
27Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

The Development of Ordered SQL
Packages to Support Data Warehousing
WILFRED NG
Hong Kong University of Science and Technology, Hong Kong

MARK LEVENE
University of London, UK

Data warehousing is a corporate strategy that needs to integrate information from several sources of separately
developed Database Management Systems (DBMSs). A future DBMS of a data warehouse should provide adequate
facilities to manage a wide range of information arising from such integration. We propose that the capabilities of
database languages should be enhanced to manipulate user-defined data orderings, since business queries in an
enterprise usually involve order. We extend the relational model to incorporate partial orderings into data domains
and describe the ordered relational model. We have already defined and implemented a minimal extension of SQL,
called OSQL, which allows querying over ordered relational databases. One of the important facilities provided by
OSQL is that it allows users to capture the underlying semantics of the ordering of the data for a given application.
Herein we demonstrate that OSQL aided with a package discipline can be an effective means to manage the inter-
related operations and the underlying data domains of a wide range of advanced applications that are vital in data
warehousing, such as temporal, incomplete and fuzzy information. We present the details of the generic operations
arising from these applications in the form of three OSQL packages called: OSQL_TIME, OSQL_INCOMP and
OSQL_FUZZY.

Data warehousing is a corporate strategy that addresses
a broad range of decision support requirements such as
querying information over its underlying databases and man-
aging ordered data for the purpose of analysis. One of the main
characteristics of data warehousing is that in order to build its
foundation, it should consist of integrated data from several
sources of separately developed information systems. The
transmission of data relies on the network system which
connects all these information systems. As a result, the inte-
grated database has the following important features:

• It involves huge amounts of historical data.
Data warehouse is described as a “subject-oriented,

integrated, non-volatile, time variant” collection of data which
is intended to support management decisions (Inmon, 1996).
It is widely recognised that the underlying database in a data
warehouse should capture transactions and snapshots in time
in an efficient manner in order to carry out the activities of

market forecast and strategic planning (McCabe & Grossman,
1996).

• It is usually incomplete.
This is due to two main reasons. First, some sources of

the databases may be incomplete in order to protect sensitive
data or to improve the speed of the process of data download-
ing via a network. Second, it has been observed in Libkin
(1995) that even if each source of the database is complete, the
integrated database may still not be complete. Hence, incom-
pleteness may show up in the integrated database or in the
answer to users’ queries.

• It is mainly used for decision support in an enterprise.
However, many management professionals may not

necessarily have good knowledge about the technical aspects
of a data warehouse. As a result, their queries over the
database are sometimes fuzzy in nature due to the ambiguity

28 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

of natural languages. For example, they may ask to find the
“best performed” shares in the Hong Kong stock market this
month in order to carry out some share trading activities.

Many database researchers have recently recognised
that ordering is inherent to the underlying structure of data in
many database applications (Maier & Vance, 1993; Libkin,
1995; Buneman et al., 1997) including temporal information
(Tansel et al., 1993), incomplete information (Codd, 1986)
and fuzzy information (Buckles & Petry, 1982). However,
current relational Database Management Systems (DBMSs)
still confine the ordering of elements in data domains to only
a few kinds of built-in orderings. SQL2 (or simply SQL)
(Date, 1997), for instance, supports three kinds of orderings
considered to be essential in practical utilisation: the alpha-
betical ordering over the domain of strings, the numerical
ordering over the domain of numbers and the chronological
ordering over the domain of dates (Date, 1990). Let us call
these ordered domains system domains or alternatively, do-
mains with system ordering.

With the advent of the Internet technology, there is
strong evidence that the limited support for ordering provided
by current relational DBMSs is inadequate for future com-
mercial applications. For example, a large proportion of the
useful business information available in global Web sites is
available only in hypermedia format. Hypermedia informa-
tion normally consists of a very large amount of image data
and thus resolution is an effective means to manage the size of
data domain element. We illustrate this concept with the
following simplified multi-resolution domain: {‘Null’ < ‘Black
and white icon’ < ‘Black and white raster’ < ‘8-bit Colour
raster’ < ‘24-bit Colour raster’}. This domain consists of five
distinct levels of resolution and thus the users can select the
appropriate level to save the transmission time for download-
ing a hypermedia document. However, the semantics of
RESOLUTION_LEVEL cannot be captured by any one of the
system orderings.

In order to alleviate the above-mentioned problems, we
have extended SQL to Ordered SQL (OSQL) by providing the
facility of user-defined orderings over data domains (Ng &
Levene, 1997), which we refer to as semantic orderings.
Queries in OSQL are formulated in essentially the same way
as using standard SQL. We demonstrate this mode of querying
with the following example, which shows how OSQL simpli-
fies the specification of certain queries which might be useful
in business decisions. We note that the following queries are
not easy to formulate in SQL due to the fact that they must
involve non-trivial use of aggregate functions and nesting (see
Sections 25.1 and 26 in Celko (1995) and Section 9 in Pascal
(2000)).

Example 1 In this example we assume that the attributes
in their respective relation schemas are linearly ordered.
1. Get the third and sixth lowest share prices from a stock

market.

 (Q1) SELECT (SHARE_PRICE) (3,6) FROM
STOCK_MARKET.

2. Get the names of exactly five participating banks from a
syndicated loan record.

 (Q2) SELECT (BANK_NAME) (1..5) FROM
SYNDICATED_LOAN.

3. Get the names of all bosses of John.
 (Q3) SELECT (EMPLOYEE_NAME) (*) FROM

EMPLOYEE_TABLE
 WHERE EMPLOYEE_NAME > ’John’ WITHIN

EMP_RANK.

Although we have not yet formally introduced OSQL,
the meaning of the above statements is quite easy to under-
stand, assuming that the reader has some knowledge of stan-
dard SQL. For instance, the clause (3,6) in the query (Q1)
means that the third and sixth tuples, according to the order of
SHARE_PRICE, are output and the clause (1..5) in the query
(Q2) means that the first to fifth tuples, according to the order
of BANK_NAME, are output. The keyword WITHIN in the
query (Q3) specifies that the comparison EMPLOYEE_NAME
> ‘John’ is interpreted according to semantic ordering of the
domain EMP_RANK.

The usual way to tackle the above problems is to use a
programming approach such as embedded SQL. However, as
most data warehouses are built upon a client-server architec-
ture, the programming approach has to pay the performance
penalty in the data extraction process, if there are too many
calls from the programming level to the relational level. In this
respect, OSQL offers the advantage that it can help to relieve
the burden of the bandwidth of a network system and the loads
of client processes, if such kinds of queries can be performed
in the database server instead of the client platform.

Herein we investigate the introduction of a package
discipline into OSQL, which allows us to modularise a collec-
tion of generic operations on an ordered data domain. These
operations can then be called from within OSQL whenever the
package they belong to is loaded into the system. For example,
the OSQL statement (Q4) uses the function SNAPSHOT
provided by the OSQL package OSQL_TIME, which returns
the prices of shares of the temporal relation STOCK_MARKET
in 1990.

(Q4) SELECT (SHARE_PRICE) (*) FROM
SNAPSHOT(STOCK_MARKET, 1990).

The package discipline makes it easier to formulate
queries relating to the underlying ordered domains of the
package and allows us to extend OSQL with powerful opera-
tions, which enhance its applicability and expressiveness. We
demonstrate that OSQL aided with a package discipline is
extremely powerful and has a very wide range of applicability.
In particular, we demonstrate that OSQL is very useful in
managing the three advanced database applications described

29Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

in Table 1.
The use of packages is very popular and successful in

many existing software systems such as PL/SQL in Oracle and
most recently in Latex2e and Java. Similar to the usage of
packages in other systems, OSQL packages, supported by
OSQL language constructs, enjoy many of the benefits of
using modularisation techniques as a management tool. For
instance, a top-down design approach is adopted for the
grouping of related operations in an OSQL package, within
which constraints can be enforced and supported by a lan-
guage construct called enforcement. Thus, the operations in
an OSQL package can be controlled in a more coherent
manner. OSQL packages can also hide the implementation
details of the code of their operations. The database adminis-
trator has the flexibility to decide whether an operation should
be public or private.

Related Research
A related approach is to use abstract data types to define

domains and their associated operations, which can then be
treated as an integral part of the data type. This approach is
basically an object-oriented extension of the relational model,
resulting from the strong trend of object-oriented program-
ming in the 1980s. Examples of commercial products that
conform to this approach are Illustra’s DataBlades and IBM’s
Database Extenders. However, it is not clear that how the
optimisation of programs can be carried out when using these
systems if the code of the operations is introduced to the
execution engine at run time. If the optimisation can be carried
out at compile time, to our knowledge there has been very little
research done on how these systems provide syntactic and
semantic compatibilities with SQL.

The most recent version of SQL (SQL3 or SQL:1999)
has the provision for a procedural extension of SQL (Melton,
1996), which allow users to define functions in abstract data
types. However, the issue of ordering abstract data type
instances in SQL3 is still unclear (Melton, 1996). Our work

here can be employed as a useful reference point which
explores the issue of incorporating order into SQL. We
emphasise that our approach is novel. First, we regard partial
ordering as a fundamental property of data which is captured
explicitly in the ordered relational model. It results in more
efficient operations than those using the programming ap-
proach to embed this property into an application program.
Second, our approach adheres to the principle of upwards
compatibility, since OSQL packages are provided as addi-
tional utilities to be used rather than replacing any standard
features of a relational DBMS. Third, our approach provides
maximum flexibility for users and allows the design of
optimisation strategies for the execution engine of a relational
DBMS.

The remainder of the paper is organised as follows. In
the next section we briefly describe the ordered relational
model, the query language OSQL and its package discipline.
Then it follows the section which we describe in detail the
contents and the uses of three OSQL packages for temporal
(OSQL_TEMP), incomplete (OSQL_INCOMP) and fuzzy
(OSQL_FUZZY) information. In the last section we conclude
with discussion on the implementation issue of OSQL pack-
ages.

A PACKAGE DISCIPLINE FOR ORDERED
DATABASES

In this section we briefly describe the ordered relational
data model and its query language OSQL. Within this model,
we demonstrate how OSQL packages can be applied to solve
various problems that arise from many advanced applications.

The Ordered Relational Model
We assume the reader is familiar with the relational

model as presented in Ullman (1988) and Levene & Loizou
(1999). A basic assumption of this model is that elements in
a data domain have no explicit relations amongst them. In the
ordered relational model, however, partial orderings (or sim-
ply orderings when no ambiguity arises) are included as an
integral part of data domains. Without an explicit specifica-
tion by the user, we assume that the domains of databases have
the system ordering attached to them.

As an illustration we assume a domain consisting of
three employee names: Ethan and Nadav being the subordi-
nates of their boss Mark. Viewing this domain as a conceptual
domain, all three elements are indistinguishable with respect
to their ordering. On the other hand, viewing this domain as a
system domain, the alphabetical ordering is imposed onto the
conceptual domain resulting in a linear ordering of the three
names. Finally, viewing this domain as a semantic domain, the
boss-subordinate relationship can be explicitly captured. The
three different views of this domain are depicted in the
diagram shown in Figure 1.

An important notion in our model is that given a concep-

Package Name Brief Description

OSQL_TIME Provides support for temporal information
in ordered databases. For example, finding
the historical information pertaining to a
relation for a given year.

OSQL_INCOMP Provides support for incomplete informa-
tion in ordered databases. For example,
comparing two tuples in order to decide
which one contains more information than
another.

OSQL_FUZZY Provides support for fuzzy requirement in
ordered databases. For example, finding the
most suitable tuples in a relation according
to a given fuzzy requirement.

Table 1: The Brief Description of Three OSQL Packages

30 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

tual domain, apart from the system ordering assumption, we
can declare one or more semantic orderings which override
the default system ordering. Furthermore, the orderings of
domains can be extended to tuples so that tuples in an ordered
relation are ordered according to the lexicographical order-
ing of the domains associated with the attributes present in the
underlying relational schema. Therefore, any change in the
order of attributes in a relational schema may affect the order
of tuples in an ordered relation. For the formalism of this
model, readers may refer to the recent research presented in
Ng (1999) and Ng, Levene & Trevor (2000).

OSQL
Ordered SQL (OSQL) is an extension of the Data

Definition Language (DDL) and Data Manipulation Lan-
guage (DML) of SQL for the ordered relational model. In
addition to the extended DDL and DML, OSQL provides a
Package Definition Language (PDL), which will be detailed
later on. Herein we just describe the SELECT statement of the
DML and the CREATE DOMAIN statement of the DDL; the
sample of OSQL can be found in the Appendix and the
detailed BNF for OSQL can be found in Appendix B in Ng
(1998).

1. The DML of OSQL
SELECT < lists of attributes > [ANY | ALL] < levels of tuples

> [ASC | DESC]
FROM < lists of ordered relations >

WHERE < extended predicates >

An attribute list above is a list of attributes similar to the
usual one, except that it provides us with an option that an
attribute can be associated with a semantic domain by the
syntax attribute name WITHIN domain name. The purpose of
declaring a WITHIN clause is to override the system ordering
with semantic ordering specified by the domain name. When
the WITHIN clause is missing then the system ordering will be
assumed.

A tuple level, which is a set of positive numbers, with
the usual numerical ordering, can also be written in some short
forms (see Appendix B1 in Ng (1998)). As a set of tuples in
a linearly ordered relation r = {t1,¼,tn} is isomorphic to a set
of linearly ordered tuples, we interpret each number i in a tuple
level as an index to the position of the tuple ti , where i = 1,¼,n
and t1 <L< tn. In addition, a user can specify the retrieve of ALL
the tuples or ANY one of the tuples in a specified level lj when
the output of a relation is partially ordered as a tree, having
levels {l1,¼,lm}.

Following the FROM keyword is a comma separated
list of all relations used in a query. The meaning of the usual
comparators <, >, <=, >= is extended to include semantic
comparison as we have mentioned earlier. A typical form of
a semantic comparison is:

< attribute > < comparator >< attribute > WITHIN < semantic
domain >.

Without the optional WITHIN clause, the comparison is
just the conventional one and is based on the relevant system
ordering.

Example 2 Let us examine at the following OSQL statements:
(Q5) SELECT (NAME, SALARY) (*) FROM EMPLOYEE.
(Q6) SELECT (SALARY, NAME) (*) FROM EMPLOYEE.
(Q7) SELECT ((NAME WITHIN EMP_RANK), SALARY)

(*) FROM EMPLOYEE.

Note that the ordering of tuples in an output relation
depends on two factors: first on the ordering of domains of
individual attributes, and second on the order of the attributes
in an attribute list. The attribute list of the query (Q5) is

Mark

Ethan Nadav

Mark

Mark

Ethan

Ethan

Nadav

Nadav

Semantic Domain
(with partial ordering)

System Domain
(with system ordering)

Conceptual Domain (no ordering)

(a) (b)

(c)

Figure 1: Domains with Different Kinds of Ordering

NAME SALARY SALARY NAME NAME SALARY
Ethan 28K 27K Mark Ethan 28K
Mark 27K 28K Ethan Nadav 28K
Nadav 28K 28K Nadav Mark 27K

(a) (b) (c)

Figure 2: An Employee Relation EMPLOYEE with Different Ordering

31Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

(NAME, SALARY), and thus tuples in the output answer are
ordered by NAME first and only then by SALARY (see
Figure 2(a)). Therefore the ordering of tuples is, in general,
different to that of query (Q6), whose list is specified as
(SALARY, NAME), since the output of (Q6) is ordered by
SALARY first and then by NAME (see Figure 2(b)). It will
also be different from that of (Q7) whose list is ((NAME
WITHIN EMP_RANK), SALARY), where the ordering of
NAME is given by the semantic domain EMP_RANK shown
in Figure 1 (see Figure 2(c)).

2. The DDL of OSQL
The syntax of OSQL allows users to define semantic

domains using the CREATE DOMAIN command as follows:

CREATE DOMAIN < domain name > < data types > ORDER
AS < ordering specification >.

The first part of the statement is similar to the SQL
standard statement that declares a domain. Following the
ORDER AS keywords is a specification of the ordering of a
semantic domain. The basic syntax of the ordering-specifica-
tion is: (<data-pair>, <data-pair>,...) where data-pair is of the
form, data-item B < data-item A, if and only if data-item A is
greater than data-item B in the semantic domain.

Example 3 The definition of the semantic domain
shown in Figure 1(a) can be written as follows:
(Q8) CREATE DOMAIN EMP_RANK CHAR(5) ORDER AS
(‘Ethan’ < ‘Mark’, ‘Nadav’ < ‘Mark’).

For a large and complex domain, this syntax may be
tedious. Thus OSQL provides a useful short forms {} and the
keywords OTHER for those data items not mentioned explic-
itly to make the task of formulating queries easier (see Appen-
dix B in Ng (1998) for detail). For instance, (Q8) can be
rewritten as follows:
(Q9) CREATE DOMAIN EMP_RANK CHAR(5) ORDER AS

({‘Nadav’,‘Ethan’} < ‘Mark’).

Four major practical benefits of using OSQL in data-
base applications can be summarised as follows: First, with
few syntactical modifications to the basic form of standard
SQL, OSQL provides us with new facilities that can be
interfaced to existing relational DBMSs to compare attributes
according to semantic orderings, in addition to the usual
system orderings. Second, OSQL incorporates some of the
suggestions put forward by Date (1990) to improve SQL-type
query languages, mainly concerning the support of the wider
use of “<” operator. Third, OSQL provides an easy way to
control the number of output tuples without having to do low
level programming. This facility is both necessary and conve-
nient for database users, especially for those who are non-
programmers, when querying over a data warehouse. Fourth,

partial ordering is a formal concept which has a simple
interpretation in terms of real world entities. Due to this
simplicity, OSQL can easily gain acceptance from a broad
range of users.

Implementation of Ordered Domains
We now discuss two strategies in deploying an ordered

domain. First, an ordered domain is implemented by using a
conventional database system such as the Oracle DBMS. This
strategy is attractive due to the known robustness and wide
availability of conventional DBMSs. Another strategy is
based on an object-oriented system such as IBM Smalltalk
(Smith, 1994), which is an efficient programming language
offering an OrderedCollection class to manipulate ordered
data.

Using the first strategy the semantic domain
EMP_RANK described in Figure 1 can be easily maintained
by using a binary relation to represent the ordering. After
executing the CREATE DOMAIN statement written as (Q8),
the OSQL system generate an internal relation called
ORDERING_EMP_RANK with two attributes
ORDERING_SMALL and ORDERING_LARGE to repre-
sent the semantic domain EMP_RANK.

There are still two possibilities to represent
ORDERING_EMP_RANK. One possible way is to use tran-
sitive reduction as the representation of the semantic domain.
In this method, the binary relation ORDERING_EMP_RANK,
consisting of two attributes over ORDERING_SMALL and
ORDERING_LARGE, implements the orderings between
pairs of elements. This approach caters for space reduction,
i.e., we use the minimal numbers of tuples describing the
semantic ordering of a given domain. The transitive closure
can be easily obtained by the command CONNECT BY in
Oracle, which essentially performs a closure operation.

Another way is to use the transitive closure as the
representation of semantic ordering. This method has the
advantage of minimising the cost of query execution time.
Although these two approaches, the transitive reduction rep-
resentation and the transitive closure representation, are
equivalent in the sense that they represent the same partial
ordering of a semantic domain, they have different implica-
tions in updating semantic domains. If we delete a tuple in the
transitive reduction representation, then in the meantime it
implicitly removes the ordering relationship between the two
elements in the ordered pair. We also note that in this ap-
proach we have freedom to delete any tuple. In contrast, if we
delete the same tuple in the transitive closure representation,
it preserves the semantics of orderings of other elements in the
domain. However, it may not possible to delete a particular
tuple in such a method.

We remark that in most cases it is not necessary that all
the values in a semantic domain be explicitly stored in the
database because many of these values are unordered relative
to each other (recall the keyword OTHER to represent those

32 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

values which are not mentioned). We can also use the Oracle
SQL command CREATE VIEW to form the necessary inter-
mediate relations, and thus should not burden the system with
large space usage overheads. Moreover, the dynamic SQL
routine guarantees that the translated SQL program runs
efficiently.

We now briefly discuss the implementation of a seman-
tic domain based on an object-oriented (O-O) system; in this
approach we can represent a given partial ordered domain as
a set of linear extensions of the domain. Informally, the set of
linear extensions representing a given ordered domain satis-
fies the criterion that it can precisely generate all the ordered
pairs in the domain by imposing intersection on all linear
extensions. An O-O system usually supports a rich set of
linearly ordered types. For example, the programming lan-
guage Smalltalk (Smith, 1994) provides two ordered classes
called OrderedCollection and SortedCollection. When using
the OrderedCollection class the ordering is determined by a
sequence of the insertion and modification operations. When
using the SortedCollection class users can formally state the
sorting criterion by means of a sort block, which is a two-
parameter Boolean-returning block for comparing successive
ordered pair of data elements corresponding to a partially
ordered set. The sort block can be specified explicitly at
creation time, once the sort block is changed the entire
collection is re-sorted according to a new sorted block.

Using OSQL in Advanced Applications
We now show that how OSQL can be applied to solve

various problems that arise in relational DBMSs involving
applications of temporal information, incomplete informa-
tion and fuzzy information under the unifying framework of
the ordered relational model. Let us consider the following
relation EMP_DETAILS shown in Figure 3.

• Temporal Information:
We assume that SALARY_TIME is a time attribute

whose values are timestamps of the tuples in the relation
EMP_DETAILS (for simplicity in presentation, we also as-
sume that the time stamping denotes valid time (Tansel et al.,
1993)). For instance, we can see that Mark had salary 10K in
1990 and his salary increased in 1996. Note that we do not
record Mark’s salary if there had been no change since the
year it was last updated. We can use the keyword LAST to find
the last time the tuple was updated, since the domain of the

attribute SALARY_TIME is linearly ordered. With the fol-
lowing query, we show how to find the salary of Mark in 1993
as follows.
(Q10) SELECT (SALARY_TIME, SALARY) (LAST) FROM

EMP_DETAILS
 WHERE NAME = ‘Mark’ AND SALARY TIME <= 1993.

• Incomplete Information:
Suppose we have the domain

INCOMPLETE_DOMAIN as in Figure 5 to capture the
semantics of different null values; in this figure all known data
values are more informative than the null symbol UNK
(UNKnown), and UNK and DNE (Does Not Exist) are more
informative than another null symbol NI (No Information)
(we will address this point in detail in the next section). Let us
define a semantic domain called INCOMPLETE_DOMAIN
for the attribute PREVIOUS_WORK as follows:
(Q11) CREATE DOMAIN INCOMPLETE_DOMAIN

CHAR(10) ORDER AS
 (‘NI’ < ‘DNE’,‘NI’ < ‘UNK’ < OTHER).

We emphasise that users have the freedom to use a
semantic domain or not for comparison in an extended predi-
cate. So it needs to specify the target semantic domain in the
DML, in addition to declaring the existence of a semantic
domain in the DDL. Now, we illustrate this idea by the
following query, which finds the name and previous work of
those employees whose previous work is more informative
than NI:

(Q12) SELECT (NAME, PREVIOUS_WORK) (*) FROM
EMP_DETAILS

 WHERE (PREVIOUS_WORK > ‘NI’ WITHIN
INCOMPLETE_DOMAIN).

• Fuzzy Information:
Suppose we have a semantic domain called QUALIFY

to capture the semantic of the requirement “good science
background in academic qualification” which is formulated as
follows:

(Q13) CREATE DOMAIN QUALIFY CHAR(10) ORDER AS
 ({‘BA’,‘MBA’}< ‘MSc’).

We can formulate the query of finding the names of
employees with good science background in academic quali-

NAME SALARY PREVIOUS_WORK EDUCATION SALARY_TIME
Ethan 12K UNK MSc 1994
Mark 10K NI MBA 1990
Mark 18K NI MBA 1996
Nadav 15K Programmer BA 1995

Figure 3: An Employee Relation EMP_DETAILS

33Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

fication as follows:

(Q14) SELECT ((EDUCATION WITHIN QUALIFY), NAME)
(*) DESC

 FROM EMP_DETAILS.

The OSQL statements in (Q10) to (Q14) reveal the poten-
tial of using OSQL to support the above-mentioned three
advanced applications. In order to make use the capabilities of
OSQL in a more systematic manner, we define a variety of
generic operations with respect to these advanced applica-
tions and classify them into three OSQL packages:
OSQL_TIME, OSQL_INCOMP and OSQL_FUZZY. Using
these packages, we now show how the mentioned queries can
be formulated in a simpler manner by embedding the opera-
tions of the OSQL packages into OSQL.

Using the package OSQL_TIME, the query (Q10) can be
simplified as follows:

(Q15) SELECT (SALARY) (*) FROM
SNAPSHOT(EMP_DETAILS, 1993)

 WHERE NAME = ‘Mark’.

Using the package OSQL_INCOMP, the query (Q12)
can be simplified as follows:
(Q16) SELECT (NAME, PREVIOUS_WORK) FROM

EMP_DETAILS
 WHERE MORE INFO(PREVIOUS_WORK, ‘NI’).

Using the package OSQL_FUZZY, the query (Q14) can
be simplified as follows:
(Q17) SELECT (IMPOSE_FUZZY(EDUCATION,

QUALIFY), NAME) (1)
 FROM EMP_DETAILS.

Although we have not yet introduced the details of
OSQL packages, the meaning of the operations are quite easy
to understand. For instance, the operation IMPOSE_FUZZY
in (Q17) returns the appropriate tuples arranged in a list such
that it satisfies the imposed fuzzy requirement “good science
background in academic qualification”.

The Structure of OSQL Packages
We now introduce the building blocks of an OSQL

package; the full syntax of the PDL is given in Appendix B3
in Ng (1998). An OSQL package is defined by the following
statement:

PACKAGE < package name >
< package body >
END PACKAGE.

The package body consists of the following five basic
PDL language constructs:

1. Parameter constructs.
2. Function constructs.
3. OSQL constructs.
4. Program constructs.
5. Enforcement constructs.

The parameter component in an OSQL package is
organized as a sequence of parameter constructs followed by
the keyword PARAMETER as follows:

PARAMETER: parameter construct [parameter construct]…

where a parameter construct is of the form package data type:
variable names, declaring the global variables used in the
function and enforcement components. For example,
VARCHAR, INT and BOOL are package data types repre-
senting characters, integers and boolean values, respectively.

The function component in a package is organized as a
sequence of function constructs followed by the keyword
FUNCTION. A function construct is a block structure which
is defined as follows:

< function name >< input variables >
< parameter list >
DEFINE
< function body >
RETURN [á output variables ñ]

where parameter list is a sequence of parameter constructs
and where the variables are local to the function. The function
body describes the operation of the function consisting of an
OSQL construct or a program construct. An OSQL construct
is simply an OSQL statement such that its variables have been
declared either within a function (i.e. local variables) or in the
parameter component at the beginning of the package (i.e.
global variables). A function in a package returns a list of zero
or more values.

As the expressive power of OSQL is limited (Ng,
Levene & Trevor, 2000), we enhance OSQL with a program
construct in OSQL, which is of the form AS PROG program
name. The program name is the path location and the name of
a program, which is written in C programming language,
which allows SQL statements to be embedded in it. This
program performs the operation of the function. For example,
the program construct “AS PROG \usr\Prog\time.strip” in a
function body specifies that the C program time.strip found in
the directory \usr\Prog\ implements the function.

The enforcement component in a package is organized
as a sequence of enforcement constructs followed by the
keyword ENFORCEMENT. An enforcement construct, which
is similar to a function construct, is also a block structure as
follows:

34 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

< enforcement name >
DEFINE
< enforcement body >
END

where the body of an enforcement construct is formulated by
a program construct which implements some constraints over
the functions of an OSQL package. For example an enforce-
ment construct can be implemented to ensure that the identi-
fied domain is indeed linearly ordered. We reserve the en-
forcement, ENFORCE_INIT, to be used by the system for the
initialization of an OSQL package.

Note that there is an important difference between using
an OSQL construct and a program construct in a function. The
OSQL statement in an OSQL construct can be decomposed
and restructured by the query execution engine of a relational
DBMS for optimisation purposes. For instance, the query
(Q15), which uses the package function SNAPSHOT, is equiva-
lent to the query (Q10), which is an ordinary OSQL statement
not using any functions. On the other hand, an external
program specified in a program construct is “opaque” with
respect to a relational DBMS, in the sense that its code can
only be integrated into its associated OSQL statement at run
time and thus allows no possibility of optimisation at compile
time. As a result, operations defined by OSQL constructs are,
in general, more efficient to implement than those defined by
program constructs.

OSQL PACKAGES FOR ADVANCED
APPLICATIONS

In this section we present in detail of the three OSQL
packages for temporal information, incomplete information
and fuzzy information, respectively. The OSQL packages can
be predefined and thus made available for the database users
as built-in facilities. The functions in an OSQL package can
be embedded in an OSQL statement, provided that the data
types of the input and output variables of a function comply
with the syntax of OSQL.

OSQL_TIME: A Package for Temporal Information
The underlying semantics of time used in this OSQL

package is that time is considered to be linearly ordered. In our
implementation an ordered relation is employed to maintain
the data elements of a time domain, which are non-empty,
finite, linearly ordered, and of the same data type. This
relation can only be accessed by the operations of the package
and the comparison of time data can be applied only over the
time domain.

One of the many approaches (Tansel et al., 1993) in the
literature to manipulating temporal data is to use an attribute,
which we call a time attribute, and to timestamp the attribute
values of this attribute with either time instants or time
intervals (Tansel et al., 1993). We assume temporal data is

timestamped with the time interval during which it is valid.
For example, the relation EMP_TIME in Figure 4 uses the
attributes FROM_TIME and TO_TIME to denote time inter-
vals. We can see that, for instance, Mark had salary 20K in the
time interval 1992 £ YEAR < 1995 (note that in our formalism
the year 1995 is not included in the time interval).

The advantage of using time intervals in modelling time
data is that it can save storage space. However, there are some
complications arising from using time intervals in modelling
time data. For example, they cannot directly support the
update or retrieval of tuples at a particular time instant and
some useful operations such as the snapshot operation obtain-
ing the temporal relation in a particular year, cannot be carried
out in a direct manner. To solve this problem, two operations
EXTEND and COALESCE have been suggested in the litera-
ture (Tansel et al., 1993). It can be shown that these two
operations can be formulated in OSQL, with the assumption
that an ordered relation is maintained for the time domain used
in OSQL_TIME. Therefore, in this sense, we can claim that
the expressive power of OSQL_TIME is temporally complete
(see Chapter 5 in Tansel et al. (1993)).

 We assume that DATE (i.e. DAY-MONTH-YEAR) is
the default domain to be used in the package unless the
function IDENTIFY is used to specify another time domain.
Other standard domains available in OSQL_TIME include
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND. Note
that these time domains support the need of using multidimen-
sional databases in data warehousing (Inmon, 1996).

Note that we have not required that in OSQL_TIME
contain some of the common temporal operators, such as
overlaps and contains (see Chapters 4, 5 and 6 in Tansel et al.
(1993)), which can be explicitly defined in order to compare
time intervals, since they can be quite easily formulated in an
OSQL comparison predicates. We now present the following
description of the operations in OSQL_TIME in Table 2. The
reader can consult Appendix for the declarations of the
operations Appendix A in Ng (1998) for the full reference of
the declarations pertaining to all OSQL packages.

Example 4 We use the relation EMP_TIME shown in
Figure 4 whenever it is necessary.

1. IDENTIFY(YEAR) identifies the standard domain YEAR,
which specifies the ordered set {1900 <L< 2000} and

NAME SALARY FROM_TIME TO_TIME
Bill 15K 1991 1995
Bill 18K 1995 1996
Bill 20K 1996 1997
Mark 25K 1992 1995
Mark 30K 1995 1997

Figure 4: An Employee Relation EMP_TIME Stamping
with Time Intervals

35Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

 WHERE NAME = ‘Bill’.
5. Find the names of those employees who have worked for

more than two years.
 (Q21) SELECT (NAME) (*) FROM EMP_TIME
 WHERE DURA(FROM_TIME, TO_TIME) > 2.

OSQL INCOMP: A Package for Incomplete
Information

In this OSQL package, we classify the incompleteness
into three unmarked null symbols whose semantics is given in
(Codd, 1986).
1. UNK: Value exists but is UNKnown at the present time, for

example some employees do not want to disclose their
ages.

2. DNE: Value Does Not Exist, for example a fresh graduate
does not have any previous work experience.

3. NI: No Information is available for the value, for example
we may not have any information available as to whether
an employee has previous working experience. The em-
ployee either has no previous working experience or it is
unknown at the present time.

We use the notion of more informative values, which
allows us to deduce useful information available from a
relation having incomplete data (Libkin, 1995). The diagram
in Figure 5 shows a partial ordering, say £, based upon the
relative information content in a domain augmented with the
three null values we have introduced. We can extend this
partial ordering to tuples by defining a tuple t1 to be less
informative than another tuple t2 , if for all attributes A in the
relational schema, t1[A] £ t2[A].

The ordering of null values is captured by the standard
incomplete domain called INCOMP provided by
OSQL_INCOMP. Recall that the domain can be formulated
by the OSQL statement in (Q11). As we would like to make the
domain INCOMP standard, we do not allow any user-defined
incomplete domains in OSQL_INCOMP.

Note that the function IDENTIFY in this OSQL pack-
age is declared to be private, since the users are not allowed
to change the meaning of various null symbols. This is to
prevent the users from defining a casual notion of incomplete-
ness, since the issue of missing information is much more

Operations Brief Description
IDENTIFY function To IDENTIFY a given domain as the

time domain used in OSQL_TIME.
CURRENT function To return all the CURRENT tuples in a

temporal relation.
HISTORY function To return all tuples which are not valid

at present.
SNAPSHOT function To return all tuples which were valid at

a given time instant.
SUCC function To return the SUCCessor of a given

time instant in the time domain used in
OSQL_TIME.

PRED function To return the PREDecessor of a given
time instant in the time domain used in
OSQL_TIME.

DURA function To calculate the DURAtion between
two time instants in the time domain
used in OSQL_TIME.

EXPAND function To convert interval-stamped tuples in a
given relation into instant-stamped
tuples.

COALESCE function To convert instant-stamped tuples in a
given relation into interval-stamped
tuples, i.e. the reverse of the EXPAND
function.

TIME_RES function To create a time domain whose time
scale is defined by the users.

VERIFY function To VERIFY that the identified time
domain satisfies the requirements for a
time domain.

STRIP_TIME function To project out the time attributes
FROM_TIME and TO_TIME from the
relational schema for a given relation
and return the remaining attributes.

ENFORCE_ INIT
enforcement To enforce the initialization which

identifies the domain DATE to be used
as the time domain of OSQL_TIME.

ENFORCE_IDENTIFY
 enforcement To enforce the verification over the

identified domain given by the function
IDENTIFY.

Table 2: The Description of the Operations in
OSQL_TIME

IDENTIFY(MONTH) identifies another standard domain
{JAN <L< DEC}. If the user has used the function
TIME_RES(100, HUNDRED) to create a domain HUN-
DRED, then IDENTIFY(HUNDRED) identifies this user-
defined domain, which specifies the ordered set {0 <L<
99}.

2. Find the current salaries of all employees.
 (Q18) SELECT (NAME, SALARY) (*) FROM

CURRENT(EMP_TIME).
3. Find the salary history of Mark.
 (Q19) SELECT (*) (*) FROM HISTORY(EMP_TIME)

WHERE NAME = ‘Mark’.
4. Find the salary of Bill in 1994.
 (Q20) SELECT (SALARY) (*) FROM

SNAPSHOT(EMP_TIME, 1994)

OTHER

DNE

NI

UNK

Figure 5: A Partial Ordering on a Data Domain

36 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

difficult to handle than it appears (c.f. see Chapter 10 in Pascal
(2000) for the problems of using SQL2 to handle null values).
The functions COMPLETE_VAL, PARTIAL_VAL,
DNE_VAL, NI_VAL and UNK_VAL provide users with the
ability to manipulate various types of incomplete information
based on the notion of being “more informative”. The func-
tions MORE_INFO and LESS_INFO provide users with the
ability to semantically compare tuples in incomplete data-
bases. We now present the following description of the
operations in OSQL_TIME in Table 3.

Example 5 We use the relation EMP_INCOMP in
Figure 6 whenever it is necessary.

1. Find the name and previous work of those employees
whose previous work is less informative than unknown
(i.e. UNK).

 (Q22) SELECT (NAME, PREVIOUS_WORK) (*) FROM
EMP_INCOMP

 WHERE LESS_INFO(PREVIOUS_WORK, ‘UNK’).

2. Find the name and previous work of those employees
whose information of previous work is not complete.

 (Q23) SELECT (NAME, PREVIOUS_WORK) (*) FROM
 PARTIAL_VAL(EMP_INCOMP, PREVIOUS_WORK).

3. Find the name and previous work of those employees
whose previous work does not exist (i.e. DNE).

(Q24) SELECT (NAME, PREVIOUS_WORK) (*) FROM
 DNE_VAL(EMP_INCOMP, PREVIOUS_WORK).

OSQL FUZZY: A Package for Fuzzy Information
There is a strong correspondence between ordering and

fuzziness. Assuming that the comparison, <, indicates linear
ordering, the semantic comparison x1 < x2 can be used to
represent the fact that the data value x1 is fuzzier than the data
value x2. The smaller the value is with respect to an ordered
domain, the fuzzier the value is relative to a given fuzzy
requirement. For example, the more junior an employee is
with respect to the ordered domain EMP_RANK, the “better
chance” this employee has to be promoted.

The advantage of using such an association is that it is
not necessary to define a membership function for a fuzzy set
of data values as adopted by the traditional approach in fuzzy
set theory. Therefore, we can avoid measuring the fuzziness of
data in terms of an exact number, which is in practice difficult
and sometimes unnatural.

In OSQL_FUZZY we provide functions for users to
impose fuzzy requirements on a relation. Users can obtain the
most suitable information based on the defined requirements
in the OSQL package. We assume that for each fuzzy require-
ment, there is a domain called fuzzy domain, which captures
the semantics of the requirement. For example, we have
shown in (Q14) the fuzzy requirement “good science back-
ground in academic qualification” can be captured by the
fuzzy domain QUALIFY. Therefore, the requirement can be
referred to by the name of its corresponding fuzzy domain. If
there are several fuzzy requirements to be imposed on a
relation, then their priorities can be defined by the function
ORDER_FUZZY and tuples can be ordered and then re-
trieved according to the priorities of fuzzy requirements. This
strategy can be employed by an expert system to support
users’ decision based on fuzzy information.

We now present the description of the operations in
Table 4. The priorities of a set of fuzzy requirements are
system defined (system ordered) if they are not specified. The
function ORDER_FUZZY can be used to arrange the priori-
ties of requirements. There is a parameter called order, which

Table 3: The Description of the Operations in
OSQL_INCOMP

Operations Brief Description
COMPLETE_VAL function To return all tuples which contain only

known values of an attribute in an in-
complete relation.

PARTIAL_VAL function To return all tuples which contain a null
value of an attribute in an incomplete
relation.

DNE_VAL function To return all tuples which contain the
DNE value of an attribute in an incom-
plete relation.

NI_VAL function To return all tuples which contain the
NI value of an attribute in an incomplete
relation.

UNK_VAL function To return all tuples which contain the
UNK value of an attribute in an incom-
plete relation.

MORE_INFO function To check whether tuples are more infor-
mative than a given attribute value.

LESS_INFO function To check whether tuples are less infor-
mative than a given attribute value.

IDENTIFY function To IDENTIFY the domain INCOMP as
the incomplete domain used in
OSQL_INCOMP.

VERIFY function To VERIFY that the domain INCOMP
satisfies the requirements for an incom-
plete domain.

ENFORCE_INIT enforcement To enforce the initialization which iden-
tifies the domain INCOMP as the in-
complete domain used in the package.

Figure 6: An employee relation EMP_INCOMP

NAME PREVIOUS_WORK
Mark UNK
Ethan DNE
Nadav Administrator
Bill Programmer
John NI
Simon NI

37Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

is a natural number describing the relative priority of the
requirement defined in the second parameter fuzzy domain.
The information about the priorities is maintained by the
relation called FUZZY_DICT, whose relational schema con-
sists of the attributes FUZZY_REQ and PRIORITY, contain-
ing all the name information of the fuzzy requirements and
their priorities. The users can use the function LIST_REQ,
which returns the relation FUZZY_DICT, to check for the
priorities of all fuzzy requirements.

Example 6 Let us consider the relation EMP_FUZZY
in Figure 7 whenever it is necessary, and suppose that there is
a project which requires an employee with a good science
background in his/her academic qualification and strong
connections in the research community. We use two fuzzy
domains called QUALIFY and CONNECT to capture these
semantics of the requirements.

1. The fuzzy domain QUALIFY has been formulated in (Q13)
and the fuzzy domain CONNECT is given as the statement
(Q25) below.

 (Q25) CREATE DOMAIN CONNECT CHAR(10)
 ORDER AS (OTHER < ‘Mark’ < ‘Ethan’).
2. Find the names of those employees with good science

background in academic qualification and strong connec-
tion in the research community.

 (Q26) SELECT (IMPOSE_FUZZY(NAME, CONNECT),
IMPOSE_FUZZY (EDUCATION, QUALIFY) (*) FROM
EMP_FUZZY.

A list of employees in which Mark appears to be the top
one (the most preferred candidate) will be returned as the
answer for this query.
3. We now use the functions ORDER_FUZZY(CONNECT,

1) and ORDER_FUZZY(QUALIFY, 2) to change the
priorities of the requirements, i.e. the requirement CON-
NECT should be considered first and then QUALIFY the
second. The employee Ethan appears on the top of the
returned list as the answer for the query (Q26) on this
occasion.

4. Finally the fuzzy requirements can be listed as below by the
function LIST_REQ().

FUZZY_REQ PRIORITY
CONNECT 1
QUALIFY 2

CONCLUSIONS
We have presented a new query language, namely

OSQL, for querying ordered relational databases and a
modularisation package discipline, which supports three ap-
plications of: (1) temporal information, (2) incomplete infor-
mation and (3) fuzzy information. These applications are
fundamental to develop data warehousing, since we have to
integrate data from dynamic information sources. An OSQL
package has the advantage that it integrates all of the useful
operations with respect to a particular application in a more
coherent and systematic way. Thus we could better adapt the
data content in the data warehouse.

In Figure 8, we show our design of the system architec-
ture, which allows OSQL statements to be entered via the
front-end interface with a Decision Support System (DSS).
The OSQL system can easily fit into a data warehousing
strategy by offering various useful packages for deriving data
required in DSS analysis. Moreover, users have the flexibility
to define other customised OSQL packages tailored to the
needs of an enterprise, in addition to those already mentioned,
which represents as package slots and domain slots as shown
in the figure. The DDL, DML and PDL of OSQL which
operate over ordered relational databases have been imple-
mented using an Oracle8i server for low level data manage-
ment.

Operations Brief Description
IDENTIFY function To IDENTIFY a fuzzy domain

to be used to capture the seman-
tic of a fuzzy requirement.

IMPOSE_FUZZY function To IMPOSE a FUZZY require-
ment on an attribute.

ORDER_FUZZY function To order the relative priorities
of a set of fuzzy requirements
which are currently used in
OSQL_FUZZY.

LIST_REQ function To list all the fuzzy requirements
used in OSQL_FUZZY.

VERIFY function To verify that the given domain
satisfies the requirements for a
fuzzy domain.

ENFORCE_INIT
enforcement To enforce the initialization

which prepares an empty rela-
tion called FUZZY_DICT to
maintain the fuzzy requirements.

ENFORCE_IDENTIFY
enforcement To enforce the verification over

the identified fuzzy domain
given by the function IDEN-
TIFY.

ENFORCE_IMPOSE
enforcement To enforce the priorities of the

identified fuzzy requirements.

Table 4: The Description of the Operations in
OSQL_FUZZY

NAME EDUCATION
Bill MSc
Ethan MSc
John BSc
Mark PhD
Nadav MBA
Simon A-Level

Figure 7: An Employee Relation EMP_FUZZY

38 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

We are in the process of improving the system in order
to make it possible to load more than one package into the
system at the same time to support data warehousing strategy;
in this case the parser is much more complex than the one that
caters for a single package. All the functions of the loaded
packages, which are qualified by their corresponding package
names, can be applied directly in formulating a query. For
example, the query “find the name and salary of the employees
in 1996, the information about whose work is less informative
than ‘UNK’”, which involves the application having temporal
and incomplete information can be formulated in a unified
manner by using two OSQL packages. (The relation
EMP_DETAIL has been shown in Figure 3.)
(Q27) SELECT (NAME, SALARY) (*)
 FROM OSQL_TIME.SNAPSHOT(EMP_DETAIL,

1996)
 WHERE OSQL_INCOMP.LESS_

INFO(PREV_WORK, ‘UNK’).

Admittedly, the current version of OSQL is not without
its weaknesses when compared to those database languages
which are specialised to only one particular application. In
comparing to most proposed temporal extensions to define a
richer set of specialised operators in handling temporal infor-
mation; for instance, the six Allen’s operators such as over-
laps, contains and meets are defined in HSQL (c.f. Chapter 5
in Tansel et al. (1993)) as the primitive operations in order to
compare time intervals. Such a specialised approach facili-
tates better understanding of the needed operations tailored to
the specialised databases. In comparing to general fuzzy SQL
extensions, we can see that, apart from those ordering infor-
mation embedded in fuzzy domains, OSQL does not support
users to define an algebraic function of membership (Buckles

& Petry, (1982)). So the information about the numerical
degree values of fuzzy quantities such as TALL, OLD and
MANY cannot be directly formulated by using the basic
OSQL constructs.

We emphasise that our extension to SQL is a uniform
approach, since we provide a unified model as a basis for
investigating robustness and efficiency of a set of generic
operations and their new possible applications. Thus, an
important on-going research issue is, in a formal manner, to
compare OSQL with those extended SQLs specialised to
handle temporal, incomplete and fuzzy information. Another
limitation of using OSQL is that as a research prototype our
system has not yet been developed to the standard of a fully-
fledged version. In particular, we still need to study the
implementational issues of how to integrate the facilities of
user-defined orderings into the kernel of DBMSs at the
physical level. We also need to further study those applica-
tions involving more complex types involving ordering, in
such cases we have the problem of defining a large but elegant
class of complex ordered types in the system. Finally, the
problem of updating ordered databases has not been dis-
cussed in this paper. It can be further investigated in terms of
the algorithms and formal semantics of updating ordered
domains.

ACKNOWLEDGMENTS
I sincerely thank the editor and anonymous referees for their
important comments and suggestions, through which this paper can
be greatly improved.

REFERENCES
Buckles, B. P., & Petry, F. E. (1982). A Fuzzy Representation

of Data for Relational Databases. Fuzzy Sets and Systems 7, 213-
226.

Buneman, P., Davidson, S., Fernandez, M., & Suciu, D.

OSQL
System

Time Domain

Incomp Domain

Fuzzy Domain

Domain SlotsPackage Slots

OSQL_TIME

OSQL_INCOMP

OSQL_FUZZY

Oracle
System

Front-End DSS
Interfaces

Packages
Interface

C Precompiler
Interface

Relational DBMS
Back-End

Other Networked
DBMSs

Queries
arising
from

business
decisions

Returned
query
result

Applications
to support

DSS analysis

Figure 8: Architecture of the OSQL System in Data Warehousing

39Journal of Database Management Oct-Dec 2001

Vol. 12, No. 4

Copyright ©2001, Idea Group Publishing.

APPENDIX SAMPLE OF OSQL GRAMMAR AND THE OSQL_TIME PACKAGE

Data Definition Language (DDL)
1. CREATE DOMAIN < domain-name >< data-type > [ORDER AS < ordering-specification >]
< ordering-specification > ::= (< data-pair >[, < data-pair >]…)
<data-pair > ::= [data-item | {{data-item,…}}] < [data-item | {{data-item,…}}]
2. CREATE DOMAIN < domain-name > AS < domain-name >

Data Manipulation Language (DML) 1. SELECT < attribute-list > [{ANY | ALL}]< tuple-list > [{ASC | DESC}] FROM <
relation-list > [WHERE <condition >]
< attribute-list > ::= (< extended-attribute > [,< extended-attribute >]...)
<extended-attribute > ::= {attribute-name | (attribute-name WITHIN < domain-name > | *)}
< tuple-list > ::= ({#n [, #n]) | LAST | #n1. . . #n2 | *})
< condition > ::= < attribute-name | value> < comparator > <{attribute-name | value}> [WITHIN < domain-name >] <
comparator > ::= {<|>|>=|<=|<>}

Package Definition Language (PDL)
1. PACKAGE <package-name > < package-body > END PACKAGE
< package-body > :: = { PARAMETER: < parameter-list >
FUNCTION: < function-list > ENFORCEMENT: < enforcement-list > }
2. < parameter-list > :: = { < parameter-construct > [< parameter-construct >]...}
< parameter-construct > :: = < package-data-type >: variable-name [,variable-name]...
< package-data-type >:: = { VARCHAR | INT | BOOL | REL }
 3. < function-list > :: = { < function-construct > [< function-construct >]...}
< function-construct > :: = [{PRI | PUB}] < function-name > variable-names < parameter-list > DEFINE < function-body >
RETURN variable-names
< function-body > :: = [< program-construct > | < OSQL-construct >]
 < program-construct > :: = AS PROG program-name pseudocode
< OSQL-construct > :: = [DDL statements | DML statements]
 4. < enforcement-list > :: = { < enforcement-construct > [< enforcement-construct >]...}
 < enforcement-construct > :: = < enforcement-name > DEFINE < program-construct > END

OSQL_TIME Package and its Operations PACKAGE OSQL_TIME
PARAMETER:

VARCHAR: time_domain, ext_relation, time_instant_1, time_instant_2, NOW Non_time_schema, ext_domain
INT: granularity, duration
BOOL: bool_val
REL: result_relation

FUNCTION:
PUB IDENTIFY(ext_domain)
PUB CURRENT(ext_relation) RETURN result_relation
PUB HISTORY(ext_relation) RETURN result_relation
PUB COALESCE(ext_relation) RETURN result_relation
PUB SUCC(time_instant_1) RETURN time_instant_2
PUB PRED(time_instant_1) RETURN time_instant_2
PUB DURA(time_instant_1, time_instant_2) RETURN duration
PUB SNAPSHOT(ext_relation, time_instant_1) RETURN result_relation
PUB EXPAND(ext_relation) RETURN result_relation
PUB TIME_RES(granularity, ext_domain) RETURN
VERIFY(time_domain) RETURN bool_val
STRIP_TIME(ext_relation) RETURN non_time_schema
ENFORCEMENT:

ENFORCE_INIT()
ENFORCE_IDENTIFY()

END PACKAGE

40 Oct-Dec 2001 Journal of Database Management

Copyright ©2001, Idea Group Publishing.

(1996). Adding Structure to Unstructured Data. Technical Report
MS-CIS 96-21, CIS Department, University of Pennsylvania.

Casanova, M. A., Furtado, A. L., & Tucherman, L. (1991). A
Software Tool for Modular Database Design. ACM Transactions on
Database Systems 2, 209-234.

Celko, J. (1995). SQL For Smarties: Advanced SQL Pro-
gramming. Morgan Kaufmann Publishers.

Codd, E.F. (1986). Missing Information (Applicable and
Inapplicable) in Relational Databases. ACM SIGMOD Record 15(4),
53-58.

Date, C.J. (1990). Relational Database Writings 1985-1989.
Addison-Wesley.

Date, C.J. (1997). A Guide to the SQL Standard (4th edition).
Addison-Wesley.

McCabe, M. C. & Grossman, D. (1996). The Role of Tools
in Development of a Data Warehouse. In: Proceedings of the 4th
International Symposium on Assessment of Software Tools, 139-
145.

Inmon, W. H. (1996). Building the Data Warehouse. John
Wiley & Sons.

Levene, M. & Loizou, G. (1999). A Guided Tour of Rela-
tional Databases and Beyond. Springer Verlag.

Libkin, L. (1995). A Semantics-Based Approach to Design
of Query Languages for Partial Information. In: Proceedings of the
Workshop on Semantics in Databases, 63-80.

Lu, H., Chan, H. C., & Wei, K. K. (1993). A Survey on Usage
of SQL. SIGMOD Record 22(4), 60-65.

Maier, D. & Vance, B. (1993). A Call to Order. In: Proceed-

ings of the Twelfth ACM Symposium on Principles of Databases
Systems, 1-16.

Mattos, N., & DeMichiel, L. G. (1994). Recent Design
Trade-offs in SQL3. ACM SIGMOD Record 23(4), 84-89.

Melton, J. (1996). An SQL3 Snapshot. In: Proceedings of the
International conference on Data Engineering, pp. 666-672.

Ng, W., & Levene, M. (1997). An Extension of OSQL to
Support Ordered Domains in Relational Databases. In: IEEE Pro-
ceedings of the International Database Engineering and Applica-
tions Symposium, Montreal, Canada, 358-367.

Ng, W. (1998). OSQL Grammar. http://www.comp.polyu.
edu.hk/~csshng/JDBM.html.

Ng, W. (1999). Ordered Functional Dependencies in Rela-
tional Databases. Information Systems 24(7), 535-554.

Ng, W., Levene, M., & Fenner, T. I. (2000). On the Expres-
sive Power of the Relational Algebra with Partially Ordered Do-
mains. International Journal of Computer Mathematics 74(3-4),
53-62.

Pascal, F. (2000). Practical Issues in Database Manage-
ment. Addison-Wesley.

Smith, D. (1994). IBM Smalltalk: The Language. Benjamin/
Cummings.

Tansel, A. et al. (editors) (1993). Temporal Databases:
Theory, Design and Implementation. Benjamin/Cummings.

Ullman, J. (1988). Principles of Database and Knowledge-
Base Systems, Vol I. Rockville, MD., Computer Science Press.

Wilfred Ng obtained his B.Sc.(Hon) degree and Postgraduate Certificate of Education from the University of Hong
Kong. He then received his M.Sc.(Distinction) degree in Information Technology and Ph.D. degree in Computer
Science from the University College London (UCL) in the U.K. His main research interests are Databases and
Information Systems, which include semantic data modeling, temporal databases, data warehousing and web data
mining. Currently, Dr Ng is a professor at The Hong Kong University of Science and Technology. Dr Ng is also a
professional member of the ACM and the IEEE.

Mark Levene received his PhD degree in Computer Science in 1990 from Birkbeck College, which is part of the
University of London. Dr. Levene is currently a Reader in Knowledge Management in the Department of Computer
Science and Information Systems at the University of London. Dr. Levene has published extensively in the area of
database theory and has recently co-authored a comprehensive book on relational databases and their extensions. His
main research interests are database theory and web interaction.

