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Abstract

The increasing prominence of data streams arising in a wide range of advanced

applications such as fraud detection and trend learning has led to the study of

online mining of frequent itemsets (FIs). Unlike mining static databases, mining

data streams poses many new challenges. In addition to the one-scan nature, the

unbounded memory requirement and the high data arrival rate of data streams,

the combinatorial explosion of itemsets exacerbates the mining task. The high

complexity of the FI mining problem hinders the application of the stream mining

techniques. We recognize that a critical review of existing techniques is needed in

order to design and develop efficient mining algorithms and data structures that

are able to match the processing rate of the mining with the high arrival rate of

data streams.

Within a unifying set of notations and terminologies, we describe in this paper

the efforts and main techniques for mining data streams and present a compre-

hensive survey of a number of the state-of-the-art algorithms on mining frequent

itemsets over data streams. We classify the stream-mining techniques into two

categories based on the window model that they adopt in order to provide in-

sights into how and why the techniques are useful. Then, we further analyze the

algorithms according to whether they are exact or approximate and, for approxi-

mate approaches, whether they are false-positive or false-negative. We also discuss

various interesting issues, including the merits and limitations in existing research

and substantive areas for future research.
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1 Introduction

Frequent itemset mining [1] has been well recognized to be fundamental to many

important data mining tasks, such as associations [2], correlations [7, 36], sequences

[3], episodes [35], classifiers [32] and clusters [43]. There is a great amount of work that

studies mining frequent itemsets on static databases and many efficient algorithms [22]

have been proposed.

Recently, the increasing prominence of data streams has led to the study of online

mining of frequent itemsets, which is an important technique that is essential to a wide

range of emerging applications [20], such as web log and click-stream mining, network

traffic analysis, trend analysis and fraud detection in telecommunications data, e-

business and stock market analysis, and sensor networks. With the rapid emergence of

these new application domains, it has become increasingly difficult to conduct advanced

analysis and data mining over fast-arriving and large data streams in order to capture

interesting trends, patterns and exceptions.

Unlike mining static databases, mining data streams poses many new challenges.

First, it is unrealistic to keep the entire stream in the main memory or even in a

secondary storage area, since a data stream comes continuously and the amount of data

is unbounded. Second, traditional methods of mining on stored datasets by multiple

scans are infeasible, since the streaming data is passed only once. Third, mining

streams requires fast, real-time processing in order to keep up with the high data arrival

rate and mining results are expected to be available within short response times. In

addition, the combinatorial explosion1 of itemsets exacerbates mining frequent itemsets

over streams in terms of both memory consumption and processing efficiency. Due

to these constraints, research studies have been conducted on approximating mining

results, along with some reasonable guarantees on the quality of the approximation.

In this paper, we survey a number of representative state-of-the-art algorithms [34,

9, 10, 31, 21, 11, 45, 17, 29, 18] on mining frequent itemsets, frequent maximal itemsets

[24], or frequent closed itemsets [37] over data streams. We organize the algorithms into

two categories based on the window model that they adopt: the landmark window or

1Given a set of items, I, the possible number of itemsets can be up to 2|I| − 1.
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the sliding window. Each window model is then classified as time-based or count-based.

According to the number of transactions that are updated each time, the algorithms are

further categorized into update per transaction or update per batch. Then, we classify

the mining algorithms into two categories: exact or approximate. We also classify

the approximate algorithms according to the results they return: the false-positive

approach or the false-negative approach. The false-positive approach [34, 9, 31, 10,

21, 11, 29] returns a set of itemsets that includes all frequent itemsets but also some

infrequent itemsets, while the false-negative approach [45] returns a set of itemsets

that does not include any infrequent itemsets but misses some frequent itemsets. We

discuss the different issues raised from the different window models and the nature of

the algorithms. We also explain the underlying principle of the ten algorithms and

analyze their merits and limitations.

The rest of this paper is organized as follows. We first give the preliminaries and the

notation in Section 2. Then, in Sections 3 and 4, we discuss the underlying techniques

of various representative algorithms for mining frequent itemsets and identify their

main features such as window models, update modes and approximation types. We

present an overall analysis of the algorithms in Sections 5 and discuss some future

research and related work in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

Let I be a set of items. An itemset (or a pattern), I = {x1, x2, . . . , xk}, is a subset of

I. An itemset consisting of k items is called a k-itemset and is written as x1x2 · · · xk.

We assume that the items in an itemset are lexicographically ordered. A transaction

is a tuple, (tid, Y ), where tid is the ID of the transaction and Y is an itemset. The

transaction supports an itemset, X, if Y ⊇ X. For simplicity, we may omit the tid

when the ID of a transaction is irrelevant to the underlying idea of a mining algorithm.

A transaction data stream is a sequence of incoming transactions and an excerpt

of the stream is called a window. A window, W , can be (1) either time-based or

count-based, and (2) either a landmark window or a sliding window. W is time-based

if W consists of a sequence of fixed-length time units, where a variable number of
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transactions may arrive within each time unit. W is count-based if W is composed of

a sequence of batches, where each batch consists of an equal number of transactions.

W is a landmark window if W = 〈T1, T2, . . . , Tτ 〉; W is a sliding window if W =

〈Tτ−w+1, . . . , Tτ 〉, where each Ti is a time unit or a batch, T1 and Tτ are the oldest and

the current time unit or batch, and w is the number of time units or batches in the

sliding window, depending on whether W is time-based or count-based. Note that a

count-based window can also be captured by a time-based window by assuming that

a uniform number of transactions arrive within each time unit.

The frequency of an itemset, X, in W , denoted as freq(X), is the number of trans-

actions in W that support X. The support of X in W , denoted as sup(X), is defined

as freq(X)/N , where N is the total number of transactions received in W . X is a

Frequent Itemset (FI) in W , if sup(X) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-specified

minimum support threshold. X is a Frequent Maximal Itemset (FMI) in W , if X is an

FI in W and there exists no itemset Y in W such that X ⊂ Y . X is a Frequent Closed

Itemset (FCI) in W , if X is an FI in W and there exists no itemset Y in W such that

X ⊂ Y and freq(X) = freq(Y ).

Given a transaction data stream and a minimum support threshold, σ, the problem

of FI/FMI/FCI mining over a window, W , in the transaction data stream is to find

the set of all FIs/FMIs/FCIs over W .

To mine FIs/FMIs/FCIs over a data stream, it is necessary to keep not only the

FIs/FMIs/FCIs, but also the infrequent itemsets, since an infrequent itemset may be-

come frequent later in the stream. Therefore, existing approximate mining algorithms

[34, 9, 10, 11, 21, 31, 45] use a relaxed minimum support threshold (also called a user-

specified error parameter), ǫ, where 0 ≤ ǫ ≤ σ ≤ 1, to obtain an extra set of itemsets

that are potential to become frequent later. We call an itemset that has support no

less than ǫ a sub-frequent itemset (sub-FI).

Example 2.1 Table 1 records the transactions that arrive on the stream within three

successive time units or batches, each of which consists of five transactions.

Let σ = 0.6 and ǫ = 0.4. Assume that the model is landmark window. We obtain

three consecutive windows, W1 = 〈T1〉, W2 = 〈T1, T2〉 and W3 = 〈T1, T2, T3〉. The
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T1 T2 T3

abc bcd ac

abcd abc abc

abx bc abcd

abu abcv abc

bcy abd acwz

Table 1: Transactions (tid omitted for brevity) in a Data Stream

minimum frequencies of FI ( sub-FI) in W1, W2 and W3 are 5σ = 3 (5ǫ = 2), 10σ = 6

(10ǫ = 4) and 15σ = 9 (15ǫ = 6), respectively. Assume that the model is a sliding

window and the window size is w = 2. There are two successive windows, W1 = 〈T1, T2〉

and W2 = 〈T2, T3〉. The minimum frequencies of FI (sub-FI) in both W1 and W2 are

10σ = 6 (10ǫ = 4).

In Table 2, we show all the FIs in all the above-described windows, while we also

show the sub-FIs that are not FIs in italics. The number in the brackets shows the

frequency of the itemset. All the FIs, except a and c in 〈T1〉 and 〈T1, T2〉, are also

FCIs since they have no superset that has the same frequency in the same window.

All the frequent 2-itemsets are also MFIs. We also note that ac only becomes an FI in

〈T1, T2, T3〉 and 〈T2, T3〉; therefore, if we do not keep ac in 〈T1〉 and 〈T1, T2〉 in which

ac is not an FI, we will miss ac in 〈T1, T2, T3〉 and 〈T2, T3〉. Thus, it is necessary to

use a relaxed minimum support threshold, ǫ, to keep an extra set of sub-FIs that have

the potential to become FIs later in the stream.

2

b,5 c,3a,4

b,4 c,2 c,3

c,2

,5

Figure 1: A Prefix Tree Representation of the Sub-FIs over 〈T1〉
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〈T1〉 〈T1, T2〉 〈T1, T2, T3〉 〈T2, T3〉

a (4) a (7) a (12) a (8)

b (5) b (10) b (13) b (8)

c (3) c (7) c (12) c (9)

ab (4) ab (7) ab (10) ab (6)

bc (3) bc (7) ac (9) ac (7)

bc (10) bc (7)

ac (2) ac (4) abc (7) abc (5)

abc (2) abc (4)

Table 2: FIs and sub-FIs

A prevalently used data structure to represent the itemsets is the prefix tree struc-

ture [34, 9, 10, 21, 11, 17]. In Figure 1, we show a prefix tree that stores all sub-FIs

over 〈T1〉 in Table 2 of Example 2.1. The nodes in the prefix tree are ordered according

to the lexicographic order of the items stored in the node. Each path in the prefix

tree represents an itemset, where the integer kept in the last node on the path is the

frequency of the itemset. For example, the left-most path from the node labelled “a,4”

to the node labelled “c,2” represents the itemset abc and the number “2” in the node

labelled “c,2” is the frequency of abc. In Figure 1, the nodes represented by solid

circles are FIs, while those represented by dotted circles are sub-FIs that are not FIs.

As we mentioned earlier, most existing studies focus on mining approximate re-

sults due to the high complexity of mining data streams. In the approximate mining

algorithms we are going to discuss, the frequency (or support) of an itemset, X, is

an approximation of its actual frequency (or actual support). We call this frequency

(or support) of X the computed frequency (or computed support) of X. We denote the

computed frequency (or computed support) of X as f̃req(X) (or s̃up(X)) to distinguish

it from its actual frequency (or actual support), i.e., freq(X) (or sup(X)). Obviously,

f̃req(X) ≤ freq(X) and s̃up(X) ≤ sup(X). We denote the upper bound for the error

in the computed frequency of X as err(X), such that (freq(X)− err(X)) ≤ f̃req(X) ≤

freq(X). In the rest of the paper, when we refer to the frequency (or support) of an

itemset, we mean the actual frequency (or actual support) of the itemset.
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3 Mining over a Landmark Window

In this section, we describe six algorithms on mining FIs/FMIs over a landmark win-

dow. We first discuss three algorithms [34, 31, 45], presented in Sections 3.1 to 3.3,

that do not distinguish recent itemsets from old ones and then three others [9, 21, 29],

presented in Sections 3.4 and 3.6, that place more importance on recent itemsets of a

data stream than the old ones.

3.1 Lossy Counting Algorithm

Manku and Motwani [34] propose the Lossy Counting algorithm for computing an

approximate set of FIs over the entire history of a stream. The stream is divided

into a sequence of buckets and each bucket consists of B = ⌈1/ǫ⌉ transactions. Each

bucket is also given an ID and the ID of the current bucket, bid τ , is assigned as

bidτ = ⌈N/B⌉, where N is the number of transactions currently in the stream. Lossy

Counting processes a batch of transactions arriving on the stream at a time, where

each batch contains β buckets of transactions.

Lossy Counting maintains a set of tuples, D, for the stream of transactions. Each

tuple in D is of the form (X, f̃req(X), err (X)), where X is a sub-FI, f̃req(X) is assigned

as the frequency of X, since X is inserted into D and err(X) is assigned as an upper

bound of the frequency of X before X is inserted into D. Lossy Counting updates D

according to the following two categories:

• UpdateEntry: For each tuple, (X, f̃req(X), err (X)) ∈ D, add the frequency of X

in the current batch to f̃req(X). If (f̃req(X) + err(X)) < bid τ , we delete this

tuple.

• AddEntry: If the frequency of an itemset, X, is at least β in the current batch

and X is not in any tuple in D, add a new tuple to D, where f̃req(X) is assigned

as the frequency of X in the current batch and err(X) = (bidτ − β).

Since B = ⌈1/ǫ⌉ and bid τ = ⌈N/B⌉, we have bid τ ≈ ǫN . An itemset, X, is

removed from D if (f̃req(X) + err(X)) < bid τ . Since freq(X) ≤ (f̃req(X) + err(X))
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and bid τ = ǫN , we have freq(X) < ǫN if an itemset, X, is not in any tuple in D. At the

point just before the current batch, we have ǫN = (bid τ −β), since there are β buckets

in the current batch. Therefore, when a new itemset, X, is added to D, its frequency

before the current batch can be at most ǫN = (bid τ −β) and thus err(X) = (bid τ −β).

As a result, Lossy Counting ensures that ∀X, if freq(X) ≥ ǫN , (X, f̃req(X), err (X)) ∈

D. Finally, Lossy Counting outputs all tuples, (X, f̃req(X), err(X)) ∈ D if f̃req(X) ≥

(σ − ǫ)N .

Implementation: The implementation of Lossy Counting in [34] consists of the fol-

lowing three main modules: Buffer, Trie and SetGen.

The Buffer module repeatedly fills the available main memory with as many in-

coming transactions as possible. The module computes the frequency of every item,

x ∈ I, in the current batch and prunes those items whose frequency is less than ǫN .

Then, the remaining items in the transactions are sorted.

The Trie module maintains the set, D, as a forest of prefix trees, where the prefix

trees are ordered by the labels of their roots. A node, v, in a prefix tree corresponds

to an tuple, (X, f̃req(X), err (X)) ∈ D and v is also assigned a label as the last item

in X so that X is represented by the label path from the root to v. Manku and

Motwani implement the Trie forest as an array of tuples (X, f̃req(X), err (X), level )

that correspond to the pre-order traversal of the forest, where the level of a node is the

distance of the node from the root. The Trie array is maintained as a set of chunks.

On updating the Trie array, a new Trie array is created and chunks from the old Trie

are freed as soon as they are not required.

The SetGen module generates the itemsets that are supported by the transactions

in the current batch. In order to avoid the combinatorial explosion of the itemsets,

the module applies an Apriori-like pruning rule [2] such that no superset of an itemset

will be generated if the itemset has a frequency less than β in the current batch.

SetGen employs a priority queue, called Heap, which initially contains pointers to the

smallest items of all transactions in the buffer. Pointers pointing to identical items are

grouped together as a single entry in Heap. SetGen repeatedly processes the smallest

item in Heap to generate a 1-itemset. If this 1-itemset is in Trie after the AddEntry
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or the UpdateEntry operation is utilized, SetGen is recursively invoked with a new

Heap created out of the items that follow the smallest items in the same transactions.

During each call of SetGen, qualified old itemsets are copied to the new Trie array

according to their orders in the old Trie array, while at the same time new itemsets are

added to the new Trie array in lexicographic order. When the recursive call returns,

the smallest entry in Heap is removed and the recursive process continues with the

next smallest item in Heap.

Merits and Limitations: A distinguishing feature of the Lossy Counting algorithm

is that it outputs a set of itemsets that have the following guarantees:

• All FIs are outputted. There are no false-negatives.

• No itemset whose actual frequency is less than (σ − ǫ)N is outputted.

• The computed frequency of an itemset is less than its actual frequency by at

most ǫN .

However, using a relaxed minimum support threshold, ǫ, to control the quality of

the approximation of the mining result leads to a dilemma. The smaller the value of

ǫ, the more accurate is the approximation but the greater is the number of sub-FIs

generated, which requires both more memory space and more CPU processing power.

However, if ǫ approaches σ, more false-positive answers will be included in the result,

since all sub-FIs whose computed frequency is at least (σ − ǫ)N ≈ 0 are outputted

while the computed frequency of the sub-FIs can be less than their actual frequency

by as much as σN . We note that this problem also exists in other mining algorithms

[9, 10, 11, 21, 31, 29] that use a relaxed minimum support threshold to control the

accuracy of the mining result.

3.2 Item-Suffix Frequent Itemset Forest

Li et al. [31] develop a prefix-tree-based, in-memory data structure, called Item-suffix

Frequent Itemset forest (IsFI-forest), based on which an algorithm, called DSM-FI, is

devised to mine an approximate set of FIs over the entire history of a stream.
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DSM-FI also uses a relaxed minimum support threshold, ǫ, to control the accuracy

of the mining results. All generated sub-FIs are kept in IsFI-forest, which consists of a

set of paired components, Header Table (HT) and Sub-Frequent Itemset tree (SFI-tree).

For each sub-frequent item, x, DSM-FI constructs an HT and an SFI-tree. Then, for

each unique item, y, in the set of sub-FIs that are prefixed by x, DSM-FI inserts an

entry (y, f̃req(y), batch-id, head-link) into the HT of x or increments f̃req(y) if y already

exists in the HT, where batch-id is the ID of the processing batch into which the entry

is inserted and head-link points to first node created due to y in the SFI-tree of x.

Each node in the SFI-tree has four fields, item, f̃req , batch-id, and node-link. Note

that the edges between the parent and children of the tree are implicitly assumed. A

path from the root node of x’s SFI-tree to a node, v, represents a sub-FI, whose prefix

and suffix are x and v.item, respectively. Thus, v.f̃req keeps the computed frequency

of the sub-FI and v.batch-id is the ID of the batch on processing which the sub-FI is

inserted into the SFI-tree. If there will be another node, whose item is the same as

v.item, inserted into the SFI-tree, then v.node-link will point to that node; otherwise,

v.node-link is a NULL-pointer. Therefore, by tracing the IsFI-forest, we can find all

sub-FIs and their computed frequencies.

For each transaction, x1x2 · · · xk−1xk, in an incoming batch, DSM-FI projects the

transaction into k item-suffix transactions as follows: x1x2 · · · xk−1xk, x2 · · · xk−1xk,

. . ., xk−1xk and xk. Then, these item-suffix transactions are inserted into the SFI-

trees of the corresponding items, x1, x2, . . . , xk−1, xk. If the item-suffix transaction

already exists in the SFI-tree, DSM-FI simply increments its computed frequency.

Meanwhile, DSM-FI inserts an entry for each item in the item-suffix transaction that

does not exist in the HT, while it increments the computed frequency of other items

that are in the HT.

Periodically, DSM-FI prunes those itemsets whose computed support is less than

ǫ. The pruning may require reconnection of the nodes in an SFI-tree, since each root-

to-node path, P , that represents a sub-FI X, also carries the frequency information of

a set of sub-FIs that are subsets of X and have the same prefix as X.

Example 3.1 Figure 2 shows an example of constructing an IsFI-forest and pruning
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infrequent itemsets from the IsFI-forest. We consider constructing an IsFI-forest for

two successive batches of transactions, {abde, acd, abe} and {bcde, abcde, acde},

with the IDs being equal to 1 and 2, respectively.

a,1,1

b,1,1

d,1,1

e,1,1

b,1,1
d,1,1
e,1,1

HT(a)

SFI-tree(a)

b,1,1

d,1,1

e,1,1

d,1,1
e,1,1

HT(b)

SFI-tree(b)

d,1,1

e,1,1

e,1,1

HT(d)

SFI-tree(d)

e,1,1

HT(e)

SFI-tree(e)

a,2,1

b,1,1

d,1,1

e,1,1

b,1,1
d,2,1
e,1,1

HT(a)

SFI-tree(a)

b,1,1

d,1,1

e,1,1

d,1,1
e,1,1

HT(b)

SFI-tree(b)

d,2,1

e,1,1

e,1,1

HT(d)

SFI-tree(d)

e,1,1

HT(e)

SFI-tree(e)
c,1,1

d,1,1

c,1,1

c,1,1

d,1,1

d,1,1

HT(c)

SFI-tree(c)

(a) IsFI-forest after processing the transaction abde

d,2,1

e,1,1

e,1,1

HT(d)

SFI-tree(d)

e,2,1

HT(e)

SFI-tree(e)

a,3,1

b,2,1

d,1,1

e,1,1

b,2,1
d,2,1
e,2,1

HT(a)

SFI-tree(a)

b,2,1

d,1,1

e,1,1

d,1,1
e,2,1

HT(b)

SFI-tree(b)

d,2,1

e,1,1

e,1,1

HT(d)

SFI-tree(d)

e,2,1

HT(e)

SFI-tree(e)
c,1,1

d,1,1

c,1,1

c,1,1

d,1,1

d,1,1

HT(c)

SFI-tree(c)

(b) IsFI-forest after processing the transaction acd

(c) IsFI-forest after processing the transaction abe (d) IsFI-forest after pruning infrequent item c

e,1,1

e,1,1

a,3,1

b,2,1

d,1,1

e,1,1

b,2,1
d,2,1
e,2,1

HT(a)

SFI-tree(a)

b,2,1

d,1,1

e,1,1

d,1,1
e,2,1

HT(b)

SFI-tree(b)

d,1,1 e,1,1

e,1,1

a,5,1

b,3,1

d,1,1

e,1,1

b,3,1
d,4,1
e,4,1

HT(a)

SFI-tree(a)

b,4,1

d,1,1

e,1,1

d,3,1
e,4,1

HT(b)

SFI-tree(b)

d,5,1

e,4,1

e,4,1

HT(d)

SFI-tree(d)

e,5,1

HT(e)

SFI-tree(e)

d,1,1

c,2,2

c,3,2

d,3,2

d,3,2

HT(c)

SFI-tree(c)

(e) IsFI-forest after processing the second batch of  transactions, {bcde, abcde, acde}

e,1,1

e,1,1

c,2,2

c,2,2

d,2,2

e,2,2

c,1,2

d,1,2

e,1,2

c,1,2

d,1,2

e,1,2

e,3,2

e,3,2

Figure 2: An Example of Constructing an IsFI-forest

The IsFI-forest in each of the subfigures is a set of paired HTs and SFI-trees,

for each of the unique items, a, b, c, d and e. The HT entries are linked to the

corresponding nodes in the SFI-tree via the head-links, while nodes of the same item

in an SFI-tree are linked via node-links in the order of their insertion time. Both

head-links and node-links are represented by dotted lines in the subfigures, while the

parent-child edges are represented by solid lines.
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Figures 2(a) to (c) show the IsFI-forest constructed after processing the transac-

tions in the first batch, {abde, acd, abe}. For the transaction abde, DSM-FI inserts

three entries, (b,1,1), (d,1,1) and (e,1,1), to a’s HT and links the entries to the corre-

sponding nodes in a’s SFI-tree, as shown in Figure 2(a). Similarly for abde’s item-suffix

transactions, bde, de and e, the HT entries and the SFI-tree nodes are inserted into

the HT and the SFI-tree of the items, b, d and e, respectively.

In Figure 2(b), we can see that after adding the transaction acd, the frequencies of

the corresponding HT entries and SFI-tree nodes are incremented to 2 and a new pair

of HT and SFI-tree is added for the new item c. Since the path acd does not exist in

a’s SFI-tree, it is added and a node-link from the old node (d,1,1) is linked to the new

node (d,1,1). A similar update is performed for the next transaction, abe, as shown in

Figure 2(c).

After processing the first batch, DSM-FI performs pruning of the IsFI-forest. We

assume that ǫ = 0.35: that is, all items whose computed frequency is less than 2 will

be pruned. Thus, the HT and the SFI-tree of item c are pruned from the IsFI-forest

in Figure 2(c). Then, we search for c in the HTs of the other items. Since the path

acd in a’s SFI-tree actually carries the frequency information of the itemsets, a, ac, ad

and acd, we need to reconnect a to d after deleting c, as shown in Figure 2(d). Note

that after the reconnection, the infrequent itemsets ac and acd are removed.

We then add the HT and the SFI-tree of item c back to the IsFI-forest for the

second batch of transactions, {bcde, abcde, acde}. Note that the batch-id of the new

HT entries and SFI-tree nodes in Figure 2(e) is 2.

2

The batch-id kept in an HT entry and in an SFI-tree node is used to estimate the

actual frequency of the corresponding itemset, X, represented by a node, v, where

f̃req(X) = v.f̃req , as described by the following equation. We assume that the number

of transactions in each batch is the batch-size.

freq(X) ≤ (f̃req(X) + ǫ · (v.batch-id − 1) · batch-size) (1)

To output the FIs, DSM-FI first follows the HT of each item, x, to generate a
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maximal itemset2 that contains x and all items in the HT of x. Next, DSM-FI traverses

the SFI-tree of x via the node-links to obtain the computed frequency of the maximal

itemset. Then, DSM-FI checks whether the maximal itemset is frequent. This checking

is done by testing whether the right side of Equation (1) is no less than σN , where

X is the maximal itemset and N is the total number of transactions received so far.

If the maximal itemset is frequent, DSM-FI generates the FIs that are subsets of the

maximal itemset directly based on the maximal itemset (note that, however, we may

still need to compute their exact computed frequency from the HTs and SFI-trees of

related items). Otherwise, DSM-FI repeats the process on the (k−1)-itemsets that are

subsets of the maximal itemset and share the prefix x, assuming the maximal itemset

has k items. The process stops when k = 2, since the frequent 2-itemsets can be found

directly by combining each item in the HT with x.

Example 3.2 Assume that σ = 0.5: that is, all itemsets whose frequency is no less

than 6σ = 3 are FIs. We consider computing the set of FIs from the IsFI-forest shown

in Figure 2(e).

We start with the item, a, and find the maximal itemset, abcde. Since the com-

puted frequency of abcde is 1, abcde is infrequent. We continue with abcde’s subsets

that are 4-itemsets and find that none of them is frequent. Then, we continue with the

3-itemsets that are abcde’s subsets. We find that both abe and ade have a computed

frequency of 3; hence, we generate their subsets, a, b d, e, ab, ad, ae, be, de, abe and

ade. These subsets are FIs and their computed frequency is then obtained from the

HTs and the SFI-trees. Since there is no maximal itemset in a’s SFI-tree other than

abcde, we continue with the next item, b, and then other items, in a similar way.

2

Merits and Limitations: An SFI-tree is a more compact data structure than is a

prefix tree. For example, if the itemset x1x2x3 is an FCI, then it is represented by one

path, 〈x1, x2, x3〉, in an SFI-tree but by two paths, 〈x1, x2, x3〉 and 〈x1, x3〉, in a prefix

tree. However, if x1x2x3 is not an FCI, then it is also represented by the same two

2A maximal itemset is an itemset that is not a subset of any other itemset.

13



paths. We remark that the number of FCIs approaches that of FIs when the stream

becomes large. Moreover, the compactness of the data structure is paid for by the

price of a higher computational cost, since more tree traversals are needed to gather

the frequency information of the itemsets.

3.3 A Chernoff-Bound-Based Approach

Yu et al. [45] propose FDPM, which is derived from the Chernoff bound [16], to

approximate a set of FIs over a landmark window. Suppose that there is a sequence

of N observations and consider the first n (n ≪ N) observations as independent coin

flips such that Pr(head) = p and Pr(tail) = 1 − p. Let r be the number of heads.

Then, the expectation of r is np. The Chernoff bound states, for any γ > 0, are

Pr(|r − np| ≥ npγ) ≤ 2e
−npγ2

2 . (2)

By substituting r̄ = r/n and ǫ = pγ, Equation (2) becomes

Pr(|r̄ − p| ≥ ǫ) ≤ 2e
−nǫ2

2p . (3)

Let δ = 2e
−nǫ2

2p . We obtain

ǫ =

√
2p ln(2/δ)

n
. (4)

Then, from Equation (3), we derive

Pr{p − ǫ ≤ r̄ ≤ p + ǫ} ≥ (1 − δ). (5)

Equation (5) states that the probability of being a “head” in n coin flips, r̄, is within

the range of [p − ǫ, p + ǫ] with a probability of at least (1 − δ). Yu et al. apply the

Chernoff bound in the context of mining frequent itemsets as follows. Consider the first

n transactions of a stream of N transactions as a sequence of coin flips such that for an

itemset, X, Pr(a transaction supports X) = p. By replacing r̄ with freq(X)/n (i.e.,

the support of X in the n transactions) and p with freq(X)/N (i.e., the probability

of a transaction supporting X in the stream), the following statement is valid: the
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support of an itemset, X, in the first n transactions of a stream is within ±ǫ of the

support of X in the entire stream with a probability of at least (1 − δ).

The Chernoff bound is then applied to derive the FI mining algorithm FDPM

by substituting p in Equations (4) and (5) with σ. Note that p corresponds to the

actual support of an itemset in the stream, which varies for different itemsets, but σ

is specified by the user. The rationale for using a constant σ in place of a varying p

is based on the heuristic that σ is the minimum support of all FIs, such that if this

minimum support is satisfied, then all other higher support values are also satisfied.

The underlying idea of the FDPM algorithm is explained as follows. First, a

memory bound, n0 ≈ (2 + 2 ln(2/δ))/σ, is derived from Equations (4) and (5). Given

a probability parameter, δ, and an integer, k. The batch size, B, is given as k · n0.

Then, for each batch of B transactions, FDPM employs an existing non-streaming FI

mining algorithm to compute all itemsets whose support in the current batch is no less

than (σ − ǫB), where ǫB =
√

(2σ ln(2/δ))/B (by Equation (4)). The set of itemsets

computed are then merged with the set of itemsets obtained so far for the stream.

If the total number of itemsets kept for the stream is larger than c · n0, where c is

an empirically determined float number, then all itemsets whose support is less than

(σ − ǫN ) are pruned, where N is the number of transactions received so far in the

stream and ǫN =
√

(2σ ln(2/δ))/N (by Equation (4)). Finally, FDPM outputs those

itemsets whose frequency is no less than σN .

Merits and Limitations: Given σ and δ, the Chernoff bound provides the following

guarantees on the set of mined FIs:

• All itemsets whose actual frequency is no less than σN are outputted with a

probability of at least (1 − δ).

• No itemset whose actual frequency is less than σN is outputted. There are no

false-positives.

• The probability that the computed frequency of an itemset equals its actual

frequency is at least (1 − δ).

However, Equations (2) to (5) are computed with respect to n of N observations
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and the result of these n observations is exact, as in the application of the Chernoff

bound in sampling [41, 48]. On the contrary, in FDPM, infrequent itemsets are pruned

for each new batch of transactions and some sub-FIs are pruned whenever the total

number of sub-FIs kept exceeds c · n0. Thus, the result of these n observations (of

a stream of N observations) in FDPM is not exact but already approximate, while

the error in the approximation due to each pruning will propagate to each of the

following approximations. Consequently, the quality of the approximation is degraded

and worsen for each propagation of error in the approximations.

3.4 Mining Recent Frequent Itemsets

Chang and Lee [9] propose to use a decay rate, d (0 < d < 1), to diminish the effect of

old transactions on the mining result. As a new transaction comes in, the frequency

of an old itemset is discounted by a factor of d. Thus, the set of FIs returned is called

recent FIs.

Assume that the stream has received τ transactions, 〈Y1, Y2, . . . , Yτ 〉. The decayed

total number of transactions, Nτ , and the decayed frequency of an itemset, freqτ (X),

are defined as follows:

Nτ = dτ−1 + dτ−2 + · · · + d1 + 1 =
1 − dτ

1 − d
. (6)

freqτ (X) = dτ−1 × w1(X) + dτ−2 × w2(X) + · · · + d1 × wτ−1(X) + 1 × wτ (X), (7)

where wi(X) =





1 if X ⊆ Yi,

0 otherwise.

Thus, whenever a transaction, say the τ -th transaction, Yτ , arrives in the stream,

Nτ−1 and freqτ−1(X) of each existing itemset, X, are discounted by a factor of d.

Then, we add one (for the new transaction, Yτ ) to d ·Nτ−1, which then gives Nτ . If Yτ

supports X, we also add one to d · freqτ−1(X), which then gives freqτ (X); otherwise,

freqτ (X) is equal to d · freqτ−1(X). Therefore, the more frequent X is supported by

recent transactions, the greater is its decayed frequency freqτ (X).
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The algorithm, called estDec, for maintaining recent FIs is an approximate al-

gorithm that adopts the mechanism in Hidber [26] to estimate the frequency of the

itemsets. The itemsets generated from the stream of transactions are maintained in

a prefix tree structure, D. An itemset in D has three fields: f̃reqτ (X), err τ (X) and

tid(X), where f̃reqτ (X) is X’s computed decayed frequency, err τ (X) is X’s upper bound

decayed frequency error, and tid(X) is the ID of the most recent transaction that sup-

ports X.

Except the 1-itemsets, whose computed decayed frequency is the same as their

actual decayed frequency, estDec estimates the computed decayed frequency of a new

itemset, X (|X| ≥ 2), from those of X’s (|X|−1)-subsets, as described by the following

equation:

f̃reqτ (X) ≤ min({f̃reqτ (X
′) | ∀X ′ ⊂ X and |X ′| = |X| − 1}). (8)

When X is inserted into D at the τ -th transaction, estDec requires all its (|X|−1)-

subsets to be present in D before the arrival of the τ -th transaction. Therefore, at

least (|X| − 1) transactions are required to insert X into D. When these (|X| − 1)

transactions are the most recent (|X| − 1) transactions and support X, f̃reqτ (X
′) in

Equation (8) is maximized as is f̃reqτ (X). Thus, we obtain another upper bound for

f̃reqτ (X) as follows:

f̃reqτ (X) ≤ ǫins · (Nτ−|X|+1 · d
|X|−1) +

1 − d|X|−1

1 − d
. (9)

In Equation (9), ǫins (0 ≤ ǫins < σ) is the user-specified minimum insertion thresh-

old by which estDec inserts an itemset into D if its decayed support is no less than ǫins .

The term ǫins · (Nτ−|X|+1 · d
|X|−1) is thus the upper bound for the decayed frequency

of X before the recent (|X| − 1) transactions, while (1− d|X|−1)/(1− d) is the decayed

frequency of X over the (|X| − 1) transactions. By combining Equations (8) and (9),

estDec assigns the decayed frequency of a new itemset, X, as follows:

f̃reqτ (X) = min
(
min({f̃reqτ (X ′) | ∀X ′ ⊂ X and |X ′| = |X| − 1}),
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ǫins · (Nτ−|X|+1 · d
|X|−1) +

1 − d|X|−1

1 − d

)
. (10)

Then, estDec assigns err τ (X) = (f̃reqτ (X)− freqmin
τ (X)), where freqmin

τ (X) is X’s

lower bound decayed frequency as described by the following equation.

freqmin
τ (X) = max ({f min

τ (Xi ∪ Xj) | ∀Xi,Xj ⊂ X

and |Xi| = |Xj | = |X| − 1 and i 6= j}), (11)

where

f min
τ (Xi ∪Xj) =





max (0, f̃req τ (Xi) + f̃reqτ (Xj) − f̃reqτ (Xi ∩ Xj)) if Xi ∩ Xj 6= ∅;

max (0, f̃req τ (Xi) + f̃reqτ (Xj) − Nτ ) otherwise.

For each incoming transaction, say the τ -th transaction, Yτ , estDec first updates

Nτ . Then, for each subset, X, of Yτ that exists in D, estDec computes f̃reqτ (X) =

f̃req tid(X)(X) · dτ−tid(X) + 1, err τ (X) = err tid(X)(X) · dτ−tid(X), and tid(X) = τ . If

f̃reqτ (X) < ǫprnNτ , where ǫprn (0 ≤ ǫprn < σ) is the user-specified minimum pruning

threshold, then X and all its supersets are removed from D. However, X is still kept

if it is a 1-itemset, since the frequency of a 1-itemset cannot be estimated later if it is

pruned, as indicated by Equation (8).

After updating the existing itemsets, estDec inserts new sub-FIs into D. First, each

new 1-itemset, X, is inserted into D with f̃reqτ (X) = 1, err τ (X) = 0, and tid(X) = τ .

Then, for each n-itemset, X (n ≥ 2), that is a subset of Yτ and not in D, if all X’s

(n − 1)-subsets are in D before the arrival of Yτ , then estDec estimates f̃reqτ (X) as

described by Equation (10). If f̃reqτ (X) ≥ ǫinsNτ , estDec inserts X into D, with

err τ (X) computed as described previously and tid(X) = τ . Finally, estDec outputs

all recent FIs in D whose decayed frequency is at least σNτ .

As will be shown in our overall analysis in Section 5, we derive the support error

bound of a result itemset X and the false results returned by estDec as follows:

Support error bound = err τ (X)/Nτ . (12)

False results = {X | freqτ (X) < σNτ ≤ f̃reqτ (X)}. (13)
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Merits and Limitations: The use of a decay rate diminishes the effect of the old

and obsolete information of a data stream on the mining result. However, estimating

the frequency of an itemset from the frequency of its subsets can produce a large error

and the error may propagate all the way from the 2-subsets to the n-supersets, while

the upper bound in Equation (9) is too loose. Thus, it is difficult to formulate an

error bound on the computed frequency of the resulting itemsets and a large number

of false-positive results will be returned, since the computed frequency of an itemset

may be much larger than its actual frequency. Moreover, the update for each incoming

transaction (instead of a batch) may not be able to handle high-speed streams.

3.5 Mining FIs at Multiple Time Granularities

Giannella et al. [21] propose to mine an approximate set of FIs using a tilted-time

window model [13]: that is, the frequency of an itemset is kept at a finer granularity

for more recent time frames and at a coarser granularity for older time frames. For

example, we may keep the frequency of an FI in the last hour, the last two hours, the

last four hours, and so on.

The itemsets are maintained in a data structure called FP-stream, which consists

of two components: the pattern-tree and the tilted-time window. The pattern-tree is a

prefix-tree-based structure. An itemset is represented by a root-to-node path and the

end node of the path keeps a tilted-time window that maintains the frequency of the

itemset at different time granularities. The pattern-tree can be constructed using the

FP-tree construction algorithm in [25]. Figure 3 shows an example of an FP-stream.

The tilted-time window of the itemset, bc, shows that bc has a computed frequency

of 11, (11 + 12) = 23, (23 + 20) = 43 and (43 + 45) = 88 over the last 1, 2, 4 and 8

hours, respectively. Based on this schema, we need only (⌈log2(365 × 24)⌉ + 1) = 15

frequency records instead of (365 × 24) = 8760 records to keep one year’s frequency

information. To retrieve the computed frequency of an itemset over the last T time

units, the logarithmic tilted-time window guarantees that the time granularity error is

at most ⌈T/2⌉. Updating the frequency records is done by shifting the recent records

to merge with older records and the logarithmic scale allows the update to be processed
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with O(1) amortized number of shifting and merging operations.

Interval(hr) freq (bc)

0 < t = 1 11

1 < t = 2 12

2 < t = 4 20

4 < t = 8 45

/

b ca

b c c

c

Tilted-Time Window of bcPattern-Tree

Figure 3: An Example of an FP-Stream

To reduce the number of frequency records in the tilted-time windows, the old fre-

quency records of an itemset, X, are pruned as follows. Let f̃reqj(X) be the computed

frequency of X over a time unit Tj and Nj be the number of transactions received

within Tj , where 1 ≤ j ≤ τ . For some m, where 1 ≤ m ≤ τ , the frequency records

f̃req1(X), . . . , f̃reqm(X) are pruned if the following condition holds:

∃n ≤ τ,∀i, 1 ≤ i ≤ n, f̃req i(X) < σNi and

∀l, 1 ≤ l ≤ m ≤ n,

l∑

j=1

f̃reqj(X) < ǫ

l∑

j=1

Nj . (14)

The first line in Equation (14) finds a point, n, in the stream such that before that

point, the computed frequency of the itemset, X, is less than the minimum frequency

required within every time unit, i.e., from T1 to Tn. Then, the second line in Equation

(14) computes the time unit, Tm, within T1 and Tn, such that at any time unit Tl

within T1 and Tm, the sum of the computed support of X from T1 to Tl is always less

than the relaxed minimum support threshold, ǫ. Thus, the frequency records of X

within T1 and Tm can be considered as unpromising and are pruned.

The pruning ensures that if we return all itemsets whose computed frequency is no

less than (σ− ǫ)N over a time interval, T , where N is the total number of transactions

received within T , then we will not miss any FIs over T and the computed frequency

of the returned itemsets is less than their actual frequency by at most ǫN .

The FP-streaming mining algorithm computes a set of sub-FIs at the relaxed min-

imum support threshold, ǫ, over each batch of incoming transactions by using the FI
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mining algorithm, FP-growth [25]. For each sub-FI X obtained, FP-streaming inserts

X into the FP-stream if X is not in the FP-stream. If X is already in the FP-stream,

then the computed frequency of X over the current batch is added to its tilted-time

window. Next, pruning is performed on the tilted-time window of X and if the win-

dow becomes empty, FP-growth stops mining supersets of X by the Apriori property

[2]. After all sub-FIs mined by FP-growth are updated in the FP-stream, the FP-

streaming scans the FP-stream and, for each itemset X visited, if X is not updated by

the current batch of transactions, the most recent frequency in X’s tilted-time window

is recorded as 0. Pruning is then performed on X. If the tilted-time window of some

itemset visited is empty (as a result of pruning), the itemset is also pruned from the

FP-stream.

Merits and Limitations: The tilted-time window model allows us to answer more

expressive time-sensitive queries, at the expense of more than one frequency record

kept for each itemset. The tilted-time window also places greater importance on recent

data than on old data as does the sliding window model; however, it does not lose the

information in the historical data completely. A drawback of the approach is that the

FP-stream can become very large over time and updating and scanning such a large

structure may degrade the mining throughput.

3.6 Mining Frequent Maximal Itemsets

Lee and Lee [29] extend the estDec algorithm [9] to approximate a set of FMIs. The

same decay mechanism applied in estDec is also applied to their work. However, instead

of using the simple prefix tree structure, the authors propose a compressed prefix tree

structure called CP-tree. The structure of the CP-tree is described as follows.

Let D be the prefix tree used in estDec. Given a merging gap threshold δ, where

0 ≤ δ ≤ 1, if all the itemsets stored in a subtree S of D satisfy the following equation,

then S is compressed into a node in the CP-tree.

f̃reqτ (X) − f̃reqτ (Y )

Nτ

≤ δ , (15)
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where X is the root of S and Y is an itemset in S.

Assume S is compressed into a node v in the CP-tree. The node v consists of the

following four fields: item-list, parent-list, freqmax
τ and freqmin

τ , where v.item-list is a

list of items which are the labels of the nodes in S, v.parent-list is a list of locations (in

the CP-tree) of the parents of each node in S, v.freqmax
τ is the frequency of the root of

S and freqmin
τ is the frequency of the right-most leaf of S.

Example 3.3 Figure 4 shows a prefix tree and its corresponding CP-tree. The subtree

S in the prefix tree is compressed a single node v3 in the CP-tree as indicated by the

dotted arrow. The item-list of v3, 〈b, c〉, corresponds to the labels, b and c, of the two

nodes in S. The parent-list, 〈v2.1, v3.1〉, means that the parent of the node b in S (i.e.,

a) is now in the first position of the item-list of v2 in the CP-tree and the parent of the

node c in S (i.e., b) is now in the first position of the item-list of v3 in the CP-tree.

2

a,9

b,4 c,3

c,2

Prefix Tree

v
1

<a>, <v
1
.1>, 9, 9

<c>, <v
2
.1>,

3, 3

<b,c>, <v
2
.1,

v
3
.1>, 4, 2

S

v
2

v
3

v
4

CP-tree

Figure 4: A Prefix Tree and Its Corresponding CP-Tree

The extended mining algorithm is the same as estDec, except that it is now per-

formed on the compressed nodes. Since the nodes are compressed nodes, the FIs are

processed using the item-list and the parent-list. To obtain the set of FMIs, the CP-

tree is traversed to output the FMIs (cf. the details of checking of the checking of

whether an itemset is an FMI can be consulted from [24]). The frequency of the FMIs

is estimated using the same frequency estimation mechanism used in estDec. Note

that for mining FMIs, only freqmin
τ is needed, while freqmax

τ is used to estimate the
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frequency of other FIs.

Merits and Limitations: The merits and limitations of estDec [9] also apply to

[29]. However, the use of the CP-tree results in the reduction of memory consumption,

which is vital in mining data streams. The CP-tree can also be used to mine the FIs,

however, the error rate of the computed frequency of the FIs, which is estimated from

freqmin
τ and freqmax

τ , will be further increased. Thus, the CP-tree is more suitable for

mining FMIs.

4 Mining over a Sliding Window

In this section, we describe three algorithms on mining FIs/FCIs over a sliding window,

the first two from Chang and Lee [10, 11] are presented in Section 4.1. They produce

approximate results. The last one [17] is presented in Sections 4.2 which computes

exact mining results.

4.1 Mining FIs over a Sliding Window

Algorithm estWin . Chang and Lee propose the estWin algorithm [10] to maintain

FIs over a sliding window. The itemsets generated by estWin are maintained in a prefix

tree structure (cf. see the discussion of the merits and limitations of [9] in Section 3.4),

D. An itemset, X, in D has the following three fields: f̃req(X), err(X) and tid(X),

where f̃req(X) is assigned as the frequency of X in the current window since X is

inserted into D, err(X) is assigned as an upper bound for the frequency of X in the

current window before X is inserted into D, and tid(X) is the ID of the transaction

being processed, for X is inserted into D.

For each incoming transaction Y with an ID tid τ , estWin increments the computed

frequency of each subset of Y in D. Let N be the number of transactions in the window

and tid1 be the ID of the first transaction in the current window. We prune an itemset

X and all X’s supersets if (1) tid(X) ≤ tid1 and f̃req(X) < ⌈ǫN⌉, or (2) tid(X) > tid1

and f̃req(X) < ⌈ǫ(N − (tid(X) − tid1))⌉. Here, the expression tid(X) ≤ tid1 indicates

that X is inserted into D at some transaction that arrived before the current sliding
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window, since tid1 is the ID of the first transaction in the current window, and thus

f̃req(X) is the actual frequency of X within the current window. On the other hand,

the expression tid(X) > tid1 means that X is inserted into D at some transaction that

arrived within the current sliding window and hence the expression (N−(tid(X)−tid1))

returns the number of transactions that arrived within the current window since the

arrival of the transaction having the ID tid(X). We note that X itself is not pruned if it

is a 1-itemset, since estWin estimates the maximum frequency error of an itemset based

on the computed frequency of its subsets [26] and thus the frequency of a 1-itemset

cannot be estimated again if it is deleted.

After updating and pruning existing itemsets, estWin inserts new itemsets into

D. It first inserts all new 1-itemsets, X, into D, with f̃req(X) = 1, err(X) = 0 and

tid(X) = tid τ . Then, for each new itemset, X ⊆ Y (|X| ≥ 2), if all X’s subsets having

size (|X|−1) (or simply (|X|−1)-subsets) are in D before the arrival of Y , then estWin

inserts X into D. estWin assigns f̃req(X) = 1 and tid(X) = tid τ and estimates err(X)

as described by the following equation:

err(X) = min
(
min({(f̃req(X ′) + err(X ′)) | ∀X ′ ⊂ X and |X ′| = |X| − 1}) − 1,

⌊ǫ(w − |X|)⌋ + |X| − 1
)
. (16)

For each expiring transaction of the sliding window, those itemsets in D that are

subsets of the transaction are traversed. For each itemset, X, being visited, if tid(X) ≤

tid1, f̃req(X) is decreased by 1; otherwise, no change is made since the itemset is

inserted by a transaction that comes later than the expiring transaction. Then, pruning

is performed on X as described before.

Finally, for each itemset, X, in D, estWin outputs X as an FI if (1) tid(X) ≤ tid1

and f̃req(X) ≥ σN , or (2) tid(X) > tid1 and (f̃req(X) + err(X)) ≥ σN .

For our overall analysis in Section 5, we derive the support error bound of a resulting

itemset, X, and the false results returned by estWin as follows:

Support error bound = err(X)/N. (17)
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False results = {X | freq(X) < σN ≤ (f̃req(X) + err(X))}. (18)

A Lossy-Counting-Based Algorithm. Chang and Lee also propose another similar

method [11] to maintain FIs over a sliding window based on the estimation mechanism

of the Lossy Counting algorithm [34]. The same prefix tree structure, D, is used to keep

the itemsets. An itemset, X, in D keeps f̃req(X), which is assigned as the frequency

of X in the current window since X is inserted into D, and tid(X), which is the ID of

the transaction under processing when X is inserted into D.

For each incoming transaction, Y , with an ID tid τ , the algorithm increments the

computed frequency of each subset of Y in D and inserts every new itemset, X ⊆ Y ,

into D with f̃req(X) = 1 and tid(X) = tid τ .

For each subset, X, of an expiring transaction, where X exists in D, if tid(X) ≤

tid1, then f̃req(X) is decreased by 1. We prune X and all X’s supersets if (1) tid(X) ≤

tid1 and f̃req(X) < ⌈ǫN⌉, or (2) tid(X) > tid1 and (f̃req(X) + ⌊ǫ(tid(X) − tid1)⌋) <

⌈ǫN⌉, where (tid(X) − tid1) is the maximum possible frequency of X in the current

window before the arrival of the transaction having the ID tid(X).

Finally, for each itemset, X, in D, X is outputted as an FI, if (1) tid(X) ≤ tid1

and f̃req(X) ≥ σN , or (2) tid(X) > tid1 and (f̃req(X) + ⌊ǫ(tid(X) − tid1)⌋) ≥ σN .

Merits and Limitations: The sliding window model captures recent pattern changes

and trends. However, performing the update for each incoming and expiring transac-

tion is usually much less efficient than batch-processing, especially in a large search

space as in the case of FI mining using a relaxed minimum support threshold. Thus,

these methods may not be able to cope with high-speed data streams that involve

millions of transactions generated from some real-life applications.

4.2 Mining FCIs over a Sliding Window

Chi et al. [17, 18] propose the Moment algorithm to incrementally update the set of

FCIs over a sliding window. They design an in-memory prefix-tree-based structure,

called the Closed Enumeration Tree (CET), to maintain a dynamically selected set of
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itemsets over a sliding-window.

Let v
X

be a node representing the itemset X in the CET. The dynamically selected

set of itemsets (nodes) are classified into the following four types.

• Infrequent Gateway Nodes (IGN): v
X

is an IGN if (1) X is infrequent, (2) v
Y

is

the parent of v
X

and Y is frequent, and (3) if v
Y

has a sibling, v
Y ′ , such that

X = Y ∪ Y ′, then Y ′ is frequent.

• Unpromising Gateway Nodes (UGN): v
X

is a UGN if (1) X is frequent, and

(2) ∃Y such that Y is an FCI, Y ⊃ X, freq(Y ) = freq(X) and Y is before X

according to the lexicographical order of the itemsets.

• Intermediate Nodes (IN): v
X

is an IN if (1) X is frequent, (2) v
X

is the parent

of v
Y

such that freq(Y ) = freq(X), and (3) v
X

is not a UGN.

• Closed Nodes (CN): v
X

is a CN if X is an FCI.

/

a,3 d,1c,3b,3

c,2b,3

c,2

Figure 5: An Example of a CET

Example 4.1 Figure 5 shows an example of a CET constructed for the set of trans-

actions, {cd, ab, abc, abc}, where σ = 0.5 and the number of transactions in each

sliding window is 4. The CET is similar to the prefix tree shown in Example 2.1 in

Section 2, except that there are four types of nodes. The nodes represented by dotted

circles are IGNs, those by dotted squares are UGNs, those by solid circles are INs, and

those by solid squares are CNs.

2

By the Apriori property [2], all supersets of an infrequent itemset are not frequent.

Thus, an IGN, v
X

, has no descendants and there is no node, v
Y
, in the CET such
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that Y ⊃ X. If v
X

is a UGN, then none of v
X

’s descendants is a CN; otherwise v
X

is a CN but not a UGN. A UGN, v
X

, also has no descendants, since no CNs can be

found there. Thus, not all itemsets need to be kept in the CET, even though Moment

computes the exact mining result.

For each incoming transaction, Moment traverses the parts of the CET that are

related to the transaction. For each node, v
X

, visited, Moment increments its frequency

and performs the following updates to the CET according to the change in v
X

’s node

type:

• v
X

is an IGN: If X now becomes frequent, then (1) for each left sibling v
Y

of v
X

,

Moment checks if new children should be created for v
Y

as a join result of X and

Y ; and (2) Moment checks if new descendants of v
X

should be created.

• v
X

is a UGN: If v
X

now becomes an IN or a CN, then Moment checks if new

descendants of v
X

should be created.

• v
X

is an IN: v
X

may now become a CN but no other update is made to the CET

due to v
X

.

• v
X

is a CN: v
X

will remain a CN and no update is made to the CET due to v
X

.

Note that for any node created for a new itemset, Moment needs to scan the current

window to compute its frequency.

Example 4.2 Assume that we have an incoming transaction acd. Now, we update the

CET in Figure 5 to give the CET in Figure 6. The frequency of all subsets of acd in

Figure 5 is incremented by one. The IN labelled “a,3” and the UGN labelled “c,2” in

Figure 5 now become CNs in Figure 6, since they have no supersets that have the same

frequency as theirs. The IGN labelled “d,1” now becomes frequent; as a consequence,

an IGN “d,1” and a CN “d,2” are added to the CET. The IGN “d,1” in Figure 5

becomes a UGN “d,2” in Figure 6 because of the CN “d,2”, which represents an FCI

cd. The item b is not in acd and thus the subtree rooted at b in Figure 5 is irrelevant

to the update.

2
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d,1

c,4b,3

c,3b,3

c,2

a,4

d,2

d,2

Figure 6: An Updated CET Formed by Adding acd to the CET in Figure 5

When a transaction expires from the sliding window, Moment traverses the parts

of the CET that are related to the transaction. For each node, v
X

, visited, Moment

decrements its frequency and performs the following updates to the CET.

• X is infrequent: v
X

remains an IGN and no update is made to the CET due to

v
X

.

• X is frequent:

– If X now becomes infrequent, then v
X

becomes an IGN. Moment first prunes

all v
X

’s descendants. Then, those children of v
X

’s left-sided siblings that

are obtained by joining with v
X

are updated recursively.

– If X remains frequent: if v
X

now becomes a UGN, then Moment prunes all

v
X

’s descendants; otherwise, we only need to update the node type of v
X

if

it changes from a CN to an IN and no other update is made to the CET

due to v
X

.

Example 4.3 Assume the transaction cd has expired. We now update the CET in

Figure 6 to give the CET in Figure 7. The frequency of all subsets of cd in Figure 6

is decremented by one. The UGN “d,2” in Figure 6 now becomes an IGN “d,1” in

Figure 7. As a consequence, the IGN “d,1” and the CN “d,2” in Figure 6 are deleted.

The CN “c,4” in Figure 6 also becomes a UGN “c,3” in Figure 7 because it has the

same frequency as its superset CN “c,3”. Other nodes in Figure 6 are irrelevant to

the update and thus unchanged in Figure 7.

2
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d,1c,3b,3

c,3b,3
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a,4

Figure 7: Deleting the Transaction cd from the CET in Figure 6

Merits and Limitations: The merit of Moment is that it computes the exact set

of FCIs over a sliding window. Although an update to a node may result in a prop-

agation of the node insertion and deletion in the CET, most of the nodes related to

an incoming or expiring transaction do not change their type often. Therefore, the

average update cost in the CET is small. However, since Moment performs the update

for each incoming transaction, it may not be efficient enough to handle bursts and very

high-speed streams. Moreover, the CET can be huge for a large window, even though

a subset of the itemsets can be derived from IGNs and UGNs.

5 An Overall Analysis

In this section, we first present in Table 3 a summary of the nine algorithms on mining

FIs/MFIs/FCIs over data streams [34, 31, 45, 9, 21, 29, 10, 11, 17] that we have

discussed in the previous sections of this paper. Then, we present an overall analysis

of these algorithms by referencing Table 3.

5.1 Window Model and Update Interval

Among the nine algorithms mentioned in Table 3, six adopt a landmark window model.

While the first three landmark window algorithms [34, 31, 45] lose the time informa-

tion of the itemsets mined, the damped landmark window model [9, 29] favors recent

itemsets by diminishing exponentially the effect of old transactions and the tilted land-

mark window model [21] partitions the window according to a logarithmic scale with

the recent frequency of an itemset recorded at a finer granularity. The other three
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Representative Window Update Approximation Support False

Work Model Interval Type Error Bound Results

Manku and Landmark Per False- ǫ {X | (σ − ǫ) ≤

Motwani [34] Count-Based Batch Positive sup(X) < σ}

Li et al. [31] Landmark Per False- ǫ {X | (σ − ǫ) ≤

Time-Based Batch Positive sup(X) < σ}

Yu et al. [45] Landmark Per False- Pr(0) ≥ Pr(0) ≥

Count-Based Batch Negative (1 − δ) (1 − δ)

Chang Damped Per False- Equation (12) Equation (13)

and Lee [9] Landmark Transaction Positive Section 3.4 Section 3.4

Count-Based

Giannella Tilted-Time Per False- {X | (σ − ǫ) ≤

et al. [21] Landmark Batch Positive ǫ sup(X) < σ}

Time-Based

Lee Damped Per False- Equation (12) Equation (13)

and Lee [29] Landmark Transaction Positive Section 3.4 Section 3.4

Count-Based

Chang Sliding Per False- Equation (17) Equation (18)

and Lee [10] Count-Based Transaction Positive Section 4.1 Section 4.1

Chang Sliding Per False- ǫ {X | (σ − ǫ) ≤

and Lee [11] Count-Based Transaction Positive sup(X) < σ}

Chi et al. [17] Sliding Per Exact 0 0

Count-Based Transaction

Table 3: An Overview of FI/FCI Mining Algorithms

algorithms [10, 11, 17] consider the most recent excerpt of a stream by adopting a

sliding window model.

Out of the nice window models, two [31, 21] are time-based while the other are

count-based. In general, time-based windows are more flexible than count-based win-

dows, since they do not need to accumulate a fixed number of transactions in buffer

before the mining can be processed. Although a count-based window in which the

update interval is per transaction still processes each expiring/incoming transaction at

real time, processing each transaction against the entire stream in most cases is less

efficient than processing a batch of transactions against the entire stream. In general,
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batch processing is more suitable for high-speed data streams. We note that batch

processing here refers to processing a batch of transactions at a time and then using

the mining results of the batch to update the results of the entire window seen so far,

while we refer to the process of updating each transaction against the entire window

as tuple processing. Thus, in Table 3, Manku and Motwani’s [34] and Li et al.’s [31]

algorithms actually tuple process, although their update interval is per batch.

5.2 Approximation Type, Support Error Bound and False Results

All the approximate algorithms adopt false-positive approaches [34, 31, 9, 21, 29, 10,

11], except for Yu et al.’s [45], which adopts a false-negative approach.

The false-positive approaches use a relaxed minimum support threshold, ǫ, to re-

duce the number of false-positive results and to obtain a more accurate frequency of

the result itemsets. However, a larger set of sub-FIs will have to be kept for a smaller

ǫ. The false-negative approach also uses a relaxed minimum support threshold, ǫ; how-

ever, the use of this ǫ lowers the probability of discarding an infrequent itemset that

may become frequent later. Although a more accurate answer also requires a smaller

ǫ, which generates more sub-FIs, the false-negative approach uses a second relaxed

minimum support threshold, ǫ′, that is increased gradually over time. This threshold,

ǫ′, restricts the sub-FIs to be kept in memory to only those whose support is no less

than ǫ′. When a sufficient number of transactions have been received in the stream, ǫ′

approaches σ and hence the number of sub-FIs kept is greatly reduced.

The error bound in the computed support and the possible false mining results of

most of the false-positive approaches [34, 31, 21, 11] are implied by The Lossy Counting

algorithm [34]. The false-negative approach [45] claims that the computed support is

the same as the actual support with probability of at least (1− δ) and each itemset in

the exact mining result is outputted with probability of at least (1 − δ). We are not

able to give unified equations to describe the support error bound and false mining

results in Chang and Lee’s [9, 10] and Lee and Lee’s [29] algorithms. We refer the

reader to the respective sections for the details.

Chi et al. [17] compute exact mining results over a sliding window. However,
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exact mining requires a huge amount of memory and CPU resources to keep track

of all itemsets in the window and their actual frequency, even with a compact data

structure as the one used in [17]. Mining FCIs may reduce the memory consumption

since the set of FCIs is in general smaller than the set of FIs, but it still depends on

the characteristics of the data stream.

5.3 Empirical Analysis

We analyze the performance of the algorithms according to the empirical studies in

the respective papers that propose the algorithms.

Li et al. [31] compare the performance of their DSM-FI algorithm to that of

the Lossy Counting algorithm by Manku and Motwani [34] on a synthetic dataset.

According to their experiments, DSM-FI is more efficient than Lossy Counting by up to

an order of magnitude and consumes less memory. Moreover, both the processing time

and memory consumption of DSM-FI are more stable than those of Lossy Counting.

Yu et al. [45] also compare their FDPM algorithm to Lossy Counting. With an

increase in the minimum support threshold σ, both the CPU time and the memory

consumption of FDPM becomes significantly less than those of Lossy Counting. FDPM

achieves high recall of over 95% and 100% precision, while Lossy Counting has 100%

recall and at least 46% precision. The performance of FDPM is very stable for varying

ǫ, while that of Lossy Counting is greatly influenced by ǫ. For small ǫ, Lossy Counting

achieves high precision, but consumes more memory and is slower, while for large ǫ,

Lossy Counting uses small memory and runs faster, at the expense of lowered precision.

In [29], Lee and Lee compare their algorithm estDec+ with Chang and Lee’s al-

gorithm estDec [9]. Since estDec+ mines FMIs, the processing time of estDec+ is

considerably smaller than that of estDec, which mines FIs. The memory consump-

tion of estDec+ is also considerably smaller than that of estDec due to the use of a

compressed prefix tree structure in estDec+.

The landmark window model that Giannella et al. [21] adopt is specialized in the

context (i.e. tilted-time window), thus their algorithm is not comparable to the others.

However, their experiments record high throughput and low memory consumption of
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their algorithm.

Chi et al. [17] mine FCIs instead of FIs; their algorithm is thus not comparable

with those algorithms that mine FIs. However, they compare their performance with

the mine-from-scratch approach, that is, using the FCI mining algorithm CHARM

[47] to mine the set of FCIs for each sliding window. Their results show that their

algorithm outperforms the mine-from-scratch approach by over an order of magnitude.

Of the three algorithms of sliding window model, the two proposed by Chang and

Lee [10, 11] only report the memory consumption in terms of the number of itemsets

maintained and no comparison with other algorithms is provided. Thus, it is difficult

for us to judge the performance of these algorithms.

6 Other Issues of Mining Data Streams

We first discuss in Sections 6.1 to 6.3 three important issues for the improvement of

mining high-speed data streams. Then, we discuss the related work in Section 6.4.

6.1 Exact Mining Vs Approximate Mining

Exact mining requires keeping track of all itemsets in the window and their actual

frequency, because any infrequent itemset may become frequent later in the stream.

However, the number of all itemsets is O(2|I|), making exact mining computationally

intractable, in terms of both CPU and memory. Although exact mining may still be

applicable for small sliding windows and for streams with relatively low data arrival

rates, it is more realistic to compute approximate mining results over landmark win-

dows or large sliding windows. In fact, approximation is a widely adopted technique

in most of the stream-processing applications [20]. In the context of data mining, in

most cases the goal is to identify generic, interesting or “out-of-the-ordinary” patterns

rather than to provide results that are exact to the last decimal. Thus, approximate

but instant answers, with reasonable accuracy, are particularly well-suited.

Approximating a set of FIs/FMIs/FCIs over a stream involves estimating both the

set of resulting itemsets and their frequency. In the existing false-positive approaches

[34, 31, 9, 21, 10, 11, 29], the set of sub-FIs kept is often too large in order to obtain
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a highly accurate answer. Thus, throughput is decreased and memory consumption is

increased due to the processing of a large number of sub-FIs. A possible solution to

this problem is first to use a constant lowered minimum support threshold to compute

a set of potential FIs and then to use a gradually increasing lowered minimum support

threshold to control the total number of sub-FIs kept in memory, as do Yu et al. [45].

We may consider the characteristics of different data streams to design specific (non-

decreasing) functions to monitor the minimum support threshold at different points

of a stream, thereby more effectively improving the mining accuracy and efficiency. It

is also possible to design approximate algorithms that are neither false-positive nor

false-negative but achieve both high recall and precision.

6.2 Load Shedding in Processing High-Speed Data Streams

Data streams are push-based and data arrival rates are high and often bursty. When

the load of mining exceeds the capacity of the system, load shedding is needed to keep

up with the arrival rates of the input streams. Several issues need to be considered

when applying load shedding to process mining on data streams. First, we need to

approximate the processing rate; that is, the number of transactions per unit of time

that the system is able to handle. Thus, we need to consider the characteristics of a

stream, such as the average size of a transaction and of an FI, as well as the memory

requirement at the particular processing rate. Then, when the arrival rate of a stream

is higher than the processing rate, we need to determine a technique to shed the load,

such as random sampling [41, 48] or semantic drop and window reduction [40] or

selective processing (i.e., processing only certain portions of the window). For the load

shedding technique chosen, we also need to analyze the quality of the approximate

mining results obtained.

6.3 Different Types of FIs

The exploratory nature of FI mining often results in a large number of FIs generated

and handling such a large number of itemsets severely degrades the mining efficiency.

A possible solution to reduce the number of itemsets mined is to mine FCIs [37] instead
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of FIs. The set of FCIs is a complete and non-redundant representation of the set of

FIs [46] and the former is often orders of magnitude smaller than the latter. This

significant reduction in the size of the result set leads to faster speed and less memory

consumption in computing FCIs than in computing FIs. In addition, the set of FCIs

also facilitates the generation of a set of non-redundant association rules [46].

Although many efficient algorithms [47, 42] on mining FCIs on static databases

have been proposed, the only algorithm on mining FCIs (at the time of writing) is the

Moment algorithm for data streams proposed by Chi et al. [17]. However, since Mo-

ment computes the exact set of FCIs and processes every transaction against the entire

window, it is not efficient enough for handling high-speed streams and it consumes too

much memory when the window becomes large. Therefore, a study of mining an ap-

proximate set of FCIs over a sliding window with reasonable guarantees on the quality

of the approximation would be worthwhile. However, we note that it may not be fea-

sible to mine FCIs over a landmark window since the number of FCIs approaches that

of FIs when the window becomes very large.

When the number of FCIs is still too large, we may consider to mine FMIs [29].

Since the number of FMIs is orders of magnitude smaller than that of FIs and FCIs

in most cases, it has been shown [24] that mining MFIs is significantly more efficient,

in terms of both CPU and memory, than mining FIs and FCIs. However, a problem

of FMIs is that FMIs lose the frequency information of their subset FIs and hence

the error bound of the estimated frequency of the FIs recovered from the FMIs will

be significantly increased. In mining static databases, many concise representations

of FIs [8, 6, 39, 44, 5, 15] have been proposed. These concise representations of FIs

are not only significantly smaller in size, but also able to recover the set of FIs with

highly accurate frequency. Thus, it is also possible to consider mining these concise

representations of FIs over the data streams. A challenge of mining these concise

representations is how to efficiently update the concise set of FIs at the high arrival

rate of the streaming data. Since each transaction may change the status of a large

number of FIs (from concise FIs to normal FIs and vice versa), batch processing with

efficient incremental update on a batch of transactions may be a better choice.
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6.4 Other Related Work

A closely related work to mining FIs over streams is the mining of frequent items over

data streams, which has been studied in a number of recent proposals [34, 19, 27, 12,

45, 33, 38]. However, mining FIs is far more challenging than counting singleton items

due to the combinatorial explosion of the number of itemsets.

Extensive research has been conducted on querying processing and data manage-

ment in data streams. The issues of data models, query languages in the context of

data streams are the main research topics. We refer readers to the excellent surveys

by Babcock et al. [4] and Golab and Özsu [23].

Some prior work on streaming algorithms for mining FIs include Carma [26] and

SWF [30]. Carma scans a transaction database twice to mine the set of all FIs, where

the first scan of Carma can be applied to compute a false-positive set of FIs over a

landmark window. SWF mines the exact set of all FIs over a time-based sliding window.

SWF first computes the set of all FIs over the first window and then it requires only

one scan of the database for each incremental update. However, scanning the entire

window for each slide may not be efficient enough to handle high-speed data streams.

For the recent development of FI/FCI mining over data streams, we are aware of

the following two studies.

Jin and Agrawal [28] develop the StreamMining Algorithm using potential frequent

2-itemsets and the Apriori property to reduce the number of candidate itemsets. They

also design a memory-resident summary data structure that implements a compact

prefix tree using a hash table. Their algorithm is approximate and false-positive,

which has deterministic bounds on the accuracy. The window model they adopt is the

landmark window and they do not distinguish recent data from old data.

Cheng et al. [14] adopt a sliding window model to approximately mine FIs over

data streams. The main contribution of this work is that it proposes a progressively

increasing minimum support function to address the dilemma caused by ǫ in most of the

existing algorithms. When an itemset is retained in the window longer, the technqiue

requires its minimum support threshold to approach the minimum support of an FI. As

a result, it is able to increase ǫ to significantly improve the mining efficiency and save
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memory consumption, at the expense of only slightly degraded accuracy. The proposed

algorithm of this work, called MineSW, is shown by Cheng et al. to outperform an

improved version of the algorithm proposed in [11] that apply Lossy Counting [34]

algorithm to mine FIs over a sliding window.

7 Conclusions

In this paper, we provide a survey of research on mining data streams. We focus

on frequent itemset mining and have tried to cover both early and recent litera-

ture related to mining frequent itemsets (FIs) or frequent closed itemsets (FCIs). In

particular, we have discussed in detail a number of the state-of-the-art algorithms

[34, 31, 45, 9, 21, 29, 10, 11, 17] on mining FIs, FMIs or FCIs over data streams.

Moreover, we have addressed the merits and the limitations and presented an over-

all analysis of the algorithms, which can provide insights for end-users in applying or

developing an appropriate algorithm for different streaming environments and various

applications. We have also identified and discussed possible future research issues on

mining algorithms.

We believe that as many new streaming applications and sensor network appli-

cations are becoming more mature and popular, streaming data and sensor data are

also becoming richer. More high-speed data streams are generated in different applica-

tion domains, such as millions of transactions generated from retail chains, millions of

calls from telecommunication companies, millions of ATM and credit card operations

processed by large banks, and millions of hits logged by popular Web sites. Mining

techniques will then be very significant in order to conduct advanced analysis, such

as determining trends and finding interesting patterns, on streaming data. It is our

intention to present this survey to simulate interests in utilizing and developing the

previous studies into emerging applications.
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