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Abstract. In this paper, we study the incremental update of Frequent

Closed Itemsets (FCIs) over a sliding window in a high-speed data stream.
We propose the notion of semi-FCIs, which is to progressively increase
the minimum support threshold for an itemset as it is retained longer
in the window, thereby drastically reducing the number of itemsets that
need to be maintained and processed. We explore the properties of semi-
FCIs and observe that a majority of the subsets of a semi-FCI are not
semi-FCIs and need not be updated. This finding allows us to devise
an efficient algorithm, IncMine, that incrementally updates the set of
semi-FCIs over a sliding window. We also develop an inverted index to
facilitate the update process. Our empirical results show that IncMine
achieves significantly higher throughput and consumes less memory than
the state-of-the-art streaming algorithms for mining FCIs and FIs. In-
cMine also attains high accuracy of 100% precision and over 93% recall.

1 Introduction

Recently, the increasing prominence of data streams has led to the study of online
mining of Frequent Itemsets (FIs), which is an important mining task for a wide
range of applications (Garofalakis et al., 2002), such as web log and click-stream
mining, network traffic analysis, trend analysis and fraud/anomaly detection in
telecom data, e-business, stock market analysis, and sensor networks. With the
rapid emergence of these new application domains, it has become increasingly
demanding to discover interesting trends, patterns and exceptions over high-
speed data streams.

Mining FIs (Agrawal et al., 1993) is fundamental to many important data
mining tasks, such as associations and correlations, and has been studied ex-
tensively with static datasets. However, mining data streams poses many new
challenges. First, it is unrealistic to keep the entire stream in main memory
or even in secondary storage, since a data stream comes continuously and the
amount of data is unbounded. Second, traditional methods of mining over stored
datasets by multiple scans are infeasible since the streaming data is passed only
once. Third, mining streams requires fast, real-time processing in order to keep
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up with the high data arrival rate and mining results are expected to be avail-
able within very short response time. In addition, the combinatorial explosion of
itemsets exacerbates stream mining in terms of both memory consumption and
processing efficiency.

Previous work (Manku and Motwani, 2002; Li et al., 2004; Yu et al., 2004) on
stream mining has studied mining an approximate set of FIs, with an error bound,
over the entire history of a stream without distinguishing recent itemsets from
old ones. However, the importance of an itemset in a stream usually decreases
with time and many applications only focus on the most recent patterns. For
example, the detection of network intrusions is based on changes of the frequent
patterns in the prior few minutes. Therefore, other existing work has placed
greater importance on recent data by either adopting a sliding window model
(Lee et al., 2001; Chang and Lee, 2004; Chi et al., 2004; Jiang and Gruenwald,
2006) or discounting the importance of old itemsets exponentially as time goes
on (Chang and Lee, 2003; Giannella et al., 2004).

All the above-mentioned work, except (Chi et al., 2004; Jiang and Gruenwald,
2006), focuses on mining FIs. However, the set of FIs is often too large for the
mining to be efficient. In (Pasquier et al., 1999), the notion of Frequent Closed

Itemsets (FCIs), which are FIs that have no proper superset with the same
support (i.e., occurrence frequency), is introduced. The set of FCIs is a complete

and non-redundant representation of the set of FIs and, as reported by Zaki
(2000), the former is often orders of magnitude smaller than the latter. This
significant reduction in the size of the result set leads to faster speed and less
memory consumption in mining FCIs instead of FIs. In addition, the set of FCIs
also enables the generation of non-redundant association rules (Zaki, 2000).

In this paper, we study the problem of incrementally updating the set of FCIs
over a sliding window. The sliding window is composed of a sequence of time
units. Each time unit receives a variable number of transactions, from which a
set of local FCIs is computed and then used to update the set of global FCIs over
the entire sliding window. We highlight the main issues that we address in this
paper as follows.

First, in the stream setting, an infrequent itemset may become frequent later
on. To avoid wrongly discarding such an itemset, previous methods (Manku and
Motwani, 2002; Chang and Lee, 2003; Giannella et al., 2004; Li et al., 2004;
Chang and Lee, 2004) use a relaxed minimum support threshold to keep an extra
set of infrequent itemsets that have a high potential to become frequent later.
However, the size of this extra set is often too large if we want to obtain more
accurate answers. We propose the notion of semi-FCIs, which is to progressively
increase the minimum support threshold for an itemset as it is retained longer
in the window. If an itemset has low support when it first arrives in the stream,
we will require its support to become higher later to compensate for its low
support observed earlier. Thus, we do not use the relaxed minimum support
threshold throughout the stream as do in the previous studies. This allows us
to effectively identify and drop the unpromising itemsets, thereby drastically
reducing the number of itemsets that need to be kept and processed.
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Second, we propose a novel algorithm, called IncMine, to incrementally up-
date a set of semi-FCIs over a sliding window. Since an FCI may become non-
closed and an FI may become an FCI as the window slides, we essentially need
to keep track of all FIs. This is inefficient since the number of FIs is significantly
larger than that of FCIs, as evidenced in (Pasquier et al., 1999; Zaki, 2000; Zaki
and Hsiao, 2002; Wang et al., 2003). We explore the properties of semi-FCIs and
find that the status of an itemset can be determined by simply investigating the
relationship between the semi-FCIs over two consecutive slides. This important
finding also indicates that only a small portion of the subsets of a semi-FCI in
the current window will become semi-FCIs in the window at the next slide; as a
consequence, the majority of the FIs do not need to be updated. Based on this,
we devise our algorithm IncMine, which efficiently performs the incremental up-
date of semi-FCIs by pruning a large portion of the subsets of a semi-FCI that
will not be semi-FCIs.

Third, we design an inverted index to facilitate the update process. We show
that the prefix tree structure, which is commonly used in mining both FIs and
FCIs, is not efficient in processing some update operations such as the search
for a semi-FCI that is the smallest proper superset of an itemset. We therefore
propose an inverted index structure to store the semi-FCIs and we show that the
inverted index not only supports efficient processing of the update operations,
but is also space efficient.

Finally, we evaluate the performance of IncMine by extensive experiments.
The results show that IncMine achieves throughput that is up to orders of mag-
nitude higher than the state-of-the-art stream mining algorithms, Moment (Chi
et al., 2004) and a variant of Lossy Counting (Manku and Motwani, 2002; Chang
and Lee, 2004) that incrementally updates a set of FIs over a sliding window.
IncMine also consumes significantly less memory than do the other algorithms.
Although IncMine computes approximate answers, we show that IncMine attains
very high accuracy of 100% precision and over 93% recall.

Organization. This paper is organized as follows. Section 2 discusses the related
work and Section 3 gives the preliminaries of mining FCIs over a sliding window.
Section 4 presents the notion of semi-FCIs. Section 5 discusses the algorithm
IncMine. Section 6 describes the inverted index structure. Section 7 reports the
experimental results and Section 8 concludes the paper.

2 Related Work

We limit our discussion to mining FIs and FCIs over data stream. To our knowl-
edge, mining FCIs over data streams is only studied by Chi et al. (2004) and
Jiang and Gruenwald (2006). Their methods incrementally update the set of
FCIs over a sliding window whenever a new transaction comes into or an old
one leaves the window. This update-per-transaction is not efficient for handling
streams with a high arrival rate, as shown by our experiments. However, their
methods compute the exact set of FCIs, which is a desirable feature to appli-
cations requiring accurate answers. In contrast, our objective is to obtain high
throughput for high-speed streams, at the expense of slightly lowered accuracy.
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Other existing work mainly focuses on mining FIs. Approaches that also
favor recent data to older data include (Lee et al., 2001; Chang and Lee, 2004;
Chang and Lee, 2003; Giannella et al., 2004). Lee et al. (2001) compute the
exact set of FIs over a sliding window. Their method scans the entire window
at each slide and is more suitable for offline processing. Chang and Lee (2004)
adopt the sliding window model to mine recent FIs based on the estimation
mechanism of Lossy Counting (Manku and Motwani, 2002). Chang and Lee
(2003) also develop an approximate algorithm that uses a decay rate to diminish
exponentially the effect of old transactions on the mining result. Giannella et al.
(2004) adopt a tilted-time window model (Chen et al., 2002) to incrementally
update an approximate set of FIs at multiple time granularities to answer time-
sensitive queries.

Other approaches (Manku and Motwani, 2002; Li et al., 2004; Yu et al., 2004)
aim at mining FIs over the entire history of a stream. Manku and Motwani
(2002) propose to approximate the set of FIs and use a user-specified error
threshold to control the quality of the approximation. Li et al. (2004) design a
prefix-tree-based data structure that computes an approximate set of FIs with
bounded memory usage. Yu et al. (2004) adopt the Chernoff bound to develop
false-negative oriented mining algorithms that can control the bound of memory
usage and the quality of the approximation by predefined parameters.

3 Preliminaries

Let I = {x1, x2, . . . , xm} be a set of items. An itemset (or a pattern) is a subset
of I. A transaction, X, is an itemset and X supports an itemset, Y , if X ⊇ Y .
A transaction data stream is a sequence of incoming transactions. We denote a
time unit in the stream as ti, within which a variable number of transactions
may arrive. A window or a time interval in the stream is a set of successive time
units, denoted as T = 〈ti, . . . , tj〉, where i ≤ j, or simply T = ti if i = j. A
sliding window in the stream is a window of a fixed number of time units that
slides forward for every time unit. In this paper, we use tτ to denote the current

time unit. Thus, the current window is W = 〈tτ−w+1, . . . , tτ 〉, where w denotes
the size of W , i.e., the number of time units in W .

We define trans(T ) as the set of transactions that arrive on the stream in
a time interval T and |trans(T )| as the number of transactions in trans(T ).
The support of an itemset X over T , denoted as sup(X,T ), is the number of
transactions in trans(T ) that support X. Given a predefined Minimum Support

Threshold (MST), σ (0 < σ ≤ 1), we say that X is an FI over T if sup(X,T )
≥ σ|trans(T )|. X is a Frequent Closed Itemset (FCI) over T if X is an FI over T
and there exists no Y such that Y ⊃ X and sup(Y, T ) = sup(X,T ). If X ⊃ Z and
sup(X,T ) = sup(Z, T ), where X is an FCI over T , we denote the relationship
between X and Z as X ⊐

T Z, or equivalently, Z ⊏
T X.

Given a transaction data stream and an MST, the problem of FCI mining

over a sliding window in the stream is to find the set of all FCIs over the window

at each slide.
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Example 1 Table 1 records the transactions that arrive in the stream in two
successive windows, W1 = 〈t1, t2〉 and W2 = 〈t2, t3〉. For brevity, an itemset {a,
b, c, d} is written as abcd. If the minimum support required is 2 (i.e., σ = 2

5 in
both windows), then the set of FCIs over W1 and W2 are {abcd, abc, bc} and
{abcd, abc, a}, respectively. For example, bc is an FCI over W1 since sup(bc,
W1) = 5 and no proper superset of bc has the same support as bc over W1;
however, bc is not an FCI over W2 since bc ⊏

W2 abc. Also note that there are
15 FIs over both windows, that is, all non-empty subsets of abcd. 2

t1 t2 t3

abcd abc abcd

abcx abcd az

bcy abc

Table 1. Transactions in a Stream of Three Time Units

4 Semi-Frequent Closed Itemsets

An itemset may be infrequent at some point in a stream but becomes frequent
later. Since there are exponentially many infrequent itemsets at any point in
a stream, it is infeasible to keep all infrequent itemsets. Suppose we have an
itemset X which becomes frequent after time t. Since X is infrequent before t,
the support of X in the stream before t is lost. A common approach (Manku and
Motwani, 2002; Li et al., 2004; Chang and Lee, 2004) to estimate X’s support
before t is to use an error parameter, ǫ, where 0 ≤ ǫ ≤ σ. X is maintained in
the window as long as its support is at least ǫN , where N is the number of
transactions in the current window. Thus, if X is kept only after t, the support
of X before t is at most ǫN . However, the use of ǫ leads to a dilemma. A small
ǫ gives an estimated support close to the true support. Unfortunately, a small
ǫ also results in a large number of itemsets to be processed and maintained,
thereby drastically increasing the memory consumption and severely degrading
the processing efficiency. To tackle this problem, we consider ǫ as a relaxed MST

and propose to progressively increase the value of ǫ for an itemset as it is retained
longer in the window.

We use the relaxed MST ǫ = rσ, where r (0 ≤ r ≤ 1) is the relaxation rate,
to mine FCIs over each time unit t in the sliding window. Since all itemsets
whose support is less than rσ|trans(t)| are discarded, we define the approximate

support of an itemset as follows.

Definition 1 (Approximate Support) The approximate support of an itemset
X over a time unit t is defined as

s̃up(X, t) =

{
0 if sup(X, t) < rσ|trans(t)|
sup(X, t) otherwise.

The approximate support of X over a time interval T = 〈tj , . . . , tk〉 is defined as
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s̃up(X,T ) =

k∑

i=j

s̃up(X, ti). 2

Based on the approximate support of an itemset, we apply a progressively

increasing MST function to define a semi-frequent closed itemset.

Definition 2 (Semi-Frequent Closed Itemset) Let W = 〈tτ−w+1, . . . , tτ 〉
be a sliding window of size w and T k = 〈tτ−k+1, . . . , tτ 〉 be the most recent k
time units in W , where 1 ≤ k ≤ w.

Given a non-decreasing function, minsup(k), where ∀k ∈ {1, . . . , w}, 0 ≤
minsup(k) ≤ σ|trans(T k)|, an itemset X is a semi-FI over W if ∃k such that
s̃up(X,T k) ≥ minsup(k). X is a semi-frequent closed itemset (semi-FCI) over
W if X is a semi-FI and ∄Y ⊃ X such that s̃up(Y, T k) = s̃up(X,T k). X is
called a k-semi-FCI if X is a semi-FCI and k is given by MAX{k : s̃up(X,T k) ≥
minsup(k)}.

Let X be a k-semi-FCI. If X ⊃ Y and s̃up(X,T k) = s̃up(Y, T k), we denote
the relationship between X and Y as X ⊐

W Y or Y ⊏
W X (or more precisely,

X ⊐
T k

Y or Y ⊏
T k

X). 2

Definition 3 (MST Function) We define a progressively increasing MST func-

tion, minsup(k), as follows:

minsup(k) =
⌈
mk × rk

⌉
,

where mk = σ
∣∣trans

(
T k

)∣∣ and rk =
(

1−r
w

)(
k − 1

)
+ r. 2

The term mk in the function minsup(k) in Definition 3 is the minimum
support required for an FI over T k, while the term rk progressively increases the
relaxed MST at the rate of (1−r

w
) for each older time unit in the window. We

keep an itemset in the window only if the approximate support of the itemset
over T k is no less than minsup(k) for some k ∈ {1, . . . , w}. Meanwhile, for each
semi-FCI X, we always compute the maximum k at which X is a k-semi-FCI.

We remark that k is relative to the specific window at each slide and the
approximate support of a semi-FCI X over 〈tτ−w+1, . . . , tτ−k〉 is considered as
unpromising and discarded. When we re-compute the value of k for the window
at the next slide, the approximate support of X over 〈tτ−w+1, . . . , tτ−k〉 will be
taken as 0.

We illustrate the concept of semi-FCIs by the following example.

Example 2 Let σ = 0.01, r = 0.1 and w = 10. We assume a uniform input
rate of 2,000 transactions in each time unit. We consider 11 time units that
constitute to the windows for the following two slides, W1 = 〈t1, . . . , t10〉 and
W2 = 〈t2, . . . , t11〉. Table 2 shows the value of minsup(k), for 1 ≤ k ≤ 10, and
the support of two itemsets, ab and cd, over each time unit.

We first discuss the method used by the state-of-the-art algorithm Lossy

Counting (Manku and Motwani, 2002; Chang and Lee, 2004), which is the
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k 10 9 8 7 6 5 4 3 2 1

minsup(k) 182 148 117 90 66 46 30 17 8 2

Time Unit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
sup(ab,ti) 3 1 2 3 2 1 4 7 11 19 21
sup(cd,ti) 3 11 20 29 11 8 17 28 37 41 39

Table 2. Two Sample Semi-FCIs

baseline of comparison with our approach in our experiments. Once an item-
set is discovered as frequent over some time unit ti, Lossy Counting keeps the
itemset as far as its overall support is no less than rσ|trans(〈ti, . . . , tτ 〉)|. Since
rσ|trans(W1)| = rσ|trans(W2)| = 20, which is small, both ab and cd are re-
tained in W1 and W2, even though the support of ab over some time units is
very low. In particular, the support of ab is 1 over t2 and t6 but ab is still mined.
Mining itemsets with minimum support 1 means mining all itemsets, which is an
extremely expensive operation, since the number of all itemsets is prohibitively
large. Although we only need to consider those itemsets that have already been
discovered, the number of such itemsets is still very large when σ is small.

With the progressively increasing MST, the support of ab over any two con-
secutive time units within 〈t1, . . . , t6〉 is always less than minsup(2) = 8. For
ab to be frequent over W1 or W2, its support must increase rapidly from t7 to
t11, which is unlikely given the low support of ab in the past. Thus, the support
of ab over 〈t1, . . . , t6〉 are regarded as unpromising and discarded. Although the
trend in the support of ab from t7 to t11 shows that ab may become frequent
after a few window slides, at that time the first few time units will have expired
anyway. Therefore, it is reasonable that we require the support of ab to increase

progressively as it is retained longer in the window. In this way, ab is only kept
from t7 and afterwards. Indeed, the support of ab over these most recent time

units is more likely to contribute to the overall support of ab should it become

frequent later.
The support of cd over all time units in both W1 and W2 is always greater

than the corresponding minsup(k), for k = 1, . . . , 10. However, cd also has some
low support over a few time units. These low support records are not discarded

since they are compensated with the high support of cd over other time units. 2

4.1 Quality of Approximation

We propose to incrementally update the set of all k-semi-FCIs over a sliding
window and return those k-semi-FCIs whose approximate support is no less
than σ|trans(W )| as the mining result for the window W at each current slide.
We analyze the quality of the approximation on the mining result returned.

The error bound of the approximate support of a k-semi-FCI X over T k,
s̃up(X,T k), is described as follows:

(sup(X,T k) − E) ≤ s̃up(X,T k) ≤ sup(X,T k), (1)

where E =
∑

i∈I

(
rσ

∣∣trans(ti)
∣∣ − 1

)
and I = {i : (τ − k + 1 ≤ i ≤ τ) ∧

(s̃up(X, ti) = 0)}.
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Note that s̃up(X, ti) = 0 implies that X is infrequent over ti. Thus, the true
support of X over ti is at most (rσ|trans(ti)| − 1).

Replacing rσ with ǫ and |trans(T k)| with Nk, we obtain an upper bound for
the maximum support error E as follows:

E < ǫNk (2)

In most cases (except for skewed data distribution which is addressed in
Section 4.2), |I| is small (otherwise, X would not satisfy the requirement of a k-
semi-FCI). More importantly, the k for most k-semi-FCIs over a window is equal
to w, implying that |I| is even smaller since no unpromising support is discarded
for a w-semi-FCI. Thus, in most cases, we have E ≪ ǫNk. When k = w, we
have E ≪ ǫN , where N = |trans(W )|. We remark that ǫN is the maximum
support error bound of most existing approximate stream mining algorithms
(Manku and Motwani, 2002; Giannella et al., 2004; Li et al., 2004; Chang and
Lee, 2004). When k < w, E is in general larger since there is some loss in support
over the time interval 〈tτ−w+1, . . . , tτ−k〉. However, the support of the k-semi-
FCI over this time interval is considered unpromising and is expiring (this is
unlike in the landmark window (Manku and Motwani, 2002) where the support
of an itemset does not expire).

Our method is a false-negative approach (Yu et al., 2004). The set of false-
negatives is defined as {X : (s̃up(X,W ) < σ|trans(W )|) ∧ (sup(X,W ) ≥
σ|trans(W )|)}. If it happens that s̃up(X,W ) < σ|trans(W )| but sup(X,W ) ≥
σ|trans(W )|, then there exists some time unit ti in W such that s̃up(X, ti) =
0. Recall that s̃up(X, ti) = 0 only if sup(X, ti) < ǫ|trans(ti)| or s̃up(X, ti) is
unpromising and discarded. Thus, the true support of X over other time units in
W must be much greater such that we can still have sup(X,W ) ≥ σ|trans(W )|.
Therefore, we can deduce that false-negatives are mostly itemsets with skewed
support distribution over the stream, which can be addressed using a specific
minsup function. In most other cases, the number of false-negatives is small as
will be verified by our experiments in Section 7.

4.2 Characterizing the minsup Function

Different date streams have different characteristics and the characteristics of
a data stream may also vary over time. Thus, the minsup function described
in Definition 3 may not fit every data stream. However, we can employ specific
functions to fit specific data streams. For example, some patterns may occur less
frequently at the beginning but much more frequently towards the end of their
life time, e.g., data from an online auction; in this case, we can adopt a curve
that rises gently at the beginning, but more steeply after a certain point in time,
e.g., when the auction is about to close. We can explore the characteristics of
data streams to design tailor-made minsup functions, as well as apply techniques
of detecting changes in data streams (Kifer et al., 2004) to tune the minsup

functions to accommodate with the changes in streams over time.
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5 Incremental Update of Semi-FCIs

In this section, we investigate the properties of semi-FCIs and propose an efficient
algorithm, IncMine, to incrementally update the set of semi-FCIs over a sliding
window.

5.1 Problem Statement

From now on, we let tτ be the current time unit, WL = 〈tτ−w, . . . , tτ−1〉 and
WC = 〈tτ−w+1, . . . , tτ 〉 be the last window and the current window, respectively,
as depicted in Figure 1. We also let F , L and C be the set of semi-FCIs over tτ ,
WL and WC , respectively. Thus, “X ∈ F (similarly for L or C)” is equivalent to
“X is a semi-FCI over tτ (similarly for WL or WC)”.

t -w t -w+1 tt -1

time

WL

WC

Fig. 1. A Sliding Window

We also refer to the support and the approximate support of an itemset
interchangeably in the rest of the paper.

The task of incrementally updating the set of semi-FCIs over a sliding window

is to update L with F to give C, where F is generated with a relaxed MST rσ
by an existing non-streaming FCI mining algorithm (Pasquier et al., 1999; Zaki
and Hsiao, 2002; Wang et al., 2003). All k-semi-FCIs over WC that have support
no less than σ|trans(WC)| are then outputted as the result at each slide.

5.2 A Naive Update Algorithm

We first describe a naive algorithm for performing the incremental update of
semi-FCIs, which is shown in Algorithm 1.

Lines 1-8 of Algorithm 1 first update the support of each semi-FCI Y ∈ F
and the support of Y ’s subsets. Line 3 ensures that a subset X of Y is always
updated with X’s smallest superset in F , since only this superset has the same
support as X. For example, if ab and abc are both in F and a is not in F , then
s̃up(a,tτ ) = s̃up(ab,tτ ) > s̃up(abc,tτ ) and thus a is not updated with abc but
with ab. After the support of X over tτ is correctly updated (Line 4), if X is
not in L, we add X to L and retrieve its support over WL, except that over the
expired time unit tτ−w, from X’s smallest superset in L, if any, which has the
same support as X over WL (Lines 5-8).

After the support of all the itemsets has been updated, Lines 9-13 of the
algorithm verify whether an itemset X satisfies the requirement of being a semi-
FCI. X is removed from L if it is not a semi-FCI over WC ; otherwise, we keep
X in L after discarding its unpromising support records (Line 11). Finally, we
return the updated L as C (Line 14).
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Algorithm 1 NaiveUpdate(F ,L)

1. for each Y ∈ F do

2. for each X ⊆ Y do

3. if (∄Z ∈ F such that X ⊆ Z ⊂ Y )
4. s̃up(X, tτ )← s̃up(Y, tτ );
5. if (X /∈ L)
6. L← L ∪ {X};
7. if (∃Z ∈ L such that Z ⊐

WL X)
8. s̃up(X, ti)← s̃up(Z, ti), for τ − w + 1 ≤ i ≤ τ − 1;
9. for each X ∈ L do

10. k ← MAX {k : (1 ≤ k ≤ w) ∧ (s̃up(X, T k) ≥ minsup(k))};
11. delete s̃up(X, ti), ∀i < τ − k + 1;

12. if (∃Z ∈ L such that Z ⊃ X and s̃up(Z, T k) = s̃up(X, T k))
13. L← L− {X};
14. return C ← L;

5.3 Properties of Semi-FCIs

Algorithm 1 exhaustively enumerates every subset of each itemset in F (Lines
1-3). This wastes a great amount of processing power since a large number of
subsets of the semi-FCIs in F overlap. We show in the following lemma that we
can avoid repeatedly processing these common subsets.

Lemma 1 Let S be the set of FCIs over a time interval T . Given two FIs, X
and Y , over T . If Y ∈ S and X ⊏

T Y , then ∀Z ∈ S, if X ⊂ Z and Z 6= Y , then
Y ⊂ Z.

Proof. Suppose to the contrary that Y 6⊂ Z. By the assumption that X ⊂ Z and
Z 6= Y , it follows that ∃y such that y ∈ (Y − Z) and y 6∈ X. From X ⊏

T Y ,
we have sup(X,T ) = sup(Y, T ), which means that every transaction supporting
X also supports Y (and y). X ⊂ Z means that every transaction supporting Z
also supports X and hence Y (and y). Thus, we have Z ′ = Z ∪ {y} in every
transaction that supports Z, contradicting the assumption that Z is an FCI.
Therefore, Y ⊂ Z. 2

Lemma 1 is an application of Lemma 3.5 in (Pei et al., 2000) in our context.
Note that Lemma 1 can be directly applied to semi-FCIs, since it follows from
Definition 1 that the support of an itemset over a window obeys the additive
property of the support of the itemset over each time unit in the window.

Lemma 1 shows that for any semi-FI X that is not a semi-FCI over T , there
is a unique semi-FCI Y such that X ⊏

T Y and the size of Y is the smallest
among all semi-FCIs that are supersets of X. We call Y the Smallest semi-FCI

Superset (SFS) of X.
Recall that Lines 3-4 of Algorithm 1 make sure that an itemset X is updated

with either its SFS or itself (if X ∈ F ), since only X or its SFS has the same
support as X over tτ . The verification of SFS in Line 3 is costly since it scans F
once for each subset of Y ∈ F . However, if we modify Lines 1-2 of Algorithm 1 to
be Lines 1-2 of Algorithm 2, in which we order the semi-FCIs in F in ascending
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order of their sizes and process a larger subset of Y before a smaller one, we can
avoid the costly verification of SFS and the repeated processing of the common
subsets of the semi-FCIs in F , as proved by Lemma 2.

Algorithm 2 OrderedUpdate(F ,L)

1. for each Y ∈ F in size-ascending order do

2. for each X ⊆ Y in size-descending order do

3. if (X is updated)
4. skip X and all its subsets;
5. else

6-16. — Same as Lines 4-14 of Algorithm 1 —

Lemma 2 In Algorithm 2, if X has been updated previously, then all subsets
of X must have also been updated.

Proof. Line 1 of Algorithm 2 ensures that the SFS of an itemset is always ordered
before all other supersets of the itemset. Thus, an itemset is always first updated
with its SFS or itself. If a subset X of Y has been updated previously, then, by
Lemma 1, X must be updated with some Z that is ordered before Y in F , and
the subsets of X must also be updated with Z or some semi-FCI ordered before
Z in F . 2

For example, if abc and abcd are both in F , then abc (and all its subsets)
must be processed before we process abcd. Thus, when we process the subsets
of abcd, we can skip processing all itemsets that are subsets of abc.

Although Algorithm 2 avoids common subsets of the semi-FCIs in F being
repeatedly processed, it still processes every distinct subset of the semi-FCIs at
least once. The number of these distinct subsets is still very large, since an itemset
of size n has (2n − 1) nonempty subsets. According to (Zaki, 2000), the number
of FCIs is often orders of magnitude smaller than that of the corresponding FIs.
Therefore, the majority of the (2n − 1) subsets of a semi-FCI are not semi-FCIs.
Thus, a huge amount of memory and CPU power are used in processing the
non-semi-FCI subsets. The following theorem formally states the relationships
between the semi-FCIs in the sets F , L and C, and indicates that a large portion
of the subsets of a semi-FCI in F will not be a semi-FCI in C and thus these
subsets do not need to be updated.

Theorem 1 Given a semi-FI, X, over tτ ,

(a) If X ∈ F , then X ∈ C.

(b) If X /∈ F and X ∈ L, then X ∈ C if and only if ∃Y ∈ F such that
X ⊏

tτ Y ; ∃k ∈ {2, . . . , w} such that s̃up(X,T k) ≥ minsup(k); and ∀X ′,
where X ⊂ X ′ ⊆ Y , s̃up(X,T k) > s̃up(X ′,T k).

(c) If X /∈ F and X /∈ L, then X ∈ C if and only if ∃Y ∈ F\L such that
X ⊏

tτ Y ; ∃Z ∈ L such that X ⊏
WL Z and Y ∩Z = X; and ∃k ∈ {2, . . . , w}

such that s̃up(X,T k) ≥ minsup(k).
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Proof.

(a) If X ∈ F , then X is at least a 1-semi-FCI over WC . It thus follows that
X ∈ C.

In both Parts (b) and (c), we have X 6∈ F . Since X is a semi-FI over tτ , it
follows that ∃Y ∈ F such that X ⊏

tτ Y , which further implies that X cannot
be a 1-semi-FCI over WC and hence k 6= 1.

(b) (Only if) X ∈ C means that X is a k-semi-FCI over WC for some k ∈
{2, . . . , w}. By Definition 2, s̃up(X,T k) ≥ minsup(k) and ∀X ⊂ X ′, s̃up(X,T k) >
s̃up(X ′, T k).

(If) Since s̃up(X,T k) ≥ minsup(k) for some k ∈ {2, . . . , w}, it remains to
prove that ∀X ′ ⊃ X, s̃up(X,T k) > s̃up(X ′, T k). If X ⊂ X ′ ⊆ Y , we have
s̃up(X,T k) > s̃up(X ′,T k). Otherwise, if X ′ * Y , since X ⊏

tτ Y , we have
s̃up(X, tτ ) > s̃up(X ′, tτ ) and hence s̃up(X,T k) > s̃up(X ′, T k). Therefore, X ∈
C follows.

(c) (Only if) Since X 6∈ L and X ∈ C, then X is a semi-FI over WL, or otherwise,
s̃up(X,WL) = 0, implying that X ⊏

WC Y and thus X 6∈ C, which leads to a
contradiction. Therefore, ∃Z ∈ L such that X ⊏

WL Z.

Since X ∈ C, we have s̃up(X,T k) ≥ minsup(k), for some k ∈ {2, . . . , w}.

We now prove Y 6∈ L. Suppose to the contrary that Y ∈ L. Since X ⊏
WL Z,

we have either Y = Z or by Lemma 1, X ⊂ Z ⊂ Y . In either case, s̃up(X,T k)

=
∑τ−1

i=τ−k+1 s̃up(Z, ti) + s̃up(Y, tτ ) = s̃up(Z, T k), implying that X ⊏
WC Z and

hence X /∈ C, which leads to a contradiction.

Finally, we prove (Y ∩Z) = X. Since X ⊏
tτ Y and X ⊏

WL Z, we have X ⊂ Y
and X ⊂ Z, and hence X ⊂ (Y ∩Z) or X = (Y ∩Z). Suppose that X ⊂ (Y ∩Z).
Let X ′ = (Y ∩Z), we have X ⊂ X ′ ⊆ Z and X ⊂ X ′ ⊆ Y . Then s̃up(X ′, T k) =∑τ−1

i=τ−k+1 s̃up(Z, ti) + s̃up(Y, tτ ) = s̃up(X,T k), implying that X ⊏
WC X ′ and

hence X /∈ C, which leads to a contradiction. Thus, X = (Y ∩ Z).

(If) Since s̃up(X,T k) ≥ minsup(k) for some k ∈ {2, . . . , w}, it remains to
prove that ∀X ′ ⊃ X, s̃up(X,T k) > s̃up(X ′, T k). Suppose to the contrary that
∃X ′ ⊃ X such that s̃up(X ′, T k) = s̃up(X,T k). Then, s̃up(X ′, tτ ) = s̃up(X, tτ )

and
∑τ−1

i=τ−k+1 s̃up(X ′, ti) =
∑τ−1

i=τ−k+1 s̃up(X, ti). Since X ⊏
tτ Y , X ⊏

WL Z,
we have X ⊂ X ′ ⊆ Y and X ⊂ X ′ ⊆ Z. Thus, X ′ ⊆ (Y ∩ Z) = X, which
contradicts X ⊂ X ′. Thus, X ∈ C follows. 2

Example 3 Let σ = 0.001, r = 0.5, tτ = t5, WL = 〈t1, . . . , t4〉 and WC =
〈t2, . . . , t5〉. We assume a uniform input rate of 5,000 transactions over each
time unit ti. We compute minsup(k) to be (18, 12, 7, 3) for k = (4, 3, 2, 1) over
both WL and WC . Table 3 shows eight itemsets and indicates which of the sets,
L, F and C, the itemsets belong to. It also records the approximate support of
the itemsets over each ti.

By Theorem 1(a), all semi-FCIs in F are in C. Thus, b, bd, abc and abcd

are in C.

Both bc and abd are in L but not in F . By Theorem 1(b), bc is included
in C since s̃up(bc, T 4) = 25 ≥ minsup(4) = 18, bc ⊏

t5 abc, and s̃up(bc, T 4) >
s̃up(abc, T 4). However, abd is not in C since s̃up(abd, T 4) = (5+6+3+3) = 17 <
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L F C t1 t2 t3 t4 t5
b

√ √ √
9 11 9 8 6

g
√

7 5 3 3 0
ab

√
8 5 6 3 5

bc
√ √

7 7 8 5 5
bd

√ √ √
9 7 7 6 4

abc
√ √

7 3 6 3 5
abd

√
8 5 6 3 3

abcd
√ √ √

7 3 6 3 3

Table 3. Semi-FCIs in L, F and C, respectively

minsup(4) = 18, while s̃up(abd, T 3) = s̃up(abcd, T 3) = 12 ≥ minsup(3) = 12,

which implies that abd ⊏
WC abcd (or more precisely, abd ⊏

T 3

abcd, since abcd

is a 3-semi-FCI in C).
Finally, among all the subsets of the semi-FCIs in F that are not in L, only

ab satisfies the constraints in Theorem 1(c); that is, ab ⊏
t5 abc, ab ⊏

WL abd,
abc /∈ L, (abc ∩ abd) = ab, and s̃up(ab, T 4) = 19 ≥ minsup(4) = 18. 2

Theorem 1(a) states that we must process every semi-FCI in F , while The-
orems 1(b) and 1(c) show that we do not need to enumerate exhaustively all
subsets of a semi-FCI in F . By Theorem 1(b), all subsets that are in L need to
be updated. However, most subsets of a semi-FCI in F are not semi-FCIs over
WL and hence these subsets are not in L. Fortunately, Theorem 1(c) imposes
constraints that a subset X /∈ L of some Y ∈ F needs to be processed only if
(1) Y /∈ L; (2) ∃Z ∈ L such that X ⊏

WL Z; and (3) Y ∩ Z = X. In practice,
only a small portion of the subsets satisfy all these constraints, and the following
theorem further reduces the number of such subsets to be processed.

Theorem 2 Given X and Y , where X ⊏
tτ Y , X /∈ L and Y /∈ L. If ∃Z ∈ L

such that X ⊂ Z ⊂ Y , then X /∈ C.

Proof. Since X /∈ L, Z ∈ L and X ⊂ Z, there must exist X ′ ∈ L, where
X ⊂ X ′ ⊆ Z, such that X ⊏

WL X ′. Since X ⊂ X ′ ⊆ Z ⊂ Y , we have X ′
⊏

tτ Y .
Thus, it follows that X ⊏

WC X ′ and hence X /∈ C. 2

It follows from Theorem 2 that, after processing a subset Z of Y ∈ F\L, if
Z ∈ L, we can skip processing all X ⊂ Z where X /∈ L.

Example 4 In Table 3, after we process bc as a subset of abc, since bc is in L,
we can skip processing all subsets of bc that are not in L; thus, the subset c is
not processed. 2

5.4 Incremental Update Algorithm

We incorporate the results of all the lemmas and theorems into our algorithm,
which we call IncMine, as shown in Algorithm 3. From Theorem 1(a), all semi-
FCIs in F are in C and, hence, we add them to L (Line 11), which is returned
as C at the end of the update (Line 29). For any subset X of Y ∈ F , where
X /∈ L, Theorem 1(c) states that X is in C iff Y is not in L. Therefore, when Y
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Algorithm 3 IncMine(F ,L)

1. for each Y ∈ F in size-ascending order do

2. if (Y ∈ L)
3. ComputeK(Y, 1);
4. for each X ⊂ Y in size-descending order do

5. if (X ∈ L)
6. if (X is updated)
7. skip processing X and all its subsets;
8. else

9. UpdateSubsetInL(X, Y );
10. else /∗ Y /∈ L ∗/
11. L← L ∪ {Y };
12. if (∃Z ∈ L such that Z ⊐

WL Y )
13. s̃up(Y, ti)← s̃up(Z, ti), for τ − w + 1 ≤ i ≤ τ − 1;
14. ComputeK(Y, 1);
15. for each X ⊂ Y in size-descending order do

16. if (X ∈ L)
17. if (X is updated)
18. skip processing X and all its subsets;
19. else

20. UpdateSubsetInL(X, Y );
21. skip processing all subsets of X that are not in L;
22. else /∗ X /∈ L ∗/
23. UpdateSubsetNotInL(X, Y );
24. for each X ∈ L in size-descending order do

25. if (X is not updated)
26. k = ComputeK(X, 1);
27. if (k > 0 and ∃Z ∈ L such that Z ⊐

WC X)
28. L← L− {X};
29. return C ← L;

is in L, we only process its subsets that are in L (Lines 2-9), while we process
those subsets that are not in L only when Y is not in L (Lines 11-23). When a
subset of Y has been updated previously, by Lemma 2, we skip processing all
its subsets (Lines 6-7, 17-18). By Theorem 2, after we process a subset X that
is in L, we skip processing all subsets of X that are not in L (Line 21) and only
process X’s subsets that are in L, as we do in Lines 2-9.

When we update a subset X of a semi-FCI Y ∈ F , we assign Y ’s support
over tτ to X (Line 1 of Procedure 1 and Line 3 of Procedure 2). When we update
an itemset that is not in L, we obtain its support over 〈tτ−w+1, . . . , tτ−1〉 from
its SFS in L (Lines 12-13 of Algorithm 3 and Lines 1-2 of Procedure 2).

Procedures 1 and 2 are direct implementations of Theorems 1(b) and 1(c),
respectively, while Procedure 3 computes the value of k such that X is a k-
semi-FCI. Procedure 3 also deletes the unpromising support records of X or
completely deletes X if it is not a semi-FCI.
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Procedure 1 UpdateSubsetInL(X,Y )

1. s̃up(X, tτ )← s̃up(Y, tτ );
2. k = ComputeK (X, 2);

3. if (k > 0 and ∃X ′ ∈ L such that X ⊂ X ′ ⊆ Y and s̃up(X ′, T k) = s̃up(X, T k))
4. L← L− {X};

Procedure 2 UpdateSubsetNotInL(X,Y )

1. if (∃Z ∈ L such that Z ⊐
WL X and Y ∩ Z = X)

2. s̃up(X,ti) ← s̃up(Z,ti), for τ−w+1 ≤ i ≤ τ−1;
3. s̃up(X,tτ ) ← s̃up(Y ,tτ );
4. k = ComputeK (X, 2);
5. if (k > 0)
6. L← L ∪ {X};

Procedure 3 ComputeK(X, k′)

1. K ← {k : (k′ ≤ k ≤ w) ∧ (s̃up(X, T k) ≥ minsup(k))};
2. if (K 6= ∅)
3. k ← MAX (K);
4. delete s̃up(X, ti), ∀i < τ − k + 1;
5. return k;
6. else

7. delete X;
8. return 0;

Finally, Lines 24-28 of Algorithm 3 update those itemsets in L that are
infrequent in tτ and delete them if they are no longer semi-FCIs over WC . In
Line 27, since X is in L, we need to search for X’s SFS, Z, in L. If there is no
such Z in L, then X is in C.

We also give a comprehensive example of how L is updated with F to give
C. However, we delay the example until Section 6.2 where we can illustrate the
update process together with the inverted index structure that supports the
efficient processing of the algorithm.

5.5 Operations in the Incremental Update

In this subsection, we identify the major operations in Algorithm 3 and Proce-
dures 1-3, as listed below, and then discuss how they are processed.

OP1: Selection of a semi-FCI from L (Lines 2,5 and 16 of Algorithm 3).
OP2: Selection of the SFS of an itemset from L (Lines 12 and 27 of Algorithm

3, and Line 1 of Procedure 2). (Note that we do not perform the selection of
SFS in Line 3 of Procedure 1 but simply pass s̃up(X ′, T k), where X ′ is the
most recently processed superset of X, into the procedure call.)

OP3: Insertion (Line 11 of Algorithm 3 and Line 6 of Procedure 2) of a semi-FCI
into L.



16 Cheng et al.

OP4: Deletion (Line 28 of Algorithm 3, Line 4 of Procedure 1 and Line 2 of
Procedure 3) of a semi-FCI from L.

OP5: Subset enumeration of an itemset, with skip of repeated subsets (Lines
4,7,15,18 and 21 of Algorithm 3).

The efficient processing of OPs 1 to 4 depends on the data structures used
to store the sets F , L and C, which we discuss in Section 6. In the remainder of
this section, we discuss the processing of OP5, subset enumeration with skip of
repeated subsets.

To skip processing all subsets of an updated itemset, we enumerate the sub-
sets of each semi-FCI in F in descending order of their sizes and in lexicographic
order for subsets of the same size. Given two subsets, X and Y , of an itemset,
a large portion of the subsets of X and Y may overlap. If X has been updated,
we want to avoid Y ’s subsets that are also the subsets of X being enumerated,
so that these overlapping subsets will not be processed repeatedly. We illustrate
subset enumeration by the following example.

Example 5 Consider enumerating the subsets of the itemset abcd, as shown in
Figure 2. There are three iterations, which enumerate subsets of sizes 3, 2 and
1, respectively. A recursive procedure is invoked to enumerate only the shaded
subsets shown in the figure in order to avoid duplication.

abcd abc abd acd bcd ab ac bc ad bd cd
abc ab ab ac bc a a b a b c
abd ac ad ad bd b c c d d d
acd bc bd cd cd
bcd

Fig. 2. Subset Enumeration of abcd

Suppose that, in the first iteration, we find that the subset acd has been
updated and hence we want to skip processing the subsets of acd, i.e., the un-
derlined itemsets shown in the figure. Although the recursive algorithm will only
enumerate the shaded subset, cd, of acd, the other two unshaded subsets, ac and
ad, will be enumerated as subsets of abc and abd, respectively. But by noticing
that the second unshaded column, i.e., ac and ad, corresponds to the second
shaded row, we can pass this information into the recursive procedure to skip
enumerating ac and ad. Thus, only ab, bc and bd are enumerated in the second
iteration. In the last iteration, we only need to enumerate the subsets of ab since
we have skipped ac and ad. Similarly, since the unshaded subset, a, of ac corre-
sponds to the shaded subset, a, of ab, we skip processing a and only enumerate
b as the subset of ab. 2

Due to space constraints, we do not discuss the recursive procedure in detail
here but remark that for itemsets of greater size, we need to skip their overlap-
ping subsets across multiple unshaded columns and shaded rows. However, the
underlying idea is similar to the case of the single unshaded column and shaded
row shown in Example 5.
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6 Data Structure

In this section, we describe a data structure used to store F , L and C in order to
support the efficient processing of the update operations in Algorithm 3. Since
the semi-FCIs in F are ordered according to their size and processed one by one,
we simply use an array to keep F . Thus, we only discuss the data structure for
storing L. Note that C is just L at the end of the update at each window slide.

6.1 The Prefix-Tree Structure

We first consider storing L in a prefix tree structure, which is a data structure
prevalently used in mining FIs or FCIs (Han et al., 2000; Zaki and Hsiao, 2002;
Wang et al., 2003; Giannella et al., 2004; Chi et al., 2004). However, using a
prefix tree to store a set of FCIs may not necessarily save space because the
subsets of an FCI may not be FCIs. For example, in Figure 3, only the squared
nodes represent FCIs while the circled nodes are intermediate nodes.

ba

/

d

d

z d

d

c

y

y

x

y

y

c

xb c p

q

q

Intermediate
Node

FCI-Node

Fig. 3. A Prefix-Tree Structure

A disadvantage of using the prefix tree is that the search space for finding
the SFS of an itemset is very large, since a superset may contain some items
that are ordered before all the items in the subset. For example, to select the
SFS of py, that is, cpqy in Figure 3, we need to traverse (either by depth-first or
breadth-first) the first two irrelevant subtrees that are rooted at the nodes “a”
and “b”, respectively.

Considering that the selection of the SFS is a crucial operation in the incre-
mental update, we propose an inverted index for the efficient processing of the
operation.

6.2 The Inverted Index Structure

We first partition L according to the size of the semi-FCIs in L such that all
semi-FCIs of the same size belong to the same partition. Each partition is stored
in an array, called the FCI-array, and each semi-FCI in the FCI-array is assigned
an ID, which is taken as the position of the semi-FCI in the array. This ID is
then used to look up the semi-FCI in the inverted index. We call an FCI-array
the size-n FCI-array if the semi-FCIs in the array are of size n. The approximate
support of a semi-FCI computed over each time unit is also kept with the semi-
FCI in the FCI-array. We also associate a queue, called the garbage-queue, with
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each size-n FCI-array. When a semi-FCI is deleted from an FCI-array, we push
the ID (position) of the semi-FCI into the garbage-queue. When a semi-FCI is
to be inserted into an FCI-array, we store it in the position (ID) popped out of
the garbage-queue. If the queue is empty, then we attach the semi-FCI to the
end of the array.

Inverted FCI Index. We now define the Inverted FCI Index (IFI). The IFI
has the following components:

– An array, called the Item Array (IA), stores the set of all items, I, in lexi-
cographic order.

– Each item in the IA is associated with a list of variable-length arrays called
ID-arrays. Each ID-array in the list stores a set of IDs in ascending order of
their integral values. The IDs in each ID-array belong to semi-FCIs of the
same size. Thus, an ID-array that stores IDs of size-n semi-FCIs is called a
size-n ID-array in the list.

– Given a semi-FCI, X = {x1, . . . , xn}, in L, we store its ID in the size-n
ID-array of each item xi in the IA, for 1 ≤ i ≤ n.

ID Size-1 Size-2 Size-3 Size-4

0 x xy xyz bxyz

1 y xz bxy abcd

2 b bx bxz

3 g by abd

4 bc

5 bd

Table 4. Four FCI-arrays

Item
Array

a

b

c

d

g

x

y

z

1 {2} 2 {2,3,4,5} 3 {1,2,3} 4 {0,1}

3 {3} 4 {1}

2 {4} 4 {1}

2 {5} 3 {3} 4 {1}

1 {3}

1 {0} 2 {0,1,2} 3 {0,1,2} 4 {0}

1 {1} 2 {0,3} 3 {0,1} 4 {0}

2 {1} 3 {0,2} 4 {0}

Size-1
ID-array

Size-2
ID-array

Size-3
ID-array

Size-4
ID-array

Fig. 4. An Inverted FCI Index (IFI)

Example 6 Table 4 shows the size-n FCI-arrays, where n = 1, 2, 3, 4. The ID of
each semi-FCI represents its position in the corresponding array. Figure 4 shows
the corresponding IFI. For example, the ID of the semi-FCI bxz is “2”; thus, we
have “2” in the size-3 ID-arrays of the items b, x and z in the IA. 2
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IFI-based Incremental Update. To illustrate the incremental update using
the IFI, we consider the semi-FCIs shown in Table 3 and update L with F to
give C. We add a few dummy semi-FCIs (i.e., those semi-FCIs that consist of
the items x, y or z) to L to give a more intuitive view of the ID-arrays. These
dummy semi-FCIs, together with the semi-FCIs in Table 3, are shown in Table
4. However, we do not consider updating the dummy semi-FCIs.

The first semi-FCI in F to be processed is b. We locate b in the IA and
immediately obtain its ID “2” in the size-1 ID-array. Thus, we access Position 2
of the size-1 FCI-array to update the support of b.

We then process the next semi-FCI bd in F . We locate the items b and d

in the IA and join the size-2 ID-arrays of b and d to obtain the ID of bd, “5”.
We access Position 5 of the size-2 FCI-array to update the support of bd. Then,
we continue to process the subsets of bd. We do not process b since it has been
updated previously. When we enumerate to d, since its ID is not in the size-1
ID-array of d, we know that d is not in L. Since bd is in L, by Theorem 1(c), d
is not in C and thus not processed.

Next, we process abc. Since the join on the size-3 ID-arrays of the items a, b
and c produces no result, abc is not in L. Thus, we need to find the SFS of abc
in L. We continue the join with the size-4 ID-arrays of a, b and c and obtain
the ID “1”. Then, we access Position 1 of the size-4 FCI-array and obtain the
support of abc over WL from its SFS abcd. We store abc in Position 4 of the
size-3 FCI-array and insert its ID “4” into the size-3 ID-arrays of the items a, b
and c. Note that although the ID of abc is now in the ID-arrays, our algorithm
does not consider a newly updated semi-FCI as the SFS of any itemset.

Then, we process the subsets of abc (by Lines 15-23 of Algorithm 3). We
first process ab. Since we cannot find the ID of ab, we want to find its SFS in
L. We join the size-3 ID-array of a and b and obtain “3”, which is the ID of
abd. Since the intersection of abc and abd is ab, we compute the support of ab
and find that ab is a semi-FCI. We therefore add ab to the size-2 FCI-array and
insert its ID into the size-2 ID-arrays of a and b. For ac, since it is not in L, we
find its SFS, which is abcd. Since abcd ∩ abc = abc 6= ac, by Theorem 1(c), ac
is not in C and is thus not processed. We also update bc, which is in L, with
s̃up(abc,tτ ), and skip processing its subset c by Theorem 2. For a, we do not
process it due to the same reason as ac. We skip processing b since it has been
updated previously.

Lastly, we process abcd. Since abcd is in L, we process Lines 3-9 of Algorithm
3. We update abcd similarly to how we update bd. Then, we process its first
subset, abc. Since abc has been updated, by Lemma 2, we skip processing abc

and all its subsets. We then process abd and find that, as explained in Example 3,
abd ⊏

WC abcd. Thus, we delete abd from the size-3 FCI-array, push its ID, “3”,
into the size-3 garbage-queue, and then remove “3” from the size-3 ID-arrays of
the items a, b and d. By Lines 3-9 of Algorithm 3, acd, bcd, ad and cd are not
processed since they are not in L. Other subsets of abcd are the subsets of the
updated semi-FCIs abc and bd and thus are skipped.
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Finally, we scan the FCI-arrays once to update those semi-FCIs that are
infrequent over tτ . Thus, g is deleted since it no longer satisfies the semi-FCI
requirement.

We describe the IFI-based operations in Operations 1 to 4. Operations 1
selects an itemset from L, while Operation 2 selects the SFS of an itemset from
L. Operations 3 and 4 insert and delete an itemset and its ID into/from the
FCI-array and the ID-arrays, respectively.

Operation 1 Select(X = {x1, . . . , xn})

1. Locate xi, for 1 ≤ i ≤ n, in the IA;
2. Perform join on the size-n ID-arrays of all xi;
3. Return the join result, if any, as the ID of X;

Operation 2 SelectSFS(X = {x1, . . . , xn})

1. j = 1;
2. Join the size-(n+j) ID-arrays of all xi, for 1 ≤ i ≤ n;
3. Increment j until the join obtains a result for some size-(n+j) ID-arrays or

terminate the join when the end of the list of ID-arrays of some xi is reached;
4. Return the join result, if any, as the ID of X’s SFS;

Operation 3 Insert(X = {x1, . . . , xn})

1. if (the size-n garbage-queue is empty)
2. Store X at the end of the size-n FCI-array;
3. else /∗ Some semi-FCIs in the size-n FCI-array were deleted. ∗/
4. ID ← POP (size-n garbage-queue);
5. Store X in Position ID of the size-n FCI-array;
6. Insert ID in the size-n ID-arrays of all xi, for 1 ≤ i ≤ n;

Operation 4 Delete(X = {x1, . . . , xn})

1. Push X’s ID, i.e., its position in the size-n FCI-array, into the size-n garbage-queue;
2. Delete X from the size-n FCI-array;
3. Delete X’s ID from the size-n ID-arrays of all xi, for 1 ≤ i ≤ n;

6.3 Efficiency of IFI-Based Operations

Although a semi-FCI of size n has its ID duplicated n times in the ID-arrays, the
memory consumption of the IFI is not large since the set of semi-FCIs is small
in most cases, as verified by our experimental results. However, the advantage
of using the ID-array is that joining ordered arrays is simple and extremely
fast. Since the IDs in each ID-array are distinct, the number of comparisons in
the worst case is the total number of IDs in the ID-arrays. In most cases the
join terminates early since it produces at most one ID. Although insertion and
deletion of IDs are more costly, they are not often performed.
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7 Performance Evaluation

IncMine uses CHARM (Zaki and Hsiao, 2002) to compute the set of semi-FCIs
over each time unit. We implement IncMine in C++ and evaluate its performance
on a Sun Ultra-SPARC III with 900 MHz CPU and 4GB RAM. We compare
IncMine’s performance with that of Moment (Chi et al., 2004), which represents
the state-of-the-art streaming algorithm for mining FCIs. Since Moment is an
exact algorithm, we also compare IncMine’s performance with that of a variant
of the Lossy Counting algorithm (Manku and Motwani, 2002), which mines FIs
over a sliding window. We denote this variant of Lossy Counting as LCSW in
our experiments. We remark that LCSW, which updates a batch of incoming
or expiring transactions at each window slide, is different from the algorithm
proposed by Chang and Lee (Chang and Lee, 2004), which updates on each
incoming or expiring transaction. We implement both algorithms and find that
the algorithm by Chang and Lee is much slower than LCSW and runs out of our
4GB of memory in most cases.

Datasets. We generate the data streams using the IBM data generator
(Agrawal and Srikant, 1994; IBM Quest, 1996). However, we find that the
datasets are too sparse, leading to the result that in many cases almost all FIs are
FCIs. Although existing work on mining FCIs (Zaki, 2000; Zaki and Hsiao, 2002;
Wang et al., 2003) has verified that many real datasets (FIMI Dataset Reposi-
tory, 2003) are dense and hence the number of FCIs can be orders of magnitude
smaller than that of FIs, most real datasets are not large enough to model a
stream. To show the effectiveness of our streaming FCI mining algorithm, we
modify the IBM data generator in order to generate denser data streams.

The original generator first produces a set of patterns, each of which is as-
sociated with a probability. To generate a transaction, patterns are picked up
according to their associated probabilities to constitute the transaction until the
required length of that transaction is reached. The generated dataset is sparse
because the patterns are lowly correlated and the chance that two patterns are
always chosen to generate the same transaction is very low due to the large
number of patterns.

We modify the generator as follows. We produce a set of disjoint patterns,
each of which is also associated with a probability. For each pattern, we further
produce a small set of sub-patterns, which are subsets of the pattern. To generate
a transaction, we first choose a pattern according to its probability. Then, we
randomly either use the pattern or pick up one of its sub-patterns to construct
the transaction. Thus, the probability that the subsets of a pattern occur in
different transactions is increased.

We generate two types of data streams, t15i6 and t10i4, where 15 and 10 (6
and 4) are the average size of a transaction (a maximal FI) of the two streams,
respectively. The number of unique items over each stream is 10,000. Each stream
consists of 3 × 106 transactions and we report the results averaged over all the
window slides. Each window consists of 20 time units and each time unit receives
approximately 50,000 transactions. We control the ratio of the number of FCIs to
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that of FIs over each window to be within [0.1, 0.2]. We remark that the smaller
the ratio, the better is the performance of IncMine than that of LCSW.

7.1 Varying Relaxation Rate

We first examine the effect of varying the relaxation rate r on IncMine and
LCSW (note that ǫ = rσ in LCSW). We set σ = 0.1% and vary r from 0.1 to
1. We assess the precision and the recall of the mining results obtained by the
different algorithms. Here the precision and the recall are respectively defined
as (|A ∩ B|/|B|) and (|A ∩ B|/|A|), where A and B are the actual set and the
approximate set of FIs over each window, respectively. The approximate set of
FIs is either returned by LCSW or recovered from the FCIs obtained by IncMine.
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Fig. 5. Precision and Recall with Varying Relaxation Rate

We report the precision and recall of IncMine and LCSW in Figures 5(a) and
(b), for both streams t15i6 and t10i4. The precision and recall of Moment are
omitted from the figures since Moment is an exact algorithm. The figures show
that IncMine has 100% precision while LCSW has 100% recall. Although Figure
5(a) shows that LCSW attains high precision when r is small, its precision drops
linearly to be less than 40% with the increase in r (i.e., the increase in the error
parameter ǫ = rσ). On the contrary, when r increases from 0.1 to 1, the recall of
IncMine drops only slightly from 98% to 94% for t15i6 and from 95.5% to 90% for
t10i4. The experimental results reveal that the estimation mechanism of Lossy
Counting relies on ǫ to control the accuracy, while our progressively increasing
minsup function maintains a high accuracy which is only slightly affected by the
change in r.

We also report the throughput (in logarithmic scale) and the memory con-
sumption of the three algorithms in Figures 6 and 7. Here throughput is measured
as the number of transactions processed per second by the algorithms. Figures
6 and 7 show that both IncMine and LCSW attain significantly higher through-
put and consumes less memory when r becomes larger. This result is reasonable
because the two algorithms mine over each time unit using a relaxed MST rσ
and as a result, increasing r gives rise to faster mining process and less memory
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consumption. It is a very important finding as evidenced in Figures 5(a) and (b)
that IncMine maintains a high accuracy even for large r. As a result, we can use
a larger r to achieve much faster speed and less memory consumption but with
only slightly degraded accuracy, as we show in the next section.
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Fig. 7. Memory Consumption with Varying Relaxation Rate

7.2 Varying Minimum Support Threshold

In this experiment, we assess the performance of IncMine on different MST σ. We
vary σ from 0.1% to 0.05%. According to Lossy Counting (Manku and Motwani,
2002), a good choice of ǫ is 0.1σ. Thus, we set r = 0.1 for LCSW. However,
the experimental results in the previous section shows that IncMine can obtain
a good accuracy even with a larger r. Thus, we set r = 0.5 for IncMine. We
note that LCSW runs out of memory when σ = 0.05% on the data stream t15i6
(lower values of σ are thus not tested).

Figures 8(a) and (b) report the throughput, in logarithmic scale, of the three
algorithms. The result verifies the capability of IncMine to handle high-speed
streams as it can process up to 10,000 and 40,000 transactions per second for
t15i6 and t10i4, respectively. For all σ tested and for both streams, the through-
put of IncMine is over two orders of magnitude higher than that of LCSW and
three orders of magnitude higher than that of Moment.
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Fig. 10. Precision and Recall with Varying Minimum Support Threshold

Figures 9(a) and (b) show that IncMine achieves a roughly constant memory
consumption of no more than 200MB. In all cases, the memory consumption of
IncMine is considerably less than that of LCSW and substantially less than that
of Moment.
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Figures 10(a) and (b) verify that IncMine achieves 100% precision and high
recall of over 93% in all cases. Although LCSW also achieves high precision and
100% recall, Figures 8 and 9 show that IncMine runs significantly faster and
consumes much less memory than does LCSW.

8 Concluding Remarks

In this paper, we study the problem of incrementally maintaining an approxi-
mate set of FCIs over a sliding window. We introduce the notion of semi-FCIs,
which enables us to progressively increase the minimum support threshold for
an itemset as it is retained longer in the window, thereby drastically reducing
the number of itemsets that need to be kept and processed. We observe that the
majority of the subsets of a semi-FCI will not be semi-FCIs and need not be
updated. This leads to the design of an efficient algorithm, IncMine, for the in-
cremental update. In addition, we also develop a useful inverted index structure
to facilitate the update operations.

We demonstrate in our experiments that IncMine significantly outperforms
both the Moment and Lossy Counting algorithms, in both throughput and mem-
ory consumption, and that IncMine achieves highly accurate approximation re-
sults. Compared with the exact algorithm Moment, IncMine is able to handle
very high-speed streams at the cost of only slightly lowered recall. Such ap-
proximate but high-quality online answers are particularly well-suited to the
exploratory nature of most practical stream mining applications, such as trend
analysis and fraud/anomaly detection, where the main goal is to identify generic,
interesting or unexpected patterns rather than provide results that are exact to
the last decimal. Compared to Lossy Counting, IncMine is much less sensitive
to the error parameter and is able to achieve significantly higher throughput by
increasing the error parameter, while still attains high accuracy.

We note that the progressively increasing function, minsup, can be charac-
terized for specific streams such as one having unevenly distributed data, and
our proposed IncMine is adaptable for any specific minsup functions. Our on-
going work is to further improve the efficiency of IncMine by developing a model
to generate specific minsup functions according to the characteristics of specific
data streams and to tune the functions to accommodate with the changes in a
stream over time.
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