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Abstract � We extend the relational data model to incorporate linear orderings into data domains�
which we call the ordered relational model� The conventional Functional Dependencies �FDs� are
examined in the context of ordered relational databases by using the notion of System Ordering
Independence �SOI�� which refers to the desirable scenario that the ordering of tuples in a relation
is independent of the implementation of the underlying DBMS� We also extend Armstrong�s axiom
system for FDs to object relations� which are a subclass of ordered relations that allow us to view tuples
as objects� We formally de�ne Ordered Functional Dependencies �OFDs� for the extended model by
means of two possible extensions of domains� pointwise�orderings and lexicographical orderings� We
�rst present a sound and complete axiom system for OFDs in the case of pointwise�orderings and then
establish a sound and complete set of chase rules for OFDs in the case of lexicographical orderings�
Our main result shows that the implication problems for both cases of OFDs are decidable� and that
it is linear time for the case of pointwise�orderings� c�	
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�� INTRODUCTION

Functional dependencies �FDs� are commonly recognised as the most fundamental integrity
constraint arising in practice in conventional relational databases ���	 �
� The implication problem
for functional dependencies is also well�known ���	 �

� We assume here that the data domains of
the relational data model are linearly ordered and call the extended model the ordered relational
model� Our assumption is well�justi�ed	 since linear ordering is a fundamental property of almost
all primitive data types� Existing database theory usually makes an implicit assumption that
domains are linearly ordered	 allowing the linear ordering predicate	 �	 to be used in selection
formulae ���	 �
� In fact	 all relational database systems also support the following three kinds of
domain orderings considered to be essential in practical use� ��� the alphabetical ordering over the
domain of strings	 ��� the numerical ordering over the domain of numbers	 and ��� the chronological
ordering over the domain of dates ���	 ��
� Let us call these linear orderings the standard domain
orderings�

There is strong evidence that ordering is inherent to the underlying structure of data in many
database applications �
	 ��	 ��	 ��	 ��
	 in which linear ordering is particularly important to those
advanced applications involving temporal or scienti�c information ���	 ��
� We restrict the scope of
our investigation to the case of linear orderings� In addition	 we call the ordering semantics in the
context of a speci�c application semantic orderings	 which are a central notion that we have used
in developing ordered SQL ���	 ��
� Semantic orderings are also used here in de�ning the ordered
relational model in the following way	 given a data domain of the extended model	 apart from
the standard domain orderings at the logical level such as numerical and alphabetical orderings
provided by DBMSs	 we can also declare new semantic orderings at the external level above the
logical level	 overriding the standard domain orderings�

We formalise the notion of FDs being satis�ed in an ordered database and call them Ordered
Functional Dependencies �OFDs�� Informally speaking	 OFDs can capture a monotonicity property
between two sets of values projected onto some attributes in a relation� The semantics of OFDs
are de�ned by means of two possible extensions of the domain orderings� pointwise�orderings and
lexicographical orderings� Pointwise�orderings require each component of a data value to be greater
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EMP POST TITLE YEARS SALARY

Mark Senior Programmer �� ��K
Nadav Junior Programmer 
 ��K
Ethan Junior Programmer � ��K

Fig� 	� An Employee Relation EMP RECORD

than its predecessors and lexicographical orderings resemble the way in which words are arranged
in a dictionary� For example	 the tuple hx
� � � � � xni is less than another tuple hy
� � � � � yni according
to a pointwise�ordering	 if	 for all � � i � n	 xi � yi� The tuple hx
� � � � � xni is less than another
tuple hy
� � � � � yni according to a lexicographical ordering	 if there is an index j � � such that
xj � yj and	 for each i � j	 xi � yi� We classify OFDs according to whether we use pointwise�
orderings or lexicographical orderings in their de�nitions	 whose short forms are written as POFDs
�X �� Y � and LOFDs �X � Y ��

As a motivating example	 consider in Figure � a relation called EMP RECORD over the set
of attributes fEMP	 POST TITLE	 YEARS	 SALARYg� The semantics of EMP RECORD is as
follows	 an EMPloyee with a given POST TITLE	 who has been working in a company for some
YEARS	 has the present SALARY�

We assume that there is a semantic ordering in POST TITLE as represented by the following
domain f�Junior Programmer� � �Senior Programmer�g� The relation EMP RECORD in Figure �
then satis�es the POFD	 fPOST TITLE	 YEARSg �� SALARY	 which states the fact that the
SALARY of an employee is greater than other employees who have junior post titles and less
experience in the company	 and the LOFD	 fPOST TITLE	 YEARSg � SALARY	 which states
the fact the SALARY of an employee is greater than other employees who have junior post titles	 or
the same post title but less experience in the company� Note that the semantics of the POFD and
the LOFD mentioned above are di�erent� For instance	 in the �rst case	 an employee has a higher
salary only if he or she has both a senior post title and more experience than another	 whereas in
the second	 it requires only that he or she only has to have a more senior post title� If Mark leaves
his post	 Ethan replaces him and his record is updated to hEthan� SeniorProgrammer� �� ��Ki
�i�e�	 updating the third tuple�	 then this updating violates neither the POFD nor the LOFD�
However	 if his record is updated to hEthan� SeniorProgrammer� �� ��Ki	 then it violates the
LOFD	 since Ethan now has a more senior title but a lower salary than Nadav� But the POFD
still holds in this updating	 since Nadav still has more experience than Ethan� The appropriateness
of the choice between the POFD or the LOFD in this case depends entirely on the semantics of
the promotion policy adopted by the company�

In the relational database literature	 the implication problem is an important issue arising from
investigating data dependencies	 which we now state as follows� given a relation r which satis�es
a set of data dependencies F	 is it also true that r satis�es a data dependency f� If the answer
to the above question is positive	 then we say F logically implies f and denote this fact by F j� f �
There are two approaches to this problem�

One approach is to establish a set of inference rules which constitutes the axiom system A� We
can use the rules of A to derive f from F and denote this process by F � f � We call A sound and
complete	 if we can prove that F � f if and only if F j� f � A sound and complete axiom system
for F is desirable	 since it guarantees that the implication problem for F is recursively enumerable
���
	 which also implies in principle that we can exhaustively apply the rules of A to generate all
data dependencies logically implied by F� The axiom system A also provides us with a basis for
�nding a more e�cient algorithm to solve the implication problem� We adopt this approach to
show that the axiom system comprising the inference rules for POFDs	 a superset of Armstrong�s
axiom system for FDs ��
	 is sound and complete�
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Another approach is to develop a chase procedure	 which consists of a set of chase rules as a
theorem�proving tool� We choose an appropriate chase rule to apply to a relation r until a �xpoint
is attained in order to test whether r satis�es F ��
	 �
� The chase procedure operates on a relation
containing variables as data values	 known as a tableau ��
	 �
	 which is basically the template for
those relations that could possibly violate f � Suppose we can prove that using the chase procedure
we can transform a tableau that satis�es F into a tableau that also satis�es f 	 and this holds if and
only if F j� f � Then we are able to use the chase procedure to con�rm or refute that F logically
implies f � We call the chase procedure possessing this property sound and complete� We adopt
this approach to extend the chase rules for LOFDs� We investigate the properties of a relation r

being chased with respect to a set of LOFDs F �which we denote as CHASE�r	F�� and then show
that the procedure CHASE�r	F� terminates and satis�es F� Using an extended notion of tableaux
for LOFDs	 we show that the chase is sound and complete for LOFDs�

Our investigation also relates to the issues of data dependencies in those extensions of the
relational data model to incorporate lists or sequences as data types ���	 ��	 �

� A list can arrange
objects in some pre�de�ned linear order� It can therefore be de�ned as a mapping between a
collection of similarly structured real world objects and a linearly ordered domain� From this point
of view	 a linearly ordered set can be regarded as a non�repeating list� However	 a linearly ordered
set is not allowed to contain duplicates	 which is di�erent from a list in general� Ginsburg and
Hull ���
 have introduced the term order dependencies and examined the issue of the extension of
functional dependencies to incorporate information involving partial order� They exhibit a sound
and complete set of inference rules for order dependencies	 whose implication problem is shown
to be co�NP complete ���
� The central notion of order dependencies is similar to that of our
de�nition of ordered functional dependencies arising from pointwise�orderings �POFDs�	 except
that the involved domain orderings in order dependencies are classi�ed into total order	 empty
order and general partial�order� This �ner classi�cation of a partial ordering requires relatively
complex mathematical tools to explore the axiom systems for order dependencies	 whereas we
intend to further clarify the issues arising from the semantics of FDs	 POFDs and LOFDs in the
context of ordered databases�

The rest of the paper is organised as follows� In Section � we clarify the notion of linear order
and its extensions to Cartesian product of linearly ordered sets� We formally de�ne the ordered
relational model� In Section � we examine FDs in the context of ordered databases� In Section � we
present the axiom system comprising the inference rules for POFDs	 which is sound and complete�
Also	 we de�ne the chase rules for LOFDs and	 using an extended notion of tableaux for LOFDs	
show that the chase is sound and complete for LOFDs� In Section � we give our concluding remarks�

Throughout this paper we make use of the following notation�

De�nition � Let X and Y be sets	 then X � Y denotes set inclusion and X � Y denotes proper
set inclusion� We denote the k term Cartesian product X �X � � � �X by Xk	 and the singleton
fAg simply by A when no ambiguity arises� We refer to a sequence of attributes as a short hand
for a sequence of distinct attributes� �In other words	 we assume that sequences of attributes
do not contain any repeated attributes�� We use the common notation for both sequences and
sets	 i�e�	 X and Y are used to denote sequences of attributes	 whereas A and B are used to
denote single attributes� When no ambiguity arises we refer to a sequence of attributes as a set of
attributes� However	 we remark that the sequences AB and BA are di�erent	 whereas the sets AB
and BA are the same� We take A 	 hA
� � � � � Ani to mean A 	 fA
� � � � � Ang and hA
� � � � � Ani �
hB
� � � � � Bmi where n � m	 to mean fA
� � � � � Ang � fB
� � � � � Bmg� We may also write A
 � � �An

instead of hA
� � � � � Ani� Let X � hA
� � � � � Ami and Y � hB
� � � � � Bni� We denote the fact that two
sequences have the same elements	 i�e�	 fA
� � � � � Amg � fB
� � � � � Bng	 by X 
 Y � The di�erence
between two sequences of attributes	 denoted as X � Y 	 is de�ned by the sequence resulting from
removing all the common attributes in X and Y from X while maintaining the original order of
the remaining attributes in X � We also denote by XY the concatenation of two sequences X and
Y 	 where X and Y are disjoint	 i�e�	 they have no common attributes� If X and Y are not disjoint	
then XY is de�ned as X�Y �X��
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�� THE ORDERED RELATIONAL MODEL

We assume the usual de�nition of a linear ordering � on the set S� a binary relation on S

satisfying the conditions of re�exivity	 anti�symmetry	 transitivity and linearity	 which becomes a
partial ordering if without the linearity condition ���
�

De�nition � A linear ordering of the set S is a binary relation on S	 denoted by �	 satisfying the
following conditions�
For all x� y� z 	 S�

�� Re�exivity� x � x�

�� Anti�symmetry� if x � y and y � x	 then x � y�

�� Transitivity� if x � y and y � z	 then x � z�

�� Linearity� x � y or y � x�

A linearly ordered set	 denoted as S	 is a structure hS��i� It consists of a set S which is linearly
ordered by the relation �� From now on	 the term ordered will mean linearly ordered	 unless
explicitly stated otherwise� We assume that the equality predicate	 �	 still applies to ordered sets
and use the notation � to represent the usual meaning of � but ��� We now de�ne the extension
of the orderings of data domains on the Cartesian product of ordered sets so as to capture the
semantics of data�

Let D
� � � � � Dn be n ordered sets	 t be an element in the Cartesian product S � D
� � � � �Dn

and t�i
 be the ith coordinate of t� We now de�ne pointwise�orderings on the Cartesian product of
ordered sets�

De�nition � Let t
	 t� 	 S� A pointwise�ordering on S	 denoted by �p
S	 is de�ned as follows� t


�p
S t�	 if	 for all � � i � n	 t
�i
 �Di

t��i
�

It is easy to check from De�nition � that �p
S is a partial ordering on S� The idea of the

pointwise�ordering extension on data domains has been commonly used to study the issues con�
cerning incomplete information ���	 ��	 ��
	 but in this case we need to de�ne partial ordering over
data domains	 in order to capture the semantics that a known data value is equally informative
to itself but more informative than a null value� This approach can be further explained by the
following example� assume that a domain of constants	 denoted as Dom	 contains a distinguished
symbol UNK	 which means that the data value exists but is UNKnown� A partial ordering on
Dom is de�ned by	 for all x� y 	 Dom	 x � y if x � y or x � UNK� Then we can extend � to be a
pointwise�ordering in a relation r over fA�Bg as follows	 for all t
� t� 	 r 	 t
 �p t� if t
�A
 � t��A

and t
�B
 � t��B
� This extension naturally captures the meaning of t
 being less informative than
t�	 or alternatively t� being more informative than t
�

We next de�ne another kind of ordering	 lexicographical ordering	 on the Cartesian product of
ordered sets�

De�nition � Let t
	 t� 	 S� A lexicographical ordering on S	 denoted by �l
S 	 is de�ned as follows�

t
 �l
S t�	 if either

�� there exists k with � � k � n such that t
�k
 �Dk
t��k
	 and for all � � i � k	 t
�i
 � t��i
	 or

�� for all � � i � n	 t
�i
 � t��i
�

In contrast to pointwise�ordering	 it follows from De�nition � that �l
S is a linear ordering on

S� Lexicographical ordering is a common and fundamental property of many data structures� For
example	 letN be the set of natural numbers	 then we can construct the lexicographical ordering on
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Nn	 which is an in�nite lexicographical ordering� Another important example is the lexicographical
ordering on alphabets� Let A be an ordered set over a �nite alphabet� Then we can easily construct
a �nite lexicographical ordering on An in the same way as Nn	 which we call a dictionary ordering
or an alphabetical ordering	 since it resembles the ordering of words in a dictionary� We observe
that the ordering of the domain DATE	 called chronological orderings	 follows the lexicographical
ordering of the domains Y EAR	MONTH andDAY 	 if ��� the domainMONTH has the ordering
as fJAN � FEB � � � � � DECg and ��� the Cartesian product of the domains are taken in the
following order� Y EAR�MONTH �DAY � However	 we remark that the domain DATE is not
equivalent to Y EAR �MONTH � DAY due to the fact that months have di�erent number of
days ���
�

Let D be a countably in�nite set of constant values and �D be an ordering on D� Without loss
of generality	 we assume that all attributes share the same domain D� We now give the de�nition
of an ordered database�

De�nition � We assume a countably in�nite ordered set of attribute names	 hU��U i� For all
attributes A 	 U	 the domain of A is hD��Di� We call �D the domain ordering of D�

De�nition � A relation schema �or simply a schema� R	 is a subset of U consisting of a �nite set
of attributes fA
� � � � � Amg for some m � �� A database schema is a �nite set R � fR
� � � � � Rng
of relation schemas	 for some n � ��

De�nition 	 Let X � fA
� � � � � Amg be a �nite subset of U where Ai �� Aj for i �� j and
A
 �U � � � �U Am� A tuple t overX is a member ofDm� We let t�Ai
 denote the ith coordinate of t�
The projection of a tuple t onto a set of attributes Y � fAi� � � � � � Aikg	 where � � i
 � � � � � ik � m	
is the tuple t�Y 
 � ht�Ai� 
� � � � � t�Aik 
i�

De�nition 
 An ordered relation �or simply a relation� r de�ned over a schema R is a �nite set
of tuples over R� An ordered database �or simply a database� over R � fR
� � � � � Rng is a �nite set
d � fr
� � � � � rng such that each ri is a relation over Ri�

We make two assumptions in our model� First	 the orderings of domains can be extended to
tuples so that tuples in an ordered relation are ordered according to the lexicographical ordering of
the domains associated with the attributes present in the underlying relation schema� Any change
in the order of attributes in a relation schema may a�ect the order of tuples in an ordered relation�
Second	 given a data domain	 apart from the system ordering assumption	 we can declare one or
more semantic orderings which override the default system ordering�

In order to further discuss the relationship between various notions of orderings in a DBMS	 we
let a system ordering	 denoted by �sys	 on a relation r be a linear ordering on r that is generated
by a DBMS� Note that the concepts of system orderings and domain orderings are di�erent� The
ordering �sys may or may not follow the extension of domain orderings on tuples	 as di�erent
DBMSs have their own storage and retrieval strategy� The following example helps clarify this
concept further�

Example � Let r over A be the relation fa� b� cg �having � tuples� and the domain of A be
alphabetically ordered� A system ordering	 which is dependent on a particular DBMS	 can choose
one of the six ways as shown in Figure � to arrange the tuples in r�

A

a
b
c

A

a
c
b

A

b
a
c

A

b
c
a

A

c
a
b

A

c
b
a

Fig� �� Six Possible System Orderings of Tuples in r �
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semantic orderings

domain orderings CONCEPTUAL

system orderings INTERNAL

EXTERNAL

DBMS levelOrderings

Fig� �� Orderings at Di�erent DBMS Levels

Although in most cases the choice of the ordering of r in the above example is done according
to standard domain orderings �i�e�	 the �rst one in Figure ��	 the ordering of tuples cannot be
guaranteed as alphabetically ordered if r is the answer to a complex query over the DBMS� This is
because the choice of ordering of r is dependent on the implementation of a particular DBMS� It
is worthwhile to consider how �sys a�ects the use of cursors in an embedded SQL statement ���
�
For example	 the result of selecting the nth tuple of r is dependent on the ordering of tuples in
r� In such a case there will be a risk of losing physical data independence	 because the returned
tuples depend on �sys	 which in turn depends on the implementation of the system� This is rather
undesirable and thus the current remedy is to use the ORDER BY clause to help �position� tuples
when declaring a cursor �c�f�	 see chapter �� in ���
�� In other words	 we need domain orderings
to achieve physical data independence� We show in Figure � the di�erences between the various
notions of orderings introduced so far�

For the sake of simplicity in notation	 we use �p
X �or �l

X� to mean the pointwise�ordering
�or the lexicographical ordering� on the Cartesian products of data domains associated with a
sequence of attributes X in our further discussion� We now de�ne an operator called a domain
ordering operator whose aim is to help present the relationship between domain orderings and data
dependencies�

De�nition � Let r be a relation over R and L be the set of all linear orderings on r� A domain
ordering operator over r	 denoted by �X 	 where X � R is a sequence of attributes	 is de�ned by
�X�r� � f�r	 L j 
t
� t� 	 r	 if t
 �r t�	 then t
�X 
 �l

X t��X 
g�

We now de�ne an important subclass of the results obtained by �X over a given relation r in
order to investigate the independence of system orderings for r�

De�nition �� Given a relation r over R	 we call �X system ordering independent with respect to
r �or simply SOI when r is clear from the context� if �X�r� is a singleton�

Informally	 the SOI property of a domain operator ensures that the ordering of the tuples in a
relation can be uniquely determined by the domain ordering associated with a given sequence of
attributes	 and thus the relation avoids the interference arising from the low level system ordering�
The following example help clarify this concept further�

Example � Let D
 � f�� �g and D� � fa� b� cg and a given relation r � fh�� ai	 h�� ci	 h�� big�
Then the ordered relations given in Figure � exhibit two di�erent domain orderings in �A�

�r�	
because there are two choices of ordering for the tuples h�� bi and h�� ci by the system�
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A
 A�

� b
� c
� a

A
 A�

� c
� b
� a

Fig� �� Two Possible Domain Orderings of Tuples on r �

So we can see from the above example that the ordering of r is still partially system dependent
when it is ordered according to the domain ordering of A
 only� It is also clear that if X is
equal to the schema of r	 then �X is SOI� If X is a proper subset of the schema of r	 then it is
desirable for �X to be SOI	 since we can save some computation resources of the system to achieve
the independence of system orderings� This is because the system does not have to perform the
sorting over every attribute in the relation schema in order to maintain ordered relations �recall
the assumption that in an ordered relation tuples are ordered�� Let the projection of a relation
r over R onto Y 	 denoted as �Y �r�	 be de�ned by �Y �r� � ft�Y 
 j t 	 rg� We now introduce
the following interesting properties	 which will be useful in establishing the axiom system for FDs
holding in object relations next section�

Proposition � Let X�Y� Z � R and r be a relation over R� The following statements are true�

�� �R�r� is SOI�

�� If �X�XY Z�r� is SOI� then �X�XY �r� is SOI�

�� If �X�XY �r� is SOI� then �XZ�XY Z�r� is SOI�

	� If �X�XY �r� is SOI� then �XZ�XY �r� is SOI�


� If �X�XY �r� is SOI and �Y �Y Z�r� is SOI� then �X�XZ�r� is SOI�

Proof� The �rst statement is obviously true	 since �l
R de�nes a unique linear ordering on r� The

second statement can be proved by assuming to the contrary that it is possible to have two distinct
linear orderings	 say �
 and ��	 in �X�XY �r�� It thus follows that there should be two distinct
tuples t
 and t� in �XY �r� such that t
 �
 t� but t
 �� t�� It also follows from De�nition � that
t
�X 
 � t��X 
� Let t�
 and t�� in �XY Z�r� such that t�
�XY 
 � t
 and t���XY 
 � t�� So	 t�
 �� t��
but t�
�X 
 � t���X 
� Thus	 we have two distinct linear orderings that can be chosen to arrange
tuples over �XY Z�r�	 leading to a contradiction to the assumption of �X�XY Z�r� being SOI� The
remaining statements can be proved in a similar way� For instance	 in order to prove the �fth
statement we assume �
 and �� being two distinct linear orderings in �XZ�r� and let t
 and t�
be two distinct tuples in �XZ�r� such that t
 �
 t� but t
 �� t�� It follows from De�nition �
that t
�X 
 � t��X 
� Thus	 t
�Z
 �� t��Z
 and t
�Y Z
 �� t��Y Z
� Two cases are then needed to
consider� First	 if t
�Y 
 � t��Y 
	 we have two distinct linear orderings that can be chosen to
arrange tuples over �Y Z�r�	 leading to a contradiction to the assumption of �Y �Y Z�r� being SOI�
Second	 if t
�Y 
 �� t��Y 
	 then t
�XY 
 �� t��XY 
� Again	 we have two distinct linear orderings that
can be chosen to arrange tuples over �XY �r�	 leading to a contradiction to another assumption of
�X�XY �r� being SOI� �

�� FUNCTIONAL DEPENDENCIES IN ORDERED DATABASES

Bearing in mind that the implication problem is an important issue arising in developing the
theory of data dependencies	 and that FDs are the most natural data dependencies arising in
practice	 we �rst formalise the notions of logical implication and an axiom system	 and then review
Armstrong�s axiom system for FDs	 which is a classic example of axiom systems in the literature
of relational database theory ���	 �
�
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De�nition �� A set of data dependencies F logically implies a data dependency f over R	 written
F j� f 	 whenever for all relations r over R	 if	 for all f � 	 F	 r j� f � holds	 then r j� f also holds�
An axiom system A for F is a set of inference rules �or simply rules� that can be used to derive
data dependencies from F over R� We say that f is derivable from F by A	 if there is a �nite
sequence of data dependencies over R	 whose last element is f 	 and where each data dependency
in the said sequence is either in F or follows from a �nite number of previous data dependencies in
the sequence by one of the inference rules� We denote by F � f the fact that f is derivable from
F by a speci�ed axiom system�

De�nition �� will be repeatedly used in di�erent contexts of data dependencies� For example	
in this section the set of data dependencies F is restricted to the scope of FDs	 but when discussing
POFDs in Section ���	 we will use F j� f to mean that a set of POFDs F logically implies a POFD
f � Similarly	 we will also use F j� f to mean that a set of LOFDs F logically implies an LOFD f 	
when discussing LOFDs in Section ����

Armstrong�s axiom system provides a set of inference rules which can infer new FDs from given
ones� It is also well�known that Armstrong�s axiom system is sound and complete for FDs being
satis�ed in conventional relations ��	 ��
� This result is very signi�cant in database design	 since
by using this axiom system we can derive some e�cient algorithms to con�rm whether or not a
given FD holds in a relation schema ��
� It also provides us with a basis for developing FDs in
the context of other advanced applications which have fuzzy	 incomplete or imprecise information
���	 ��	 ��
�

De�nition �� Let X�Y� Z be subsets of R	 A 	 R and F be a set of FDs� Armstrong�s axiom
system constitutes the following inference rules for FDs�


FD�� Re�exivity� if Y � X 	 then F � X � Y �


FD�� Augmentation� if F � X � Y 	 then F � XA� Y A�


FD�� Transitivity� if F � X � Y and F � Y � Z	 then F � X � Z�

There are two possible views of FDs in the context of ordered databases� The �rst view is
straightforward	 that is	 Armstrong�s system can be directly carried over to ordered relations	
since we assume that the equality predicate still applies to ordered domains� Another view of FDs
in the context of ordering is more interesting� We now use �X and �X in the following theorem to
give a new interpretation of FDs via the notion of SOI�

Theorem � An ordered relation r over R satis�es a functional dependency X � Y if �X�XY �r�
is SOI�

Proof� Let t
� t� 	 r such that t
�X 
 � t��X 
� Assume to the contrary that t
�Y 
 �� t��Y 
 and thus
it follows that t
�XY 
 �� t��XY 
� So we have two distinct linear orderings	 say �
 and ��	 which
can be chosen to arrange tuples over �XY �r�	 such that t
�XY 
 �
 t��XY 
 but t��XY 
 �� t
�XY 
�
This leads to a contradiction	 since we violate the assumption of �X�XY �r� being SOI� �

The operator �X can be further used to de�ne a subclass of relations called object relations ��
�
We need the following de�nition to illustrate this concept�

De�nition �� An attribute M 	 R is said to be a meta�attribute for an ordered relation r over R	
if it satis�es �MX�r� � �l

R for all X � R	 where X can be empty�

We call a relation schema R an object relational schema if it contains a distinguished attribute
being a meta attribute� We also call a subclass of relations object relations	 if it consists of relations
that are de�ned over object relational schemas� Meta�attributes in object relational schemas can be
maintained by the system only	 and can be hidden from users� The de�nition of meta�attributes
formalises the use of tuple identi�ers in a relation� For example	 the relational DBMS Oracle
employs an attribute called ROWID �ROW IDenti�er� to manipulate tuples but this attribute is
normally hidden from users ���
� The following proposition states that meta�attributes possess the
desirable property of SOI�
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M X� Z

� � � � � � � � � � �
� � � � � � � � � � �

Fig� �� An Object Relation r Showing that r �j� X � Y

Proposition � �M �r� is SOI�

Proof� The result immediately follows from De�nition ��� �

We now extend Armstrong�s axiom system for FDs to the class of object relations by adding
the following inference rule�


FD�� Meta�attribute
 F �M � R�

We need the following inference rule	 which can be derivable from FD� to FD�	 to prove next
theorem�


FD�� Union
 if F � X � Y and F � X � Z	 then F � X � Y Z�

The closure of a set of attributes	 X � R	 with respect to a given set of FDs F	 denoted as
X�	 is given by X� � fA j F � X � Ag� We now show that the axiom system comprising
inference rules from FD� to FD� is also sound and complete for FDs	 holding in the class of object
relations� The method that we use is standard �c�f�	 see Chapter 
�� in ���
�	 whose idea is �rst
to assume that X � Y cannot be inferred from the axiom system	 and then to present a relation
as a counter�example in which all the dependencies of F hold except X � Y � In other words	 our
result is that F does not logically imply X � Y �

Theorem � The axiom system comprising inference rules from FD� to FD	 is sound and complete
for a set of FDs F� holding in the class of object relations�

Proof� By Proposition � and Theorem �	 it follows that the inference rules from FD� to FD� are
sound� FD� is also sound by De�nition �� and Proposition �� We prove completeness by showing
that if F �� X � Y 	 then F �j� X � Y � Equivalently for the latter	 it is su�cient to exhibit a
relation r such that r j� F but r �j� X � Y � Let r be the relation shown in Figure �	 whereM 	 X�

and Z denote pairwise disjoint sets of attributes such that Z � R �MX�� Note that M �	 X�	
otherwise	 it is trivial that X � Y by FD��

We �rst show that r j� F� Suppose to the contrary that r �j� F and thus there exists an FD	
V � W 	 F such that r �j� V � W � It follows by the construction of r that V � X� and there
exists A 	 �W � ZM� such that A �	 X�� Suppose A 	 Z� By FD�	 it follows that V � A

and by FD� again	 it follows that X � A� This leads to a contradiction	 since it follows that
A 	 X�� Suppose A � M � By FD�	 it follows that M � R	 by FD�	 it follows that M � Y 	 by
FD�	 it follows that X � M 	 and �nally by FD� again	 it follows that X � Y � This leads to a
contradiction	 since we have derived F � X � Y �

We conclude the proof by showing that r �j� X � Y � Suppose to the contrary that r j� X � Y �
by the construction of r	 Y � X� since M �	 X�� It implies that for all A 	 Y 	 F j� X � A�
Therefore	 for all A 	 Y 	 F � X � A� By FD�	 it follows that F � X � Y � This leads to a
contradiction	 since we have derived F � X � Y � �

�� ORDERED FUNCTIONAL DEPENDENCIES

An OFD in the ordered relational data model involves comparing the orderings between two
sets of data items� We �nd that OFDs arise naturally in many applications	 especially in those that
consist of temporal data ���
� A typical example is that an OFD can capture the constraint that
the salary of an employee increases every year� Another example �c�f�	 see ���
� is the constraint
that in a bank account the chronological ordering of date increases	 as does the numerical ordering
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of check numbers� OFDs can also be applied to maintain the �sum of data values� relative to
a set of attributes� For instance	 the total production for a manufacturing plant should increase
every month	 or the commission earned by insurance people should increase as the total number
of policies they can make from their customers�

The semantics of an OFD with two or more attributes on either the left or right hand side is
de�ned according to lexicographical orderings and pointwise�orderings on the Cartesian product
of the underlying domains of the attributes in the OFD	 which gives rise to POFDs and LOFDs	
respectively� From now on	 OFDs mean either POFDs or LOFDs� We remark also that they are
exactly the same data dependencies in the special case of unary attributes	 which means that only
one attribute is allowed on both the left and right hand sides of an OFD�

	��� OFDs Arising from Pointwise�Orderings

We give the de�nition of a POFD as follows�

De�nition �� An ordered functional dependency arising from pointwise�orderings �or simply a
POFD� over a relation schema R	 is a statement of the form R � X �� Y �or simply X �� Y

whenever R is understood from the context�	 where X�Y � R are sequences of attributes� The
POFD X �� Y is said to be standard if X �� ��

From now on	 we will assume that all POFDs are standard� For non�standard POFDs	 for
example � �� Y 	 it follows from De�nition �� that r over R satis�es such a POFD if and only
if �Y �r� is a singleton� However	 we do not consider such a cardinality constraint and therefore
assume that all POFDs are standard� It also implies that the special case of j R j� � is irrelevant
in the context of standard POFDs� The similar comments can also be applied to LOFDs next
section� We now give the de�nition of the semantics of a POFD�

De�nition �� A POFD	 R � X �� Y 	 is satis�ed in a relation r over R	 denoted by r j� X �� Y 	
if	 for all t
� t� 	 r	 t
�X 
 �p

X t��X 
 implies that t
�Y 
 �
p
Y t��Y 
�

We next give a set of inference rules for POFDs and show that Armstrong�s axiom system
carries over to ordered relations with respect to POFDs�

De�nition �� Let X�Y� Z�W be subsets of R and F be a set of POFDs over R� The inference
rules for POFDs are de�ned as follows�


POFD�� Re�exivity� if Y � X 	 then F � X �� Y �


POFD�� Augmentation� if F � X �� Y 	 then F � XZ �� Y Z�


POFD�� Transitivity� if F � X �� Y and F � Y �� Z	 then F � X �� Z�


POFD�� Permutation� if F � X �� Y 	 W 
 X and Z 
 Y 	 then F � W �� Z�

We remark that POFD� is needed because we are dealing with sequences of attributes rather
than the usual sets of attributes in FDs�

Lemma � Let F be a set of POFDs� f � X �� Y be a POFD and f� � X � Y be an FD
corresponding to f � We de�ne F � � ff� j f 	 Fg� Then f� is derivable from F � using Armstrong�s
axiom if and only if F � f �

Proof� The �if part� can be readily proved by induction on the number of steps in the inference
of X �� Y from a set of POFDs and the similar technique can be applied to the �only if� part in
the inference of X � Y from a set of FDs� �

The above lemma is useful because it suggests that we can apply existing algorithms for FDs
to determine whether a POFD f can be inferred from a given set of POFDs using the inference
rules from POFD� to POFD�� For example	 Beeri and Bernstein�s algorithm ��
 can be used to
compute the closure of a set of attributes with respect to a set of POFDs� We need the following
rules derivable from De�nition �� to establish the soundness and completeness of the axiom system
for POFDs�
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Lemma � The following inference rules can be derived from the inference rules in De�nition ���


POFD�� Decomposition
 if F � X �� Y � then F � X �� Z� where Z � Y �


POFD�� Union
 if F � X �� Y and F � X �� Z� then F � X �� Y Z�

Proof� POFD� can be derived from POFD� and POFD�� POFD� can be derived from POFD�	
augmenting the necessary attributes on the antecedents� �

The closure of a set of attributesX� in the context of POFDs is given byX� � fA j F �X �� Ag�
We now show in the following theorem that the above axiom system is sound and complete for
POFDs	 holding in ordered databases� The underlying idea in this proof is standard ���
 and
similar to Theorem �� We also need to assume that each domain has at least two distinct elements�
We believe that this assumption is reasonable in practice�

Theorem � Let the common domain D contain at least two distinct elements� The axiom system
comprising from POFD� to POFD	 is sound and complete for POFDs�

Proof� It is easy to show that the inference rules from POFD� to POFD� are sound� We prove
completeness by showing that if F �� X �� Y 	 then F �j� X �� Y � Equivalently for the latter	 it
is su�cient to exhibit a relation	 say r	 such that r j� F but r �j� X �� Y � Let r be the relation
consisting of two tuples t
 and t� shown in Figure �	 where Z � R�X��

X� Z

t
 � � � � � � � � � �
t� � � � � � � � � � �

Fig� 
� A Relation r Showing that r �j� X �� Y

Assuming that � � �	 we have � �� � �i�e� t
�Z
 �� t��Z
�� We �rst show that r j� F� Suppose to
the contrary that r �j� F	 and thus there exists a POFD	 V �� W 	 F such that r �j� V �� W � It
follows by the construction of r and by POFD� that V � X� and that �A 	 Z such that A �	 X��
By POFD� and POFD�	 it follows that V �� A	 and by POFD�	 it follows that X �� A� This
leads to a contradiction	 since it follows that A 	 X�� We conclude the proof by showing that
r �j� X �� Y � Suppose to the contrary that r j� X �� Y � By the construction of r	 Y � X�� This
leads to a contradiction	 since by POFD� we have X �� Y �	 where Y � 
 Y � Then by POFD� we
could derive F � X �� Y � �

	��� OFDs Arising from Lexicographical Orderings

We give the de�nition of an LOFD as follows�

De�nition �	 An ordered functional dependency arising from lexicographical orderings �or simply
an LOFD� over a relation schema R	 is a statement of the form R � X � Y �or simply X � Y

whenever R is understood from the context�	 X�Y � R are sequences of attributes�

Similar to POFDs	 we assume that all LOFDs are standard� We now give the de�nition of the
semantics of an LOFD�

De�nition �
 An LOFD	 R � X � Y 	 is satis�ed in a relation r over R	 denoted by r j� X � Y 	
if	 for all t
� t� 	 r	 t
�X 
 �l

X t��X 
 implies that t
�Y 
 �l
Y t��Y 
�

We observe that the concept of POFDs and LOFDs are incomparable� A relation satisfying the
POFD X �� Y may not necessarily satisfy the LOFD X � Y and conversely	 a relation satis�es
the LOFD X � Y may not necessarily satisfy the POFD X �� Y � The following example helps
to illustrate this point�
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r
 �

A B C

� � �
� � �

r� �

A B C

� � �
� � �

�a� �b�

Fig� �� Relations r� and r� Showing that POFDs and LOFDs are Incomparable

Example � Consider the relations r
 and r� over R � fA�B�Cg shown in Figure 
� It is clear
that in �a� r
 j� A � BC but r
 �j� A �� BC� On the other hand	 in �b� r� j� AB �� C but
r� �j� AB � C� �

The chase is a fundamental theorem�proving tool in relational database theory� The main uses
of the chase have been to test the implications of data dependencies ��

 and to test the consistency
of a relational database	 with respect to a set of data dependencies ��
	 ��
� We now extend the
classical chase de�ned over conventional relations with respect to FDs ��
	 �
 to ordered relations
with respect to LOFDs� The extended chase will be used as a sound and complete inference tool for
LOFDs in Theorem �� We need two operations	 equate and swap	 to manipulate values in ordered
domains before presenting our chase rules�

De�nition �� Let min�a� b� and max�a� b� denote the minimum and maximum of the values a
and b	 respectively� For any two distinct tuples t
� t� 	 r over R and some A 	 R	 the equate of
t
 and t� on A	 denoted as equate�t
�A
	 t��A
�	 is de�ned by replacing both t
�A
 and t��A
 by
min�t
�A
� t��A
�� the swap of t
 and t� on A	 denoted as swap�t
�A
	 t��A
�	 is de�ned by replacing
t
�A
 by min�t
�A
� t��A
� and t��A
 by max�t
�A
� t��A
�	 respectively�

We demonstrate how to use the equate and swap operations with the following example�

Example � Consider a relation r over A shown in Figure � �a�	 which consists of two tuples
t
 � h�i and t� � h�i� We apply the equate operation of t
 and t� on A	 resulting in the relation
shown in Figure � �b�� We apply the swap operation of t
 and t� on A	 resulting in the relation
shown in Figure � �c��

A

t
 �
t� �

A

t
 �
t� �

A

t
 �
t� �

�a� r � ft
� t�g �b� equate�t
�A
� t��A
� �c� swap�t
�A
� t��A
�

Fig� �� An Example of Using the Equate and Swap Operations �

We now give the chase rules	 which are applied to two tuples in a relation with respect to a set
of LOFDs�

De�nition �� Let t
 and t� be two tuples in r such that t
�X 
 �l
X t��X 
 but t
�Y 
 ��l

Y t��Y 
	
A be the �rst attribute in X such that t
�A
 �� t��A
	 if such an attribute exists	 and B be the
�rst attribute in Y such that t
�B
 �� t��B
	 then the chase rules for the LOFD X � Y are the
following�

Equate rule� if t
�X 
 � t��X 
 but t
�B
 �� t��B
	 then equate�t
�B
� t��B
��

Swap rule� if t
�A
 � t��A
 but t��B
 � t
�B
	 then swap�t
�B
� t��B
�	 or if t��A
 � t
�A
 but
t
�B
 � t��B
	 then swap�t
�A
� t��A
��
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The said chase rules cater for all the possible cases when there are two tuples in a relation
violating X � Y � In applying the chase rules we need a �xed ordering on the tuples t
 and t��
If we choose di�erent orderings on t
 and t� in di�erent applications of the rules	 then the chase
procedure may result in a non�terminating process� We can clarify this point by the following
example�

Example � Let F � fA� B�C � Bg and the tuples tp � h�� �� �i and tq � h�� �� �i	 respectively	
as shown in Figure � �a�� First	 we let t
 � tp and t� � tq	 then apply the swap rule with respect
to A� B	 obtaining the result shown in Figure � �b�� Now we let t
 � tq and t� � tp �i�e�	 change
the ordering of tp and tq�	 then apply the swap rule with respect to C � B	 obtaining the result
as shown in Figure � �c�	 which is the beginning relation that we have shown in Figure � �a��

A B C

tp �as t
� � � �
tq �as t�� � � �

A B C

tp �as t�� � � �
tq �as t
� � 	 �

A B C

tp � 	 �
tq � � �

�a� before the chase �b� chase for A� B on �a� �c� chase for C � B on �b�

Fig� 
� An Example Showing that the Chase Procedure never Terminates �

Fortunately	 this undesirable property can be removed if we impose a �xed linear ordering on r
and assign t
 as the smaller tuple and t� as the larger tuple with respect to this ordering� We will
show in Lemma � that under such a condition the chase procedure always terminates� Therefore	
in Example � if we assume the ordering of tp and tq is �xed as given in Figure � �a� throughout
the chase procedure	 then the process terminates and it can be checked that the �nal relation is
obtained as shown in Figure ���

A B C

tp �as t
� � � 

tq �as t�� � 	 �

Fig� 	�� The Chase Procedure Terminates in Example � with a Fixed Ordering

Let r � ft
� � � � � tng be an ordered relation over R and F be a set of LOFDs with j R j� m�
We now give the pseudo�code of an algorithm designated CHASE�r	F�	 which applies the chase
rules given in De�nition �� to R as long as possible and returns the resulting relation r over R	
also denoted as CHASE�r	F��

Algorithm � 
CHASE�r�F��

�� begin
�� Result �� r � ht
� � � � � tni �

�� Tmp�� ��
�� while Tmp �� Result do
	� Tmp �� Result�


� if �X � Y 	 F� � tp� tq 	 Result such that

tp�X 
 �l
X tq�X 
 but tp�Y 
 ��l

Y tq�Y 

�� then Apply the appropriate chase rule to Result with

t
 � tmin�p�q� and t� � tmax�p�q��


� end while
�� return Result�

��� end�
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Lemma � CHASE�r�F� in Algorithm � terminates and satis�es F�

Proof� Let Pj with � � j � m be the sequence ha
j � � � � � anji	 where aij � ti�Aj 
 �i�e�	 Pj �
�Aj �Result��	 a

min
j be the minimum value in Pj 	 and Pmin

j be the sequence hamin
j � � � � � amin

j i
�a sequence of n identical values�� Suppose an application of a chase rule changes Pj to P �

j �

ha�
j � � � � � a
�

nji� Since the chase rules neither change the value amin
j nor introduce any new values

into the variable Result	 Pmin
j is unchanged throughout the process of the chase� In order to prove

that CHASE�r	F� terminates	 it su�ces to show that Pmin
j �l P �

j �
l Pj � There are two cases to

consider�

In the �rst case the change to Pj is due to an application of the equate rule� Then by Algorithm �
we have apj �� aqj � It follows that a

�

pj � a�qj � min�apj � aqj�	 and a�ij � aij for i �	 fp� qg� Thus	

P �

j �
l Pj �

In the second case the change to Pj is due to an application of the swap rule� Without loss of
generality we assume p � q� Then by Algorithm � aqj � apj � It follows that a

�

pj � min�apj � aqj�	

a�qj � max�apj � aqj� and a�ij � aij for i �	 fp� qg� Thus	 P �

j �
l Pj �

It is also trivial that in both cases Pmin
j �l P �

j 	 since the minimum of any two values in Pj is
greater than or equal to the minimum of all values in Pj �

Due to the above consideration	 it follows that CHASE�r	F� satis�es F	 otherwise we can
apply one of the chase rules in De�nition �� to CHASE�r	F�	 thus leading to a contradiction	
since CHASE�r	F� has not yet terminated� �

Lemma � CHASE�r�F� in Algorithm � can be computed in polynomial�time in the sizes of r
and F�

Proof� By De�nition ��	 we observe that lines � to 
 in Algorithm � can be executed at most
O�m� times for an LOFD in F	 where m is the number of distinct symbols in r� There is at most
O�m� application of chase rules to r� So each execution of the while loop beginning in line � and
ending at line � can be computed in polynomial�time in the sizes of r and F� �

Example � Let F � fA� B�B � Cg and r be a relation consisting of three tuples t
 � h�� �� �i	
t� � h�� �� �i and t� � h�� �� �i	 as shown in Figure �� �a�� First	 we carry out the chase rules to elimi�
nate the violation of A� B as follows	 apply the chase rule swap�t��B
� t��B
� since t��A
 � t��A

but t��B
 � t��B
	 and then apply the chase rule equate�t
�B
� t��B
� since t
�A
 � t��A
 but
t
�B
 �� t��B
� We therefore obtain the intermediate result as shown in Figure �� �b�	 which satis�
�es A � B� Second	 we carry out the chase rules to eliminate the violation of B � C as follows	
apply the chase rule equate�t
�C
� t��C
� since t
�B
 � t��B
 but t
�C
 �� t��C
� The chase procedure
now terminates and the �nal result	 CHASE�r	F� is given in Figure �� �c�	 which satis�es F�

A B C

t
 � � �
t� � � �
t� � � �

A B C

t
 � � �
t� � � �
t� � � �

A B C

t
 � � �
t� � � �
t� � � �

�a� r prior to the chase �b� chase for A� B on �a� �c� chase for B � C on �b�

Fig� 		� An Example of Obtaining CHASE�r�F� �

We note that the result of the chase is not necessarily unique� For instance	 in the above
example we can apply equate�t
�B
� t��B
� �rst to eliminate the violation of A� B	 then we have
at least two ���s under the column of the attribute B	 leading to a �nal result di�erent from that
given in Figure �� �c�� Although the �nal result of the chase may not be unique	 we still can apply
it in tackling the implication problem of LOFDs� This point is illustrated by the results shown in
next theorem and Theorem ��
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Theorem � Let r be a relation over R and F be a set of LOFDs over R� Then r j� F if and only
if r � CHASE�r�F��

Proof� �IF
� Assume to the contrary that r �j� F and thus there exists an LOFD	 X � Y 	 F such
that r �j� X � Y � It follows that there must be two rows	 t
� t� 	 r	 such that t
�X 
 �l

X t��X 
 but
t
�Y 
 ��l

Y t��Y 
� so the chase rule for X � Y can be applied to r resulting in a di�erent relation�
Hence r �� CHASE�r� F ��
�ONLY IF
� It follows from De�nition �� that a chase rule for F can be carried out only if r violates
some LOFDs in F� �

Lemma � and Theorem � are fundamental because they allow the chase procedure to be em�
ployed in order to test the satisfaction of r with respect to a set of F in a �nite number of steps�
many similar results for di�erent kinds of data dependencies such as FDs	 INclusion Dependencies
�INDs�	 and Join Dependencies �JDs� can be found in ��
	 ��	 ��
� These results provide us with
a theorem�proving tool to test the consistency of a database with respect to a set of LOFDs� The
chase can also be used for maintaining consistency by applying the rules in De�nition �� to �x the
violation of an LOFD in relations�

In order to provide a proof procedure for LOFDs	 we now de�ne the notion of ordered variables�
Such variables a�ord us the ability to infer orderings between attribute values and to set up a set of
templates for relations	 which are essentially the same concept as the tableaux used in ��
	 �	 ��
�

De�nition �� The variable domain of a relation schema R	 denoted by vdom�R�	 is the �nite set
fl
� � � � � lm� h
� � � � �hmg	 where m �j R j� The variables li and hi with i 	 f�� � � � �mg are called
low ordered variables and high ordered variables	 respectively� We call them collectively ordered
variables	 whose ordering is given by li � hi�

We now de�ne a set of relations de�ned over variable domains with respect to a given LOFD	
which basically enumerate all the possible cases for two tuples violating the LOFD�

De�nition �� Let f be the LOFD X � Y over R with j X j� n and j R j� m� We use two
short hand symbols ui and vi to represent one of the following three cases� ��� ui � li and vi � li	
��� ui � li and vi � hi or ��� ui � hi and vi � li� A template relation �or simply a template�
with respect to f 	 denoted as rf 	 is a relation consisting of two tuples	 t
 and t�	 whose underlying
domain is vdom�R�	 such that it is equal to either T� or Tk	 where Pre�X� � hx
� � � � � xki for
� � k � n�

T� �

X R�X

t
 l
 � � � ln un�
 � � �um
t� l
 � � � ln vn�
 � � � vm

Tk �

x
 � � �xk�
 xk R� Pre�X�

t
 l
 � � � lk�
 lk uk�
 � � �um
t� l
 � � � lk�
 hk vk�
 � � � vm

Fig� 	�� Template Relations for an LOFD

We remark that in De�nition �� the symbols ui and vi represent three possibilities of combi�
nations of li and hi� Therefore	 it is easy to verify that there are �m�n templates de�ned by T�
and �m�k templates de�ned by Tk for each k� Altogether there are �m�n � ��m�n � � � �� �m�
�

� �m�n� �m��m�n

� � �m��m�n

� templates� Note that there are some redundant templates in both
T� and Tk	 if we take into account the fact that there are two possible orderings for t
 and t�	 but
this does not a�ect the order of the upper bound of the number of templates	 which is shown to
be O��m��

We apply the chase rules to a template relation using the ordering de�ned on a variable domain
vdom�R�� The following proposition gives the result corresponding to Theorem ��

Proposition 	 Let rf be a template relation over R and F be a set of LOFDs over R� Then rf j� F
if and only if rf � CHASE�rf � F ��
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Proof� The result immediately follows from Theorem �	 where we substitute rf for r and apply
the chase rules on the ordered variables� �

A template relation can be viewed as a relation instance consisting of two tuples	 in the sense
that we could use an ordering isomorphism mapping values in D to low ordered variables and high
ordered variables	 respectively� We formalise this idea by the following de�nition�

De�nition �� Let R � fA
� � � � � Amg and vdom�R� � fl
� � � � � lm� h
� � � � � hmg� A valuation
mapping � is a mapping from vdom�R� to D such that ��li� � ��hi� for all � � i � m� We extend
� to a tuple t by ��t� � h��t�A

�� � � � � ��t�Am
�i� We also extend � to a template relation rf by
��rf � � f��t
�� ��t��g�

The next proposition states that if there is a valuation mapping relating a template relation to
a relation having two tuples	 then they satisfy the same set of LOFDs�

Proposition 
 Let ��rf � � r� where r is a relation over R having two tuples� Then rf j� X � Y

if and only if r j� X � Y �

Proof� The result immediately follows from De�nition ��	 since rf is isomorphic to r and the
ordering of data values in the ith column of r corresponds to the ordering of the ordered variables
li and hi� �

The following example shows how to apply a valuation mapping to a template relation�

Example 	 Consider the template relation rf over fA�B�Cg with respect to the LOFD f 	
A � BC	 which is shown in Figure �� �a�� We de�ne the valuation mapping � by ��l
� � �	
��l�� � �	 ��h�� � �	 ��l�� � � and ��h�� � �� Then we have ��rf �	 shown in Figure �� �b�� Note
that in this example rf is one of the templates de�ned by T� in De�nition ���

rf �

A B C

l
 l� h�
l
 h� l�

��rf � �

A B C

� � �
� � �

�a� �b�

Fig� 	�� An Example Showing the Application of a Valuation Mapping �

We now extend the notion of tableaux for an LOFD f to be a set of templates� The tableaux
in our case is di�erent from that for FDs	 which just requires a single template for FDs �see
Theorem ��� in ��
�� We de�ne tableaux	 denoted by Tf 	 to be the set of all template relations in
De�nition ���

De�nition �� The chase of Tf 	 denoted as CHASE�Tf � F �	 is de�ned by CHASE�Tf � F � �
fCHASE�rf � F � j rf 	 Tfg� CHASE�Tf � F � satis�es X � Y 	 denoted by CHASE�Tf � F � j� X

� Y 	 if	 for all rf 	 Tf 	 CHASE�rf � F � j� X � Y � Furthermore	 CHASE�Tf � F � satis�es F	
denoted by CHASE�Tf � F � j� F	 if	 for all X � Y 	 F	 CHASE�Tf � F � j� X � Y � A valuation
mapping of Tf is a valuation mapping of some rf in Tf �

The following theorem shows that the chase rules can be also viewed as a sound and complete
inference procedure for LOFDs�

Theorem � Let F be a set of LOFDs over R and f be an LOFD X � Y � Then CHASE�Tf � F � j� f

if and only if F j� f �

Proof� �IF
� Assume CHASE�Tf � F � �j� f � By De�nition ��	 there exists rf 	 Tf such that
CHASE�rf � F � �j� f but CHASE�rf � F � j� F� Note that CHASE�rf � F � is a template which
can be viewed as an instance� Therefore	 we have a valuation mapping � to generate a relation
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instance ��CHASE�rf � F �� and by Proposition �	 ��CHASE�rf � F �� j� F but ��CHASE�rf � F ��
�j� f � This leads to a contradiction�
�ONLY IF
� We let w
� w� be any two tuples in a relation r such that w
 �l

X w�� We claim w
 �l
Y

w�� Let sf 	 Tf be the template relation such that ��t
� � w
 and ��t�� � w�� We can always �nd
such an sf because Tf exhausts all possibilities of two tuples which satisfy the condition w
 �l

X w��
Thus we have ��sf � � fw
� w�g and ��sf � j� F� By Proposition �	 we have sf j� F� It follows by
Proposition 
 that sf � CHASE�sf � F �� Since we have assumed that CHASE�Tf � F � j� f 	 we
have CHASE�sf � F � j� f � Thus	 ��CHASE�Tf � F �� � ��sf � � fw
� w�g	 which implies that
w
 �l

Y w� as required� �

The following corollary is an immediate result of Theorem ��

Corollary �� Let F be a set of LOFDs over R� The chase procedure is a decidable� sound and
complete inference algorithm for LOFDs�

Proof� The result immediately follows from Theorem � and the notions of soundness and com�
pleteness� �

The above corollary shows that the chase rules together with tableaux can be used to provide
a systematic way to solve the implication problem for LOFDs� We summarise the relationships
between the satisfaction of POFDs	 LOFDs and FDs in a relation r by the following proposition�

Proposition �� Let r be a relation� The following statements are true�

�� If r j� X �� Y � then r j� X � Y �

�� If r j� X � Y � then r j� X � Y �

Proof� Let t
� t� 	 r such that t
�X 
 � t��X 
� Thus	 we have t
�X 
 �p
X t��X 
 and t��X 
 �p

X t
�X 
�
By the assumption in Part �	 it follows that t
�Y 
 �

p
Y t��Y 
 and t��Y 
 �

p
Y t
�Y 
� So t
�Y 
 � t��Y 
�

The proof is similar for Part � �replacing �p by �l�� �

From the above proposition	 we can deduce that the set of relations which satisfy a set of
POFDs �or LOFDs� is a subset of relations which satisfy the corresponding set of FDs F �	 where
F � is de�ned as fX � Y j X �� Y 	 F �or X � Y 	 F�g�

	��� Database Design Issues with Respect to OFDs

Relational database design plays an important role in relational database theory and thus it
is extensively covered in most database textbooks ���	 ��	 �
� Relational database design can be
viewed as the process of replacing a relation schema R	 together with a set of data dependencies
over R by a set of relational schemas R� We call R a decomposition of R if

Sn
i�
 Ri � R and

Ri � R for all Ri 	 R�
There are many criteria suggested in the literature to capture the notion of an appropriate

decomposition in conventional databases ���
� One desirable property is that a decomposition R
possesses the property of lossless join �or simply is lossless�	 meaning that 	
ni�
 �Ri�r� � r	 where
	
 is the natural join operator ���	 �
� This is because in practice a query usually involves the join of
many relations and this property guarantees that a relation can be recovered from its projections�
Another desirable property which leads to good database design is Boyce�Codd Normal Form
�BCNF� in conventional databases� BCNF requires that for every FD X � Y over Ri 	 R	 X is a
superkey� This property takes into consideration the importance of FDs in conventional databases	
since they generalise the important notions of entity integrity and keys ��
� The de�nitions of a
key	 a superkey and BCNF can be naturally extended into the context of ordered databases�

De�nition �� Let F be a set of POFDs �or LOFDs� over R and let R 	 R� A sequence of
attributes X � R is a superkey for R with respect to F if F j� R � X �� R �or F j� R � X � R�� A
sequence of attributes X 	 R is a key for R with respect to F if X is a superkey for R and there
does not exist a proper subset Y of X such that Y is a superkey for R� A database schema R is
in Boyce�Codd normal form �BCNF� with respect to a set of OFDs F over R if	 for every OFD	
X is a superkey for R�
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We now examine a basic result related to database design in ordered databases	 which states
that if an FD X � Y holds in a database over a schema R � XY Z	 then the decomposition
R � fXY�XZg of R is lossless	 meaning that r � �XY �r� 	
 �XZ�r� �c�f�	 Theorem 
�� in ���
��
This property of FDs forms the basis of an algorithm to obtain a BCNF database schema	 resulting
in the lossless join of a decomposition having two schema components� We present the similar result
of lossless decomposition for OFDs as follows�

Theorem �� Given a relation scheme R � XY Z with an OFD� either X �� Y or X � Y � then
the relation scheme R has a lossless decomposition into two schema components R
 � XY and
R� � XZ�

Proof� By Proposition ��	 it follows that X �� Y or X � Y implies X � Y � Thus	 it is a lossless
join� �

The converse of the above theorem holds ���
 in the context of conventional FDs� However	 we
observe that a similar result does not hold for OFDs	 even when we consider unary OFDs� Let us
consider the following counter�example�

Example 
 Consider a relation r over R � fA�B�Cg decomposed into r
 over R � fA�Bg and
r� over R� � fB�Cg	 all of which are given in Figure ��� It is clear that neither of the following
holds in r� B �� A	 B �� C	 B � A or B � C�

r �

A B C

� � �
� � �

r
 �

A B

� �
� �

r� �

B C

� �
� �

Fig� 	�� A Decomposition of r into r� and r� �

In order to investigate whether there is any necessary condition for having a lossless decompo�
sition in an ordered relation	 we are still working on characterisation of the set of OFDs such that
the converse of Theorem �� can hold�

�� CONCLUDING REMARKS

We have extended the relational data model to incorporate linearly ordered domains	 which are
essential to the existing primitive data types used in DBMSs as well as many advanced applications
such as temporal information� Within the extended model	 we de�ned ordered databases in which
we introduced OFDs� We used the notion of SOI to give a new view of conventional FDs in the
context of ordered relations as stated in Theorem �� Furthermore	 we extended Armstrong�s axiom
system for FDs to object relations in Theorem �� We have studied the implication problems of
OFDs	 which are classi�ed into two categories	 POFDs and LOFDs	 according to whether they
arise from pointwise�orderings or lexicographical orderings on the Cartesian products of underlying
domains� In the special case of unary OFDs	 these two categories are identical� We presented a
sound and complete axiom system for POFDs in Theorem �� We also presented a set of sound
and complete chase rules for LOFDs in De�nition ��	 which can be employed as a theorem�proving
tool for LOFDs	 as indicated in Theorem ��

We believe that the scope of the application of the chase rules for LOFDs has not been fully
developed and thus we are still investigating the further use of them� For example	 the chase may be
employed as a starting point to design new inference procedures for investigating the interactions
between LOFDs and other known data dependencies such as INDs and JDs� Besides	 it would
also be interesting to study the semantics of INDs in ordered databases	 since INDs generalise the
notions of referential integrity and foreign keys ��
� We are also currently generalising the linearly
ordered domain to partially ordered domains in order to capture richer semantics of ordered data�
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SAT(f  )2

SAT(f  )1
FD

POFD

SAT(f  )
LOFD

3

Fig� 	�� Satisfaction of Various OFDs in Databases

In this case the chase for LOFDs in De�nition �� should be extended	 since there may not be a
unique maximum �or minimum� element in a partially ordered set�

Finally	 we compare the satisfaction of an OFD in ordered databases introduced in this paper
as the diagram given in Figure �� �the scale here is irrelevant�� We let SAT �f� be a set of database
instances that satisfy a data dependency f 	 and f
 � X � Y 	 f� � X �� Y and f� � X � Y � We
remark that if X and Y are unary	 then in general we have SAT �f�� � SAT �f���
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