
Under consideration for publication in Knowledge and Information Systems

XCQ: A Queriable XML Compression System

Wilfred Ng1, Wai-Yeung Lam1, Peter T. Wood2 and Mark Levene2
1Department of Computer Science, The Hong Kong University ofScience and Technology, Clear Water Bay,
Kowloon, Hong Kong;2School of Computer Science and Information Systems, Birkbeck, University of London,
Malet Street, London, UK

Abstract. XML has already become the de facto standard for specifying and exchanging data
on the Web. However, XML is by nature verbose and thus XML documents are usually large
in size, a factor that hinders its practical usage, since it substantially increases the costs of stor-
ing, processing, and exchanging data. In order to tackle this problem, many XML-specific com-
pression systems, such as XMill, XGrind, XMLPPM, and Millau, have recently been proposed.
However, these systems usually suffer from the following two inadequacies: they either sacrifice
performance in terms of compression ratio and execution time in order to support a limited range
of queries, or perform full decompression prior to processing queries over compressed documents.

In this paper, we address the above problems by exploiting the information provided by a
Document Type Definition (DTD) associated with an XML document. We show that a DTD is
able to facilitate better compression as well as generate more usable compressed data to support
querying. We present the architecture of the XCQ, which is a compression and querying tool for
handling XML data. XCQ is based on a novel technique we have developed calledDTD Tree and
SAX Event Stream Parsing(DSP). The documents compressed by XCQ are stored inPartitioned
Path-Based Grouping(PPG) data streams, which are equipped with aBlock Statistics Signature
(BSS) indexing scheme. The indexed PPG data streams supportthe processing of XML queries
that involve selection and aggregation, without the need for full decompression. In order to study
the compression performance of XCQ, we carry out comprehensive experiments over a set of
XML benchmark datasets.

Keywords: XML; Document Type Definitions; Compression algorithms; Query Processing; Per-
formance

1. Introduction

The Extensible Markup Language (XML) (Bray et al, 2004) is proposed under the aus-
pices of the World Wide Web Consortium (W3C) as a standardized data format designed

Received Nov 22, 2004
Revised Jul 20, 2005
Accepted Sep 12, 2005

2 W. Ng et al

for specifying and exchanging data on the Web. With the proliferation of mobile devices,
such as pocket PCs, sensor networks and mobile phones, as a means of communication
in recent years, it is reasonable to expect that in the foreseeable future a massive amount
of XML data will be generated and exchanged between applications in order to perform
dynamic computations over the Web.

When XML first emerged, the verbosity of XML markup was not considered a
pressing issue from a design perspective. However, in practice XML documents are
usually extremely large in size, due to the fact that they often contain much redundant
data, such as repeated tags (for example, see the DBLP documents (Ley, 2005)). As a
result, an XML-ized document is usually much larger than oneconveying the same in-
formation but adopting a standard document format. For example, an XML-ized Weblog
document in (Liefke and Suciu, 2000) is roughly three times the size of the original file.

Let us call this document size inflation theinflation problemof XML. The inflation
problem seriously hinders the future use of XML in exchanging, parsing, and query-
ing data, due to the fact that the data size grows much faster than the communication
bandwidth. On the one hand, we enjoy the flexibility of XML, since the markup facil-
ities of XML are intuitive for people and better able to facilitate web data exchange.
On the other hand, we have to pay the extra cost of consuming more storage space and
computational resources to store and process XML data.

In recent years, many XML-specific compression systems havebeen proposed and
developed (Arion et al, 2004; Buneman et al, 2003; Cheney, 2002; Levene and Wood,
2002; Liefke and Suciu, 2000; Min et al, 2003; Sundaresan andMoussa, 2001; Tolani
and Haritsa, 2002). However, these systems either do not make effective use of the
information provided by a Document Type Definition (DTD) associated with an XML
document (Arion et al, 2004; Buneman et al, 2003; Cheney, 2002; Liefke and Suciu,
2000; Min et al, 2003; Tolani and Haritsa, 2002), or do not support the querying of
compressed documents directly (Cheney, 2002; Levene and Wood, 2002; Liefke and
Suciu, 2000; Sundaresan and Moussa, 2001).

We believe that a DTD can improve the compression ratio of an XML document
and help to produce more usable compressed data. For example, XMill (Liefke and
Suciu, 2000) needs to perform afull decompression prior to processing queries over
compressed documents, resulting in a heavy burden on systemresources such as CPU
processing time and memory consumption. At the other extreme, some technologies
can avoid (full) XML data decompression but unfortunately only at the expense of
compression performance. For example, XGrind (Tolani and Haritsa, 2002) adopts a
homomorphic transformation strategy to transform XML datainto a specialized com-
pressed format and support direct querying on compressed data but at the expense of
the compression ratio; thus the inflation problem is not satisfactorily resolved.

In this paper, we present our development of a prototype called theXML Compres-
sion and Querying System(XCQ), which attempts to balance the objectives of tackling
the inflation problem and supporting querying on compresseddata without the burden
of performing a full decompression. We develop the XCQ prototype and study the fea-
sibility of using XCQ in practice. We evaluate the performance of XCQ in compression,
and demonstrate that a competitive compression ratio, which is comparable to that of
XMill (Liefke and Suciu, 2000), is achieved by XCQ at the expense of compression
time.

The underlying idea behind XCQ is to compress XML documents that conform
to a DTD by making use of the DTD information to aid the compression process. We
achieve this using ourDTD Tree and SAX Event Stream Parsing(DSP) technique. In ad-
dition, we propose and analyze two simple but effective techniques for handling queries
over compressed XML data. First, we use a novel Partitioned Path-Based Grouping

XCQ: A Queriable XML Compression System 3

d4: /library/entry/num_copy

Streams:
Keys for path−based grouped Data

d0: /library/entry/author/@name
d1: /library/entry/title
d2: /library/entry/year

Structure Stream

d0 d1 d2 d3 d4

d3: /library/entry/publisher

Fig. 1.Data Streams Partitioned using Path-Based Grouping (PPG)

(PPG) strategy for storing path-based compressed XML data in a number of streams of
blocks. Second, we impose a minimal indexing scheme, calledaBlock Statistics Signa-
ture (BSS), on the compressed data blocks. We show that these techniques are not only
efficient enough to support selection and aggregation queries over compressed XML
data viapartial decompression, but they also require a low computation and storage
space overhead.

The main idea of our proposed PPG strategy is depicted in Figure 1, in which the
structure stream, derived from a given XML document and its DTD, is stored and com-
pressed separately from the data streams. XMill (Liefke andSuciu, 2000) also divides
an XML document into a number of separate containers, one forthe structure and one
for each attribute and element name used in the document. ThePPG scheme differs
from this in at least two ways: firstly, the structure stream is encoded using information
from the DTD; secondly, the data streams are based on paths inthe DTD (as shown in
Figure 1) rather than simply names.

PPG assumes that the DTD is non-recursive and hence can be represented as a DTD
tree such as that shown in Figure 2, wherename is anattribute node; author,title,
year, publisher, andnum copy areelement nodes; andpaper, course note,
andbook areemptyelements. (A full description of DTD trees is given in Section 3.)
The values in a data stream all have the same path back to the root of the DTD tree (or
root of the XML document), as suggested in Figures 1 and 2.

Each PPG data stream is partitioned into its set of data blocks having a pre-defined
block size, which helps to increase the overall compression ratio (cf.(Iyer and Wilhite,
1994; Liefke and Suciu, 2000; Ng and Ravishankar, 1997; Poess and Potapov, 2003)).
A data block in a PPG data stream is able to be compressed or decompressed as an
individual unit. This partitioning strategy allows us to access the data in a compressed
document by decompressing only those data blocks that contain the data elements rele-
vant to the input query, which we call the strategy ofpartial decompression.

For example, if the block size hasn records per block, the first batch ofn records
in the streamd0 are packed in the first data block, while the next batch ofn records
are packed in the second block. As such, each data block in thedata streams contains a
certain number of elements in the order listed in their corresponding data stream.

The data blocks in the data streams are compressed individually using the low-level
compressor gzip (Gailly and Adler, 2003a). Intuitively, a smaller block size (i.e. using
a finer partitioning in a PPG data stream) improves query performance, since a more
precise portion of the compressed document can be identifiedfor decompression in
order to evaluate a query. However, there is a trade-off in that a finer block partitioning
degrades the compression ratio, since fewer redundancies in the data streams can be
eliminated by gzip if each block is compressed as a finer individual block unit.

The BSS indexing scheme is employed to aid the block retrieval in PPG data streams

4 W. Ng et al

� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �

author

entry*

title year num_copy|publisher?

book

library

course_note

paperKeys:

: PCDATA

: Element Node
() : Attribute Node

(name)

Fig. 2. A Library DTD Tree

when processing queries on XCQ compressed data. A BSS streamis suitable for block-
oriented compressed data, which includes parameters such as min andmaxgenerated
for each data block. This signature summarizes the content in a compressed data block,
which supports more effective ‘hitting’ of the target blocks in answering queries. The
storage space overhead required by the BSS indexing scheme is low. We do not need
to generate a bit pattern for each record in a data block as some compressors do. With
respect to the computation overhead, the operations of generating and scanning a signa-
ture can be carried out inO(n) time. In the case of signature generation,n is the number
of elements in a PPG data stream. In the case of signature scanning,n is the number of
compressed data blocks in a PPG data stream.

The remainder of the paper is organized as follows. In Section 2, we explain the
architecture of XCQ, which supports querying compressed documents. In Section 3,
we present in detail the DSP technique, outline its working principles, and discuss the
parsing algorithm that realizes the technique. In Section 4, we discuss the PPG strategy
and the BSS indexing scheme used in XCQ. In Section 5, we present the experimental
results of compressing real world XML documents using XCQ, which compare with
a range of state-of-the-art compressors. In Section 6, we review related work and re-
cent developments in XML compression. Finally, in Section 7, we give our concluding
remarks and discuss future research work pertaining to XCQ.

2. XCQ Architecture

In this section, we present the architecture of XCQ and discuss how the XCQ system
supports querying over partially decompressed documents.The architecture of XCQ
comprises theCompression Engineand theQuerying Engine. This prototype is devel-
oped using C++, the SAX XML parser of (Clark, 2004) and the gzip library of (Gailly
and Adler, 2003b).

Figure 3 shows the architecture of the Compression Engine, which consists of the
following components: theDTD parser, theDTD tree building module, theSAX parser,
theDSP module, thepartition and indexing module, and thecompression module.

We now briefly explain the functionality of these modules below.

– DTD Parser and DTD Tree Building modules.
The DTD parser module parses the input DTD document and analyses its content.
The result is utilized by the DTD Tree Building Module to construct a DTD tree.
Elements that are used in multiple content models in the DTD are represented by

XCQ: A Queriable XML Compression System 5

A Structure Stream

Module

Compression

Compressed
Document

DTD Parser

DTD

XML

DSP

Document

Building
DTD Tree

Module

SAX Parser

Module

Module

Data Streams BSS

Indexed Block
Partitioned

Data Streams

Fig. 3.The Compression Engine Architecture

Input XPath Query Manager
StorageQuery Parser

Compressed
Document

Query
Processor

Output XML
Query Results

BSS Manager

entry[author/@name="Jess"]

Fig. 4.The Architecture of the XCQ Querying Engine

separate nodes in the tree. The Tree Building Module assumesthat the DTD is non-
recursive.

– SAX parser.
This module uses the SAX parser in (Clark, 2004) in order to generate a SAX event
stream (Megginson, 2004) that corresponds to the given XML document.

– DSP module.
This module implements the DSP algorithm, which we discuss in Section 3. It takes
as input the DTD tree and the SAX event stream created by the DTD Tree Build-
ing module and the SAX Parser module, respectively. It outputs the corresponding
structure stream and set of data streams.

– Partition and indexing (BSS) module.
This module first partitions the incoming data streams, generated by the DSP module,
into their corresponding sets of blocks. Each block contains a certain number of data
elements belonging to its corresponding PPG data stream. The module then generates
a BSS index for each data block in a PPG data stream.

– Compression module.
The structure stream generated by the DSP module and the indexed PPG data streams
generated by the partition and indexing module are compressed indivually and then
packed and merged into a single file. The compression module also manages the data
buffer in order to minimize disk access frequency. This module is built on top of the
gzip compression libraries (Gailly and Adler, 2003b). We could have used the bzip2
library of (Seward, 2005) as an alternative in this module. However, we found that,
in general, bzip2 substantially increases both the compression and query response
times.

XCQ supports querying of compressed documents that conformto thePartitioned
Path-Based Data Groupingby only partially decompressing them. The underlying idea

6 W. Ng et al

used in the engine is that it only decompresses portions of the compressed document
that are relevant to the query evaluation. Figure 4 shows thearchitecture of the Query-
ing Engine, which comprises thequery parser, the query processorand thestorage
manager. We now briefly explain the functionality of each of these components below.

– Query parser.
The query parser converts a query formulated in XPath (Clarkand DeRose, 1999)
into an internal form used in XCQ. A set of tokens are used to describe the content,
such as the predicates and the relevant elements, of the input query. The tokenized
query is then fed into the query processor.

– Query processor.
The query processor is used to generate a set ofaccess commandsbased on the input
tokenized query. These access commands are used to instructthe storage manager to
access the required portions of the compressed file. The query processor then eval-
uates the input query based on the results returned from the storage manager. The
result generated by the query processor is passed back to thestorage manager, which
outputs the result as an XML document.

– BSS manager.
The BSS manager is responsible for checking the data block signatures (i.e. BSS
indexes). When the engine is initialized, the BSS manager loads the BSS indexing
information from the header of the input compressed document into main memory.
It subsequently helps the storage manager to determine whether a compressed data
block contains the required data elements based on its BSS index.

– Storage manager.
The storage manager is responsible for instructing the operating system to access the
compressed files. It also provides buffer management to minimize disk I/O overhead.

Although we have concentrated on the compression and querying aspects of XCQ
above, we should mention that any XML document compressed with XCQ can be faith-
fully recovered by decompression (except possibly for those whitespace characters that
are not significant). Since both the structure stream and thedata streams are compressed
using gzip which is lossless, they can be recovered. The structure of the document
can be reconstructed from the structure stream, as shown, for example, in (Levene and
Wood, 2002). Finally, since the data streams in XCQ are written out in document order,
it is straightforward to reconstruct the original XML document from the structure, the
data streams and the DTD.

3. DTD Tree and SAX Event Stream Parsing

In this section, we first give an overview of the DTD Tree and SAX Event Stream
Parsing (DSP) technique and highlight those of its featuresthat are desirable for XML
compression. We then present the DSP algorithm and illustrate the idea with a detailed
example.

3.1. Overview of DSP

In DSP, we use a SAX event stream (Megginson, 2004) and a DTD tree data structure
together to model a given XML document. The generation of a SAX event stream is
carried out by the XML parser in (Clark, 2004), whereas the creation of a DTD tree is

XCQ: A Queriable XML Compression System 7

 (paper|course_note|book), num_copy)>

<!ELEMENT library (entry*)>

<!ELEMENT author EMPTY>
<!ATTLIST author name CDATA>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT course_note EMPTY>
<!ELEMENT paper EMPTY>
<!ELEMENT book EMPTY>
<!ELEMENT num_copy (#PCDATA)>

<!ELEMENT entry (author, title, year, publisher?,

Fig. 5.A DTD for a Library XML Document

carried out by the DTD tree building module. We now illustrate our basic ideas about
building a DTD tree.

In Figure 5, we show a simple DTD for an XML document of libraryinformation.
A DTD tree for the document is built as follows. Each element that has a unary operator
(“?”, “ ∗”, or “+”) applied to it, such as “entry” and “publisher”, is transformed into a
corresponding operator node, with the element operand as part of the node, as shown
in Figure 2. This is a shorthand representation for an operator node with a single child.
Sequences of elements (separated by the “,” operator) are also represented implicitly by
the ordering of child elements in the tree (as in Figure 2) unless nodes corresponding to
the “,” operator are required because of the complexity of the content model defined in
the DTD.

Elements that comprise a set of alternatives, such as “(paper | coursenote| book)”,
are transformed into a choice node with the corresponding elements as children. If the
operands of “|” operator are expressions that are more complicated than a single element
name, then more elaborate subtrees are built. An element having attributes, such as
“author”, is transformed into a tree node with the attributes associated with the node.
PCDATA nodes are attached to those elements that are defined as “#PCDATA” in the
DTD, such as “title”. The generated DTD tree is as shown in Figure 2.

The DTD tree and the SAX event stream are processed by a modulethat implements
DSP as shown in Figure 6. The functions of this module are (1) to extract thestructural
information(Levene and Wood, 2002; Sundaresan and Moussa, 2001) from the input
XML document that cannot be inferred from the DTD during the parsing process, and
(2) to groupdata elementsin the document based on their correspondingtree pathsin
the DTD tree. By structural information we mean the information necessary to recon-
struct the tree structure of the XML document. By data elements we mean the attributes
and PCDATA within the document. The module parses the DTD tree by using a spe-
cial traversal sequence, which depends on the SAX event stream in order to explore the
required information. The output of this module is a stream of structural information,
which we call thestructure stream, and streams of XML data, which we call thedata
streams.

DSP possesses a number of desirable features for XML data compression, detailed
as follows.

1. Less memory is required.
Since an XML document is converted into a SAX event stream instead of a tree data
structure, main memory usage of the compression engine is significantly reduced. In
addition, our compressor can start the compression processonce the DTD tree, which
is usually very small in size, has been constructed. As a result, the thrashing problem

8 W. Ng et al

A DTD Tree

Data Streams
DSP

Module

A Structure Stream

A Stream of SAX Events

Fig. 6.The DSP Module in XCQ

is avoided and the compression time is shortened, which makes our approach more
efficient in terms of time and space than the pure DDT (Sundaresan and Moussa,
2001) and SCA (Levene and Wood, 2002) approaches.

2. Partial decompression is supported.
Data values with related semantics that have the same tree path in the DTD tree
are grouped together in the same data stream. It has been shown in (Iyer and Wil-
hite, 1994; Liefke and Suciu, 2000; Sundaresan and Moussa, 2001) that data group-
ing assists generic text compressors to explore data redundancies among data and
thus helps to increase the overall compression ratio. In addition, the indexed PPG
compressed format supports querying over compressed data by performing partial
decompression.

3. No user expertise is required.
The streams output from the DSP module can be efficiently compressed without in-
volving user expertise. Our compressor has the advantage over some unqueriable
compressors such as XMill in that it does not require complexcommand line hints
that describe the structure of the compressed document in order to specify the data
grouping. In XCQ, such information is extracted from the DTDin an automated man-
ner.

3.2. DSP Algorithm

The DSP algorithm is implemented in the DSP module. It is usedfor realizing a Pseudo-
Depth First (PDF) traversal strategy, which explores the required information from the
DTD tree and SAX event streams, in order to generate the structure and data streams.

The PDF traversal strategy varies from the conventional depth-first traversal when
traversing the DTD tree. In particular, the traversal path is determinedon the flybased on
the input SAX event stream. Using PDF traversal, the DSP module traverses the DTD
tree in a depth-first traversal manner with respect to the input SAX event streamuntil
an operator node or a choice node is encountered. It then determines the subsequent
traversal path based on what node in the DTD tree the next SAX event matches.

We now present the details of the DSP algorithm. Let the current node in the DTD
tree be denoted byv.

1. If v is a PCDATA node, the DSP module first computes the path from the root node
of the DTD tree tov, and then outputs the current SAX event to the data stream
corresponding to this path. Finally, it moves to the node following v in depth-first
order and waits for the next relevant SAX event (either a start-element event or a
PCDATA event).

XCQ: A Queriable XML Compression System 9

</library>

<library>
 <entry>
 <author name="Tom"/>

 </title>
 <year>2003</year>
 <course_note/>
 <num_copy>3</num_copy>
 </entry>
 <entry>
 <author name="Jess Chu"/>
 <title>A Better World</title>
 <year>1874</year>

 </entry>

 <publisher>Clear LTD.</publisher>
 <book/>
 <num_copy>2</num_copy>

 <title>
 Comp123: Operating System: Introduction

Fig. 7. A Simple XML Document Conforming to the DTD Given in Figure 5

2. If v is an element node, the module process the attributes returned by the current SAX
event, waits for the next relevant SAX event and then moves tothe node following
v in depth-first order. For simplicity, we assume that all attributes are declared as
REQUIRED in the DTD. Optional attributes can be handled in a manner similar to
case 4, while enumerated attributes can be handled similarly to case 6 below.

3. If v is labeled with “,” the children ofv are processed in depth-first order.
4. If v is labeled with “?” then if the current SAX event matches a descendant ofv,

the module outputs a 1-bit to the structure stream and processes the subtree rooted
at the child ofv; otherwise it outputs a 0-bit to the structure stream and skips the
descendants ofv.

5. If v is labeled with “∗” or “ +” then if the current SAX event matches a descendant
of v, the module outputs a 1-bit to the structure stream, processes the subtree rooted
at the child ofv, and then processesv again; if the current SAX event does not match
a descendant ofv, it outputs a 0-bit to the structure stream and skips the descendants
of v.

6. If v is labeled with “|” (a choice node) then the current SAX event must match a
descendant of one child ofv. Assume that the index of this child isi, with the leftmost
child having index 0. The module outputsi to the structure stream and processes the
subtree rooted at the child ofv.

3.3. Example Execution of the DSP Algorithm

We now illustrate further the underlying ideas of the DSP algorithm by using the exam-
ple XML document of Figure 7, which conforms to the DTD given in Figure 5. When
the document is parsed, the stream of SAX events shown in Figure 8 is generated. The
DTD tree and the SAX event stream are then processed by the DSPmodule. In Figure 9
we show the DSP process, which starts from the DTD tree’s rootnode (i.e. the “library”
node).

As the first SAX event token, which is a “library” start-element event (i.e.Token
0 in Figure 8), matches the current DTD tree node (an element node), the module tra-

10 W. Ng et al

n

Token0: Start element − "library"

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token2: Start element − "author", att0:name="Tom"
Token1: Start element − "entry"

Token3: End element − "author"
4: Start element − "title"Token

5: PCDATA − "Comp123: Operating Systems − Introduction"
6: End element − "title"

9: End element − "year"

12: Start element − "num_copy"
13: PCDATA − "3"

15: End element − "entry"
16: Start element − "entry"
17: Start element − "author", att0:name="Jess Chu"
18: End element − "author"
19: Start element − "title"
20: PCDATA − "A Better World"
21: End element − "title"
22: Start element − "year"
23: PCDATA − "1874"
24: End element − "year"

12: End element − "num_copy"

29: End element − "book"
30: Start element − "num_copy"

28: Start element − "book"

25: Start element − "publisher"

27: End element − "publisher"
26: PCDATA − "Clear LTD."

31: PCDATA − "3"
32: End element − "num_copy"
33: End element − "entry"

Token

Token

7: Start element − "year"Token

8: PCDATA − "2003"

10: Start element − "course_note"
11: End element − "course_note"

n+1 : End element − "library"
: End element − "entry"

Fig. 8.A SAX Event Stream Generated Based on the XML Given in Figure 7

library

Pi

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �entry*

author
(name)

title year num_copy|publisher?

book

course_note

paper

: PCDATA

1

2

3

4

5

76

8

12

9
10

11

Keys:
i : Traversal path

Fig. 9. Parsing of the Library DTD Tree

XCQ: A Queriable XML Compression System 11

verses to the subtree of the “library” node in a depth-first manner using pathP1 in
Figure 9. Hence, the “entry∗” node becomes the current DTD tree node. The module
then processes the second SAX event token in the SAX event stream.

Since the “entry∗” node is labeled with the “∗” repetition operator, a bit is output,
the value of which depends on whether the current SAX event token matches the current
DTD tree node. As the second SAX event token is an “entry” start-element event (i.e. a
match), the module outputs a 1-bit and then traverses the path P2 as shown in Figure 9.

The module then processes the third SAX event, which is an “author” start-element
event (i.e.Token 2in Figure 8). Since the occurrence of this element is required by the
DTD, nothing is output to the structure stream. However, since “author” possesses a
“name” attribute, the attribute value, which comes with theSAX event token, is output
to the data stream specified by the path “/library/entry/author/@name”. The module
then receives an “author” end-element event (i.e.Token 3in Figure 8) and traverses to
the next child node of the “entry∗” node (i.e. the “title” node).

Similarly, when the module finds that the next SAX event token, which is a “ti-
tle” start-element event (i.e.Token 4in Figure 8), matches the current DTD tree node,
it traverses to its subtree and reaches the PCDATA node usingpathP4. The module
then expects a PCDATA event. When this event occurs with value “Comp123: Op-
erating Systems - Introduction” (i.e.Token 5in Figure 8), the value is output to the
data stream whose path is “/library/entry/title/text()”.The module then receives a “title”
end-element event (i.e.Token 6in Figure 8) and traverses to the next child node of the
“entry*” node (i.e. the “year” node) using the pathP5.

The subtree under the “year” node is processed in a similar manner to the “title”
node. The module then reaches the “publisher?” node and waits for the next SAX event
to occur. As the “publisher” node is labelled with an optional operator “?”, a bit is
output to the structure stream. Since the next incoming SAX event is not a “publisher”
start event but rather a “coursenote” start event (i.e.Token 10in Figure 8), the module
outputs a 0-bit. The module then traverses along pathP8 to the next child of the “entry*”
node, which is the choice (“|”) node.

When the module reaches the choice node, it checks which child of the choice node
matches the current SAX event. In this example, the module finds it is the second child,
which has an index 1, so it outputs a byte with value 1 to the structure stream. The
module then traverses pathP9, followed by pathP10 when it receives a “coursenote”
end element event. The “numcopy” node is then processed in a similar manner to the
“title” node.

After processing the “numcopy” node, the module returns to the “entry∗” node
using pathP12 and waits for the next SAX event to occur. Since the next SAX event
token is another “entry” start-element event, the process repeats in the manner described
above. The PDF traversal continues until all the tokens in the SAX event stream are
processed. After the DSP process is finished, a set of output streams that correspond
to the structural information and the path-based grouped data values (PCDATA and
attribute values) of the input XML document will have been generated.

4. Partitioned Path-Based Grouping

In this section, we discuss the PPG strategy, which is adopted to supportpartial de-
compressionof a compressed document during query evaluation. We imposea minimal
indexing scheme over compressed XCQ documents in order to facilitate better query
processing. Finally, we present a cost analysis of PPG when evaluating selection and
aggregation queries.

12 W. Ng et al

10

18

27

5

Min:5

Max: 27

Sum: 60

Count:4

0

1210

100

100000

10

Min:0

Max: 100000

Sum: 11320

Count:5
Compressed

Data Blocks

Block

Statistics

Signatures

(BSS)

Fig. 10.BSS Indexes in a PPG Data Stream

4.1. PPG Data Streams and BSS Indexing

As we have discussed in Section 3, the DSP module outputs the data elements of an
XML document to their corresponding data streams based on their tree pathsin the
DTD tree. Within the partitioned path-based data grouping (PPG), XCQ also partitions
the data streams into their corresponding sets of blocks, asshown in Figure 1. Each of
these data blocks can be compressed or decompressed as an individual unit. This par-
titioning strategy helps the underlying generic text compressor in XCQ to explore and
eliminate redundancies in the input data when these streamsare compressed individu-
ally, thus increasing the overall compression ratio (Liefke and Suciu, 2000; Sundaresan
and Moussa, 2001).

As data elements are stored in a compressed data block in their corresponding data
streams, the minimum unit of data access in XCQ is a single compressed data block.
Unfortunately, accessing a compressed data block can stillbe costly. This is because
when a data block is accessed, XCQ needs to load the required data block from disk
into main memory and then to decompress it, which involves the following three major
costs: the disk seek time during block searching, the data transfer time during block
fetching, and the processor time used during block decompressing and scanning.

In order to avoid unnecessary access to those data blocks that are irrelevant to the
input query, we impose a minimal indexing scheme over a PPG data stream calledBlock
Statistic Signature(BSS) indexing. BSS indexing over PPG data streams is minimal in
the sense that the scheme requires a very small amount of space and time resources
in XCQ. This indexing scheme is a simplified version of thesignature file indexing
approaches (Faloutsos and Christodolakis, 1985; Lin and Faloutsos, 1992; Datta and
Thomas, 1999). LikeProjection Signature Indexingin (Datta and Thomas, 1999), BSS
indexing is desirable for indexing block-oriented compressed data. We restrict our dis-
cussion of the BSS indexes that are created for those data streams that comprise only
numerical data. Assume that there aren blocks. TheBlock Statistic Signature(BSS)
index of thei’th block is given byBi = 〈si, bi〉 wherebi represents the set of data items
in the compressed block and the BSS index valuesi = 〈min(bi), max(bi), sum(bi),
count(bi)〉, wheremin, max, sum andcount are the usual operations. We define the
value rangefor a BSS indexed blockBi, denoted asli, by 〈min(bi), max(bi)〉. The
same principle can be applied to alphabetical data with somemodification of the BSS
index values.

Figure 10 depicts the underlying idea of the BSS indexing scheme. When generating
a PPG data stream for numerical data values, astatistical signatureis generated for
each compressed data block. The signature summarizes the data values inside the block.

XCQ: A Queriable XML Compression System 13

When a query is evaluated, the compressed data blocks in relevant data streams are
accessed by XCQ. If BSS indexes are built on the data streams,a filtering processis
carried out by XCQ as follows. Before a data block is fetched from the disk, XCQ
consults the corresponding BSS index and ignores those datablocks that do not contain
the required record(s). To do this, XCQ checks the BSS signature of the data block and
decides whether the value range of that block overlaps with the value range specified
in the query. If the two ranges overlap, which means that the data blockmaycontain
the required record(s), then the data block is fetched and decompressed for evaluation.
If the two ranges do not overlap, the block doesnot contain the required record(s), in
which case the data block is not fetched.

4.2. Query Processing in XCQ

In this section we do not intend to present a detailed evaluation of XCQ queries in the
scope of this paper, since the mechanism of processing XCQ queries and the optimiza-
tion issues involved need the full space of another paper. Thus, we now only highlight
the principle that PPG data streams help to process some XPath query fragments over a
compressed XML document that conforms to the DTD in Figure 5.

We assume that the data streams for the compressed document have been arranged
as shown in Figure 11. Let us consider the path query fragment

Q1 = “entry[author/@name=‘Jess’ and publisher/text()=‘Clear Ltd.’]”.

This query fragment selects those entry elements that have both an author with name
‘Jess’ and a publisher whose value is ‘Clear Ltd.’. The evaluation of the query depends
on both the document structure and the data values. The evaluation of the two predicates
in Q1 involves data streamsd0 andd3. As d0 andd3 contain string values, neither has
a BSS index associated with it. We first explain how XCQ evaluates the first predicate
“author/@name =‘Jess”’, inQ1. Since there is no BSS index ond0, XCQ needs to de-
compress the whole data stream and to test each record in the stream against the value
“Jess”. Assuming there are two records,r1 andr2 in d0, satisfying the first predicate,
XCQ then needs to find the corresponding “publisher” recordsto evaluate the second
predicate1. To find the corresponding record indexes, XCQ parses the structure stream
against the DTD tree and calculates the record indexes in data streamsd1, . . . , d4 that
correspond to the matched record indexes ind0. Assume that records1 in the first block
and records2 in the second block of data streamd3 are the publisher records corre-
sponding to the name records that satisfy the first predicate2. XCQ decompresses only
the first and second blocks ofd3 and retrieves the two matched records to evaluate the
second predicate. Now assume that only records1 satisfies the second predicate inQ1.
In order to construct the result, XCQ then decompresses the corresponding blocks in
data streamsd1, d2 andd4. The blocks needed are calculated from the matching record
indexes that were found during structure stream parsing. Assuming that the required
records are each in the first block of the corresponding data stream, XCQ needs to de-
compress only the shaded blocks in Figure 11 when processingQ1.

We can see that a smaller block size (i.e. using a finer partitioning) helps to improve
query performance, since a more precise portion of the compressed document is decom-
pressed during query evaluation. However, there is a trade-off in that finer block parti-

1 There are fewer elements in streamd3 than in streamd0 since they are optional.
2 XCQ can calculate the blocks corresponding to the record indexes because a fixed blocking factor is used
for each data stream.

14 W. Ng et al

: Non−decompressed data block

Streams:
Keys for path−based grouped Data

d0: /library/entry/author/@name
d1: /library/entry/title
d2: /library/entry/year

Structure Stream

d0 d1 d2 d3 d4

d3: /library/entry/publisher
d4: /library/entry/num_copy

: Decompressed data block

Fig. 11.Decompressed Data Blocks When ProcessingQ1

tioning degrades the compression ratio, since fewer redundancies in the data streams
can be eliminated by a text compressor. In addition, we see that if the selectivity of the
input query increases, the number of data blocks required tobe decompressed during
the query evaluation will also increase.

The BSS indexes also help to evaluate the query fragments involving aggregation
like Q2 = “count(//entry)” andQ3 = “sum(//numcopy[text()> 10])”. The former
counts the number of entry elements in the compressed XML document and the latter
sums the values of all those numcopy elements in the compressed XML document that
have a value greater than 10. InQ2, only the number of entry elements in the XML
document is needed to generate the answer. Thus, this type ofquery can be answered
without decompressing the data streams. XCQ only needs to parse the structure stream
against the DTD tree in Figure 2 once. It then counts and returns the number of “entry∗”
node occurrences that are assigned bit value 1. More complexstructural queries can be
processed by XCQ using a similar procedure. InQ3, only one data stream is involved
and the result of the query is an aggregate value. In this case, XCQ just needs to find
those data values in the data streamd4 that are greater than 10 and then sum these
values. The BSS index constructed ford4 can be used to filter out those blocks that
contain only values less than or equal to 10, allowing XCQ to decompress only a subset
of the blocks ofd4 in order to answer the query.

5. XCQ Compression Performance

In this section, we present the experimental results of evaluating the performance of
XCQ compression. We study the scalability of XCQ for different sizes of XML docu-
ments, and examine critically the impacts of varying PPG block sizes and of imposing
BSS indexing on XCQ compression.

5.1. Experimental Design and Setup

We compare the performance of XCQ with that of the following three compressors: (1)
gzip, which is a widely used generic text compressor, (2)XMill , which is a well known
XML-conscious compressor, and (3)XGrind, which is a well-known XML-conscious
compressor that supports querying of compressed XML data.

All the experiments were run on a notebook computer with the following configu-
ration:

– PIII machine with a clock rate of 600MHz.

XCQ: A Queriable XML Compression System 15

w
eb

lo
g

si
ze

s
in

 M
B

 0

 5

 10

 15

 20

 25

 30

 35

weblog_5weblog_4

Size

weblog_3weblog_2weblog_1

XSize

Fig. 12.Original Document Size vs XML-ized Document Size of the Weblog Data Set

– 192 MB RAM of main memory.

– 20 GB hard disk (Ultra DMA/66, 4200 rpm, 512 KB cache, 12 ms seek time).

During the experiments, the number of processes running on the machine was mini-
mized in order to reduce unrelated influences. The time takento compress and decom-
press the documents is obtained by running the corresponding processes repeatedly five
times and taking the average of the last three runs. The main reason for doing this is
to reduce the disk I/O influences on the results by loading thewhole document into
the physical memory if possible (the same technique is also used in (Liefke and Su-
ciu, 2000)).

To evaluate the performance of the compressors, we used six datasets that are com-
monly used in XML research (see the experiments in (Cheney, 2002; Liefke and Su-
ciu, 2000; Tolani and Haritsa, 2002)):Weblog, SwissProt, DBLP, TPC-H, XMark, and
Shakespeare(Bosak, 1999; Ley, 2005; Apache Software Foundation, 2005;Swiss-Prot,
2005; TPC-H, 2004; XMark, 2003). We now briefly introduce each dataset.

1. Weblogis constructed from the Apache webserver log (Apache Software Foundation,
2005). The original documents are not in XML.

2. Swissprotis constructed from the documents in the SwissProt database(Swiss-Prot,
2005) with the DNA sequences dropped. The original documents are not in XML.

3. DBLP is a collection of the XML documents freely available in the DBLP archive (Ley,
2005). The documents are already in XML format.

4. TPC-H is an XML representation of the TPC-H benchmark database, which is avail-
able from the Transaction Processing Performance Council (TPC-H, 2004).

5. XMark is an XML document that models an auction website. It is generated by the
tool provided in (XMark, 2003).

6. Shakespeareis a collection of the plays of William Shakespeare in XML (Bosak,
1999).

The first five data sets given above are regarded asdata-centricas the XML doc-
uments have a very regular structure, whereas the last one isregarded asdocument-
centricas the XML documents have a less regular structure. It is worth mentioning that
the XML-ized weblog dataset (XSize) is about 1.6 times bigger than its non-XML-ized
data counterpart (Size), as shown in Figure 12. This is due tothe fact that we need to
insert control information, such as element tags, into the documents.

16 W. Ng et al

XML Doc Compressed CR1 CR2

Dataset Size Document Size
(KB) (KB) (bits/byte) (percentage %)

gzip XMill gzip XMill gzip XMill
Weblog 32722 1156 726 0.282 0.177 96.5 97.8

SwissProt 21254 2889 1739 1.088 0.654 86.4 91.8
DBLP 40902 7418 6149 1.451 1.203 81.9 85.0
TPC-H 32295 2912 1514 0.721 0.375 91.0 95.3
XMark 103636 13856 8313 1.07 0.642 86.6 92.0

Shakespeare 7882 2152 1986 2.184 2.016 72.7 74.8

Table 1.Comparing Compression RatiosCR1 andCR2

5.2. Notion of Compression Ratio

There are two different expressions that are commonly used to define theCompres-
sion Ratio(CR) of a compressed XML document (see the different definitionsused
in (Cheney, 2002; Liefke and Suciu, 2000; Min et al, 2003; Tolani and Haritsa, 2002)):

CR1 =
sizeof(compressed file)× 8

sizeof(original file)
bits/byte.

CR2 = (1 −
sizeof(compressed file)

sizeof(original file)
) × 100%. (1)

The first compression ratio, denotedCR1, expresses thenumber of bits required to
represent a byte. UsingCR1 a better performing compressor achieves a relativelylower
value. On the other hand, the second compression ratio, denoted CR2, expresses the
fraction of the input document eliminated. UsingCR2, a better performing compressor
achieves a relativelyhighervalue.

We now illustrate the difference in both CR definitions by listing compression ratios
achieved by gzip and XMill in Table 1.CR2 shows that the fraction of an input docu-
ment eliminated by gzip is only a few percent smaller than that of XMill. This means
that the performance of gzip and XMill based onCR2 appear to be similar. However,
the actual size of a document compressed by XMill is generally much smaller than that
of the the document compressed by gzip. For example, for the Weblog document the
size after compression by XMill is about 60% of the size aftercompression by gzip.
This is also true for the SwissProt, TPC-H and XMark documents. On the other hand,
as we can see in Table 1, the difference is better reflected by the ratioCR1. For exam-
ple, we can see from Table 1 that there is an eleven-fold difference between theCR1

values for the Weblog (0.177 bits/bytes) and Shakespeare (2.016 bits/bytes) datasets us-
ing XMill, while the difference between the correspondingCR2 readings (i.e. 97.8%
and 74.8%) is only 23%. In addition, the notion behindCR1 (i.e. the number of bits
required to represent a byte) gives us an intuition related to theamount of information
in the dataset, a commonly used notion in information theory(Shannon, 1948). Thus,
we henceforth choose to adoptCR1 as the metric to measure compression performance.

5.3. Compression Performance of XCQ

We now present an empirical study of XCQ performance with respect to compression
ratio, compression time, and decompression time. All the numerical data used to con-
struct the graphs can be found in the tables listed in (XCQ Appendix, 2005).

XCQ: A Queriable XML Compression System 17

� �� �

��
��

��
��

� �� ��
��
��
��

��		

��
�

� �� �� �� �� �� �� �

XGrind

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ShakespeareXMarkTPC−HDBLPSwissProtWeblog

C
o

m
p

re
ss

io
n

 r
at

io
 (

b
it

s/
b

y
te

)

Gzip

XMill

XCQ

 0

Fig. 13.Compression Ratio for Different Datasets

5.3.1. Compression Ratio

Figure 13 shows the compression ratios that are achieved on the above-mentioned six
datasets expressed inCR1 (bits/byte). Notably, both XMill and XCQ consistently achieve
a better compression ratio than gzip. The compression ratioachieved is relatively high
for data-centric documents (i.e. Weblog, SwissProt, DBLP,TPC-H and XMark) and rel-
atively low for document-centric documents (i.e. Shakespeare). This can be explained
by the fact that the Shakespeare document does not have a regular structure, and there-
fore XMill and XCQ cannot take much advantage of the documentstructure during
compression.

It is interesting to note that the compression ratio achieved by XGrind is much
worse than that achieved by the other three compressors. This is due to the fact that
XGrind independently compresses the data values inside an XML document, which is
one of the requirements of itshomomorphic transformation(Tolani and Haritsa, 2002).
Thus, XGrind cannot take full advantage of eliminating the redundancies among data
values within a document. We now show that, in a statistical sense, XCQ achieves a
significantly better compression ratio than XMill. The evidence for this is obtained
from performingformal hypothesis testing for two sample means(cf. Chapter 8 in
(Schefler, 1988)) on a set of 30 different XML datasets as follows.

Let ∆ denote the difference in compression ratio between XMill and XCQ on an
XML document.

∆ = Compression Ratio of XMill− Compression Ratio of XCQ.

Let the mean of∆ be denoted asµ. We check the following two hypotheses (the
first is the null hypothesis and the second is the alternativehypothesis):

H0 : µ = 0

HA : µ > 0 (2)

In these hypotheses,H0 represents the fact that XMill achieves an equally good
compression ratio (i.e. there is no statistical difference), andHA represents the fact that
XCQ achieves a better compression, which involves a one-sided test on the positive
region of the distribution curve. From the results given in Table 10 in (XCQ Appen-
dix, 2005), we find that the samplemean(x) andvariance(σ2) are0.034 and0.000622,
respectively. It should be pointed out that the Central Limit Theorem (see Chapter 6.4
in (Schefler, 1988)) allows us to assume that the sampling distribution will be approx-

18 W. Ng et al

� ��

� �� �� �� � ���� � �� �� �� �

��
��

��
��
��
�

		
		
		
	

� �� � � �� �

XGrind

 10

 20

 30

 40

 50

 60

 70

 80

ShakespeareXMarkTPC−HDBLPSwissProtWeblog

C
o

m
p

re
ss

io
n

 t
im

e
in

 s

Gzip

XMill

XCQ

 0

Fig. 14.Compression Time for Different Datasets

imately normal, even though our data may not be distributed normally in the parent
populations. We now use thez-test to rejectH0, which is a standard statistical tech-
nique. Using the values ofx andσ2 above, we compute thatz-value = 7.476. If we
set the significance level ofα = 0.01 (note that this is stricter than the acceptable level
of α = 0.05), thecritical value = 2.33. As thez-value > 2.33, the null hypothesis
H0 is rejected on the positive side of the distribution curve, which means thatHA is
supported. In other words, XCQ achieves a better compression ratio than XMill with a
confidence level of 99%. This indicates the effectiveness ofour compression approach.
With the knowledge of the DTD, XCQ does not need to encode as much structural
information as XMill does in the compressed documents.

5.3.2. Compression Time

Figure 14 shows the compression time (expressed in seconds)required by the compres-
sors to compress the XML documents. It is clear that gzip outperforms the other com-
pressors in this experiment. XMill had a slightly longer compression time than gzip,
and XCQ in turn had a slightly longer compression time than XMill. The time overhead
can be explained by the fact that both XMill and XCQ introducea pre-compression
phase for re-structuring the XML documents to help the main compression process. In
the pre-compression phase, XCQ generates precise PPG data streams by recursively
traversing the DTD tree. In contrast, XMill adopts by default anapproximation match
on a reversed DataGuideto determine which container a data value belongs to. This
grouping by enclosing tagheuristic runs faster than the grouping method used in XCQ
and thus XMill runs slightly faster than XCQ. It should be noted, however, that the data
grouping result generated by XMill may not be as precise as our PPG data streams.
This complicates the search for related data values of an XMLfragment in the sepa-
rated data containers in a compressed file. In addition, the compression buffer window
size in XMill is set at 8MB, which is optimized solely for better compression (Liefke
and Suciu, 2000). Such a large chunk of compressed data is costly in full or partial de-
compression. On the other hand, the compression time required by XGrind is generally
much longer than that required by gzip, XMill, and XCQ. XGrind uses Huffman cod-
ing and thus needs an extra parse of the input XML document to collect statistics for a
better compression ratio, resulting in almost double the compression time required in a
generic compressor (Tolani and Haritsa, 2002).

XCQ: A Queriable XML Compression System 19

��

��
��
�

��
��
�

� �� �� �� � ��
�� � �� �

		

� �� � � �

XGrind

 5

 10

 15

 20

 25

 30

 35

 40

 45

ShakespeareXMarkTPC−HDBLPSwissProtWeblog

D
ec

o
m

p
re

ss
io

n
 t

im
e

in
 s

Gzip

XMill

XCQ

 0

Fig. 15.Decompression Time for Different Datasets

5.3.3. Decompression Time

Figure 15 shows the decompression time (expressed in seconds) required by the decom-
pressors. One observation from Figure 15 is that, in general, gzip outperforms the other
compressors in decompression and XMill runs faster than XCQ. Another observation
is that XGrind requires a much longer decompression time than the other five decom-
pressors. We also note that XMill decompresses Weblog documents slightly faster than
gzip, which conforms to the results reported in (Liefke and Suciu, 2000).

The extra overhead required by XMill and XCQ to merge data items into their orig-
inal positions in the structure after decompressing the data containers (or data streams)
may explain longer decompression times compared to gzip. However, when the XMill-
compressed file size is much smaller than the gzip-compressed file size, as shown in the
case of the XMark dataset, it is possible that XMill achievesa decompression time that
is shorter than that of gzip, mainly due to the much smaller disk read overhead.

5.3.4. Scalability of XCQ Compression

We now study the scalability of XCQ with respect to the other compressors. As we have
observed that the compressors behave in a similar way for different document types, we
choose to useWeblogdocuments of different sizes, presented in Figure 12, as thedata
set in this experiment.

Figure 16(a) shows the comparison between compressed document sizes (expressed
in MB) obtained by different compressors. All four compressors scale roughly linearly
with respect to the input document size, which is consistentwith the findings shown in
Figure 13. XCQ and XMill produce compressed documents of very similar sizes, while
the poor performance of XGrind (consistently large gradient) is expected according to
Figure 13.

Figure 16(b) shows the performance of the compressors in terms of compression
time (expressed in seconds), presented on a logarithmic scale. Clearly, gzip outperforms
the other compressors consistently regardless of the document size. In particular, both
XMill and XCQ have a longer compression time than gzip for alldocuments, since they
introduce a pre-compression phase. XMill takes about 1.6 times longer than gzip to
complete the compression process, a finding consistent withthe results given in (Liefke
and Suciu, 2000), while XCQ, in turn, takes about 1.6 times longer than XMill. XGrind
takes considerably longer than XCQ.

Figure 16(c) shows the performance in terms of decompression time (expressed in
seconds), presented on a logarithmic scale. It can be seen that XMill completes the de-

20 W. Ng et al

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35
C

om
pr

es
se

d
do

cu
m

en
t s

iz
es

 in
 M

B

Document sizes in MB

gzip
XMill
XCQ

XGrind

(a) Compressed Document Sizes

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

C
om

pr
es

si
on

 ti
m

e
(s

)

Document sizes in MB

gzip
XMill
XCQ

XGrind

(b) Compression Time

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Document sizes in MB

gzip
XMill
XCQ

XGrind

(c) Decompression Time

Fig. 16.Processing Weblog XML Documents in XCQ

compression process either more quickly than or in roughly the same time as gzip. This
is consistent with the results in (Liefke and Suciu, 2000). However, on the other bench-
mark XML documents we used, such as DBLP, Shakespeare, SwissProt and TPC-H,
XMill requires a slightly longer decompression time than gzip (cf. Figure 14). XCQ
takes 1.3 seconds longer than XMill to decompress a 32MB Weblog XML document.
However, it should be noted that XCQ is able to process queries by only partially de-
compressing the document, implying that the decompressionoverhead will be much
lower.

5.3.5. Summary and Discussion

To summarize, we find that both XMill and XCQ achieve better compression ratios than
gzip at the expense of compression and decompression time. XCQ needs more time
than XMill to generate a PPG data stream in an XML document when the document
is compressed. This enables XCQ to achieve a slightly bettercompression ratio than
XMill. On the other hand, the compression performance of XGrind is consistently worse
than those of XMill and XCQ. This supports the findings reported in (Tolani and Haritsa,
2002).

XCQ: A Queriable XML Compression System 21

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 1000 2000 3000 4000 5000
C

om
pr

es
s

R
at

io
 (

bi
ts

/b
yt

e)

Block size (records per block)

With Partition
Without Partition

(a) Compression Ratio

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400

C
om

pr
es

si
on

 ti
m

e
(s

)

Block size (records per block)

With Partition
Without Partition

(b) Compression Time

 11

 11.2

 11.4

 11.6

 11.8

 12

 12.2

 12.4

 12.6

 0 1000 2000 3000 4000 5000

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Block size (records per block)

With Partition
Without Partition

(c) Decompression Time

Fig. 17.Effect of Block Partitioning

5.4. Block Partitioning and BSS Indexing

In this section, we study the impact of varying the block sizeand imposing BSS indexing
on data streams in XCQ. We only present the effect on the 89MB Weblog dataset, since
other datasets exhibit similar behavior.

5.4.1. Effect of Block Partitioning

We now present the results related to the choice of block sizewhen partitioning PPG
data streams.

Figure 17(a) depicts the compression ratio that is achievedby XCQ under different
block sizes. For ease of reference, we superimpose a dotted line on the figure to indicate
the compression ratio achieved by XCQ when no partitioning is made. It can be seen
from the figure that the compression ratio degrades when a smaller block size (i.e. a finer
partitioning) is used. The degradation in the compression ratio is due to the fact that
fewer redundancies in the data streams can be eliminated by atext compressor if each
block is compressed as a finer individual unit. When the blocksize is increased to around
5,000 records per block, the compression ratio achieved is comparable to that achieved
when no partitioning is made; the difference is less than 4%.Figures 17(b) and 17(c)
show that both the compression and decompression times are also degraded when a finer
partitioning is used. The degradation in the compression and decompression times is due
to the fact that, if we set a smaller block size in XCQ, the number of compression and

22 W. Ng et al

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 1000 2000 3000 4000 5000
C

om
pr

es
s

R
at

io
 (

bi
ts

/b
yt

e)

Block size (records per block)

With BSS
Without BSS

(a) Compression Ratio

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

C
om

pr
es

si
on

 ti
m

e
(s

)

Block size (records per block)

With BSS
Without BSS

(b) Compression Time

 11

 11.2

 11.4

 11.6

 11.8

 12

 12.2

 12.4

 12.6

 12.8

 13

 0 1000 2000 3000 4000 5000

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Block size (records per block)

With BSS
Without BSS

(c) Decompression Time

Fig. 18.Effect of BSS Indexing

decompression operations is increased. Consequently, thetotal overhead is increased,
since each block is compressed and packed as an individual unit.

5.4.2. Effect of BSS Indexing

We now study the impact of BSS indexing on XCQ compression. Inthe following, we
compare the performance of two configurations of XCQ: the first is the default config-
uration with BSS indexing, while the second is XCQ with BSS indexingturned off.

Figures 18(a) to 18(c) show comparisons of the compression ratio, compression
time, and decompression time, respectively, between the two configurations of XCQ.
As can been seen, only small overheads are added to the compression (roughly 5%) and
decompression (roughly 1% to 2%) times when BSS indexing is adopted in XCQ. There
is virtually no difference in the compression ratio betweenthe two XCQ versions (i.e.
with and without BSS indexing). These results agree with ourexpectations, since the
BSS indexing scheme is designed to be minimal for block-oriented compressed data.

5.4.3. Discussion

We find that a very fine partitioning (smaller than 3000 records per block) on PPG data
streams imposes overheads in compression ratio, compression time, and decompression
time. However, when using a finer data stream partitioning, XCQ can utilize the ad-
vantage of decompressing a more precise portion of the compressed document when

XCQ: A Queriable XML Compression System 23

answering queries, as was discussed in Section 4.2. We need small blocks in a PPG data
stream in order to have efficient XCQ query processing. On theother hand the overhead
of BSS indexing is minimal, and is virtually independent on the block size in our study.

6. Related work

Because there are usually substantial redundancies embedded in an XML document
structure, information theory states that we should be ableto achieve significant com-
pression of XML data. However, such embedded redundancies are not trivial to discover
and are largely ignored by conventional textual compression such as gzip (Gailly and
Adler, 2003a) or bzip2 (Seward, 2005). Thus, many XML-conscious compression tech-
nologies have been proposed and developed in recent years.

We are aware of two XML-conscious compression technologiesthat make use of
DTDs. They areDifferential DTD Tree(DDT) compression in Millau (Sundaresan and
Moussa, 2001) and the Structure Compression Algorithm (SCA) proposed in (Levene
and Wood, 2002). The DDT and SCA approaches adopt a similar compression strategy
that encodes only the information that cannot be inferred from a given DTD. (A sim-
ilar approach to encoding a document with respect to a DTD wasused for a different
purpose in (Garofalakis et al, 2003).) The limitation of these approaches is that, when
parsing an XML document in order to create a corresponding tree structure, a large
amount of memory is required to store the generated DOM tree.The vigorous use of
virtual memory leads, in practice, to frequent thrashing ofdisk I/O, which degrades the
efficiency of the compression process.

XMill (Liefke and Suciu, 2000) is a typical example of unqueriable XML com-
pression technology3. It achieves a good compression ratio but the compressed data
needs to go through a full decompression in order to evaluatequeries. XMill has a
pre-compression phase introduced prior to the main compression process. The pre-
compression phase is designed to perform the following two main tasks: first, to separate
the document structural information from the data, and second, to group data items with
related semantics in the same “container”. The structural information includes element
tag names and attribute names. The data items include PCDATAand attribute values.

In order to group data items in an effective manner, XMill uses an approximation
matching on thereversed DataGuide(Goldman and Widom, 1997; Liefke and Su-
ciu, 2000) to determine which containers data values belongto. In its default setting,
data items with the same tag or attribute name are grouped in the same data container.
Each container is then compressed individually in the main compression phase by us-
ing an ordinary text compressor such as gzip, whose output isthen concatenated as a
single file. In addition, path expressions can be specified ascommand line arguments
to instruct the XMill compressor how to group data items. Specific semantic compres-
sors can also be employed in order to pre-compress the corresponding data containers
before they are compressed by a text compressor. This further helps to achieve a better
compression ratio. However, user expertise and manual effort are needed to intervene in
the compression process.

Cheney describes a different XML-conscious encoding called Multiplexed Hierar-
chical Modeling(MHM) in (Cheney, 2002). This offers better compression ratios than
XMill at the expense of compression speed. Like XMill, the compressed documents
need to be decompressed before queries can be evaluated on them.

3 To the best of our knowledge, only XMill source code is released and directly compilable.

24 W. Ng et al

To avoid the need to decompress documents when evaluating queries, some re-
cent XML compression technologies provide direct access tocompressed documents.
XGrind (Tolani and Haritsa, 2002) is the first knownqueriableXML compressor. XGrind
adopts a homomorphic transformation strategy to transforman XML document into a
specialized compressed format that preserves the syntactic and semantics information of
the original document. All the tag and attribute names in thecompressed document are
tokenized using a dictionary encoding approach, and enumeration-type attribute values
are binary encoded. PCDATA and general attribute values arecompressed individually
by using non-adaptive context-free Huffman encoding (Huffman, 1952).

As the compressed document output by XGrind is a homomorphictransformation of
the input document, all operations that can be executed overthe original document, such
as querying, are preserved. These operations can be executed using existing techniques
and tools with some modifications. However, it should be noted that the advantage of
avoiding decompression4 when querying is obtained at the expense of compression ra-
tio. For instance, XGrind compresses an 89MB Weblog XML document into a 38MB
compressed document, while XMill is able to compress the same document to only
2.3MB.

Recent work by Buneman et al. (Buneman et al, 2003; Buneman etal, 2005) and
on XPRESS (Min et al, 2003) also allow queries to be evaluateddirectly on com-
pressed XML documents. The technique adopted in (Buneman etal, 2003) compresses
theskeletonof a given XML document (essentially its structure) by usinga technique
based on the idea of sharing common subtrees, thereby transforming the skeleton into
a directed acyclic graph (DAG). This DAG can be further compressed by replacing any
consecutive sequence of out-edges to the same vertex by a single edge labeled with the
appropriate cardinality. The focus of Buneman et al.’s skeleton framework is different
from our approach, in that skeleton compression aims at reducing the size of the doc-
ument structure, rather than the textual data items in the document, and the framework
does not use knowledge of a DTD to perform structure compression. In (Buneman et
al, 2005), the skeleton and its corresponding data storage (or data vectors) are used
together to support processing a fragment of XQuery. We can view the skeleton com-
ponent as a “pseudo-DTD”, since, roughly speaking, it presents a compact structure of
a given XML document, while a data vector in (Buneman et al, 2005) is essentially a
non-partitioned data stream.

Although the skeleton technique is able to compress the structure of an XML docu-
ment well, the overall compression ratio (including textual data) achieved by this frame-
work, as mentioned in (Buneman et al, 2003), is worse than that of XMill. However,
using the proposed compression technique, the authors formally study the evaluation of
expressions in Core XPath (Buneman et al, 2003) and XQuery (Buneman et al, 2005).
The essence of evaluating such queries is done by manipulating the compressed skeleton
instance with only partial decompression. This technique allows the navigational aspect
of query evaluation, which is responsible for a large portion of the query processing
time, to be carried out in main memory. Such techniques are complementary to our
work. In principle, we could extend our work to output a queryresult in a compressed
format (i.e. outputting the related fragment of the structure stream and the data accord-
ing to their corresponding data streams).

XPRESS adopts mixed encoding methods on paths and achieves amuch better query
processing time (two to three times faster) than that of XGrind, according to the exper-
imental results reported in (Min et al, 2003). However, as also mentioned in (Min et

4 Note that range queries still require partial decompression in XGrind.

XCQ: A Queriable XML Compression System 25

al, 2003), the compression ratio of XPRESS is in fact worse than that of XMill. In ad-
dition, compression time is almost twice that of XMill, since XPRESS requires parsing
the input XML document twice in the compression process.

XQuec (Arion et al, 2004), which is a recent emerging XML compression technol-
ogy, claims that XQuery language can be fully supported. Like XGrind and XPRESS,
XQueC is able to compress an XML document as well as to avoid full decompres-
sion during query evaluation. However, the approach differs from that used by XGrind
and XPRESS in that XQueC separates the XML structure from theXML data items
and uses a variety of auxiliary structures, such as DataGuides (Goldman and Widom,
1997), structure trees, and other indexes, in order to support efficient evaluation of
XQuery (Boag et al, 2005). The individually compressed dataitems are organized into
containers, and they can be efficiently accessed by pointersfrom the auxiliary data struc-
tures. However, it seems that the fine-grained compression is very likely to result in a
worse compression ratio than that of XMill. Moreover, the auxiliary data structures, to-
gether with the pointers to the individually compressed data items, would incur a huge
space overhead.

7. Conclusions and Future Work

We have presented the development of XCQ, a prototype systemdesigned to support
querying over compressed XML documents. Overall, we showedthat by exploiting the
information present in a DTD, XCQ is able to achieve better compression and to support
evaluation of a set of fundamental XPath queries. Our development is based on the
following series of novel techniques.

– We proposedDTD Tree and SAX Event Stream Parsing(DSP), which enables users to
compress XML documents that conform to a given DTD. DSP does not require user
expertise, such as providing data grouping commands, in thecompression process.

– We proposed the Partitioned Path-Based Data Grouping (PPG)of data streams as an
effective block-oriented storage scheme for supporting partial decompression over
compressed data.

– We proposed a simple and minimal indexing scheme for PPG datastreams called
theBlock Statistical Signature(BSS) indexing scheme. The BSS indexing scheme is
designed to facilitate the fast recognition of target blocks in a PPG data stream.

We demonstrated in a diversified set of experimental resultsin Section 5 that XCQ
can achieve good compression and can compress XML-ized documents consistently
better than the generic text compressor gzip. It also achieves a slightly better compres-
sion ratio, at the expense of a greater compression time, than state-of-the-art systems
such as XMill, which is optimized only for compression ratio. Based on the study con-
ducted in Section 5.3, we found that XCQ achieves a better compression ratio than gzip
at the expense of the compression and decompression times. Comparing it to another
well-known unqueriable compressor, XMill, XCQ performs slightly better in terms of
the compression ratio but worse in compression and decompression time. XCQ was
found to be scalable for a wide range of XML benchmark documents, as listed in
Section 5.1. We also found that XCQ performs consistently better than another well-
known queriable XML compressor, XGrind, in compression performance. Admittedly,
the main drawback of DSP is that the compression and decompression times for process-
ing an XML document as a whole are relatively longer than those of the generic com-
pressor gzip. The underlying reason for this is that XCQ needs to generate PPG data

26 W. Ng et al

streams corresponding to the compressed XML document. However, we argue that the
time overhead is worthwhile, since the generated PPG data streams are able to support
queries over compressed documents in an efficient manner. Inpractice, this time over-
head is a once-off consumption, since the generated data streams can be buffered when
XCQ is used in the context of an XML application.

The techniques presented in XCQ pave the way to develop a fully-fledged querying
engine that is able to support more sophisticated XPath and XQuery queries. Currently,
we are also developing a cost model that is able to account forhow the response time is
affected by various parameters involved in the compressionstrategy, such as the block
size in a data stream, the number of clusters, the cost of scanning indexes, the cost of
decompressing a block, query selectivity, data distribution and workload statistics. The
cost model can be incorporated into the XCQ engine for optimizing query evaluation.
An orthogonal but promising direction related to query optimization is to employ a
caching technique in the engine to handle the PPG data blocksof a compressed docu-
ment. An efficient caching scheme for fetching and updating compressed data blocks
would help XCQ to minimize overheads, such as I/O costs, during the compression,
querying and updating of XML documents.

In the existing XCQ version, we have not considered the problem of updating com-
pressed XML documents. However, an append operation could be supported by XCQ in
a straightforward manner. In order to append an XML fragmentto the compressed doc-
ument, XCQ would first extract the structural information and data information from
the fragment and then append the extracted information to the structure stream and
the corresponding data streams. Using this approach, only the structure stream and the
last block of each updated data stream would have to be re-compressed. However, for
general update operations, we still need to devise efficienttechniques to deal with the
deletion and modification of fragments of compressed XML data.

Although our current implementation supports only non-recursive DTDs, it would
be straightforward to modify it to handle recursive DTDs. Inthe first place, the DTD
parser would build a DTD graph rather than a tree. When parsing a document against
the DTD graph, the graph would still be traversed in depth-first order. However there
would now be the possibility that a node in the graph could be visited multiple times
while parsing a single path in the document, although the number of times would be
bounded by the maximum depth of any node in the document. In order to determine
the correct data stream on which to output a text node, the system could consult the
stack maintained by the depth-first search of the DTD graph. This technique effectively
implements a deterministic PDA as shown to be necessary and sufficient for the single-
pass validation of XML documents by Segoufin and Vianu in (Segoufin and Vianu,
2002).

Acknowledgements.We would like to express our sincere thanks to the editor and the reviewers,
who provided very insightful and encouraging comments. This work is supported in part by grants
from the Research Grant Council of Hong Kong, Grant Nos HKUST6185/02E, HKSUT6165/03E
and DAG04/05.EG10.

References

Apache Software Foundation (2005). Log Files - Apache HTTP Server,
http://httpd.apache.org/docs/logs.html

Arion A, Bonifati A, Costa G, D’Aguanno S, Manolescu I, and Pugliese A (2004) Efficient Query Eval-
uation over Compressed XML Data. In Bertino E, Christodoulakis S, Plexousakis D, Christophides V,
Koubarakis M, Böhm K, Ferrari E (eds). Proceedings of Advances in Database Technology (EDBT 2004),
9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March, 2004.
Lecture Notes in Computer Science 2992, Springer, Berlin, pp 200–218

XCQ: A Queriable XML Compression System 27

Bell TC, Cleary JG, and Witten IH (1990) Text Compression. Prentice Hall, Englewood Cliffs, New Jersey,
USA

Boag S, Chamberlin D, Fernández MF, Florescu D, Robie J and Siméon J (eds) (2005) XQuery 1.0: An XML
Query Language. W3C Working Draft, 15 September 2005,http://www.w3.org/TR/xquery

Bosak J (1999) Shakespeare 2.00.http://www.cs.wisc.edu/niagara/data/shakes/shaksper.htm
Bray T, Paoli J, Sperberg-McQueen CM, Maler E and Yergeau F (eds) (2004) Extensible

Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, 4 February 2004,
http://www.w3.org/TR/REC-xml

Buneman P, Grohe M and Koch C (2003) Path Queries on Compressed XML. In Freytag JC, Lockemann PC,
Abiteboul S, Carey MJ, Selinger PG, Heuer A (eds) Proceedings of the 29th International Conference on
Very Large Data Bases, Berlin, Germany, September, 2003, pp141–152

Buneman P, Choi B, Fan W, Hutchison R, Mann R and Viglas S (2005) Vectorizing and Querying Large XML
Repositories. Proceedings of the 21th International Conference on Data Engineering, Tokyo, Japan, April,
2005, pp 261–272

Burrows M and Wheeler DJ (1994) A Block-Sorting Lossless Data Compression Algorithm. Technical Report
124, SRC, Digital Equipment Corporation, Palo Alto, California

Cannataro M, Comito C and Pugliese A (2002) SqueezeX: Synthesis and Compression of XML Data. Pro-
ceedings of the IEEE International Conference on Information Technology: Coding and Computing, Las
Vegas, USA, April 2002, pp 326–331

Cheney J (2001) Compressing XML with Multiplexed Hierarchical PPM Models. Proceedings of the IEEE
Data Compression Conference, Snowbird, UT, USA, March, 2001, pp 163–172

Clarke J (2004) The Expat XML Parser.http://expat.sourceforge.net/
Clark J and DeRose S (eds) (1999) XML Path Language (XPath) Version 1.0. W3C Recommendation, 16

November 1999http://www.w3.org/TR/xpath
Cleary J, Teahan W and Witten I (1995) Unbounded Length Contexts for PPM. In Storer JA, Cohn M (eds).

Proceedings of the IEEE Data Compression Conference, Snowbird, UT, USA, March, 1995, pp 52–61
Datta A and Thomas H (1999) Accessing Data in Block-Compressed Data Warehouses. Proceedings of the

Ninth Workshop on Information Technologies and Systems (WITS), Charlotte, North Carolina, USA,
December, 1999

DTDParser - A Java DTD Parser (2005).http://www.wutka.com/dtdparser.html
Faloutsos C and Christodoulakis S (1985) Design of a Signature File Method that Accounts for Non-uniform

Occurrence and Query Frequencies. In Pirotte A, Vassiliou Y(eds). Proceedings of the 11th International
Conference on Very Large Data Bases, Stockholm, Sweden, August, 1985, pp 165–170

Gailly J-L and Adler M (2003a) gzip 1.2.4.http://www.gzip.org/
Gailly J-L and Adler M (2003a) zlib 1.1.4.http://www.gzip.org/zlib/
Garofalakis M, Gionis A, Rastogi R, Seshadri S and Shim K (2003) XTRACT: Learning Document Type

Descriptors from XML Document Collections. Data Mining andKnowledge Discovery 7:23–56
Girardot M and Sundaresan N (2000a) Millau: An Encoding Format for Efficient Representation and Ex-

change of XML over the Web. Proceedings of the 9th International World Wide Web Conference, Ams-
terdam, The Netherlands, May, 2000, pp 747–765

Girardot M and Sundaresan N (2000b) Efficient Representation and Streaming of XML Content over the
Internet Medium. Proceedings of the IEEE International Conference on Multimedia and Expo (I), New
York, NY, USA, July/August 2000, pp 67–70

Goldman R and Widom J (1997) DataGuides: Enabling Query Formation and Optimization in Semistructured
Databases. In Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA (eds). Pro-
ceedings of the 23rd International Conference on Very LargeData Bases, Athens, Greece, August, 1997,
pp 436–445

Huffman DA (1952) A Method for Construction of Minimum-Redundancy Codes. Proceedings of the IRE
40:1098–1101

Ishikawa H, Yokoyama S, Isshiki S and Ohta M (2001) Project Xanadu: XML- and Active-Database-Unified
Approach to Distributed E-Commerce. In Tjoa AM and Wagner R (eds). Proceedings of the 12th Interna-
tional Workshop on Database and Expert Systems Applications, Munich, Germany, September, 2001, pp
833–837

Iyer B and Wilhite D (1994) Data Compression Support in Databases. In Bocca JB, Jarke M, Zaniolo C (eds).
Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile,
September, 1994, pp 695–704

Java Technology (2005).http://java.sun.com/
Lam WY, Ng W, Wood PT and Levene M (2003) XCQ: XML Compression and Querying System. Poster

Proceedings of the Twelfth International World Wide Web Conference, Budapest, Hungary, May, 2003
Levene M and Wood PT (2002) XML Structure Compression. Proceedings of the Second International Work-

shop on Web Dynamics, Honolulu, Hawaii, May 2002

28 W. Ng et al

Ley M (2005) DBLP.http://dblp.uni-trier.de/
Liefke H and Suciu D (2000) XMill: An efficient compressor forXML Data. In Chen W, Naughton JF,

Bernstein PA (eds). Proceedings of the ACM SIGMOD International Conference on Management of
Data, Dallas, Texas, USA, May, 2000, pp 153–164

Lin Z and Faloutsos C (1992) Frame-Sliced Signature Files. IEEE Transactions on Knowledge and Data
Engineering 4(3):281–289

Martin B and Jano B (1999) WAP Binary XML Content Format. W3C NOTE, 24 June 1999,
http://www.w3.org/TR/wbxml/

Megginson D (2004) SAX.http://www.saxproject.org/
Min JK, Park MJ and Chung CW (2003). XPRESS: A Queriable Compression for XML Data. In Halevy AY,

Ives ZG, Doan A (eds). Proceedings of the ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June, 2003, pp 122–133

Ng WK and Ravishankar C (1997) Block-Oriented Compression Techniques for Large Statistical Databases.
IEEE Transactions on Knowledge and Data Engineering 9(2):314–328

Poess M and Potapov D (2003) Data Compression in Oracle. In Freytag JC, Lockemann PC, Abiteboul S,
Carey MJ, Selinger PG, Heuer A (eds). Proceedings of the 29thInternational Conference on Very Large
Data Bases, Berlin, Germany, September, 2003, pp 937–947

Schefler WC (1988) Statistics: Concepts and Applications. The Benjamin-Cummings Publishing Co., Inc.,
Redwood City, California, USA

Segoufin L and Vianu V (2002) Validating Streaming XML Documents. In Popa L (ed). Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Madi-
son, Wisconsin, USA, June, 2002, pp 53–64

Seward J (2005) bzip2 and libbzip2.http://www.bzip.org/
Shannon CE (1948) A Mathematical Theory of Communication. The Bell System Technical Journal 27:379–

423, 623–656
Sundaresan N and Moussa R (2001) Algorithms and ProgrammingModels for Efficient Representation of

XML for Internet Applications. Proceedings of the Tenth International World Wide Web Conference,
Hong Kong, China, May, 2001, pp 366–375

Swiss-Prot Protein Knowledgebase (2005).http://www.expasy.ch/sprot/
TAR (2004).http://www.gnu.org/software/tar/
Tolani PM and Haritsa JR (2002) XGRIND: A Query-friendly XMLCompressor. Proceedings of the 18th

International Conference on Data Engineering, San Jose, CA, February/March, 2002, pp 225-234
Transaction Processing Performance Council (2004) TPC-H:An ad-hoc, decision support benchmark.

http://www.tpc.org/tpch/default.asp
XMark – An XML Benchmark Project (2003).http://monetdb.cwi.nl/xml/
XML Solutions (2000) XMLZIP.http://www.xmls.com/
XCQ Appendix (2005) Experimental Data of XCQ Performance,

http://www.cs.ust.hk/∼wilfred/XCQ/appendix.pdf

Author Biographies

Wilfred Ng obtained his M.Sc.(Distinction) and Ph.D. degrees from theUni-
versity of London. His research interests are in the areas ofdatabases and in-
formation Systems, which include XML data, database query languages, web
data management, and data mining. He is now an assistant professor in depart-
ment of computer science, the Hong Kong University of Science and Tech-
nology (HKUST). Further Information can be found at the following URL:
http://www.cs.ust.hk/faculty/wilfred/index.html.

Wai-Yeung Lam obtained his M.Phil. degree from the Hong Kong University
of Science and Technology (HKUST) in 2003. His research thesis was based on
the project “XCQ: A Framework for Querying Compressed XML Data.” He is
currently working in industry.

XCQ: A Queriable XML Compression System 29

Peter Wood received his PhD in Computer Science from the University of
Toronto in 1989. He had previously studied at the Universityof Cape Town,
South Africa, obtaining a BSc degree in 1977 and an MSc degreein Computer
Science in 1982. Currently he is a Senior Lecturer at Birkbeck and a member of
the Information Management and Web Technologies research group. His research
interests include database and XML query languages, query optimisation, active
and deductive rule languages, and graph algorithms.

Mark Levene received his PhD in Computer Science in 1990 from Birkbeck
College, University of London, having previously been awarded a BSc in Com-
puter Science from Auckland University, New Zealand in 1982. He is currently
Professor of Computer Science at Birkbeck College, where heis a member of the
Information Management and Web Technologies research group. His main re-
search interests are Web search and navigation, Web data mining and stochastic
models for the evolution of the Web. He has published extensively in the areas of
database theory and web technologies, and has recently published a book called
An Introduction to Search Engines and Web Navigation.

Correspondence and offprint requests to: Wilfred Ng, Department of Computer Science, Department ofCom-
puter Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong. Email: wilfred@cs.ust.hk

