
Efficient Multi-Query Evaluation over Compressed

XML Data in a Distributed Environment

Aoying Zhou, Juzhen He, Wilfred Ng, and Xiaoling Wang

Department of Computer Science and Engineering, Fudan University, China

Email: {ayzhou, juzhenhe, wxling}@fudan.edu.cn

Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Email: wilfred@cse.ust.hk

Abstract

With increasing dissemination of XML, multi-query processing has become a practi-

cal and meaningful issue to resolve. However, the verbosity of XML data causes ineffi-

cient query processing and high network bandwidth consumption. This paper addresses

the problem of evaluating a heavy load of subscribed queries as a whole (or simply multi-

queries) over compressed XML data in a distributed environment. We propose a holis-

tic approach that evaluates complex queries over a compressed document and directly

forwards the compressed results to clients. We first introduce a new rewriting tech-

nique, which is used to decompose and reorganize a complex query into its corresponding

Structure of complexXPath (SXP). Then, multi-query evaluation can be performed based

on the containment relationships between the queries. The containment relationships are

exploited by a global data structure,Structural-Query-IndexTree (SQIT). SQIT is an

efficient structure that supports prefix sharing among the submitted queries, reserves all

result locations as indexes after evaluation, and establishes a sequence of result publica-

tion. The analytical and experimental results demonstrate that the proposed approach can

obtain higher query processing efficiency than traditional ones, and the bandwidth cost

can be saved substantially. Thus, our approach is particularly suitable for large numbers

of geographically distributed users who need to access a massive amount of correlated

XML information in a cooperative distributed environment.

Index Terms: Multi-query processing, Subscribed queries, XML compression

1

1 Introduction

Although XML [22] has already become a de-facto standard for data representation and ex-

change over the Internet, the repeated tags and redundant structures give rise to the well-

known data verbosity problem. The problem hinders the development of applications that in-

volve intensive use of XML in practice, since it may lead to a substantial increase in the costs

of storing, processing, and exchanging web data. In order to tackle this problem, many XML-

specific compression systems, such as XMill [4], XGrind [1], XMLPPM [16] and XPress [7],

have recently been proposed. Some of their methods [1, 4, 7, 8, 16] are able to support direct

access to compressed documents and avoid expensive decompression in the query evaluation

stage. However, these methods only supporting single-query processing are inadequate in

XML filtering applications, since the method which processes queries one at a time is time

consuming and is not practical for handling heavy loads of subscribed queries. More impor-

tantly, parsing compressed documents costs a lot of time.

On the other hand, query processing based on an automata-theoretic approach has been

profoundly studied in XML subscription/publishing applications [2]. However, to our knowl-

edge, filtering of compressed XML data has not been considered as an approach in literature.

With the rapid increase in both the number and size of XML documents over the Internet,

equipping an XML server with queriable XML compression technologies [10, 11] is a rea-

sonable solution that deserves investigation. An XML server can be dedicated to handling

documents in a compressed format. Thus processing of multi-query over compressed docu-

ments has emerged as a practical and meaningful issue to resolve.

In order to support the XML applications that involve multi-query processing and high vol-

umes of result dissemination, we have developed succinct structures to organize queries and

efficient techniques to evaluate multi-queries over large-scale compressed XML documents.

We now describe an application scenario of processing multi-queries over compressed

XML documents. Assume that there are cooperative relationships among clients, as shown

in Figure 1. The server maintains a compressed large-scale XML document, and clients co-

operate to obtain information or news from the server. In such a scenario, it is important to

adopt distributed techniques and XML compression techniques to save bandwidth in result

2

delivery. In our example, the server is located in London, and users from Beijing pose queries

to the server. After query processing and result publishing, some results on the users’ local

machines may be reusable in response to subsequent queries posed from Shanghai.

Client E

Client D

Server

Client A

Client G

Client C

Client I
Client B

Client F Client H

R R

R R

RR

QI

Q E Q
 G

Q
A

Q

 F

Q
D

Q
H

QB

QC

Query Subscription QI

Result Publication R

Figure 1: The Architecture of a Co-operative Framework

There are several challenges to develop an efficient approach for the above application.

First, unlike usual distributed query processing, it is not feasible to process these queries

one at a time, since the number of queries is extremely large. Second, XML documents are

compressed in order to save storage and bandwidth. Then multi-queries need to be evalu-

ated directly without performing full decompression of the documents. Third, with existing

methods, evaluating complex queries over compressed documents is still a time-consuming

process. In this paper, we not only consider the efficient evaluation of single complex queries,

but also explore the containment relationships among the queries to improve the efficiency

of the multi-query evaluation. Fourth, efficient result publication is essential, especially in

a cooperative environment. Thus, it is necessary to develop an approach which can reduce

bandwidth consumption and improves the performance of the entire network as well.

In order to address the above challenges, a novel query decomposition and organization

strategy, called theStructure of complexXPath (SXP), is proposed as the basis ofStructural-

Query-IndexTree (SQIT), which is the kernel structure in the query processing. The main

contributions of this paper are highlighted as follows:

• We propose a cooperative framework for multi-query processing over compressed XML

documents in order to minimize the cost of query processing and result publication.

3

• We develop a new query rewriting technique that organizes complex XPath queries

into theStructure ofXPath (SXP). SXP is a data structure that allows us to analyze a

complex XPath query and evaluates the query on compressed documents.

• We present a novelStructuralQuery IndexTree (SQIT), which can take advantage of

containment relationships among queries to process queries and publish results. SQIT

is a global data structure which organizes all subscribed queries as a whole. Based on

SQIT, we develop efficient query evaluation and result dissemination strategies.

• We study the system maintenance issues and dynamic update algorithms of SQIT, which

support inserting and deleting queries. The technique makes the whole framework ro-

bust and adaptable.

• We conduct an experimental study on the evaluation of the XPath queries on compressed

XML data. Compared with existing approaches, our results show that the proposed ap-

proach is significantly more efficient. Our approach also improves system performance

by reducing the size of the results and saves the consumption of network bandwidth.

The remaining part of this paper is organized as follows. Section 2 overviews the related

work. Section 3 gives the preliminaries and background knowledge of our approach. Section

4 presents a decomposition model for an XPath query. The definition of SQIT and algorithms

for building and maintaining SQIT are also given. Section 5 describes how we evaluate multi-

queries over compressed data based on SQIT. The system architecture and the implementation

are described in Section 6. Experimental study is presented in Section 7, and concluding

remarks are given in Section 8.

2 RELATED WORK

The most related work is from the areas of XML query processing, XML filtering and XML

compression techniques.

First, several indexing techniques have been proposed for query optimization over an

XML document. For example, the structure index [9, 12, 13] offers efficient support for

4

path/structure queries. There are also some proposed methods [14,15] that combine the struc-

ture index and keyword searching in XML document retrieval. For example, the integration

index [15] takes the advantages of both the structure index and inverted lists. However, these

methods are not applicable to processing heavy loads of subscribed queries over compressed

XML documents.

Second, the techniques [2, 3, 17] developed for XML filtering are also related to our

work. However, most XML filtering systems compute queries by navigating XML documents

through query structures, including the prefix tree or Non-Deterministic Finite Automaton

(NFA). For example, YFilter [3] employs a single NFA to represent all path queries by sharing

the common prefixes of the paths.

Third, there are several emerging XML compression techniques and strategies [1, 4, 7, 8,

16], which can be classified into two categories of queriable or unqueriable compression as

detailed in [11]. We only discuss the first category, since it is more relevant to this work.

XGrind [1] and XPress [7] are two examples of homomorphic compressors in the first cat-

egory. They both support direct querying of compressed data by retaining the document

structure; XGrind uses dictionary encoding and Huffman encoding for tags and data. XPress

adopts reverse arithmetic encoding for tags and diverse encoding methods for text according

to the data types. The encoding technique enables XPress to achieve better compression ra-

tios and higher query performance than XGrind. However, these methods do not support the

evaluation of multi-queries over compressed documents in a co-operative framework.

3 PRELIMINARIES

In this section, the scope of XML queries, the notion of XPath containment, and the underly-

ing idea of theinterval encode technique[7] are introduced.

3.1 XPath Containment

An XML document is represented as an ordered labelled tree with the root noder, where a

tree node corresponds to an element or a value in the XML document, as shown in Figure 2.

5

bib

book book book

name name nameauth auth auth auth

<bib>
 <book>1
 <name>"Pride and Prejudice"
 </name>
 <auth>Jane Austine</auth>
 </book>
 <book>...</book>
 <book>3
 <name>
 "Gone with the wind"</name>
 <auth>...</auth>
 <auth>...</auth>
 </book>
</bib>

[0.0,0.3) [0.0,0.3) [0.0,0.3)

[0.3,0.39) [0.6,0.72) [0.3,0.39)[0.6,0.72) [0.6,0.72) [0.6,0.72)[0.3,0.39)

Figure 2: An XML snippet and its corresponding tree structure with encoded tags

In the subsequent discussion, only the XPath queries inXP {/,//,∗,[]} are considered. The

grammar ofXP {/,//,∗,[]} is described by the following expression:

q → l| ∗ |.|q/q|q//q|q[q], (1)

where “l” is the label of the XML document, “∗” is a wildcard, and “.” denotes the current tag.

Following usual notations in [21], we use “/” and “//” to mean the child and the descendant.

In this paper, we assume that all XPath queries or path expressions areXP {/,//,∗,[]} queries.

Furthermore, theXP {/,//,∗,[]} queries containing only “/” are calledsimple path queries. Oth-

erwise, they are calledcomplex path queriesas illustrated in Example 1.

Example 1 Q1 = “//closed auctions[∗[personID = 1]]/date[text = “12/15/1999”]” is

a complex query.

There may exist containment relationships among different queries inXP {/,//,∗}, and it is

possible to take advantage of these containment relationships to speed up the query evaluation

and results publication. Intuitively, if queryQA contains queryQB in term of computing

results,QA’s result can be sent to clientCA by server, andCA can sendQB ’s result to client

CB. Thus, the server does not need to sendQB ’s result to both clients,CA andCB. As a

result, the server’s load is reduced and the server’s bandwidth is saved.

Definition 1 (Containment of XPath) For two XPath queriesQ1 andQ2, if the result ofQ1

is contained in the result ofQ2 for any given XML document, we say thatQ1 is contained by

Q2, and this fact is denoted asQ1 ⊂ Q2.

6

The containment relationship helps to avoid some expensive and repeated evaluation of

contained queries on the original document. However, the containment of theXP {/,//,∗} ex-

pression is a co-NP problem. The work in [5] presents asufficientbut incompletePTIME

algorithm to compute the containment, whose underlying idea is that each XPath expression

can be expressed as aone-aritypattern tree, and vice versa. Then, XPath expressions can be

translated intopattern trees, and the containment is evaluated based on finding thehomomor-

phism relationships of the pattern trees(or simply thepattern homomorphisms). Informally, a

pattern homomorphism is a mapping,h, from the nodes in a pattern,p, to the nodes in another

pattern tree,p′ such thath is root-preserving, respects node labels and obeys edge constraints.

The formal definition ofh can be consulted from [5]. When there is a pattern homomorphism

between two pattern trees, there also exists a containment relationship between the two XPath

queries [5]. For example, Figure 3 shows a pattern homomorphism from one pattern treep′ to

another pattern treep. In this case, the XPath queryXPp, which is translated into the pattern

treep, is contained by the XPath queryXP ′
p, which is translated into the pattern treep′.

a

c d

a c

ab

p = a

b *

a c

b

= p'

XPp: /a[//c]/d[c]//a[a]/b XPp': /a[//b]/*[c]//a/b

Figure 3: A pattern homomorphism fromp′ to p

3.2 XML Compression Technique

XML compression has the benefits of reducing the cost of both storage and result delivery on

a network. We compress XML documents by using dictionary encoders for text and interval

encoders for tags, which have the capability of supporting queries containing predicates. The

Interval Encoding method [7, 18] is applied for encoding tags. The underlying idea is as

follows: before compression, we collect the statistical information of tags by parsing the

7

document. Assume the name of theith tag ist(i), wherei are in (1, . . . , m) andm is the

number of different tags in the document. The probability oft(i) is probt(i) and thent(i) is

allocated with an initial region encode [MIN0
t(i),MAX0

t(i)) in [0, 1) based on the probability

information oft(k) and1 ≤ k ≤ i. Then, each tag in the document is encoded as an interval

computed according to Equation 2.

(j = 0) MIN j
t(i) =

i−1∑

k=1

probt(k), MAXj
t(i) =

i∑

k=1

probt(k) (2)

For each simple path “p0/p1/ · · · /pn”, the jth tag forj ∈ {0, . . . , n} corresponds to the

tag namepj. According to Equations 3 and 4, this path is encoded as an interval computed.

(j > 0) MIN j
pj

= MIN0
pj

+ probpj
∗MIN j−1

pj−1
(3)

(j > 0) MAXj
pj

= MIN0
pj

+ probpj
∗MAXj−1

pj−1
(4)

As shown in Figure 2, the frequency of the tag< book > is 3 and the frequency of all

tags (i.e. < book >, < name > and< auth >) is 10. Thus, the tag< book > has the

probability of0.3. Because< book > is the first element in the document, it will be allocated

with an initial interval, [min0
book,max0

book) = [0.0, 0.3), the first range fragment in [1,0).

The initial intervals of< name > and< auth > are [0.3, 0.6) and [0.6, 1.0), respectively.

During compression,< book > is the first element and is encoded into a value in the range

of [0.0, 0.3). The tag< name > of the path “/book/name” is compressed into a value in the

range of[0.3 + (0.6− 0.3) ∗ 0.0, 0.3 + (0.6− 0.3) ∗ 0.3), which is[0.3, 0.39). And < auth >

with path “/book/auth” has the interval of[0.6 + (1.0− 0.6) ∗ 0.0, 0.6 + (1.0− 0.6) ∗ 0.3),

which is [0.6, 0.72). All the intervals are marked with their corresponding tags in Figure 2.

0 0.3 0.39 0.6 0.72 1

book
name

auth

/book/auth/book/name

Figure 4: An Example of Interval Encoding

8

To evaluate queries across a compressed document, all the queries have to be translated

into intervals and directly compared with the compressed tags. Based on the computing rules

given by Equations 2, 3 and 4, the reverse arithmetic encoding method has a useful feature of

suffix-containment, as shown in Figure 4. If the XPath expression ofQA is the suffix of that

of QB, thenQA’s interval containsQB ’s. Thus, to evaluate the query “//auth”, we only need

to find the tag whose value is in[0.6, 1.0) (i.e. the initial value of< auth >). As for the query

“/book/auth”, we only need to find the tags in the range[0.6, 0.72), but do not need to cache

the element< book > in the query evaluation.

However, the above technique is only applicable for the case of simple paths consisting

of only child axes. The complex queries that contain “*”, “[]” and “//” cannot be directly

translated into intervals. Thus, we develop a new rewriting technique and some sophisticated

data structures for handling complex queries, which will be presented in Section 4.1.

4 Structural Query Index Tree

In this section, some techniques are presented to process complex queries over the compressed

documents. The multi-query processing strategy is based on rewriting methods that transform

complex queries into efficient tree structures.

4.1 Query Rewriting

For a complex query containing “∗”, “//” or “[]”, our approach is to split it into several simple

paths or predicate expressions, calledsplit components, which can be encoded into intervals.

Then, the components are connected by wildcard “∗”, descendant “//” or predicate “[]”. Each

complex query may be split into several components. For example, suppose there are three

componentsP1, P2 andP3 as shown in Figure 5, we reorganize the components in order to

express the queries, “P1/ ∗ /P2”, “ P1//P2” and “P1[P3]/P2”.

The dotted and solid directed edges in Figure 5 represent two different kinds of relation-

ships between the components. Aprimary link specifies the components linked on the main

path, which ends with the last requested element specified in an XPath expression, whereas a

9

//

Primary Link
Secondary Link

P1 P2 * P1 P2 P1 P2

 P3

 P1/*/P2 P1//P2 P1[P3]P2

Figure 5: Query Decomposition and Reorganization

secondary link is a link between the branch or predicate component and a primary link. Com-

ponents coming from links marked by ”//” indicate the descendant matching, which means

the “ancestor/descendant” relationship between the component and its preceding one (e.g. the

queryP1//P2 shown in Figure 5). Otherwise, the relationship is assumed to be “parent/child”.

Based on these two kinds of links and the relevant split components, a complex XPath query

is translated into a data structure called SXP as defined in Definition 2.

Definition 2 (Structure of Complex XPath (SXP)) Given an XPath queryQ, the structure

of the components ofQ, denoted as SXP, is a tree structure defined by (V, Ej, En), where (i)

V is a set of components that is the split component ofQ; (ii) Ej is a set of primary links,

which are directed edges composed of the main path except for the branches of this SXP. The

ending tag on a primary link is the requested tag; and (iii)En is a set of secondary links,

which are directed edges connecting the predicates to corresponding branch components on

primary links.

The queryQ1 given in Example 1 of Section 3.1 is decomposed into the five components of

P1 to P5, and reorganized into an SXP as shown in Figure 6.

 P1
(0)

(0) (0)

(0)

 P4

 P2 P5

 P3

P1: //closed_auctions
P2: *
P3: personID=1
P4: /date
P5: text ="12/15/1999"

Figure 6: Components and the SXP of the complex queryQ1 in Example 1

In an SXP, each component except the root has itsprecedingcomponent, and each com-

ponent except the leaves hassubsequentcomponents, including components on its primary

10

links and secondary links. Figure 6 shows the SXP ofQ1 and its components, where a primary

link running fromP1 to P4 is the main path ofQ1. Besides, there are three secondary links:

P1 to P2, P2 to P3, andP4 to P5. These three secondary links stand for the branch queries

located at the ending element of their corresponding components. For example, the secondary

link from P1 to P2 indicates the fact that there is a predicate expression for the branch element

“closedauctions” ofP1.

Now, we present the algorithm of transforming a complex query into SXP in Algorithm

1, where the input queryQ is first decomposed into several components. The components are

then reorganized into an SXP as an output. According to the level of branches, the algorithm

parses the complex query and splits it recursively. In this algorithm,Pi stands for the path

of the ith component appearing in the main path of the input query. We useCxpi to indicate

theith component ofPi. For each component on the main path, we check whether it has sec-

ondary links (lines 7–9) and then attach each component with secondary links to the resulting

SXP (line 10). When applied toQ1, we first findP1, then its secondary linkP2 (with P3) is

attached. The final result of the SXP is illustrated in Figure 6.

Algorithm 1 : TransSXP (QueryQ)
Input : An XPath queryQ
Output : The SXP ofQ
begin1

Initiate tsxp as the result SXP2

Setmend pointing to the end of the primary link oftsxp3

Partition the main path ofQ into a set of components,{P1, . . . , Pn}, by “∗” and “//”4

for each componentPi do5

Create aCxpi for Pi6

if Pi has a secondary link “[Predi]” then7

Set SXPmini := TransSXP(Predi)8

Add mini into the secondary link ofCxpi9

Add Cxpi into tsxp10

Changemend into Cxpi11

Returntsxp12

end13

4.2 Structural Query Index Tree

We now introduce the strategy of processing multi-queries over compressed data based on

SXPs. The essence of the strategy is that all submitted queries are composed into a Struc-

11

tural Query Index Tree (SQIT) by exploiting the containment relationship and shared prefixes

among SXPs. This strategy helps minimize the processing time and publication load. The

definition of the SQIT is now given as follows:

Definition 3 (Structural Query Index Tree (SQIT)) Given a set of subscribed XPath queries

SQ= {Q1, Q2, . . . ,Qn}, the Structural Query Index Tree (SQIT) ofSQ is defined by the triplet

(VQ, E,R), where each component is given as follows.

• VQ is a finite set of query nodes, in which each node corresponds to a unique query in

SQ. E is the set of edges representing the parent-child relationship in the tree.R is the

(virtual) root of the tree. We will use the terms “query” and “query node” interchange-

ably in our subsequent discussion.

• Each query node is defined by (Qcid, SXPQ, begin[], end[]), where “Qcid” is the cor-

responding identity of the client, “SXPQ” is the SXP of the original queryQ, and

“ begin[]” and “ end[]” keep the beginning and ending positions of the fragments of the

query result in the compressed document.

• All query nodes constitute the descendant set ofR. E is the set of edges that represent

the containment relationship between the nodes inVQ.

QG

Vitual Root

//a

/*/a /d

/c

/a/b/d

/g

/a/c

//e/a

QC QD

QA

QB QF

/d/e/e

/*

/a /*
QH

 QA= //a QB = /a/c[g]/d QC = /a/*/d
 QD = /a//e QE = /a/d/q QF = /a/b[c/*]/e
 QG = /a/d QH = /a/*/d/e QI= /a/d/q/e

QE

QI

(1)(1) (0)

(1)(0) (0)

(0)

(0)

Figure 7: An Example of the Structural Query Index Tree (SQIT)

Example 2 (SQIT) Figure 7 shows an example of SQIT. The set of queries,SQ = {QA, QB,

. . . , QI} listed in the box are submitted queries which are organized into the tree as shown. It

can be seen that whenQB is contained byQA, the node forQB is a descendant node ofQA.

12

In a nutshell, SQIT is aglobal data structure that organizes all subscribed queries as a

whole, whereas SXP provides alocal data structure to deal with a single complex XPath

query as discussed in Section 4.1. SQIT reveals the containment relationship of query results

among the ancestor and descendant nodes. Thus, if an XML fragment as a result cannot

be satisfied by any node, there is no need to check its children or descendant queries in the

subtrees of SQIT. Consequently, the whole search space for all queries is greatly reduced.

4.3 Sharing in SQIT

With containment relationships, SQIT and SXP provide a method to explore sharedprefix

componentsamong queries. As shown in Figure 7, when a tag “< a >” comes, the first com-

ponent “/a” of QD can be satisfied, as can the second childQH . Thus, the first components

of QF andQH should be evaluated together; otherwise, the path information of each element

in QD’s result will be lost after it is satisfied.

To avoid repeatedly comparing tag “< a >” with the first components ofQD andQH ,

or recursively comparing it to another component at even deeper level, we assign asharing

index to the directed edge from the branch node to the SXP child, onceQH has a child also

starting with a “/a” component. Returning to Example 2, the sharing index “(1)” on the edge

from QD to QH means thatQH shares the first component with its parent. ForQF , the interval

of “/a/b” is not equal to that of “/a”, thus the sharing index ofQD andQF is “(0)”.

4.4 Building SQIT

SQIT is generated by comparing the containment relationship among queries in a recursive

manner. First, complex queries are decomposed and reorganized into SXPs by using Al-

gorithm 1, since complex queries cannot be directly translated and evaluated over the com-

pressed document. Then, a stack structure is used to store the query nodes of a branch, and the

nodes in a stack are recursively classified based on the containment relationship. The details

of the procedure are shown in Algorithm 2.

Initially, an empty stack is built and the first query is pushed into the stack (line 2). When a

new query arrives, it is compared to the queries on the top of all current stacks. If this query is

13

contained by the top query of a stack, it is pushed into that stack after the original top is popped

out, and the original stack top is pushed back and the stack top remains unchanged (lines 11–

14). If this query contains the top query of a stack, it should be put on the top of the stack. The

query is also compared to other stacks, since there may exist other stack whose top queries

are contained by this query. In this case, these two stacks are combined and the query is

assigned as the new top (lines 7–10). If there is no stack whose top query has the containment

relationship with the new arriving one, we have to set up a new stack for it (lines 15–16).

After all queries have been processed, each stack stands for a separate class. For those classes

that have more than one query, we recursively classify the queries and build the hierarchy

according to the containment relationships (lines 19–22) until the whole SQIT is constructed.

A query may be contained by two or more branches of SQIT as a result of containment

computing. Thus, the containment relationship of queries may be a graph instead of a tree. For

example, the query expression,QH = “/a/ ∗ /d/e”, is contained by both query expressions,

QC = “/a/ ∗ /d” and QD = “/a//e”. A basic approach to tackle this ambiguity is to

adopt some heuristic rules, such as choosing the branch which has fewer nodes (i.e.QD in

the example). The reason is that when the size of a branch, say the number of its nodes, is

small, the amount of queries to be evaluated should be small. An alternative is to classify this

query into the class represented by the first generated stack which contains the query as our

algorithm does.

4.5 SQIT Maintenance

In practice, subscribed queries may not arrive or leave in bunches but change one or a few at a

time. In this section, the maintenance of SQIT during inserting or deleting subscribed queries

is discussed.

As illustrated in Algorithm 3, when inserting a new queryQt into SQIT, we proceed to

check if there exists containment relationship betweenQt and the child nodes under the root

R of SQIT (line 3). If we find a nodeQi such thatQt ⊂ Qi, the scope of comparison is

extended into the children ofQi (lines 4–6). IfQi ⊂ Qt, it replacesQi and makesQi its child,

and then the siblings ofQi are checked, until no containment can be found (lines 9–14). But

14

Algorithm 2 : BuildingSQIT(Query SetQS, nodeR)
Input : QS is a set of queries; nodeR is the current root of SQIT tree
Output : SQIT tree
begin1

Set up a new stack and add the first query into it;2

for each queryQ ∈ QS do3

if Q is a complex querythen4

Decompose and reorganizeQ into SXP by Algorithm 15

for each existing stackS do6

if S.top⊂ Q then7

S.push(Q)8

Continue to check whether other stack tops are contained byQ9

Combine all such stacks into one and pushQ in the combined stack as its top10

else11

Q ⊂ S.top12

PushQ into S but keep current top unchanged by poping out and pushing in13

the originalS.top
break14

if Q has not classified into existing stacksthen15

Set up a new stack and pushQ into it16

Calculate the prefix sharing index between tops of current stacks andR17

Set the tops of current stacks as the children ofR, mark sharing index on the edges18

for each stackS′ do19

if S′ has other elements except the topT ′ then20

SetQS′ as the query set of elements exceptT ′21

BuildingSQIT (QS′, T ′)22

returnR23

end24

if none of the children containsQi, it is set as a new child of the current parent (lines 13–14).

After traversing SQIT, if there is no node containingQt, Qt will be added as a new child of

R (lines 15–16).

Algorithm 4 illustrates the process of deleting a node,Qt, from a given SQIT. We first

check if there exists containment relation between its children and its following siblings. The

reason of conducting this checking is that a query is always assigned to the class standing

by the first branch that contains the query. It is possible that other branches also containQt.

Therefore, its child subtrees are inserted into its following siblings (lines 5–8). If the insertion

fails, its child subtrees are then inserted at its position as the children ofQt’s parent (line 10).

If Qt is a leaf of the SQIT, we delete it accordingly.

15

Algorithm 3 : SQIT Insert (SQIT rootR, QueryQt))
Input : R is the root node of SQIT;Qt is the query waiting to be inserted
Output : SQIT containingQt

begin1

int insert loc = −12

for each childQi of R do3

if Qt ⊂ Qi then4

SQIT insert(Qi, Qt)5

break6

else7

if Qi ⊂ Qt then8

if insert loc = −1 then9

ReplaceQi with Qt and putQi asQt’s child10

insert loc = i11

else12

RemoveQi from the children ofR13

Add Qi as a new child ofQt14

if no containment betweenQt and the children ofR then15

Add Qt as a new child ofR16

returnR17

end18

Algorithm 4 : SQIT Delete(SQIT rootR, QueryQt)
Input : SQIT and the node waiting to be deleted
Output : SQIT withoutQt

begin1

Let Qt’s parent beQp2

for eachQc in Qt’s childrendo3

for eachQj in Qt’s following siblingsdo4

if Qc ⊂ Qj then5

SQIT Insert (Qj , Qc)6

Keep the subtree ofQc at new location7

break8

if none ofQt’s following sibling containsQc then9

Add Qc as a new child ofQp10

returnR11

end12

5 Multi-Query Evaluation

With SQIT and SXP, the subscribed queries can be evaluated across compressed XML data.

We first discuss the evaluation of a single query over the compressed document and then

present the approach for processing multi-queries.

16

5.1 Single Query Evaluation over SXP

Given the SXP of an XPath query, the evaluation of the query over a compressed document is

done by traversing the SXP, where each component is translated into an interval and evaluated

over the compressed document directly.

During this procedure, the link types among the components of an SXP should also be

considered. If the link type is a descendant one, sayCP //CS, then once the preceding com-

ponentCP is satisfied by a coming compressed XML elementE, the subsequent component

CS should be compared with all descendant elements in the XML fragment rooted atE. If

the link type is a child one, sayCP / ∗ /CS, when the preceding componentCP is satisfied

by the elementE, the subsequent component, such asCS, need to be compared only the

sub-elements in the second level ofE’s fragment.

In addition to the relationship between SXP and its preceding component, the type of the

link where the component comes from should also be considered for its evaluation. When

a componentCM comes after a secondary link, which means that it is a branch component,

the goal is to check if there is any match in the fragment where its preceding componentCP

is satisfied. IfCM is linked to a primary link of SXP in the result fragment of its preceding

CP , all CM ’s matching results should be cached untilCP ’s fragment ends. To sum up, for

an unsatisfied component, the locations and times of its evaluation depend on its link to its

preceding component and the link type it comes from.

5.2 Multi-Query Evaluation over SQIT

We now explain how SQIT is used to support multi-query processing. We first introduce the

evaluation rules and then use an example to illustrate the whole process.

5.2.1 Evaluation Rules

Let ni ∈ VQ be a node corresponding to the queryqi ∈ SQ in an SQIT andTi be a subtree

rooted atni. We use “SXP children” to indicateni’s children whose queries are complex ones

and have been translated into their corresponding SXPs. During the query evaluation, ifqi is

a complex query, it can bepartially satisfied when parts of its components are satisfied, or

17

fully satisfied when the whole query is satisfied. For example, the query “//a” is fully satisfied

by the tag “< a >”, but the query “/a[c]/b” is only partially satisfied by this tag. In general,

for an elementE in the compressed document, we consider the following rules applied for the

two cases:

Case (1): if qi is partially satisfied, it is possible that some of the SXP children ofni can also

be partially satisfied atE, thus the SXP children ofni should be checked. However, there

is no need to check the children with a simple path whenqi is not fully matched, sinceqi

contains all the query of its children.

Case (2): if qi is fully satisfied atE, all children ofni should be checked simultaneously.

If any child of qi is partially or fully satisfied, the above rules are recursively applied to

this child node according to Cases (1) and (2).

In Figure 7,QA is fully satisfied by the tag“ < a > ”, and its childrenQC andQD are

partially satisfied. Thus,QB, QF andQH , as the SXP children, should also be checked.

5.2.2 Evaluation Strategy

During the process of query evaluation, the compressed document is parsed as a SAX stream.

For each coming compressed XML tag, each query in the SQIT has one and only one of

the following three states: satisfied, unsatisfied and partially satisfied. Thus, three respective

data structures are designed for each tagT of the compressed document. First, the structure

UnsatNodeskeeps the roots of the subtrees in SQIT whose nodes have not been satisfied

after the tagT comes. Second, the structureWaitCXPs keeps the subsequent components of

the components satisfied at T, but their query is partially satisfied byT . Third, the structure

SatNodeskeeps those nodes that are satisfied when parsing the tagT . From now on, these

three structures are collectively called thepath structure for a compressed XML tag.

For a coming compressed XML tagT , if a query in SQIT cannot be satisfied, there is no

need to check any of its descendants. We only keep the unsatisfied state of those nodes (i.e.

the roots of the unsatisfied states) in the stack. Because there exists a containment relationship

between the ancestor query and the descendant queries, once the root of this subtree andT

are not matched, all the descendant nodes andT are not matched either. As shown in Figure

18

8, when the tag“ < a > ” comes, the subtree rooted atQG is an unsatisfied subtree, and

thereforeQG will be inserted into UnsatNodes of the tag“ < a > ”.

There also exist some nodes that are partially satisfied in Figure 8, such asQC when the

tag “ < a > ” comes into the system. These queries in the figure are complex ones and

are expressed as SXPs. For each partially satisfied SXP, we keep the state of “waiting to be

compared to the subsequent components of the satisfied components” in WaitCXPs.

The query evaluation algorithm based on the path structure is shown in Algorithm 5. Ini-

tially, for the root element of the queried document, the path structure is constructed to contain

all the children of the root query node in SQIT (lines 2–4). When a new compressed tagT

comes, suppose the parent tag ofT is P , each query nodeQu in P ’s UnsatNodes and each

CXP inP ’s WaitCXPs should be checked (lines 5–19).

Algorithm 5 : QueryEvaluation(Compressed docDoc, SQITSqit)
Input : Doc is the compressed XML document,Sqit is the SQIT containing all subscribed

queries,PathStackis the stack for holding path structures of coming tags
Output : The stack containing the results for the queries inSqit
begin1

Create a path structurePSr for root ofDoc2

Insert children ofSqit’s root intoPSr.UnsatNodes3

PushPSr into PathStack4

for each coming tagT with intervalIT do5

SetPST as the path structure ofT6

SetPSp as the top ofPathStack7

TestChildren(IT ,PSp.UnsatNodes,false,PST)8

for eachCxpw in PSp.WaitCXPsdo9

if IT ⊂ IntervalCxpw then10

if Cxpw’s query nodeQw is fully satisfiedthen11

Add Qw into PST .SatNodes12

TestChildren(IT ,Qw’s children,true, PST)13

else14

Add children ofCxpw into PST ’s WaitCXPs15

TestWaitCXPs(IT , Qt, Cxpw’s No., PST)16

if (IT is not contained byIntervalCxpw) or (Cxpw’s type is “Descendant”)then17

Add Cxpw into PST .WaitCXPs18

PushPST into PathStack19

ReturnPST .SatNodes20

end21

For any nodeQu in P ’s UnsatNodes, Algorithm 6 is employed to test the node against

19

Algorithm 6 : TestChildren(IntervalI, QueryNodeSetQNodes, BooleanB, Structure
PS)

Input : I is the given interval;QNodes is a set containing the query nodes which have not been
tested;B indicates the query is a simple one (true) or complex one (false); PS is the
structure ofI ’s tag

Output : PS.SatNodes with matched children andPS.WaitNodes with partially matched
children.

begin1

for each query nodeQc in QNodes do2

if Qc’s query is a simple paththen3

if B = true && I ⊂ IntervalQc then4

Add Qc into PS.SatNodes5

TestChildren(I, Qc.children,true,PS)6

else7

Add Qc into PS.UnsatNodes8

else9

SetCxpf as the first CXP ofQc10

if I ⊂ IntervalCxpf
then11

Add CXP children ofCxpf into PS.WaitCXPs12

TestWaitCXPs(I,Qc, 1,PS)13

else14

Add Qc into PS.UnsatNodes15

end16

the current tag. IfQu’s query is a simple path, its interval value will be compared with the

coming interval value directly in order to check whether or not they are matched (lines 3–8).

Otherwise,Qu’s path expression is transformed into an SXP, and its root component should

be checked against the tagT (lines 10–15). If it is satisfied, the subsequent components of

the root component become waiting components for the next coming tag by inserting them

into the WaitCXPs (line 12–13). Besides, ifQu’s root component is fully satisfied, all SXP

children ofQu in SQIT are checked, which is implemented by the procedure TestWaitCXPs in

Algorithm 7. If Qu’s root CXP andT are not matched, it is added into UnsatNodes ofT (line

15).

Algorithm 7 is designed for testing the SXP children of the input query node over the cur-

rent intervalI. A sharing index,Si is to exploit the sharing prefixes between any two queries

and it is used to skip some evaluation in the algorithm. Once the number of the current com-

ponent is smaller thanSi, this child component is skipped. However, if the number is equal to

Si, the subsequent components of the current component are added into WaitCXPs (lines 9–

20

Algorithm 7 : TestWaitCXPs(IntervalI, QueryNodeQ, IntegerNcxp, StructurePS)
Input : I is the interval of the current compared tag;
Q is the query node whose children with complex queries should be evaluated;
Ncxp is the number of the considered component ofQ;
PS is the structure of the current tag.
Output : PS.WaitCXPs with added CXP children
begin1

for theith SXP child nodeQi of Q do2

SetSi as the sharing index fromQ to Qi3

SetCxpf as the first CXP ofQi4

if Si > Ncxp then5

TestWaitCXPs(I,Qi,Ncxp,PS)6

else7

if Si = Ncxp then8

Add CXP children of theNcxpth CXP ofQi into PS.WaitCXPs9

TestWaitCXPs(I,Qi,Ncxp,PS)10

else11

if (Si = 0) && (I ⊂ CxpfInterval) then12

Add CXP children ofCxpf into PS.WaitCXPs13

TestWaitCXPs(I,Qi,1,PS)14

end15

10) in order to evaluate this part with the next tags. For those SXP children that share nothing

with its parent query, all the first components are evaluated (lines 13–14).

The following example helps illustrate the multi-query evaluation with SQIT.

Example 3 (Evaluation Procedure) In Figure 7,QA, QC , QD, QB, QF and QH are com-

plex queries submitted by their respective clients. These queries are inserted into the SQIT

and are transformed into SXPs. The components of a query are denoted byQij, where

i ∈ {A,B, . . . , H}, andj is an index to represent the identity of a component in the query.

As the evaluation procedures illustrated in Figure 8,QA, as a child of the root, is initially put

into UnsatNodes of the root element in the document. When the compressed tag “< a >”

comes, in UnsatNodes of the root element,QA is checked and found to be qualified, thus its

child nodes in the SQIT should also be checked. Clearly, the first components ofQC andQD

can be satisfied by “< a >”, the SXP children ofQC andQD and the root component ofQH

are checked if they are satisfied by “< a >”. For the satisfied components, the subsequent

components (QC2, QD2 andQH2) are inserted into the WaitCXPs of the current tag “< a >”.

AlthoughQG is a simple path, there is no containment with an interval of “< a >” after

21

comparing the encoded interval value. Thus,QG is inserted into UnsatNodes and we can skip

checking its children. Similar actions are conducted for other new coming tags until the tag

“ < d >” comes. Consequently,QC , as an SXP, is fully satisfied and inserted into SatNodes,

whereas its child nodeQB, as an unsatisfied SXP, is inserted into UnsatNodes.

UnsatSat WaitCXPs

null nullQA null nullQA

<a> QA
QA, QC2,
QD2, QH2

QG

null nullQA

QA
QA, QC2,
QD2, QH2

QG

QA, QC3,

QD2,QH3,

QF2, QF3

QG

null nullQA

QA
QA, QC2,
QD2, QH2

QG

QA, QC3,

QD2,QH2,

QF2, QF3

QG

QA, QD2

QH3,
QB, QGQC

<d>

null nullQA

QA
QA, QC2,
QD2, QH2

QG

QA, QC3,

QD2,QH2,

QF2, QF3

QG

QA, QD2

QH3
QB, QGQC

<e>

QD,
QH

QA , QD2QB, QG

</e>
</d>

UnsatSat WaitCXPs

null nullQA

QA
QA, QC2,
QD2, QH2

QG

<d>

null nullQA

QA

QA, QC2,
QD2, QH2

QG

QA, QC3,
QD2, QH3

QEQG

Sat: the set of satisfied query node
Unsat: the set of query nodes that are not satisfied for the coming tag
WaitCXPs: the subsequent components of partially satisfied queries

UnsatSat WaitCXPs
UnsatSat WaitCXPs

UnsatSat WaitCXPsUnsatSat WaitCXPs

UnsatSat WaitCXPs

Figure 8: An Example of Query Evaluation Using the Path Structure

In our multi-query evaluation algorithm, the worst case happens when SQIT is a flat tree,

where no sharing and containment can be utilised. In this case, our approach reduces to single

query evaluation. However, the case of a flat SQIT rarely happens. For example, the average

level of SQIT is from 4 to 6, and clients’ queries are closed in our datasets.

6 System Architecture

In this section, the basic components of the system, the procedure of query processing in the

whole network and the issues concerning the system maintenance are discussed. There are two

main phases in the process of query evaluation. The first phase is to build the containment

relationship among clients. The second phase is to publish compressed XML fragments to

clients.

22

6.1 System Design

Multi-Query
Processor

(MQE)

XML document

GUI

XCQ

DM

GUI

XCQ

DM

GUI

XCQ

DM

Query Submission

Server

CC

CD

CA

Result Propagation

Result
Propagation

Result
Propagation

GUI

XCQ

DM

CF

Result
Propagation

XML
Compression
Tool (XCT)

Dissemination
Manager

(DM)

Query
Collector

 (QC)

ResultSub-Index

...

... ...

Figure 9: The System Architecture for Multi-Query Processing

Our prototype is a cooperative system built over a network of clients. The server takes the

responsibility to collect queries, process them and forward parts of results to its corresponding

clients. As Figure 9 shows, the server consists of four main components as follows:

XML Compression Tool (XCT). This tool facilitates the compression and storage of XML

documents. XML documents are compressed using an interval encoder for XML tag

and a dictionary compressor for compressing elements’ contents in this system.

Query Collector (QC). This component collects queries subscribed by clients, decomposes

and reorganizes them into SXPs, computes the containment relationship among queries

and builds SQIT. The detailed algorithms are discussed in Section 4.

Multi-Query Evaluator (MQE). This is the most important component in the server, which

evaluates queries over certain documents according to SQIT. The evaluation techniques

are explained in Section 5.

Dissemination Manager (DM). This component obtains the results and intercepts subindexes

for those queries at the child nodes of the SQIT root. Then, for each client of these

nodes, DM propagates the result fragments and the subindex. This component is also

reserved for intermediate clients to share their results with other clients.

23

A client in the cooperative environment of our framework first subscribes its queries to the

server. The query evaluation component, calledXML CompressionQuery processor (XCQ),

obtains the query result from the packages forwarded by the client’s parent node and conducts

children’s queries according to the subindexes. Figure 9 shows those propagated result pack-

ages in broad-brush arrows. Then, according to the received subindex and results, a client

shares its compressed results with its corresponding child clients through the DM.

6.2 System Initialization

First, each client subscribes an XPath query to the server. Then a SQIT, which serves as

a global and kernel structure, is built at the server side. The SQIT reveals the containment

relationships among subscribed queries and supports the procedures of evaluation and dis-

semination. After building the SQIT in the initialization phrase, the server disseminates the

SQIT and its related information in all clients in order to build the relationships among them,

and then the whole cooperative network is established.

We now discuss how the cooperative clients share their result fragments with others. The

subscribed query of each client is regarded as a node in SQIT. Those clients who share XML

fragments with others are intermediate clients. For example, in Figure 7 the clients subscrib-

ing the queriesQA, QC , QD, QG andQE are intermediate clients. An intermediate client is

responsible for executing its children queries to obtain the result and publish the result frag-

ment. Thus, each intermediate client has the information of its child clients and their result

locations. We impose a subindex as a local structure on each intermediate client which con-

tains all children’s information. The subindex for the clientCi is the subtree of the SQIT

rooted at the node ofCi’s query. Once a client subscribes a query that corresponds to a branch

node in the SQIT, the corresponding subindex is forwarded to this client, and the subindex is

set as a local structure to improve the query performance of the whole system.

6.3 System Maintenance

Our system is built upon a dynamic cooperative network, where each client in our system is

able to subscribe new queries, cancel subscribed queries or leave the network at any time.

However, there are still some technical issues concerning system maintenance.

24

New Coming Client. Let Ci be a new client entering into the network.Ci sends its query

Qi directly to the server. The server insertsQi into the SQIT, evaluates this query in the result

fragments of its parent according to the SQIT, and obtains a new index for the subscribed

query. After the query insertion, the server sends a message to those clients, whose local

SQIT, as a part of the SQIT, is influenced byQi, and the corresponding parent ofCi is also

required to send results toCi in future processing.

New Subscribed Query.If an existing clientCj subscribes a new queryQj, local check-

ing of Cj should be conducted as follows.

• If Cj has a local SQIT, it checks whetherQi is contained in the local SQIT. If this is the

case, there is no need to send this information to the server. The query can be evaluated

over the local XML fragments directly.

• If the local SQIT does not containQj, this query is then sent to the server. ThenQj

is inserted into the SQIT at the server, according to the SQIT maintenance algorithms

presented in Section 4.5. The remaining procedure is the same as the last step in han-

dling new client insertion, which requires an update of influenced local SQITs. Then,

the query result is propagated fromCj ’s corresponding parent clients.

Unsubscribed Query. If a client in the network unsubscribes a query, the client sends

an “unsubscribe request” message to the server. Algorithm 4 is then run at the server side to

delete the query. Finally, the server publishes a new SQIT to those influenced clients.

Membership Testing. Our network is a server-centered and cooperative one. Thus, all

the refreshing work of SQIT should be supervised by the server. In order to test if a client still

exists or not, the server adopts a “ping-pong” message strategy [19], which is commonly used

in a distributed environment. A broadcasted “ping” message is sent to each client regularly.

If the server gets a “pong” message from a client, it means that the client exists or is online;

otherwise, the client is no longer being a member of this system. Then the server updates the

SQIT and sends updated subindexes to those influenced clients.

7 Experiments
The algorithms discussed in the previous sections are implemented and extensive experiments

are carried out on synthetic and real data sets as shown in Table 1. All the experiments were

25

conducted on a PC with Pentium IV 3.2 GHz CPU and 2 GB of RAM.

Table 1: Characters of Data Sets
Data Set XMark NITF
Data type Auction data New industry text format
DTD characteristic Simple structure; Few attributes;

Large element content; Deep nested
levels

Complex structure; Many attributes;
Few element content; Deep nested
levels.

Data size 1MB to 50MB 1KB to 1MB
Compression ratio 47.3% 65.4%
Query size 500 to 1000 1000 to 3000
Example query /site/regions/*/item

[@id=‘0’]/description//keyword
/nitf/body/*[tagline
/pronounce//q[@id=8]]//bibliography

7.1 Experimental Setting

The synthetic data is a set of XML documents generated by using IBM’s XMLGenerator

[25], and the real data is a commonly used XML benchmark dataset called XMark [23].

The synthetic documents generated with NITF (New Industry Text Format) DTD [24] are

attribute-abundant, text-few and structure-complex. XMark documents have relatively simple

structures with heavy textual content and deeply nested levels for some elements.

Both synthetic and real queries are used in our experiments. The real query set is obtained

from the XMark query benchmark, which provides about 40 queries for auction data. The

synthetic query set is obtained from YFilter XPath generator, which generates queries ac-

cording to the parameters of query lengths, wildcard probabilities, predicate probabilities and

other options. In our experiment, we set a group of default parameters to generate different

queries, in which the probabilities of “∗”, “//”, “[]” and “[[. . .]]” are 0.1, 0.1, 0.05 and 0.05,

respectively. We also generate100 to 3000 queries with respect to XMark DTD and NITF

DTD. In our system, the average compression ratio of XMark and NITF XML documents are

47.3% and 65.4%, respectively. The features of these two kinds documents are summarized

in Table 1.

The objectives of our experiments are threefold. The first is to study the performance of

building SQIT and processing queries in our system. The results are presented in Sections

7.2 and 7.3. The second is to evaluate the advantage of processing queries directly on com-

pressed data, our approach is compared with SAXON and YFilter in Sections 7.4 and 7.5.

26

The comparison is based on the time spent on evaluation and result compression for SAXON

and YFilter, and the time spent on building SQIT and the query evaluation in our approach.

The third is to test the efficiency of the whole network in terms of output ratio, waiting time

and network profit. The results are presented in Section 7.6.

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

No. of Queries

B
ui

ld
in

g
T

im
e

(s
)

Figure 10: Building Time of SQIT

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60

Size of NITF Doc.(KB)

Pr
oc

es
si

ng
 T

im
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

H
it

R
at

io

Nested_T Predicates_T Mixed_T Linear_T

Nested_HR Predicates_HR Mixed_HR Linear_HR

Figure 11: Performance on Four Query Types

7.2 The Building Performance of SQIT

This experiment is designed to study the performance of Algorithm 2 with respect to the

synthetic queries. We first generate queries by YFilter path generator with default parameters

and then test the CPU cost of the algorithm with different numbers of queries. The building

time includes the cost of checking the containment relationship between subscribed queries,

transforming complex queries into SXP and constructing the structure of SQIT trees.

The results are given in Figure 10. The time for building SQIT is roughly linearly scalable

to the number of subscribed queries. In addition, the building time is less than 2.5 seconds,

even with 1000 queries. Compared with the time needed for processing XPath queries over a

large-scale XML document, this once-off construction time is reasonable.

7.3 Performance of Query Evaluation

This experiment is designed to study the performance of the query evaluation with respect to

different data sets and a variety of queries. The performance of the query evaluation on both

NITF and XMark documents are tested against a range of significant parameters of document

size, query type, query number and query length.

27

7.3.1 Query Evaluation over NITF

Over the NITF document, four groups of queries generated by the YFilter Query Generator

are used. Each group has 1000 queries. The query type of the first group is called “Linear”,

which contains only “∗” and “//”. The second one is called “Nested”, which contains “∗”, “//”

and nested “[]”. The third one is called “Predicates”, which contains “∗”, “//” and predicate

expressions like “[@id = 1]”. The fourth one is called “Mixed”, which consists of the previous

three query types.

When evaluating queries over compressed documents, the branch queries require lots of

intermediate results to be cached. Descendant components will be evaluated repeatedly in

each fragment that is satisfied by its preceding components. Predicates require not only struc-

ture matching, but also the value validation, which needs checking the text compressed by the

dictionary encoder.

Figure 11 presents the Hit-Ratio (HR), determined by the fraction,the number of matched queries
total number of queries

,

and the query processing timeT (bar charts) on four groups of queries. Note that the queries

are generated by YFilter query generator, and some of these queries do not match input doc-

uments. Thus,HR has impact onT and the evaluation efficiency will be influenced by the

document size, query type, and hit-ratio. “Linear” queries have the highestHR (denoted

asLinear HR) and the processing time is the longest one because the descendant compo-

nents in linear queries are checked repeatedly. Although “Mixed” queries are more com-

plex than “Predicates” and “Nested” queries, the HR value for “Mixed” queries (denoted as

Mixed HR) is not much higher than its counterparts. In a nutshell, the time spent on evalu-

ating 1000 mixed queries with a 10% HR is limited into 1.5 seconds for all documents.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100 200 300 400 500

Size of NITF Doc.(KB)

P
ro

c
e
ss

in
g

 T
im

e
 p

e
r

H
it

(s
)

3000 2000 1000

Figure 12: Performance on Query Number

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Size of XMark Doc.(MB)

Pr
oc

es
si

ng
 T

im
e

(s
)

Long queries Short queries

Figure 13: Performance on Query Length

28

In Figure 12, we use1000, 2000, and 3000 complex queries to evaluate NITF docu-

ments ranging from100KB to 500KB. In this experiment, we use the metric,PTH =

Processing T ime
Hit Number

, to observe the impact of query length and document size on performance of

our SQIT approach. ThePTH indicates the time spent on matching one query out of dif-

ferent groups and across different-size documents. As Figure 12 shows, thePTH value for

the group of3000 queries is the highest, and that for the group of2000 queries takes the sec-

ond place. When the document size doubles, thePTH is roughly twice of the original one.

However, with a double number of queries, the time spent on evaluating a query is far less

than twice of the processing time. The efficiency of our approach is affected less by the query

number than by the document size. This finding is encouraging, since our main goal is to

process a heavy load of subscribed queries as a whole on compressed documents.

7.3.2 Query Evaluation over XMark

This experiment is to study the impact of query length of an XMark document, which has

a larger size than an NITF document. The group with four tags on average is classified as

“Short” queries, and the one with ten tags is classified as “Long” queries. Each group has

1000 queries. The short queries get results from the document and the long queries get a90%

match.

Figure 13 illustrates the impact of query length on query processing. The processing time

of the long queries is comparable to the processing time of the short queries. Our approach is

found to be scalable to document size for both short and long queries. The time for evaluating

1000 queries of the two groups on a10MB compressed document is less than50 seconds in

real time, which is acceptable since the system returns the exact and compressed results for

the queries.

7.4 Comparison with SAXON

SAXON [26] is one of the commonly used XPath processors. We now compare the process-

ing time of our approach with the processing time of SAXON. The processing time of our

29

0

20
40

60

80

100
120

140

1 2 3 4 5 6 7
Size of XMark Doc.(MB)

Pr
oc

es
si

ng
 T

im
e

(s
)

0

50

100

150

200

SAXON_Evaluation SQIT_Evaluation

SAXON_Compress SQIT_Build

Figure 14: SQIT Vs. SAXON

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Size of NITF Doc.(KB)

Pr
oc

es
si

ng
 T

im
e

(s
)

SQIT Filter YFilter

Figure 15: SQIT Vs. YFilter

approach,TSQIT , can be defined as follows:

TSQIT = TSQIT Building + TSQIT Evaluation. (5)

We also test100 complex mixed queries and the following equation,

TSAXON = TSAXON Evaluation + TResult Compression, (6)

is used to compute the processing time of SAXON. Then the output results obtained from

SAXON and SQIT are both under compression.

The size of the XMark documents ranges from1MB to 7MB. As shown in Figure 14,

SQIT has a stable performance on both query evaluation and its building cost is very small for

various document sizes. For the processing time of small size documents, SQIT is comparable

to SAXON, since our approach needs to traverse the SQIT tree. However, the system greatly

outperforms SAXON when the document size increases.

7.5 Comparison with YFilter

Our system can also be used in content-based XML filtering applications. This experiment

shows the performance of our approach when comparing it with YFilter [2]. In the experi-

ment, SQIT is regarded as a filter to find the first matched tag for each query. Here, the size

of the NITF data ranges from1KB to 10KB, which is small but common in XML filter-

ing applications. Queries are limited to1000 complex queries generated by the YFilter path

generator.

As Figure 15 shows, our approach takes nearly twice as much time as YFilter. The reason

is that, when finding matched tags for each query, the non-leaf nodes should be evaluated

30

repeatedly until all of its children are satisfied. On the other hand, our approach can find the

matched elements, which is a fragment of the whole document, whereas YFilter only gives

the answer “Yes” or “No” for each document. The results obtained from SQIT are small and

the bandwidth is reduced. This indicates another advantage of our approach.

Our approach is shown to be a feasible approach for content-based filtering in this ex-

periment. Although our approach consumes some time overhead, the benefits gained from

bandwidth savings is significant. Taking both processing time and result publishing time into

consideration, SQIT is comparable to YFilter on time. Note that we can obtain a compressed

query result, whereas the size of the documents published by YFilter is nearly60 times larger

than the size of compressed results obtained from our approach.

7.6 Profit of the Whole Network

In this subsection, we compare our approach with an approach that does not make use of SQIT

to explore the containment relationship, where the server takes the responsibility to forward

each query result to its corresponding clients. The comparison focuses on the following three

aspects, the workload of the server, the average waiting time for clients, and the cost savings

for the whole network. The experiments are conducted in a simulated distributed architecture,

where the client number is set to 1000, and each client submits one query.

In order to gain a better insight into the benefits of our approach, we compare our approach

with a simple strategy, which has neither SQIT nor cooperation among clients. For each

submitted query, the server directly evaluates on the original XML document. Here, we adopt

SAX as a parser to parse the document and then obtain the matched results for queries. The

size of the XML document used in this experiment is fixed at one MB.

7.6.1 Workload of Server

We study the efficiency of our approach in reducing the server’s workload during result publi-

cation. Figure 16 shows the size of the output for the two situations. The one marked “server”

is the size of the server’s output with our approach. As intermediate clients share the publica-

tion load of the server, their output is very limited and stable even with 1000 queries. But for

the simple strategy, which is marked as “Total”, the server has to forward all the query results

31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200 300 400 500 600 700 800 900 1000

No. of Clients

O
ut

pu
t S

iz
e

(M
B

)
0.8

0.85

0.9

0.95

H
it

R
at

io

Server Total HitRatio

Figure 16: Output Comparison

directly to the clients. In this case, even if the results are compressed data, their total output

size is still very large.

As shown in Figure 16, when the client number is small and there is a low containment

ratio existing among queries, most of the results should be published by the server. In this

case, the advantage of our approach is not so obvious as that of having more queries. When

the client number increases, the containment ratio also increases. As a result, the publication

load of the server will be shared by the intermediate clients. Thus, the server’s load in the

whole network is reduced.

7.6.2 Comparison with a Simple Strategy

In a distributed server-client network, the performance of a system is determined not only by

the query processing time, but also by the publishing time of the results or the response time to

the client. The parameteraverage waiting timegiven below is used to determine the average

response time for a client to receive the query result.

Average Waiting T ime =

∑n
i=1 (Tfi

− Ts)

n
, (7)

whereTfi
is the time when theith client finishes receiving its result,Ts is the time the server

begins to publish the first result, andn is the number of clients.

As shown in Figure 17, the server evaluates queries in a linear fashion when using the

simple strategy. Thus, the waiting time for clients increases linearly with the total number of

clients which submit queries. In our approach, query results are published by both the server

and intermediate clients in a multi-thread fashion. As a result, the average waiting time for

32

clients is stable when the query number becomes larger. In addition, the reduced size of the

results by compression in our approach enhances the overall performance.

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500 600 700 800 900 1000

No. of Clients

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(s

)
.

SQIT Simple

Figure 17: Average Waiting Time for Clients

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

No. of Queries

Sa
vi

ng
s

R
at

io

Figure 18: Savings Ratio of Processing Cost

7.6.3 Overall Cost Savings

We have already demonstrated how the performance of our system can be enhanced by ex-

ploiting the containment relationships existing in submitted queries. The worst case is that no

containment can be used and the server has to evaluate and publish all results as the simple

strategy. However, under this case, we still have the advantage of bandwidth savings due to

the reduced size of the compressed answer. The cost in the worst case,W , can be calculated

as follows:

W =
n∑

i=1

(Tpi + Tri), (8)

whereTpi andTri indicate the query processing time and result publication time for theith

client, respectively.

The cost of our approach can be computed as follows:

A = TSQIT + Tp +
n∑

i=1

Tri, (9)

whereTSQIT is the building time of the SQIT specified in Algorithm 2,Tp is the query

processing time of the system as specified in Algorithm 5, andTri denotes the time of result

publication to theith client.

We establish a parameter, thesavings ratio, given as follows:

Savings Ratio =
W − A

W
. (10)

33

The savings ratio for querying on the XMark document in our approach is shown in Figure

18. When the number of clients increases, the containment ratio also increases, as does the

savings ratio. Because intermediate clients help the server to publish the contained results

in our approach, the response time of the whole network decreases. Figure 18 shows an

interesting phenomenon that the efficiency of the query processing even improves as more

clients participate in querying and distributing query results.

8 Conclusions

In this paper, a holistic approach is presented for processing a heavy load of subscribed queries

efficiently over compressed XML documents in a cooperative distributed environment. Effi-

cient query evaluation techniques are proposed to process multi-queries in a dynamic environ-

ment. The underlying idea is to utilize XML compression technologies to process the queries

as a whole directly across the compressed data, rather than process the queries with a demand-

driven decompression. From a technical perspective, we exploit containment relationships

between queries to publish compressed XML results in order to reduce the bandwidth. We

develop two efficient data structures, SXP and SQIT, to handle XPath queries as well as dy-

namic updates of subscribed queries. The dynamic maintenance issues of queries and clients

have also been taken into account in our system as well. From the empirical perspective, we

have conducted comprehensive experiments, which show that our approach is efficient for

compressed XML date dissemination. There are two interesting extensions to this work. One

is the scope of queries could be further extended to include more expressive XML queries

such as XPath/XQuery Full-Text [20]. Another orthogonal problem related to fast informa-

tion dissemination is to exploit the use of caches to offer support for sharing of compressed

XML data that have been obtained with clients.

References
[1] Tolani, P. M., Haritsa, J. R.: XGRIND: A Query-Friendly XML Compressor. In Proc. of the 18th ICDE

(2002) 225–234.

[2] Diao, Y., Rizvi, S., Franklin., M. J.: Towards an Internet-Scale XML Dissemination Service. In Proc. of the
30th VLDB (2004) 612–623.

34

[3] Diao, Y., Altinel, M., Franklin, M. J., et al.: Path Sharing and Predicate Evaluation for High-Performance
XML Filtering. ACM Trans. Database Sys. (2003) 467–516.

[4] Liefke, H., Suciu, D.: XMill: An Efficient Compressor for XML Data. In Proc. of SIGMOD (2000) 153–
164.

[5] Miklau, G., Suciu, D.: Containment and Equivalence for an XPath Fragment. Journal of the ACM. Vol. 51
No. 1 (2004) 2–45.

[6] Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction, DTDs and Variables. In Proc.
of ICDT (2003) 315–329.

[7] Min, J., Park, M., Chung, C.: XPRESS: A Queryable Compression for XML Data. In Proc. of SIGMOD
(2003) 22–33.

[8] Cheng, J., Ng, W.: XQzip: Querying Compressed XML Using Structural Indexing. In Proc. of EDBT (2004)
219–236.

[9] Bruno, N., Gravano, L., Koudas, N., et al.: Navigation- vs. Index-Based XML Multi-Query Processing. In
Proc. of the 19th ICDE (2003) 139–150.

[10] Ng, W., Lam, Y. W., Wood, P., et al.: XCQ: A Queriable XML Compression System. In Proc. of WWW
(2003).

[11] Ng, W., Lam, Y. W., Cheng, J.: Comparative Analysis of XML Compression Technologies. World Wide
Web Journal (2006), Vol. 9, No. 1, 5-33.

[12] Qun, C., Lim, A., Win, K.: D(k)-Index: An Adaptive Structural Summary for Graph-Structured Data.
SIGMOD (2003) 134–144.

[13] Jiang, H., Lu, H., Wang, W., et al.: XR-Tree: Indexing XML Data for Efficient Structural Joins. In Proc.
of ICDE (2003) 253-263.

[14] Amer-Yahia, S., Koudas, N., Marian, A., et al.: Structure and Content Scoring for XML. In Proc. of VLDB
(2005) 361–372.

[15] Kaushik, R., Krishnamurthy, R., Naughton, J., et al.: On the integration of structure indexes and inverted
list. In Proc. of SIGMOD (2004) 779–790.

[16] James, C.: Compressing XML with multiplexed hierarchical models. In Proc. of IEEE Data Compression
Conference (2001) 163–172.

[17] Gong, X., Qian, W., Yan, Y., et al.: Bloom Filter-based XML Packets Filtering for Millions of Path Queries.
In Proc. of ICDE (2005) 890–901.

[18] Chen, Y., B. D., Susan, Zheng, Y.: BLAS: An Efficient XPath Processing System. In Proc. of SIGMOD
(2004) 47-58.

[19] Ripeanu, M., Foster, I., Iamnitchi, A., Mapping the Gnutella Network. IEEE Internet Computing Jour-
nal(2002, Vol.6, No.1) 50-57

[20] XQuery 1.0 and XPath 2.0 Full-Text. http://www.w3.org/TR/2005/WD-xquery-full-text-20051103.

[21] XPath. http://www.w3.org/TR/xpath20/.

[22] XML. http://www.xml.com/.

[23] XMark. http://www.xml-benchmark.org.

[24] NITF. http://www.nitf.org/index.php.

[25] IBM XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

[26] SAXON. http://saxon.sourceforge.net.

35

