of the

algorithm.

Labelled Preference Feedback

Fragment airs,
P

l

Unlabelled Preference Feedback

Fragment Pairs, P

u

A
 B
Training

Selecting confident

fragment pairs

Ranker

A

Ranker
 B

A
u
g
m

e
n
te

d

P
re

fe
re

n
c
e

F
ra

g
m

e
n
t
P

a
ir
s

A
u
g
m

e
n
te

d

P
re

fe
re

n
c
e

F
ra

g
m

e
n
t
P

a
ir
s

Figure 13. The underlying idea of the RSCF algorithm

The guideline for partitioning the feature vector, φ(Q,F), is that, after the

partition, each subvector must be independent and sufficient for the later

ranking. We now show our two subvectors in Figure 14

φA = {Rank(DAT, 1), Rank(DAT, 5), Rank(DOC, 1), Rank(DOC, 5),
Rank(DFT, 1), Rank(DFT, 5), Rank(CUS, 1), Rank(CUS, 5),
SimK , SimE, GrnSib, GrnTag, GrnAtt}

φB = {Rank(DAT, 3), Rank(DAT, 10), Rank(DOC, 3),
Rank(DOC, 10), Rank(DFT, 3), Rank(DFT, 10), Rank(CUS, 3),
Rank(CUS, 10), SimA, SimP , SimO, GrnChi, GrnDis+ , GrnDis−}

Figure 14. The subvectors used in co-training

In general, the number of rankers used in the co-training framework can be

38

more than two. However, it is difficult to identify enough features from the

labelled fragments to generate more than two feature subvectors that are rich

enough to train the corresponding rankers. Even if the feature vector is large

in dimensions, we still should use a feature selection algorithm to eliminate

some unimportant features and to reduce the dimensions of the feature vector

so that the training process can be more efficient. In our study, we choose two

rankers that adopt φA and φB for running the co-training algorithm.

We now introduce the parameter prediction error, which is a common criterion

used to evaluate the performance of a classifier in machine learning. We use

prediction error to evaluate the performance of the rankers in our experiments.

Definition 4.1 (Prediction Error) Let us call a linked fragment pair, Fi

and Fj, (Fi 6= Fj) disconcordant if the pair has different rankings in two given

lists [28]. Given a ranker, α, trained with RSVM, the prediction error of α is

defined as the percentage of the linked fragment pairs in the original test data

set that are disconcordant according to α after an iteration.

For example, if there are fifty fragment pairs in the original training data

set and among them fifteen fragment pairs are disconcordant links according

to α after some iterations, the prediction error of this iteration would be

0.3. We also need to define another new concept, prediction difference ∆,

as the terminating criterion used in the RSCF algorithm. ∆ is defined as the

percentage of disconcordant links between αA and αB. For example, αA and αB

select ten preference fragment pairs from the unlabelled preference fragment

pairs and add them into the labelled data set. If five selections from αA are

ranked differently according to αB, then ∆ is equal to 0.5.

The RSCF algorithm is presented as Algorithm 3. At each iteration, the unla-

39

belled preference fragment pairs that have the largest difference between their

projection on −→ω (i.e., the most confident ones) are selected and then added

into the preference pair set. We finally obtain one enlarged set of labelled

fragment pairs, Pl, and two rankers, αA and αB, as the output of the algo-

rithm. We also set the threshold, τ , for ∆ as an input to the algorithm and

compute ∆ at the end of each iteration. When ∆ reaches τ , the whole process

is terminated. Using the Pl output from Algorithm 3, we are able to obtain

a final ranker, αC , by the RSVM algorithm. We combine the trained rankers,

αA and αB, into the ranker, αC , which predicts better relevance judgments

than the original (untrained) rankers. The complexity of RSCF algorithm de-

pends on the two RSVMs running two subvectors as stated in Lines 2 and 3

in Algorithm 3. As RSVM based on approximation runs in polynomial time

(recall the use of a non-negative slack variable in Algorithm 2), RSCF is also

polynomial, since other steps are linear in complexity. A more detailed study

and discussion of MXR overhead and learning costs is given in Section 5.

5 Experiments

In this section we report on experiments that study three aspects related to

our RSCF-based MXR. First, we show that the training based on the RSCF

technique is effective. Second, we compare the effectiveness of all the proposed

rankers. Finally, we examine the overheads for loading our corpus and ranking

retrieved fragments.

We present the results of experiments that we conducted over a collection

of known XML datasets: DBLP, NASA, Shakespeare, Weblog, Treebank and

Swissprot. Each dataset has its own features: DBLP is the popular bibliog-

40

Algorithm 3. RSCF Algorithm

Input: Pl: An initial set of labelled fragment pairs;

Pu: An initial set of unlabelled fragment pairs;

τ : The threshold for ∆;

Procedure:

1: while there exist preference fragment pairs without labels and ∆ < τ do

2: Use RSVM to build αA using features in φA of Pl;

3: Use RSVM to build αB using features in φB of Pl;

4: Select the most confident unlabelled fragment pairs from Pu according to αA

and add them to Pl;

5: Select the most confident unlabelled fragment pairs from Pu according to αB

and add them to Pl;

6: Compute ∆;

7: end while

Output: Pl, αA and αB.

raphy database and is relatively regular. NASA contains a mixture of data-

centric and document-centric features. Shakespeare is a corpus of marked-up

Shakespeare plays, containing much textual data. Weblog is the logging his-

tory of a web server, which is a regular data-centric document. Treebank is a

large collection of parsed English sentences from the Wall Street Journal with

deep recursive structures. SwissProt describes DNA sequences with a minimal

level of redundancy.

41

5.1 Effectiveness of the RSCF algorithm

We now show that the RSCF algorithm is effective in ranking XML fragments

by measuring the prediction errors (recall Definition 4.1). We study the effec-

tiveness in terms of the number of iterations and vary the number of queries

in a training set and the number of XML labelled fragments as feedback.

In the experiments, we compare the subrankers, αA and αB, which are imple-

mented by the RSCF algorithm and trained on the two feature subvectors,

φA and φB, as shown in Figure 14, with the ranker, αR, which is implemented

by the original RSVM algorithm and trained on the feature vector, φ. The

user selects one to three preference pairs out of the top ten results at each

iteration. We use the three training sets of ten, twenty and fifty queries and

study the prediction errors of six iterations in RSCF.

Figures 15(a) to 15(c) show the prediction errors when the number of training

queries are ten and the number of labelled fragments are one, two, and three,

respectively. We can see that, prior to the process of learning, the RSVM

ranker, αR always outperforms the two subrankers, αA and αB. This is ex-

pected, since without labelled fragments the features of φA and φB are not

as effective as φ. However, the effect of using the RSCF algorithm is shown

after very few iterations, since the prediction errors of φA and φB decrease in

the second and third iterations. After the fourth iteration, the prediction error

becomes unstable or increases, since the remaining unlabelled fragments may

have a higher probability of lower quality and, more likely, make the training

collection worse. We also find that the average prediction error over the six

iterations in Figure 15(a) is 0.32, while the arrange prediction error in Figure

42

15(c) is 0.22. This also indicates the advantage of using the RSCF algorithm

in this setting, since a few labelled XML fragments also help to improve the

effectiveness. Roughly speaking, φA preforms slightly better than φB, since

the former focuses more on the features of higher-ranked fragments than does

the latter.

1
 2
 3
 4
 5
 6

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

(a) 10 queries, 1 feedback
sample

Iteration

P
r
e
d

ic
ti

o
n

 E
r
r
o

r

A
 B
 R

0.245

0.25

0.255

0.26

0.265

0.27

0.275

1
 2
 3
 4
 5
 6

(b) 10 queries, 2 feedback
samples

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

0.2

0.205

0.21

0.215

0.22

0.225

1
 2
 3
 4
 5
 6

(c) 10 queries, 3 feedback
samples

1
 2
 3
 4
 5
 6

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

(d) 20 queries, 1 feedback
sample

1
 2
 3
 4
 5
 6

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

(e) 20 queries, 2 feedback
samples

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

1
 2
 3
 4
 5
 6

0

0.05

0.1

0.15

0.2

0.25

(f) 20 queries, 3 feedback
samples

1
 2
 3
 4
 5
 6

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

0.22

0.23

0.24

0.25

0.26

0.27

0.28

(g) 50 queries, 1 feedback
sample

0.2

0.205

0.21

0.215

0.22

0.225

0.23

1
 2
 3
 4
 5
 6

Iteration

P
r
e

d
ic

ti
o

n
 E

r
r
o

r

A
 B
 R

(h) 50 queries, 2 feedback
samples

1
 2
 3
 4
 5
 6

0

0.05

0.1

0.15

0.2

0.25

Iteration

P
r
e
d

ic
ti

o
n

 E
r
r
o

r

A
 B
 R

(i) 50 queries, 3 feedback
samples

Figure 15. Prediction errors of various numbers of queries and feedback samples

We ran similar experiments with a larger set of queries. Figure 15(d) to 15(f)

and Figure 15(g) to 15(i) show the results when the training queries are twenty

and fifty. We find that the results are similar to the case of ten queries. The

43

prediction error reaches the minimum around the third iteration and after that

more feedback only increases the prediction errors. This further illustrates the

strength of the RSCF; that is, only a small set of training queries is required

to obtain a low prediction error.

In further analyzing the above data, we compute the average prediction er-

rors of αA and αB at different iterations and show three interesting results

in Figures 16(a) to 16(c). First, Figure 16(a) shows that when increasing the

number of training queries, a lower average prediction error can be obtained.

However, the improvement is less when we compare the result of the cases of

twenty and fifty queries with three labelled fragments. The average prediction

errors are around 0.16 in both twenty- and fifty-query lines. A similar phe-

nomenon can also be found when we make the same comparison with one and

two labelled fragments. On the other hand, when we increase the number of

labelled fragments for the case of fifty queries, we can see that the prediction

error decreases in all three cases of one to three fragments, as shown in Figure

16(b). A similar phenomenon can also be found when we make the same com-

parison with the cases of ten and twenty queries. Finally, Figure 16(c) shows

the overall improvement between the ranker, αCi
, which has been trained by

the RSCF algorithm and combines the rankers αA and αB against i labelled

fragments (1 ≤ i ≤ 3), and αR, which is the ranker obtained from standard

RSVM. We can see that αCi
outperforms αR in terms of prediction errors.

5.2 Effectiveness of Rankers

In this subsection, we first describe experiments that show the effectiveness of

the four rankers that are developed according to the DOC, DAT, DFT and

44

1
 2
 3
 4
 5
 6

10 Queries
 20 Queries
 50 Queries

Number of Queries

P
re

d
ic

ti
o

n
 E

rr
o

r

0

0.05

0.1

0.15

0.2

0.25

(a) Average of αA and
αB, 3 feedback samples

1
 2
 3
 4
 5
 6

1 Feedback
 2 Feedbacks
 3 Feedbacks

Iteration

P
r
e
d

ic
ti

o
n

 E
r
r
o

r

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) Average of αA and
αB, 50 queries

C3
C2
C1
R

Number of Queries

P
re

d
ic

ti
o

n
 E

rr
o

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10
 20
 50

(c) Comparison of αCi

and αR, (1 ≤ i ≤ 3)

Figure 16. Further analyses of the prediction errors of the rankers

CUS ranking schemes presented in Section 3.4. Then, we demonstrate that,

in general, the MXR has better search quality than the underlying search

engines.

We performed extensive experimentation with the four XRs and the RSCF-

based MXR. All the ranker, loader and searcher components are implemented

by Java language, and their connection with Oracle is via JDBC. The loader

is responsible for building the index and transfering the XML data into the

underlying databases. The searcher consists of a retriever and a ranker. The

retriever simply submits an SQL statement to the Oracle DBMS and obtains

the fragments. Then, the ranker computes the rank for the fragments according

to four different ranking schemes of DOC, DAT, DFT and CUS. Finally, the

MXR assigns different weights to the rankers and generates a combined result

in a round-robin manner (with duplicates removed).

The RSCF algorithm is implemented on the Ranking SVM, which is an open

source code available in [34]. Besides this, the remaining work of the RSCF

algorithm is mainly to deal with the input and output of the Ranking SVM

algorithm, which is indeed straightforward to implement. The challenging part

of the study is more the evaluation than the implementation. First, much effort

is required to carry out relevance justification and compute the precision for

45

all the rankers and the queries. Second, a lot of thought is needed to design

another set of search queries that range from simple key-tags to complex key-

tags.

The experiments are conducted on a Solaris 2.8 with CPU 1x300Mhz Ultra30

and 256MB memory. We then analyze the results obtained in these experi-

ments based on the metric of k-precision, which is defined as

k − precision =
Number of top k relevant results

k
,

where k is the number of top results returned by the rankers. We can system-

atically judge which results are relevant according to a classification method

to assign weights to the sample XML documents. If the retrieved fragment be-

longs to either of the sample XML documents, we assign it with the weighting

specified in Figure 17. If there are n relevant results in the top k results, the

precision is n/k. We first compare the four rankers regarding their particular

strengths for handling different types of documents as follows. We test two

different sets of queries, with each set consisting of 30 queries (see Appendix

I). For example, when we submit a query that has many words, we expect the

ranker to rank document-centric fragments higher than data-centric ones. For

the CUS ranking, we assign the weight for each query using random numbers.

XML Documents Data-centric Preference Document-centric Preference

DBLP 1.0 0.0
Shakespeare 0.0 1.0

Weblog 1.0 0.0
Treebank 0.3 0.7
Swissprot 1.0 0.0

NASA 0.5 0.5

Figure 17. XML documents with data-centric and document-centric weightings.

The three values of worst precision, average precision and best precision are

46

superimposed on Figures 18 and 19 for data-centric and document-centric

queries. The relevance of the results is measured in an unbiased way by using

precision. Precision and recall measures are common evaluation metrics used

in information retrieval theory for searching textual documents [4]. However,

we do not define the notion of the recall parameter in this context, since it is

not practical to estimate the total number of relevant fragments on the XML

datasets. Furthermore, the total number of fragments retrieved by the rankers

is immaterial as the users are only concerned about a minority of fragments

that is ranked at the top of a search result.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k = 1
 k = 3
 k = 5
 k = 10

Top k results

P
re

c
is

io
n

Min
 Avg
 Max

C=CUS
T=DAT
 D=DOC
 F=DFT

C
T
 D
 F
 C
T
 D
 F
 C
T
 D
 F
C
T
 D
 F

Figure 18. Comparison of the precision of the XRs when using the data-centric

preference for judging relevance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k = 1
 k = 3
 k = 5
 k = 10

Top k results

P
re

c
is

io
n

Min
 Avg
 Max

C=CUS
T=DAT
 D=DOC
 F=DFT

C
T
 D
 F
 C
T
 D
 F
 C
T
 D
 F
C
T
 D
 F

Figure 19. Comparison of the precision of the XRs when using the document-centric

preference for judging relevance

47

We now first compare the four rankers in order to study their particular

strengths in handling different types of documents. Both data-centric and

document-centric rankers, DAT and DOC, outperform the other two XRs

(DFT and CUS) when searching for their own types of queries (i.e., one of

the preferences), which is consistent with our expectations. However, when

the data-centric (document-centric) ranker is used to query document-centric

(data-centric) documents, it may perform worse than the custom ranker, CUS,

in which random numbers are assigned as weights. We also notice that the de-

fault ranker, DFT , performs in a stable manner in both types of queries.

When we are querying data-centric documents, when k is within 3, we can see

that all four XRs can return a maximum precision and the overall precision

is better than querying document-centric documents. This is due to the fact

that data-centric documents are regular in structure. Even a custom ranker

with random assigned weights may still obtain perfect results. This means

that even a naive user who has no idea of how to assign weights may still get

satisfying results.

We then compare the precision of the RSCF-based MXR with the four under-

lying XRs in order to study the effectiveness of the RSCF technique. We test

all the rankers with the thirty queries shown in Appendix I, which range from

simple key-tags to complex key-tags with a wildcard, “∗”, in either the tag

component or the word component of the key-tag. We evaluate the precision

and analyze the results. In these experiments, we split the feature vector, φ

into φA and φB for co-training purposes in the RSCF algorithm as already

shown in Figure 14.

Figure 20 shows the comparison of the precision of MXR and the four XRs. We

take the average precision obtained in the data-centric and document-centric

48

preferences. It is clear that the RSCF-based MXR outperforms the four XRs.

The reason for this is that the MXR is able to combine the strengths of vari-

ous rankers. Note that the minimum and average precisions of the MXR are

approximately 0.33 and 0.7 when k is within the top 10. This is obviously a

great improvement over any individual ranker. An interesting finding is that

when the set of queries consists of data-centric and document-centric types,

the default ranker, DFT , performs better than the data-centric and document-

centric rankers, DAT and DOC, and, in general, our system-defined ranker

performs better than randomly assigned weights in the custom ranker.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k = 1
 k = 3
 k = 5
 k = 10

Top k results

P
re

c
is

io
n

Min
 Avg
 Max

C
M
 T
 D
 F
 C
M
 T
 D
 F
 C
M
 T
 D
 F
 C
M
 T
 D
 F

C=CUS
M=MXR
 T=DAT
 D=DOC
 F=DFT

Figure 20. Comparison of the precision of the XRs and the RSCF-based MXR

5.3 Some Overhead Issues

In this subsection, we compare the running time of both ranked and unranked

searching with RSCF-based MXR against the search queries derived from the

benchmark XML documents in order to study the ranking overheads.

The loading time and the total size of the corpus that contains the six bench-

49

mark XML documents are 5611s and 482MB. Note that the preprocessing can

be done off-line and once the documents are loaded, we can execute queries

without loading the document for each query. We use the same set of search

queries related to the benchmark data and simulate the text search by convert-

ing the key-tag pair into two input search keywords. For example, the key-tag

“〈title〉XML〈/title〉” is converted into the keywords “title” and “XML” for

carrying out a simple text search. We test the three kinds of searching with

the ten queries from each XML dataset shown in the Appendix II, which also

range from simple key-tags to complex key-tags. Figure 21 shows (1) the av-

erage running time of a simple text search, (2) the query time of our system

before ranking, and (3) the running time of our MXR system (excluding the

user feedback time) for the query in each workload.

D
BLP

N
ASA

Sha
ke

sp
ea

re

W
eb

lo
g

Tre
eb

an
k

Sw
is
sp

ro
t

T
im

e
 (

m
s
)

� �
� �

�
�
� �
� �

�
�
�
�

�
�MXR Search (without ranking)

�
MXR Search (with ranking)

�
Primitive Search

0

10

100

1000

10000

100000

1000000

Figure 21. Comparison of processing time of simple text search, no-ranking search,

and RSCF-based MXR search

As shown in Figure 21, the running time of the simple text search varies with

different document sizes and the counterparts of our system remain roughly

constant. The reason is that our RSCF-based MXR system requires a one-off

preprocessing time for building the index and storing the XML data into the

database. The total processing time in RSCF-based MXR depends on both

the searching and ranking times. The computation of the ranking incurs some

50

overhead ranging from 8% to 14% of the total processing time as shown in

the last column in Figure 22. As we can see in the second and third columns,

the searching time does not simply depend on the size of the document in

the corpus. For example, Weblog requires much less searching time than does

Treebank, although they are similar in size. This is due to the fact that Weblog

is more regular in structure but Treebank has many more distinct elements

and a deeper structure for indexing. It is also worth mentioning that the high

ranking overhead for NASA is due to the fact that although its smaller size

reduces the searching time, the returned fragments are large and thus more

time is needed for ranking than in the cases of Weblog and SwissProt. Despite

the ranking overhead, the searching time is, in general, still far better than

simple text searching, as shown in the first bar of Figure 21.

XML Queries Document
Size (MB)

Searching
time (ms)

Ranking
time (ms)

Total time
(ms)

MXR Ranking
Overhead (%)

DBLP 134 3833 473 4306 10.98
NASA 25 2879 434 3313 13.10
Shakespeare 32 3608 317 3925 8.08
Weblog 89.8 3340 289 3629 7.96
Treebank 86 4275 459 4734 9.70
Swissport 114.8 3232 309 3541 8.73

Figure 22. Searching Time and Ranking Overhead

6 Concluding Remarks

We have presented a simple and effective approach to handling XML search-

ing. Our proposed approach deals with the diversity of XML data in reality

and the need for specifying target information in simple queries. We suggest

that a search query can be expressed as a list of key-tags, which is a natural

generalization of keywords in traditional searching. We have presented an ex-

tension of the vector space model that integrates various similarity measures

51

between a search query and XML fragments.

As XML documents are diverse, we consider four ranking schemes based on

different combinations of useful features and develop four XRs to compare their

effectiveness. Our proposed XRs cater to different search needs. In order to

adapt the XRs further, we develop an MXR and propose a training framework

called RSCF, which is able to improve the retrieval quality via learning from

the user’s preference feedback in a progressive manner. Based on a co-training

framework, our RSCF algorithm requires only a small set of labelled data for

the training and does not intervene in the searching process. We demonstrate

by an extensive set of experiments that the RSCF-based MXR indeed improves

the retrieval quality when compared to the individual XRs.

In our prototype, we adopt a minimal indexing scheme to support the search-

ing. First, each tag in the XML document is assigned with a numerical “tagID”.

Indexes are built as trees using this tagID. When the system processes a path

(in XPath format), the path is translated into its corresponding numerical

form and then we perform a search using the tree structure. We may consider

this tree structure as the numerical representation of the XML scheme and

it maintains the hierarchical structure of the XML document. Using the nu-

merical representation should not make it difficult to apply existing advanced

indexing techniques such as Compact Tree [40] and XSeq [32], to improve the

performance of the searching.

There are still several issues that deserve further study in order to improve the

performance of the MXR in searching XML data. In particular, an interesting

direction is to apply our technique to cater to individuals’ needs, in addition

to adapting the search engine to a community of users. We believe that RSCF

52

can be directly used to personalize search engines if the personal clickthrough

data [28,35] can be specifically recorded. In this study, the search engines

are studied as “standalone systems”. From the point of view of applicability,

we need to deploy the system in the context of modern Web applications.

It is useful to study the issues concerning how to adopt the search engines in

different services and how the engines are interoperable in a Web architecture,

which may support mixed key-tag query and native XML query processing,

such as in the recent work reported in [22]. Finally, it is worth carrying out a

user study to check if the simple text search via key-tag queries is adequate

for XML searching in practice. For example, we can provide subjects with a

list of search tasks against a given XML corpus. This study would help us

understand real user queries if the users are allowed to use only key-tags for

searching.

Acknowledgement: We would like to express our sincere thanks to the editor

and the reviewers, who gave very insightful and encouraging comments. This

work is supported in part by grants from the Research Grants Council of Hong

Kong, Grant Nos. HKUST6185/02E, HKSUT6165/03E and DAG04/05.EG10.

References

[1] S. Amer-Yahia, L. Lakshmanan, P. Shashank. FleXPath: Flexible Structure and

Full-Text Querying for XML. In: Proc. of SIGMOD, 2004.

[2] S. Amer-Yahia, C. Botev and J. Shanmugasundaram. TeXQuery: A FullText

Search Extension to XQuery. In Proc. of WWW, 2004.

[3] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava and D. Toman. Structure

and Content Scoring for XML. In: Proc. of VLDB, 2005.

53

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-

wesley-Longman, 1999.

[5] B. Bartell, G.Cottrell, and R. Belew. Automatic combination of multiple ranked

retrieval systemss. In Proc. of the 17th ACM SIGIR, p. 173–181, 1994.

[6] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query

log. In Proc. of the 6th ACM SIGKDD, p. 407–416, 2000.

[7] K. Bennet and A. Demiriz. Semi-supervised support vector machines. Advances

in Neural Information Processing Systems, 11:368–374, 1998.

[8] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.

In Proc. of the 11th annual conference on Computational learning theory, pp.

92–100, 1998.

[9] J. Bosak. Shakespeare in XML.

In: http://www.ibiblio.org/xml/examples/shakespeare/, 2004.

[10] J. Boyan, D. Freitag, and T. Joachims. A machine learning architecture for

optimizing web search engines. In Proc. of the AAAI workshop on Internet-

Based Info. Sys., 1996.

[11] D. Carmel, Y. S. Marrek, M. Mandelbrodand, Y. Mass, A. Soffer. Searching

XML documents via XML fragments. In: Proc. of the 26th ACM SIGIR, 2003.

[12] J. Clark and S/ DeRose. XML path language (XPath) version 1.0. W3C

Recommendation. http://www.w3.org/TR/xpath, 1999.

[13] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv. XSEarch: A Semantic Search Engine

for XML. In: Proc. of the VLDB, 2003.

[14] S. Cohen, R. Shapire, and Y. Singer. Learning to order things. Journal of

Artificial Intelligence Research, Vol. 10, p. 243–270, 1999.

[15] E. Curtmola, S. Amer-Yahia, P. Brown and M. Fernandez. GalaTex: A

Conformant Implementation of the XQuery FullText Language. In Proc. of

XIME-P Workshop, 2005.

54

[16] CWI Database Groups. MonetDB/XQuery. http://monetdb.cwi.nl/XQuery/.

[17] European Bioinformatics Institute. The UniProt/Swiss-Prot Protein

Knowledgebase. http://www.ebi.ac.uk/swissprot/index.html, 2004.

[18] N. Fuhr. Optimum polynomial retrieval functions based on the probability

ranking principle. ACM Trans. on Info. Sys., Vol. 7, Issue 3, p. 183–204, 1989.

[19] N. Fuhr. Probabilistic Models in Information Retrieval. The Computer Journal,

Vol. 35, No. 3, p. 243–255, 1992.

[20] N. Fuhr and K. Grossjohann. XIRQL: An Extension of XQL for Information

Retrieval. ACM SIGIR 2000 Workshop on XML and Information Retrieval, pp.

172–180, 2000.

[21] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

keyword search over XML documents. In: Proc. of the ACM SIGMOD, 2003.

[22] A. Halverson, et al. Mixed Mode XML Query Processing. In: Proc. of VLDB,

2003.

[23] B.O. Huberman. The laws of the Web. Cambridge, MA: MIT Press, 2003.

[24] Initiative for the Evaluation of XML Retrieval.. http://inex.is.informatik.uni-

duisburg.de:2004.

[25] U. Ilhan. Application of K-NN and FPTC based text categorization algorithms

to turkish news reports. Bilkent University, Dept. of Comp. Eng., Technical

Reports, 2001.

[26] H.V. Jagadish, et al. TIMBER: A Native XML Database VLDB Journal 11(4),

2002.

[27] T. Joachims. Evaluating retrieval performance using clickthrough data. In Proc.

of the ACM SIGIR Workshop on Mathematical/Formal Methods in IR, 2002.

[28] T. Joachims. Optimizing search engines using clickthrough data. In Proc. of

the 8th ACM SIGKDD, p. 133–142, 2002.

55

[29] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal

of the ACM, Vol. 46, Issue 5, p. 604–632, 1999.

[30] M. Ley. Digital Bibliography & Library Project. In: http://dblp.uni-trier.de/,

2004.

[31] Y. Li, C. Yu and H.V. Jagadish. Schema-Free XQuery. In: Proc. of VLDB,

2004.

[32] X. Meng, Y. Jiang, Y. Chen and H. Wang. XSeq: An Indexing Infrastructure

for Tree Pattern Queries. In: Proc. of SIGMOD, 2004.

[33] L. Page, S. Brin, R. Motwani and T. Winograd. The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford Digital Library

Technologies Project, 1998.

[34] SV M light. Support Vector Machine. http://svmlight.joachims.org/, Ver 6.01

2004.

[35] Q. Tan, X. Chai, W. Ng, and D. L. Lee. Applying Co-training to Clickthrough

Data for Search Engine Adaptation. In Proc. of the 9th DASFAA, LNCS Vol.

2973, page 519-532, 2004.

[36] A. Theobald and G. Weikum. The Index-Based XXL Search Engine for

Querying XML Data with Relevance Ranking. In Proc. of EDBT, pp. 477–

495, 2002

[37] XML SQL Utility in Oracle. http://www.oracle.com/index.html, 2004.

[38] World Wide Web Consortium. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, W3C Working Draft 22 August 2003.

[39] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text.

http://www.w3.org/TR/2005/WD-xquery-full-text-20050404/, W3C Working

Draft 4 April 2005.

[40] Q. Zou, S. Liu and W.W. Chu. Ctree: A Compact Tree for Indexing XML Data.

In: Proc. of WIDM, 2004.

56

Appendix I: The following are the set of queries that we used in the experiments

in Section 5.2. They can be classified into five groups: Q1-Q5 are simple queries

(one key-tag) with complete key-tags; Q6-Q10 are simple queries having wildcards in

some tag components; Q11-Q15 are simple queries having wildcards in some keyword

components; Q16-Q20 are complex queries (more than one key-tag) with complete

key-tags; Q21-Q22 are complex queries having wildcards in some tag components;

Q23-Q25 are complex queries having wildcards in some keyword components; Q26-

Q30 are complex queries having wildcards in both tag and keyword components.

The query set used for querying data-centric documents for the experi-

ment shown in Figure 18:

(1) <year>2001</year>

(2) <author>Lam</author>

(3) <X>20</X>

(4) <title>data</title>

(5) <title>XML</title>

(6) <∗>XML</∗>

(7) <∗>1998</∗>

(8) <∗>Lam</∗>

(9) <∗>Antony</∗>

(10) <∗>get</∗>

(11) <PP>∗</PP>

(12) <weblog>∗</weblog>

(13) <date>∗</date>

(14) <author>∗</author>

57

(15) <act>∗</act>

(16) <year>2001</year>, <title>XML</title>

(17) <play>mark</play>, <act>mark</act>

(18) <weblog>get</weblog>, <date>.1999</date>

(19) <PP>X</PP>, <title>X</title>, <act>X</act>

(20) <date>2001</date>, <url>.edu</url>, <author>Al</author>

(21) <∗>200</∗>, <∗>199</∗>

(22) <∗>Al</∗>, <∗>La</∗>

(23) <play>∗</play>, <act>∗</act>

(24) <author>∗</author>, <speech>∗</speech>

(25) <datasets>∗</datasets>, <history>∗</history>

(26) <play>philo</play>, <∗>mark</∗>, <speech>∗</speech>

(27) <author>Al</author>, <year>∗</year>, <∗>X</∗>

(28) <weblog>∗</weblog>, <∗>get</∗>, <S>200</S>

(29) <year>19</year>, <date>∗</date>, <∗>XML</∗>, <∗>database</∗>,

<∗>query</∗>

(30) <act>∗</act>, <speech>Dear</speech>, <speaker>mark</speaker>,

<speaker>philo</speaker>, <∗>hi</∗>

The query set used for querying document-centric documents for the

experiment shown in Figure 19:

(1) <line>as I told you</line>

(2) <play>His name is Licio</play>

(3) <persona>Lord</persona>

58

(4) <weblog>.html</weblog>

(5) <title>XML Query</title>

(6) <∗>management system</∗>

(7) <∗>let me see</∗>

(8) <∗>.</∗>

(9) <∗>Licio</∗>

(10) <∗>get</∗>

(11) <description>∗</description>

(12) <history>∗</history>

(13) <date>∗</date>

(14) <author>∗</author>

(15) <speaker>∗</speaker>

(16) <line>as I told you</line>, <speaker>Lucentio</speaker>

(17) <speech>my Lord</speech>, <speaker>mark</speaker>

(18) <description>proper motion</description>,

<tablehead>Declination</tablehead>

(19) <field>difference between</field>, <field>Number of accepted observations

</field>, <definition>Proper motion</definition>

(20) < BACKQUOTES >456</ BACKQUOTES >,

< COMMA >++</ COMMA >, < PERIOD >==</ PERIOD >

(21) <∗>Hi</∗>, <∗>0</∗>

(22) <∗>between</∗>, <∗>result</∗>

(23) <play>∗</play>, <act>∗</act>

(24) <author>∗</author>, <speech>∗</speech>

59

(25) <datasets>∗</datasets>, <history>∗</history>

(26) <speaker>mark</speaker>, <∗>my lord</∗>, <line>∗</line>

(27) <play>∗</play>, <title>∗</title>, <∗>king</∗>

(28) <initial>D</initial>, <para>get</para>, <footnote>Cape</footnote>

(29) <description>∗</description>, <definition>∗</definition>,

<reference>∗</∗>, <title>Standard Stars</title>

(30) <act>∗</act>, < speech >Dear</speech >, <speaker>mark</speaker>,

<speaker>philo</speaker>, <∗>hi</∗>

The query set with a mix of data-centric and document-centric docu-

ments for the experiment shown in Figure 20:

(1) <year>2001</year>

(2) <author>Lam</author>

(3) <speaker>Mark Antony</speaker>

(4) <play>Mark Antony</play>

(5) <title>XML</title>

(6) <∗>XML</∗>

(7) <∗>1998</∗>

(8) <∗>Lam</∗>

(9) <∗>Mark Antony</∗>

(10) <∗>get</∗>

(11) <PP>∗</PP>

(12) <weblog>∗</weblog>

(13) <date>∗</date>

60

(14) <author>∗</author>

(15) <act>∗</act>

(16) <year>2001</year>, <title>XML</title>

(17) <PP>X</PP>, <title>X</title>, <act>X</act>

(18) <date>2001</date>, <url>.edu</url>, <author>Al</author>

(19) <field>difference between</field>, <field>Number of accepted observations

</field>, <definition>Proper motion</definition>

(20) < BACKQUOTES >456</ BACKQUOTES >,

< COMMA >++</ COMMA >, < PERIOD >==</ PERIOD >

(21) <∗>200</∗>, <∗>199</∗>

(22) <∗>between</∗>, <∗>result</∗>

(23) <play>∗</play>, <act>∗</act>

(24) <author>∗</author>, <speech>∗</speech>

(25) <datasets>∗</datasets>, <history>∗</history>

(26) <play>philo</play>, <∗>mark</∗>, <speech>∗</speech>

(27) <author>Al</author>, <year>∗</year>, <∗>X</∗>

(28) <weblog>∗</weblog>, <∗>get</∗>, <S>200</S>

(29) <description>∗</description>, <definition>∗</definition>,

<reference>∗</∗>, <title>Standard Stars</title>

(30) <act>∗</act>, <speech>Dear</speech>, <speaker>mark</speaker>,

<speaker>philo</speaker>,<∗>hi</∗>

61

Appendix II: The following are the set of queries that we used in the experiments

in Section 5.3.

The query set used for querying DBLP for the experiment shown in

Figure 21:

(1) <year>2001</year>

(2) <author>Lam</author>

(3) <title>XML</title>

(4) <∗>XML</∗>

(5) <∗>1998</∗>

(6) <author>∗</author>

(7) <date>∗</date>, <∗>1998</∗>

(8) <date>2001</date>, <url>.edu</url>, <author>Al</author>

(9) <year>2001</year>, <title>XML</title>

(10) <year>19</year>, <date>∗</date>, <∗>XML</∗>, <∗>database</∗>,

<∗>query</∗>

The query set used for querying NASA for the experiment shown in

Figure 21:

(1) <year>19</year>

(2) <identifier>xml</identifier>

(3) <field>D</field>

(4) <∗>xml</∗>

(5) <∗>1998</∗>

(6) <identifier>∗</identifier>

62

(7) <date>∗</date>, <∗>1998</∗>

(8) <author>*</author>, <*>XML</*>

(9) <date>2001</date>, <field>remark</field>, <altname>I</altname>

(10) <date>19</date>, <field>∗</field>, <∗>XML</∗>, <∗>remark</∗>

The query set used for querying Shakespeare for the experiment shown

in Figure 21:

(1) <line>as I told you</line>

(2) <play>His name is Licio</play>

(3) <persona>Lord</persona>

(4) <∗>let me see</∗>

(5) <∗>Licio</∗>

(6) <author>∗</author>

(7) <speaker>mark</speaker>, <∗>my lord</∗>, <line>∗</line>

(8) <line>as I told you</line>, <speaker>Lucentio</speaker>

(9) <speech>my Lord</speech>, <speaker>mark</speaker>

(10) <act>∗</act>, < speech >Dear</speech >, <speaker>mark</speaker>,

<speaker>philo</speaker>, <∗>hi</∗>

63

