
SFP-Rank: Significant Frequent Pattern
Analysis for Effective Ranking

Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong,
songyfxjtu@gmail.com,{wilfred,kwtleung,fang}@cse.ust.hk

Abstract. Ranking documents in terms of their relevance to a given
query is fundamental to many real-life applications such as information
retrieval and recommendation systems. Extensive study in these applica-
tion domains has given rise to the development of many efficient ranking
models. While most existing research focuses on developing Learning To
Rank (LTR) models, the quality of the training features, which plays an
important role in ranking performance, has not been fully studied. Thus,
we propose a new approach that discovers effective features for the LTR
problem.
In this paper, we present a theoretical analysis on which frequent pat-
terns are potentially effective for improving the performance of LTR, and
then propose an efficient method that selects frequent patterns for LTR.
First, we define a new criterion, namely feature significance (or simply
significance). Specifically, we use each feature’s value to rank the training
instances, and define the ranking effectiveness in terms of a performance
measure as the significance of the feature. We show that the significance
of an infrequent pattern is limited by using formal connection between
pattern support and its significance. Then, we propose a methodology
that sets the support value when performing frequent pattern mining.
Finally, since frequent patterns are not equally effective for LTR, we fur-
ther provide a coverage based significant pattern generation algorithm to
discover effective patterns, and propose a new ranking approach called
SFP-Rank (Significant Frequent Pattern based Ranking), in which the
ranking model is built upon the original features as well as the signifi-
cant frequent patterns. Our experiments confirm that, by incorporating
significant frequent patterns to train the ranking model, the performance
of the ranking model can be substantially improved.

Keywords: Learning to rank; frequent patterns; feature selection; combined
features; ranking performance

1 Introduction

Ranking is a well-recognized problem in the research area of information re-
trieval, since establishing an effective ranking model is central in many applica-

0 A preliminary version of this paper appears as [33].

2 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

tions, such as advertising strategies, document retrieval systems, recommender
systems, and many others [23]. For example, in a document retrieval system,
given a query, there are usually a large number of documents that satisfy the
query conditions. It is thus necessary to further rank documents according to
their relevance to the query, in order that users are able to obtain the most
relevant results.

An effective ranking method that guarantees the retrieval quality is signifi-
cant for information retrieval systems. The related study has attracted a lot of
researchers’ attention in recent years [22, 5, 24, 30, 32]. Empirical ranking models,
like vector space models and probabilistic models, have been applied to solve the
ranking problem. However, existing models usually suffer high cost for tuning
their parameters. Other advanced approaches, like RankSVM [22] and RankNet
[5], have been derived from machine learning techniques, to automatically learn
effective ranking functions, and they are generally regarded as the learning to
rank (LTR) methods. The LTR methods solve the ranking problem in the fol-
lowing way. First, they take a training dataset as the input, which consists of
the records expressed in a triplet 〈q,d, y〉 with q as the query, d as the document
(represented as a vector of features), and y as the known relevance score of d
to q, and, based on the training dataset, a ranking model is then constructed.
The testing dataset contains records which take the same form as those in the
training dataset, except that the relevance scores y are unknown. Then, the
ranking model is applied to the testing dataset to estimate the relevance score of
a record. Finally, the records in the testing dataset are sorted in terms of their
estimated relevance scores. By representing the documents as a large number of
features and making use of advanced machine learning techniques, current LTR
methods like RankSVM and RankNet achieve good performance for the ranking
problem compared to those empirical ranking methods.

While most of the current research has been done to design and develop ef-
fective ranking models as a fundamental part in LTR methods, not many studies
were carried out to improve the quality of the document features, which have a
high impact on ranking quality. Besides the effectiveness of training the rank-
ing models, the performance of the ranking models is also highly related to the
quality of the features used in the ranking. The studies in [33] show that, by
incorporating a set of properly selected frequent patterns as features, the perfor-
mance of the ranking model such as RankSVM can be substantially improved.
Accordingly, a frequent pattern based ranking approach called FP-Rank was
proposed.

In this paper, we propose a new method that improves the quality of the
ranking features, which eventually improves the accuracy of a ranking method.
Basically, we first define the notion of feature significance (or simply significance)
that measures the effectiveness of only one single feature for training ranking
model. Significance is based on the Kendall Tau distance [13] between the ranked
list generated by the model with one single feature, and the ground truth ranked
list. Compared with conventional performance metrics [16], this criterion has the

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 3

(a) Conventional LTR Approach (b) SFP-Rank Approach

Fig. 1. Convectional LTR Approach vs. SFP-Rank Approach

advantage of handling ties in the ranked list as well as accurately reflecting the
effectiveness of a feature.

A challenge in our approach is to handle combined features, since a large por-
tion of frequent patterns used in ranking are combined features. The combined
features have the ability to reflect more semantics of the data. For example,
when extracting features to represent documents in information retrieval sys-
tem, using phrases (combined features) can accurately differentiate documents
compared to only using single words (single features) extracted from the docu-
ments. Although combined features are useful for LTR, the number of combined
features is exponential with respect to the original features. To tackle this prob-
lem, we provide a theoretical analysis showing that the significance of a pattern
with low support is limited due to the pattern’s limited coverage on the dataset.
This fundamental result connects a pattern’s frequency with its significance and
provides a means to set the support value for mining frequent patterns. Our
approach is then able to filter out a large amount of insignificant patterns in the
mining process.

Since frequent patterns are generated solely based on frequency, not every
frequent pattern is equally significant for LTR. Furthermore, including lots of
frequent patterns in the model training not only increases the model training
time, but also degrades the ranking performance. Thus, we adopt a coverage
based significant frequent pattern generation approach to solve this problem.
Based on the connection between a pattern’s frequency and its significance, we
filter out all the insignificant patterns by setting some appropriate support. Intu-
itively, we recursively find the significant patterns from the uncovered instances,
until we have enough patterns to cover all the training instances.

4 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

To illustrate the underlying techniques and the main issues clearly in this
work, we depict our proposed SFP approach in Figure 1(b) and also the con-
ventional LTR approach in Figure 1(a). After data preprocessing, the coverage
based significant frequent pattern generation method is adopted to generate sig-
nificant frequent patterns. The generated patterns are used as new features to
extend the feature space of the original data. Finally, the LTR model is trained
based on the extended feature space.

In summary, our contributions concerning our proposed SFP-Rank approach
are as follows:

• We define feature significance as a new criterion for evaluating the feature
used in the LTR problem. This criterion enjoys the benefits of handling ties
in the ranked list as well as accurately reflecting a feature’s effectiveness.
• We present a formal analysis about the relationship between a pattern’s

significance and its frequency and show that frequent patterns have the po-
tential to improve the performance of LTR. We also develop a method that
sets the support threshold of frequent pattern mining.
• We propose a ranking approach called SFP-Rank. It includes a coverage

based significant pattern generation algorithm that efficiently discovers sig-
nificant frequent patterns for LTR.
• We evaluate our proposed algorithms. By incorporating the selected patterns

as new features for ranking, the ranking performance of commonly used LTR
models, such as RankSVM, is shown to be greatly improved.
• We apply SFP-Rank in a scenario of search engine query suggestion ranking,

and show that SFP-Rank is more effective in identifying useful suggestion
candidates for search refinement compared to the RankSVM baseline.

The rest of this paper is organized as follows. The notations and basic con-
cepts related to SFP-Rank are introduced in Section 2. In Section 3, the frame-
work SFP-Rank is presented. Extensive experiments on real datasets have been
conducted in Section 4. A real case application example of SFP-Rank is given in
Section 5. The related work is discussed in Section 6, followed by the conclusions
given in Section 7.

2 Preliminaries

In this section, we introduce the notations and basic concepts that are used
throughout the paper.

Let B = {f1, . . . , fm} be a set of features, where each feature fi is associated
with a set of values Ri. A pattern α is a subset of features in B where each
feature fi takes a specific value in Ri. For example, suppose we have a set of
features B = {f1, f2, f3}, and R1 = {a, b}, R2 = {x, y, z} and R3 = {u, v}.
〈f1 = a, f3 = u〉 is a pattern, which includes two features f1 and f3 with their
respective values a and u. Further, there are two kinds of patterns as follows:

• Patterns with single features (i.e. pattern length = 1).

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 5

• Patterns with combined features (i.e. pattern length > 1).

We denote by D the training dataset. Each record in D is a triplet of 〈q,d, y〉,
where q is a query, d is a document, and y is the relevance score of the document d
to the query q. A document d is represented by a vector 〈r1, r2, r3, ..., rm〉, where
ri ∈ Ri. The relevance score y is an integer in the range [0,K], where 0 means
no relevance between the query and the document and the (maximum) value K
means “maximal” relevance. Given a pattern α, Dα ⊆ D is the set of records
such that the feature values are equal to the corresponding ones appearing in α.
Continuing the above example, if we have a record instance 〈q = q0, 〈r1 = a, r2 =
x, r3 = u〉, y = 0〉, the record is said to belong to Dα with α = 〈f1 = a, f3 = u〉.
Given a frequency threshold θ0, a pattern α is said to be frequent if its frequency

θα = ‖Dα‖
‖D‖ ≥ θ0. We use F to denote a set of frequent patterns where θ0 is

satisfied. A pattern α is a closed frequent pattern in a data set D if α is frequent
in D and there exists no proper super-pattern β such that β has the same support
as α in D (cf. [34]).

We now discuss how to evaluate the effectiveness of a pattern when it is
used as the single feature to train ranking models. We establish the notion of
significance as follows.

Feature Significance Feature significance (or simply Significance), denoted
by S(α), is defined to gauge the effectiveness of a feature α for the LTR model
training. To calculate S(α), we solely use this feature to train a ranking model
and then use this model to predict a ranked list. The distance between the pre-
dicted ranked list and the ground truth reflects α’s effectiveness for the ranking
problem.

Now, we provide a significance evaluation method based on Kendall Tau rank-
ing distance in order to illustrate the idea, since Kendall Tau ranking distance
is widely-used in measuring the distance between ranked lists [16]. However, the
evaluation method is flexible, in the sense that other distance measures such as
Spearman’s footrule, rank correlation can also be chosen.

S(α) =

∑
q∈Q τ(lαq , gq)

‖Q‖
, (1)

where gq is the ground truth ranked list given by a query q, and lαq is the ranked
list on query q given by the model trained using feature α. S(α) is the overall
significance values of a pattern, and is determined by averaging each query’s
Kendall tau value on the query set Q. For each query, the Kendall tau value is
given by:

τ(lαq , gq) =
nc(l

α
q , gq)− nd(lαq , gq)√

n(q)− nt(lαq)
√
n(q)− nt(gq)

, (2)

where

6 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

nc(l
α
q , gq) =

∥∥Concordant pairs between lαq and gq
∥∥ ,

nd(l
α
q , gq) =

∥∥Discordant pairs between lαq and gq
∥∥ ,

n(q) =
‖Dq‖ (‖Dq‖ − 1)

2
,

nt(l
α
q) =

∑
i

ti(l
α
q)
(
ti(l

α
q)− 1

)
2

,

ti(l
α
q) =

∥∥Tied value in ith ties group(α’s predicted list lαq)
∥∥

and, Dq and ‖A‖ denote respectively the set of documents retrieved using query
q and the size of A.

Ranking Model Evaluation Criteria Next, we introduce the evaluation cri-
teria, which are commonly used parameters [3].

• Discounted Cumulative Gain (DCG) and Normalized Discounted Cumulative
Gain (NDCG).
For a query q, a ranking method returns a document list lq = [ddd1, . . . dddt]
of length t, in which the documents are sorted in terms of the estimated
document relevance to q. Suppose yi is the ground-truth relevance score
of document di. The DCG score of the ranked list lq at n, denoted by
DCG@n(lq), measures the ranking accuracy of the top-n documents in lq,
and is given by:

DCG@n(lq) =

n∑
i=1

c(i)(2yi − 1). (3)

In Formula (3), c(i) is a rank-decaying function, and a widely-used one is
defined as

c(i) =

{ 1
log(1+i) i < L,

0 i ≥ L,
where L is called the “truncation level”, and it captures the fact that the
quality of a ranked list is mainly determined by the order of the top results.
The ground-truth ranked list of documents, denoted as gq, can be obtained
by sorting the documents according to their ground-truth relevance scores.
The NDCG score of the ranked list lq at n, denoted by NDCG@n(lq), is
then defined as the DCG score of lq at n normalized by the DCG score of
gq at n, that is,

NDCG@n(lq) =
DCG@n(lq)

DCG@n(gq)
.

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 7

We use an example to further illustrate the DCG and NDCG scores. Sup-
pose a ranking method generates a ranked list with 6 documents, lq =
[D1, D2, D3, D4, D5, D6], and the relevance scores for all documents are: 3, 2,
3, 0, 1, 2. Then, the DCG@6 score of lq is DCG@6(lq)=8.09. If we sort the
document in terms of their relevance scores, we get the ground-truth ranked
list to be gq = [D1, D3, D2, D6, D5, D4] and DCG@6(gq) = 8.693. Thus, the

NDCG@6 score of lq is NDCG@6(lq) =
DCG@6(lq)
DCG@6(gq)

= 0.93.

• Precision and Mean Average Precision (MAP) [3].
Given a query q and a ranked list of documents lq, suppose every document
in lq is either “relevant” or “irrelevant” to q. The measurement Precision at
n, denoted by P@n, measures the accuracy of the top-n results in lq w.r.t.
q, and is defined as follows:

P@n =
| {d|d is relevant and is within top n} |

n
.

The Average Precision(AP) of the ranked list lq with respect to the query q
is then defined as

AP (lq) =

L∑
n=1

P@n× pos(n)

| {d|d is relevant} |
,

where L is the “truncation level”, and the function pos(n) is given by:

pos(k) =

{
1 the document at position n is relevant, or
0 otherwise.

Given a set of queries and the ranked lists retrieved w.r.t. each query, the
MAP score is the mean of the AP scores for each query.

Further Discussion It is well recognized that feature selection is important
for classification, ranking and so on, since an effective set of features reduces
model over-fitting, enhances the accuracy, and decreases model training time.
The authors in [16] propose a ranking feature quality measurement, which shows
that a feature’s quality is based on the ranking result given by the model trained
only by this feature.

In the ranking process, documents with the same relevance score, called ties,
usually are ranked arbitrarily by using the parameters MAP or NDCG. Given a
set of documents with definite relevance scores, arbitrarily handling ties possibly
gives very different ranked lists when MAP and NDCG vary tremendously.
For example, suppose we have a set of documents and the ground truth is g =
[D1, D3, D2, D6, D5, D4], and the ground truth relevance scores for all documents
are: 〈3, 3, 2, 2, 1, 0〉. A model predicts relevance scores for each document is given
by: 〈1, 1, 1, 1, 1, 1〉. Then arbitrarily handling ties can give predicted ranked lists
l
′

and l
′′

as follows: l
′

= [D1, D3, D2, D6, D5, D4] with MAP = 1 and NDCG
= 1, and l

′′
= [D4, D5, D6, D2, D3, D1] with MAP = 0 and NDCG = 0.

8 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

Compared to [16] which uses MAP and NDCG to evaluate the effectiveness
of a feature, our proposed significance criterion, S(α), has the advantage of
handling ties in the ranked list.

3 SFP-Based Ranking Framework

In this section, we present the framework of Significant Frequent Pattern-based
Ranking (SFP-Rank), which carries out ranking by the following steps: (1) data
preprocessing, (2) coverage based significant pattern generation, and (3) model
learning.

We first explain why frequent patterns as features are effective for solving
the ranking problem. Then, a coverage based significant pattern generation al-
gorithm that mines significant frequent features from the processed dataset is
presented. Finally, selected significant patterns are used to extend the feature
space of the original data, and the extended feature space is used to train the
ranking model.

3.1 The Effectiveness of Using Frequent Patterns for Ranking

A frequent pattern has two essential properties in a dataset: having considerable
number of combined features and possessing high frequency. We now study these
two properties and explain how they are related to the ranking effectiveness of
patterns.

The usefulness of combined features The first property is the use of com-
bined features. In practice, a large portion of frequent patterns are combined
features. Compared with single features, combined features are better at captur-
ing the underlying semantics of the documents and, thus, are more effective for
producing accurate rankings.

With respect to the ranking problem, combined features are more likely to
have a higher ranking significance than single features. To illustrate this, we
plot the significance of single features (i.e. having pattern length equal to one)
and combined features (i.e. having pattern length larger than one) in Microsoft
LETOR dataset and Query Suggestion Dataset in Figure 2. We use Figure 2(a)
as an example, from which we can see that combined features are more significant
than single features, and other datasets also support this observation. By using
significant combined patterns as features, we offer more effective features for
ranking model training, and thus the ranking performance of the model can be
improved.

Ranking Significance and Pattern Frequency The second property of fre-
quent patterns implies that frequent patterns cover a large number of instances
in the dataset. Our further analysis will show that the significance of a low-
support pattern is bounded by a small value. A low-support pattern has a small

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 9

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8

Patten length vs. Pattern Significance

(a) LETOR MQ2008 Fold2

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8 9 10 11

Pattern Length vs. Pattern Significance

(b) LETOR MQ2008 Fold5

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4

Pattern Length vs. Pattern Significance

(c) Query Suggestion Dataset

Fig. 2. Pattern Significance vs. Pattern Length

significance upper bound because of its limited coverage in the dataset and, thus,
has limited effect on predicting the relevance score of a document.

We now analyze the relationship between a pattern’s possible significance
upper bound and a pattern’s support. Given a query q, we retrieve a document
set Dq and rank the documents in it. To simplify our discussion, we assume
that the relevance score y of these documents is an integer of 0 or 1, and that
P (y = 1) = pq. The frequency of documents containing pattern α is P (α = 1) =
θq, and P (y = 1|α = 1) = sq.

The ground truth is a list in which the documents with y = 1 are ranked
higher than the documents with y = 0, and the documents with the same y are
ranked arbitrarily. When using a pattern α to train the LTR model, the model
has two prediction options as follows:

(1) y(predicted) = 1 when a document contains α, y(predicted) = 0 when a
document does not contain α.

(2) y(predicted) = 0 when a document contains α, y(predicted) = 1 when a
document does not contain α.

The above two models are compared and the better one is used for the
final result. Then, the Kendall Tau distance of the better model is regarded as
the significance of this pattern. Since the documents with the same predicted
relevance score are ranked arbitrarily, the final ranked list may vary and thus

10 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

y
=

1

y
=

0

α
 =

1

α
 =

1

α
 =

0

α
 =

0

y=1And α=1
!
!
!

y=1And α=0
!
!
!

y=0And α=1
!
!
!

y=0And α=0

Ground Truth Predicted list 1 Predicted list 2

Fig. 3. An Example of Pattern Based Prediction

MAP or NDCG may also vary (cf. see an example of prediction in Figure 3).
However, our significance criterion can handle document ties.

Based on Formula (2), we have the expression as follows:

τ(lαq , gq) =
nc(l

α
q , gq)− nd(lαq , gq)√

n(q)− nt(lαq)
√
n(q)− nt(gq)

=
|θq(sq − pq)|√

θq(1− θq)pq(1− pq)
.

From the above formula, we can see that pq is decided by the property of
the dataset, and is constant for a given dataset. For a dataset with pq ≤ 0.5, we
have:

τ(lαq , gq)ub =

√
θq(1−pq)
pq(1−θq) , with

∂τ(lαq ,gq)ub|sq=1

∂θq
≥ 0 if 0 ≤ θq < pq√

pq(1−θq)
θq(1−pq) , with

∂τ(lαq ,gq)ub|sq=
pq
θq

∂θq
≤ 0 if pq ≤ θq < 0.5√

pqθq
(1−θq)(1−pq) , with

∂τ(lαq ,gq)ub|sq=0

∂θq
≥ 0 if 0.5 ≤ θq < 1− pq√

(1−pq)(1−θq)
θqpq

, with
∂τ(lαq ,gq)

ub|sq=1−
1−pq
θq

∂θq
≤ 0 if 1− pq ≤ θq ≤ 1

(4)
For simplicity, we only give an illustration when 0 ≤ θq < pq. In this case, τ

reaches its upper bound when sq = 1; the upper bound is given by:

τ(lαq , gq)ub|sq=1 =
θq(1− pq)√

θq(1− θq)pq(1− pq)
.

The partial derivative of τ(lαq , gq)ub|sq=1 w.r.t θq is then given by:

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 11

∂τ(lαq , gq)ub|sq=1

∂θq
=

1

2

√
1− pq
pq

√
1− θq
θq

1

θ2q
≥ 0. (5)

From Equation (5), we can see that the upper bound of τ linearly increases
with pattern frequency in this case, and reaches its maximal when θq approaches
pq. When a dataset has the distribution of pq > 0.5, we have:

τ(lαq , gq)ub =

√
pqθq

(1−θq)(1−pq) , with
∂τ(lαq ,gq)ub|sq=0

∂θq
≥ 0 if 0 ≤ θq < 1− pq√

(1−pq)(1−θq)
θqpq

, with
∂τ(lαq ,gq)

ub|sq=1−
1−pq
θq

∂θq
≤ 0 if 1− pq ≤ θq < 0.5√

θq(1−pq)
pq(1−θq) , with

∂τ(lαq ,gq)ub|sq=1

∂θq
≥ 0 if 0.5 ≤ θq < pq√

pq(1−θq)
θq(1−pq) , with

∂τ(lαq ,gq)ub|sq=
pq
θq

∂θ ≤ 0 if pq ≤ θq ≤ 1

(6)
Note that the above significance equation is defined for a single query q. In

practice, we usually have several queries (i.e. a query set Q) and their related
documents in the process. The significance of a pattern α, i.e., S(α), is thus
defined as the average of the significance w.r.t. all the queries in Q. To calculate
the average significance for Q, we divide Q into two query sets: Q1 in which
the corresponding documents of each query have pq ≤ 0.5, and Q2 in which the
corresponding documents of each query have pq > 0.5. In the whole document
set D, the frequency of documents containing pattern α is denoted by θ. Then
we have the expression of the upper bound of S(α) as follows:

S(α)ub =

1
‖Q‖ (

∑‖Q1‖
j=1

√
θqj (1−pq)
pqj (1−θqj)

+
∑‖Q2‖
i=1

√
pqiθqi

(1−θqi)(1−pqi)
),

with
∂τ(lαq ,gq)ub

∂θ ≥ 0

if 0 ≤ θ < 1
‖Q‖ (

∑‖Q1‖
j=1 pqj +

∑‖Q2‖
i=1 (1− pqi)).

1
‖Q‖ (

∑‖Q1‖
j=1

√
(1−pqj)(1−θqj)

θqj pqj
+
∑‖Q2‖
i=1

√
pqi (1−θqi)
θqi (1−pqi)

),

with
∂τ(lαq ,gq)ub

∂θ ≤ 0

if 1
‖Q‖ (

∑‖Q1‖
j=1 (1− pqj) +

∑‖Q2‖
i=1 (pqi)) ≤ θ ≤ 1.

(7)

The above analysis reveals a non-trivial relation between pattern frequency
and significance. Equation (7) implies that the upper bound of significance
monotonically increases with θ when θ is small (i.e. θ is in the range of [0,
1
‖Q‖ (

∑‖Q1‖
j=1 pqj +

∑‖Q2‖
i=1 (1 − pqi))]) since the partial derivative

∂τ(lαq ,gq)ub
∂θ ≥ 0

by using Equation (6). On the other hand, Equation (7) implies that the upper

12 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

bound of significance monotonically decreases with θ when θ is high (i.e. θ is in

the range of [1
‖Q‖ (

∑‖Q1‖
j=1 (1− pqj) +

∑‖Q2‖
i=1 (pqi)), 1]) since the partial derivative

∂τ(lαq ,gq)ub
∂θ ≤ 0 by using Equation (6).
Intuitively, very low support patterns are clearly not desirable but the sig-

nificance may increase if the support increases, since the bound increases with
θ. However, very high support patterns are also not desirable, since the bound
decreases with θ. Admittedly, Equation (7) only indicate the “possible” signifi-
cance of patterns with respect to their support. It is thus an interesting theoretic
problem to clarify the relation between the significance and the support of a pat-
terns. This needs to take into consideration of the parameters characterizing a
given dataset, which is beyond the scope of this study.

3.2 Coverage Based Significant Pattern Generation

Although frequent patterns are useful for improving the accuracy of the ranking,
it does not mean all frequent patterns are usable. A good example is those stop
words that appear frequently in most documents, but these words are almost
useless in ranking documents. Since frequent patterns are generated by only
considering their frequency, the number of mined frequent patterns can be very
large and may contain a large portion of useless patterns in the mining result.
This is undesirable for model training, since these patterns not only increase the
model training time, but also degrade the ranking performance. Thus, we propose
our pattern generation algorithm based on dataset coverage, which shares similar
spirit with the feature selection methods used in [10, 25]. The basic idea is that,
in the pattern generation process, we mine the most significant pattern from
the current dataset, and for those instances not covered by this pattern, we
recursively find other patterns from those instances.

We now present our Coverage Based Significant Pattern Generation (or
CBSP Gen) algorithm, which generates the most significant patterns from the
data.

In Algorithm 1, Lines 1 to 3 check if the current dataset size is smaller than
the minimum instance size m, if yes, then we stop finding more patterns. Line
4 uses the FP-Close [17] algorithm to mine frequent patterns from the current
dataset, then Lines 5 to 13 scan all the mined patterns, compute the significance
for each pattern and find the pattern with the highest significance value. When
computing the significance for a pattern α, for each query q in the query set Q,
we first use a pattern α to train the ranking model and get the ranking list lα

given by the trained model. Then, the Kendall tau distance between lα and the
ground truth ranking list is computed. The significance of the pattern α is the
average of the Kendall tau distance over Q. Although, for every pattern α, we
need to train the ranking model for —Q— times, the pattern α only contains
one feature and thus the model training step is still quite efficient.

Line 14 adds the selected significant pattern to set Fs. Lines 15 and 16 delete
the instances that have been covered by current selected significant pattern.
Line 17 recursively calls CBSP Gen to continue finding significant pattern on

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 13

Algorithm 1 CBSP Gen Coverage Based Significant Pattern Generation

Input: A set of instances D from which features are to be mined, A support threshold
p normalized between 0 and 1, Minimum instances size m.

Output: A selected set of patterns Fs.
1: if |D| ≤ m or (instances in D have the same relevance score) then
2: return
3: end if
4: P = FPGrowth(D, p)
5: BestPat = null
6: MaxSig =0
7: for each pattern α in P do
8: CurSig = computeSignificance(α,D)
9: if CurSig ≥MaxSig then

10: MaxSig = CurSig
11: BestPat = α
12: end if
13: end for
14: Fs = Fs ∪BestPat
15: S=subset of instances covered by BestPat
16: D= D-S
17: CBSP Gen(D, p,m, Fs)

the remaining instances that have not been covered by the selected pattern set
Fs.

Bound on Number of Returned Features The algorithm works in a re-
cursive manner and terminates when the instances in the training database are
almost all covered (less than m instances not covered). We derive an upper bound
of the number of recursions that CBSP Gen has to go through.

Assume min sup = θ0, and CBSP Gen produces a set of frequent patterns
BestPati in the ith iteration, sup(BestPati) ≥ θ0. In the ith iteration, we
eliminate the training instances Si from the current set of training instances
since they are covered by the feature BestPati. Therefore, we have the following
equation which specifies the reduction of the training instance database:

|Di| = |Di−1| − |Si|,

where Di is the set of training instances remaining after the ith iteration, Si is
the id list of transactions which contain BestPati, and D0 is the complete set
of training instances.

Since sup(BestPati) ≥ θ0, we have |Si| ≥ θ0|Di−1| in equivalence. Then we
have

|Di| = |Di−1| − |Si| ≤ (1− θ0)|Di−1|.

According to the above formula, we have:

14 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

|Di| ≤ (1− θ0)i|D0|.

Assume after n iterations, the training dataset reduces to |Dn| = m. Since
(1− θ0)i|D0| ≥ |Dn| = m, we can derive:

n ≤
log |D0|

m

log 1
1−θ0

= log 1
1−θ0

|D0|
m

.

According to the above expression, if θ0 = 0.5 and m = 1, n ≤ log2|D0|.
If θ0 = 0.2 and m = 1, n ≤ log1.25|D0|. If the training dataset has 1 million
instances, then n ≤ 20 if θ0 = 0.5; n ≤ 62 if θ0 = 0.2. We can see that even
for a relatively large dataset, our algorithm only has several iterations and can
terminate soon.

3.3 Model Training and Predicting in SFP-Rank

We now present the model training and predicting details in our SFP-Rank
approach. Algorithm 2 is developed for SFP-Rank Training and Algorithm 3 is
developed for SFP-Rank Predicting. In the training phase, after we preprocess
the dataset (Line 1), our proposed pattern generation method (Algorithm 1) is
used to generate a set of optimal significant patterns Fs (Line 2). The generated
patterns are used to extend the original feature space of the dataset (Line 3),
and the extended dataset is used to train a ranking model M , using RankSVM,
RankNet, and etc (Line 4). In the prediction phase as illustrated in Algorithm
3, we use the optimal pattern set Fs to extend the feature space of the testing
instances (Line 1), and then ranking model M is used to predict the relevance
score of testing instances (Line 2).

Algorithm 2 SFP-Rank Training

Input: Training dataset D
Output: Ranking model M , Optimal pattern set Fs

1: D′ =Preprocessing(D). //data discretization etc.
2: Fs =CBSP Gen(D′, p,m, Fs). //pattern generation (Algorithm 1).
3: D′′ =FeatureSpaceExtension(Fs, D

′). //feature space extension using Fs and D′.
4: M =ModelTraning(D′′) //model training based on extended dataset.
5: return Fs and M

4 Experiments

In this section, we evaluate the effectiveness of the SFP-Rank approach. The
major components of our framework that we study are Data Preprocessing,
Pattern Generation, and Ranking, as already shown in Figure 1. First, we present

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 15

Algorithm 3 SFP-Rank Predicting

Input: Optimal pattern set Fs, Ranking model M , Testing instance t
Output: Predicted relevance score y for t
1: t′ =FeatureSpaceExtension(Fs, t) //feature space extension for t using Fs.
2: y =Prediction(M, t′) //relevance score prediction for t′ using model M
3: return y

the datasets, the data preprocessing method, and the mining strategy we used
in the experiments in Section 4.1. Then, we evaluate the effectiveness of the
ranking produced by SFP-Rank in Section 4.2. Finally, we study the scalability
of SFP-Rank in Section 4.3.

4.1 Experimental Setup

Datasets In our experiments, the Microsoft’s LETOR benchmark [30] is adopted
for evaluation. LETOR is a benchmark dataset that is commonly used for study-
ing LTR. The benchmark is composed of several data subsets, evaluation tools,
and baseline evaluation results (such as RankSVM, RankBoost, etc) for rank-
ing performance evaluation. Each data subset contains a set of queries, a set of
features for query document pairs, and a set of corresponding relevance scores
for the evaluation. We choose the LETOR4.0 MQ2008 dataset, the statistics of
which is listed in Table 1. The MQ2008 dataset contains five folds. For each fold,
the training set is first used to learn a ranking model. The validation set is used
for model parameters tuning, and the ranking model is then used on the testing
set. The estimated relevance scores on the testing set are employed to derive the
standard NDCG@n, P@n, and MAP measures for the ranking evaluation.

Table 1. Statistics of the MQ2008 Dataset

No. of Folds 5
No. of Features 46
No. of Queries 784

No. of Query-Documents 15211
No. of Documents 14384

Ranking Model In our experiments, RankSVM [22] is employed to derive the
ranking model. RankSVM utilizes instance pairs and their preference labels in
the training. Specifically, we take RankSVMStruct, which is the most up-to-date
implementation of RankSVM with optimized speed and performance.

Data Preprocessing Most pattern mining algorithms, such as Apriori [2] and
FP-Close [17], can only handle discrete attributes. However, since the attributes

16 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

of most of the ranking datasets (e.g., Microsoft’s LETOR datasets, Yahoo’s LTR
competition1 datasets) are continuous, data discretization should be performed
before frequent pattern mining. Naive discretization methods such as binary dis-
cretization or n-equal-width bin discretization suffer from two major problems:
first, information loss, which decreases the significance of frequent patterns, and
second, noisy patterns, which are useless patterns that make mining and pat-
tern selection more expensive. Since, if the discretization is not fine enough, it
assigns many different values to the same bins, thus generating noisy patterns
with information loss.

In our experiment, we compare several discretization methods such as equal-
width-bin discretization, MDL [14]. We find that, compared to the original
datasets, MDL yields the best results due to minimal information loss. In the
remainder of the paper, we refer our data discretization method as MDL, unless
otherwise specified.

Frequent Pattern Mining Frequent pattern mining is a well-studied theme
with various available algorithms and software tools for our work. In our experi-
ment, instead of using tools of mining frequent patterns, we consider algorithms
for mining Closed Frequent Patterns (CFPs) in our framework, since a CFP is a
concise representation of all its redundant non-closed sub-patterns. We adopt the
algorithm FP-Close [17] to mine closed frequent patterns in our experiments due
to its high efficiency and well-proved reliability [10]. To maximize the number of
significant patterns, we divide each dataset into several partitions according to
the relevance scores. We first mine the frequent patterns in each partition. The
mined patterns are merged together, and pattern selection is then applied to the
merged patterns to find the optimal pattern set.

4.2 Ranking Performance

Table 2. Summary of Ranking Improvement on MQ2008 dataset

MAP NDCG@10

Fold Baseline SFP-Rank Improvement Baseline SFP-Rank Improvement

F1 0.4502 0.4552 1.11% 0.4577 0.4686 2.38%
F2 0.4213 0.4314 2.40% 0.4296 0.4417 2.82%
F3 0.4529 0.4529 0% 0.4686 0.4686 0%
F4 0.5284 0.5401 2.21% 0.5442 0.5535 1.71%
F5 0.4950 0.5131 3.66% 0.5159 0.5294 2.62%

Avg. 0.46956 0.47854 1.91% 0.4832 0.49236 1.89%

We now discuss the result concerning the effectiveness of ranking from SFP-
Rank.

1 http://learningtorankchallenge.yahoo.com/datasets.php

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 17

(a) MQ2008-Fold1-MAP (b) MQ2008-Fold2-MAP

(c) MQ2008-Fold4-MAP (d) MQ2008-Fold5-MAP

Fig. 4. MAP Improvement of Ranking

We set the minimum support threshold p to be 0.5, and fix the minimum in-
stance size m to be 0. The ranking results in terms of MAP and NDCG@10 for
the MQ2008 dataset are presented in Table 2. The details of all the folds except
F5 against MAP and NDCG measurements are given in Figures 4 and 5. From
the results of two figures, we can easily check that the newly added significant fre-
quent patterns can greatly improve the ranking performance. F3 (not shown) has
no gain in improvement due to the fact that the original datasets is already good
enough and the mined frequent patterns offer no further help as added features.
The SFP-Rank algorithm achieves much better results compared to the baseline
method (i.e. RankSVM with no pattern added) and the baseline RankSVMStruct

method (cf. Table 2) (Maximum: 3.66% in terms of MAP ; Maximum 2.82% in
terms of NDCG). This aligns with our claim in Section 3.1 that ranking perfor-
mance can be improved by including an optimal frequent pattern set. Figures
4 and 5 give the detailed improvements on NDCG@n and Precision@n for n
varying from 1 to 5. We can see especially that the quality of the top 5 ranked
documents is higher compared with that of the baseline algorithm.

When the minimum support threshold p becomes smaller, an greater amount
of frequent patterns are mined during feature selection. As more frequent pat-
terns are available, features with larger significance values can be selected. Ac-
cordingly, the ranking results will be improved. However, the number of frequent
patterns increases sharply as p gets smaller, and thus the time cost for frequent
pattern mining becomes much longer. We set a minimum instance threshold m
to allow at most m instances being uncovered by the selected features. In this
way, we can achieve a better trade-off between the efficiency of the feature se-

18 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

(a) MQ2008-Fold1-NDCG (b) MQ2008-Fold2-NDCG

(c) MQ2008-Fold4-NDCG (d) MQ2008-Fold5-NDCG

Fig. 5. NDCG Improvement of Ranking

lection process and the quality of features, since a large number of patterns are
possibly needed to be checked in order to cover the last one or two instances.
However, in our experiments, all the instances can be quickly covered during
feature selection, and so we simply set m to be 0. Actually, when m is set to be
a small value like 1, 2, or 3, the ranking accuracy is stable.

4.3 Scalability Tests

We now discuss the result concerning the efficiency of SFP-Rank. The process of
scalability tests are conducted using the Microsoft LOTOR4.0 dataset. We vary
the minimum support for frequent pattern mining to be 0.5 ∗ |D| and 0.6 ∗ |D|
(recall that |D| is the size of the dataset D). The runtime of SFP-Rank and
the number of mined patterns with respect to the dataset size are respectively
presented in Figure 6(a) and Figure 6(b). From the figures, we can see that, as we
increase the size of the dataset, the number of patterns mined by the frequent
pattern mining algorithm increases, thus the runtime of the pattern selection
algorithm also increases. Finally, we remark that, even though pattern selection
takes several minutes to establish, this can be performed completely offline in
practice.

5 Application of SFP-Rank in Query Suggestion Ranking

In this section, we apply SFP-Rank to rank query suggestions generated by
search engines. We show that SFP-Rank significantly outperforms a baseline
method, RankSVM, in terms of both precision, MAP , and NDCG.

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 19

(a) Dataset Size vs. Runtime (sec)

(b) Dataset Size vs. Number of Patterns

Fig. 6. Scalability Analysis of SFP-Rank

5.1 Query Suggestions in Search Engines

User input queries in a search engine are usually short and ambiguous (cf. the
average query length on a popular search engine was only 2.35 terms [20]). To
clarify the users’ search intent, many search engines like Google, Yahoo! and Live
Search provide query suggestions to help users formulate more effective queries
to refine their search as illustrated by the example in Figure 7. The suggestions
are usually semantically related to the user’s input query terms, and are usually
mined from the search logs [7]. In order to easily identify the most effective
suggestion candidates, we propose to apply SFP-Rank to rank the suggested
queries in the search logs according to their retrieval effectiveness. Intuitively,
the higher the ranking of the suggested query, the more effective the suggested
query in the search refinement.

20 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

Fig. 7. Query Suggestions for the Input Query ”apple”

5.2 Datasets

We utilize a real-world AOL search query log [1] to prepare the experimental
data. A typical log entry includes an anonymous UserID, the query, the time at
which the query was submitted, the rank of the clicked items and the domain
portion of the clicked URLs. Some samples of AOL log entries are presented in
Table 3. We utilize Jiang et al.’s method [21] to derive the search sessions for the
5000 queries in the raw AOL log, since this method was shown to be effective
by their experiments. We use a 30-minute temporal cutoff to segment queries
into search sessions. Queries within the same search session are assumed to be
semantically related to one another, and thus they can be considered as good
candidates for query suggestions.

Table 3. Examples of Search Query Log Entries

UserID Query Time Rank URL

606428 south africa map 2006-05-28 19:29:56 1 http://www.go2africa.com
3551754 printed price tags 2006-05-11 17:51:27
2201072 nike air monarch 2006-04-19 14:55:40 4 http://www.shopping.com

Based on the query log and derived search sessions, we use a commonly used
query taxonomy to derive 5,000 pairwise judgments [21] as the ground truth
quality of the queries. Each query is represented by nine features presented in
Table 4.

We compare the performance of the trained model with frequent pattern
based enrichment using SFP-Rank against a baseline method, RankSVM, with-
out feature enrichment.

5.3 Performance

Based on the nine features presented in Section 5.2, we conduct the ranking using
SFP-Rank. First, we discretize the attributes according to MDL and obtain 4, 4,
and 13 features for the 3rd, 5th and 6th attributes, and 1 feature for the other
attributes, respectively. After performing the pattern mining, 9 patterns with the

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 21

Table 4. Nine Features of Query q

Feature Names Meaning

Query length (by character) Number of characters in q
Query length (by word) Number of words in q
Sequence Sequence number of q within the session
Total query number Number of queries in the session
Previous time gap Time gap between the previous query in the same session (in msec)
Following time gap Time gap between the next query in the same session (in msec)
Noun number Number of nouns in q
Adjective number Number of adjectives in q
Verb number Number of verbs in q

highest significance are chosen as shown in Table 6. The chosen patterns together
with the nine features are used integrally to represent the search queries.

Table 5. Performance Comparison

Models Precision MAP NDCG

RankSVM 0.4573 0.7286 0.6382
SFP-Rank 0.6401 0.8200 0.7600

Improv. 39.97% 12.54% 19.08%

The comparison results are presented in Table 5. We observe that the SFP-
Rank model significantly outperforms the baseline RankSVM in terms of all the
three metrics of Precision, MAP and NDCG.

Table 6. Selected Patterns

ID Support Pattern Details

1 1076 previous time gap: (17.5-inf) and following time gap: (55.5-2454.5]
2 605 previous time gap: (0.5-22.5]
3 577 sequence: (-inf-12.5] and following time gap: (0.5-22.5]
4 347 previous time gap: (17.5-inf) and following time gap: (0.5-22.5]
5 338 sequence: (-inf-12.5], previous time gap: (17.5-inf) and following time gap: (0.5-22.5]
6 289 sequence: (17.5-inf)
7 143 sequence: (-inf-12.5] and following time gap: (43.5-55.5]
8 145 previous time gap: (-inf-3.5] and following time gap: (0.5-22.5]
9 141 sequence: (-inf-12.5], previous time gap: (-inf-3.5] and following time gap: (0.5-22.5]

We use Pattern 9 from Table 6 as an example to illustrate why the selected
patterns are effective for ranking. Figure 8 shows an example of search sessions,
in which a new session starts from Qm to Qk and a user may first input an
ambiguous query. Based on the search results of the ambiguous query Qm, the

22 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

Fig. 8. An Example of Low Quality Query (Qn) in a Session

user continues to refine his/her query terms in order to obtain better search
results. Pattern 9 is useful in eliminating low quality queries. For example, Qn
appears in the early stages of a query session (i.e. short sequence(Qn)), and
the user spends limited time on the search results of Qm, which is the query
immediately beforeQn (i.e. short previous time gap(Qn)).Qn may not be focused
enough to represent a particular search intent. Furthermore, the user also spends
a small amount of time on the search result of Qn (i.e. short following time
gap(Qn)). All together we have the following three characteristics: (1) short
sequence, (2) short previous time gap and (3) short following time gap. This
evidence shows that Qn tends to be a low-quality query, which should be ranked
low in the query suggestions, and that Pattern 9 is a very useful combined
feature in query suggestion ranking to filter out low quality queries.

6 Related Work

There are two areas of related work. One is frequent pattern mining based clas-
sification. Another is the work about learning to rank methods. We discuss them
in the following two subsections.

6.1 Frequent Pattern Mining Based Classification

Traditional frequent pattern mining has been a focused theme in data mining
research, which gives rise to a large number of scalable methods. A comprehen-
sive survey can be found in [18]. Besides traditional techniques of deterministic
frequent pattern mining, mining frequent itemsets over uncertain databases has
also attracted much attention recently. For example, Tong et al. [36–38] com-
pare eight representative approaches of uncertain frequent itemset mining and
develop a comparable software platform.

The frequent pattern-based classification is inherently related to associative
classification. In associative classification, a classifier is built upon high quality
rules, such as the ones with high confidence and high support. The association

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 23

between frequent patterns and class labels is then used for prediction. The work
related to this area includes CBA[27], CMAR[26], CPAR[46] to name a few.
These methods differ in their rule selection criteria (e.g. confidence, support, etc),
number of rules they select (e.g. dataset coverage, top N, etc), and prediction
result combination methodology. Cheng [10] provides a theoretical analysis of
the relation between a pattern’s support and its information gain. Recent work
in this area focuses on how to mine the discriminative pattern efficiently. For
example, Cheng [10] proposes a pattern selection method called MMRFS to
select frequent patterns from the candidate pattern set. HARMONY [44] adopts
an instance-centric rule generation approach and achieves high accuracy and
efficiency in the mining process. DDP-Mine [11] develops a more effective pruning
technique and directly mines out informative patterns for classification. Batal
et al. [4] establish a minimal predictive patterns framework to directly mine a
compact set of highly predictive patterns to improve the features of classification
problem.

Our approach is inspired by the success of existing frequent pattern based
classification approaches. However, our study differs from the frequent pattern
based classification problem in two aspects. First, we consider the characteristic
of LTR problem and propose a new criterion named significance for evaluating
the feature. Second, we study the relationship between a pattern’s significance
and its frequency and demonstrate that frequent patterns are able to improve
the performance of LTR. Notably, our approach is flexible and current frequent
pattern mining algorithms can be directly used in SFP-Rank to generate frequent
patterns.

6.2 Learning to Rank Methods

Ranking is a fundamental problem in many database and IR application areas,
such as recommendation systems, document retrieval and advertising and so on.
Previous works such as boolean models, vector models and probabilistic models
[3] usually have the problem of high cost parameter tuning, since we usually
have to consider a large number of relevant features for documents and queries
in practice.

Machine learning techniques provide many feasible solutions to learn a rank-
ing model. The techniques offer many different means to automatically learn
parameters and then make use of a large percentage of the features in the model
learning process. This approach of establishing a ranking model is referred to as
the Learning to rank (LTR) approach. According to the work in [8, 9], current
LTR methods can be classified into three categories as follows: (1) the point-
wise approach, (2) the pairwise approach, and (3) the listwise approach. In the
pointwise approach, each training example is treated as an independent instance
and a model is trained to map each document’s features to its relevance score,
which could be based on regression [12] or classification [28, 24]. The pairwise
approach trains the ranking function to minimize a loss function which is based
on pair-wise preferences. The ranking problem is then transformed into a binary
classification problem. Typical examples of such models includes RankSVM [22],

24 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

RankNet [5], FRank [39], MHR [31], RankBoost[15], and CRR[32] and the like.
In the listwise approach, the models consider the whole document list instead of
document pairs by either directly optimizing the IR measures, or indirectly opti-
mizing the IR measures by employing a loss function correlated to IR measures.
Directly optimizing the IR measures is difficult, since they depend on the rank
and are not differentiable. Example methods include [6], SVMmap [47], AdaRank
[45], Boltzrank [43], and NDCG-Boost [40, 23]. Indirectly optimizing the IR mea-
sures includes RankCosine [29], and ListNet [9]. For example, RankCosine uses
the cosine similarity between the ranked list and the ground truth as a query
level loss function. Recently, the LTR approach has been successfully applied to
other application areas such as biological motion trajectories [35], social update
streams [19], answering ranking [42], and etc. Besides the aforementioned ap-
proaches, association rules have also been applied to solve the LTR problem by
Veloso [41]. When predicting the orders, several high confidence rules are used
and the final relevance score is computed by the weighted combination of the
relevance score of all these selected rules.

Our approach differs from these approaches in the following three aspects.
First, we use frequent patterns to extend the feature space. Second, we do not
only consider confidence or support of patterns or association rules. We also con-
sider the characteristics of the ranking problem and importantly, develop means
to select high significance, low redundancy patterns as features for effective rank-
ing. Third, our approach is compatible with most current LTR algorithms and
demonstrates significant ranking improvement.

While most of the research on LTR focuses on designing effective ranking
models as a fundamental part, few studies considered improving the quality of
the document features, which have a high impact on ranking quality. The studies
in [33] show that, by incorporating a set of properly selected frequent patterns
as features, the performance of the ranking model such as RankSVM can be
substantially improved. Accordingly, a frequent pattern based ranking approach
called FP-Rank was proposed. Compared to [33], which is a preliminary version
of this paper, we propose a new feature evaluation criterion called feature signif-
icance to measure the effectiveness of features for training ranking model. The
relationship between the significance of a pattern and its frequency is analyzed.
Based on feature significance, a ranking approach SFP-Rank is also designed. By
applying SFP-Rank in a scenario of ranking search engine query suggestions, we
show that our approach is effective in identifying useful suggestion candidates
for search refinement.

7 Conclusions

In this paper, we propose a ranking framework SFP-Rank that aims to achieve
a more effective learning to rank approach by exploiting frequent patterns. Our
study confirms that frequent patterns offer high quality features and they are
able to improve the performance of a ranking model. Compared with commonly
used feature selection approaches, our ranking feature selection method is able

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 25

to find an effective pattern subset that is specific for a ranking problem. The
improvement is clearly evidenced by the ranking accuracy measured by MAP
and NDCG in a spectrum of experiments designed for studying SFP-Rank.
We also study an application of SFP-Rank in query suggestion ranking. This
demmonstrates the applicability of our ranking framework in real applications,
since we improved the NDCG and MAP significantly in the test datasets.

There is still some further work based on our approach. In particular, it
would be interesting to see the performance of the SFP-Rank when it com-
bines with other feature selection methods designed for LTR. The significant
features selected by our method are shown to improve the ranking accuracy of
RankSVM. Following this line, a more comprehensive study that involves other
ranking methods such as RankNet can be carried out to confirm the generality
of the approach. Also, another promising area to carry out would be develop-
ing more efficient algorithms for directly mining significant frequent pattern for
LTR. Finally, some extended work of our approach can be done to show that
the significant pattern based feature enrichment methods can also be applied
to other domain applications, such as LTR in the context of transaction graphs
and collaborative filtering.

References

1. Aol dataset. http://zola.di.unipi.it/smalltext/datasets.html
2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: VLDB ’94. pp. 487–499 (1994)
3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley

(1999)
4. Batal, I., Hauskrecht, M.: Constructing classification features using minimal pre-

dictive patterns. In: Proceedings of the 19th ACM international conference on In-
formation and knowledge management. pp. 869–878. CIKM ’10, ACM, New York,
NY, USA (2010)

5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullen-
der, G.: Learning to rank using gradient descent. In: ICML’05. pp. 89–96 (2005)

6. Burges, C., R.Ragno, E.V.Le: Learning to rank with nonsmooth cost functions. In:
NIPS ’06. pp. 193–200 (2006)

7. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query
suggestion by mining click-through and session data. In: KDD ’08. pp. 875–883
(2008)

8. Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking svm
to document retrieval. In: SIGIR ’06. pp. 186–193 (2006)

9. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In: ICML ’07. pp. 129–136 (2007)

10. Cheng, H., Yan, X., Han, J., Hsu, C.W.: Discriminative frequent pattern analysis
for effective classification. In: ICDE’07. pp. 169–178 (2007)

11. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for
effective classification. In: ICDE’08. pp. 169–178 (2008)

12. Cossock, D., Zhang, T.: Subset ranking using regression. In: Learning Theory,
LNCS’06, vol. 4005, pp. 605–619 (2006)

26 Yuanfeng Song, Wilfred Ng, Kenneth Leung, and Qiong Fang

13. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA ’03. pp.
28–36 (2003)

14. Fayyad, Irani: Multi-interval discretization of continuous-valued attributes for clas-
sification learning. In: UAI ’93. pp. 1022–1027 (1993)

15. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4, 933–969 (December 2003)

16. Geng, X., Liu, T.Y., Qin, T., Li, H.: Feature selection for ranking. In: SIGIR’07.
pp. 407–414 (2007)

17. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In:
FIMI’03 (2003)

18. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

19. Hong, L., Bekkerman, R., Adler, J., Davison, B.D.: Learning to rank social update
streams. In: SIGIR ’12. pp. 651–660 (2012)

20. Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval:
a study of user queries on the web. SIGIR Forum 32(1), 5–17 (Apr 1998)

21. Jiang, D., Leung, K.W.T., Ng, W.: Context-aware search personalization with
concept preference. In: CIKM ’11. pp. 563–572 (2011)

22. Joachims, T.: Training linear svms in linear time. In: KDD’06. pp. 217–226 (2006)
23. Karimzadehgan, M., Li, W., Zhang, R., Mao, J.: A stochastic learning-to-rank

algorithm and its application to contextual advertising. In: WWW ’11. pp. 377–
386 (2011)

24. Li, P., Burges, C.J.C., Wu, Q.: Mcrank: Learning to rank using multiple classifi-
cation and gradient boosting. In: NIPS’07. pp. 845–852 (2007)

25. Li, W., Han, J., Pei, J.: Cmar: accurate and efficient classification based on multiple
class-association rules. In: ICDM’01. pp. 369 –376 (2001)

26. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on mul-
tiple class-association rules. In: ICDM’01. vol. 0, p. 369 (2001)

27. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: KDD’98. pp. 80–86 (1998)

28. Nallapati, R.: Discriminative models for information retrieval. In: SIGIR ’04. pp.
64–71 (2004)

29. Qin, T., yan Liu, T., feng Tsai, M., dong Zhang, X., Li, H.: Learning to search
web pages with query-level loss functions. Tech. rep. (2006)

30. Qin, T., Liu, T.Y., Xu, J., Li, H.: Letor: A benchmark collection for research on
learning to rank for information retrieval. Information Retrieval 13, 346–374 (2010)

31. Qin, T., Zhang, X.D., Wang, D.S., Liu, T.Y., Lai, W., Li, H.: Ranking with multiple
hyperplanes. In: SIGIR ’07. pp. 279–286 (2007)

32. Sculley, D.: Combined regression and ranking. In: KDD ’10. pp. 979–988. ACM,
New York, NY, USA (2010)

33. Song, Y., Leung, K., Fang, Q., NG, W.: Fp-rank: An effective ranking approach
based on frequent pattern analysis. In: DASFAA’13 (2013)

34. Tan, J., Bu, Y., Yang, B.: An efficient close frequent pattern mining algorithm. In:
ICICTA ’09. vol. 1, pp. 528 –531 (Oct 2009)

35. Thomas Fasciano, R.S., Shin, M.C.: Learning to rank biological motion trajectories.
Image and Vision Computing (2012)

36. Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain
databases. PVLDB’12 5(11), 1650–1661 (2012)

37. Tong, Y., Chen, L., Ding, B.: Discovering threshold-based frequent closed itemsets
over probabilistic data. In: ICDE’12. pp. 270–281 (2012)

SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking 27

38. Tong, Y., Chen, L., Yu, P.S.: Ufimt: an uncertain frequent itemset mining toolbox.
In: KDD’12. pp. 1508–1511 (2012)

39. Tsai, M.F., Liu, T.Y., Qin, T., Chen, H.H., Ma, W.Y.: Frank: a ranking method
with fidelity loss. In: SIGIR ’07. pp. 383–390 (2007)

40. Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing ndcg
measure. In: NIPS ’09 (2009)

41. Veloso, A.A., Almeida, H.M., Gonçalves, M.A., Meira Jr., W.: Learning to rank at
query-time using association rules. In: SIGIR ’08. pp. 267–274 (2008)

42. Verberne, S., van Halteren, H., Theijssen, D., Raaijmakers, S., Boves, L.: Learning
to rank for why-question answering. Information Retrieval 14, 107–132 (2011)

43. Volkovs, M.N., Zemel, R.S.: Boltzrank: learning to maximize expected ranking
gain. In: ICML ’09. pp. 1089–1096 (2009)

44. Wang, J., Karypis, G.: On mining instance-centric classification rules. IEEE Trans.
on Knowl. and Data Eng. 18, 1497–1511 (2006)

45. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: SIGIR
’07. pp. 391–398 (2007)

46. Yin, X., Han, J.: Cpar: Classification based on predictive association rules. In:
SDM’03 (2003)

47. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for
optimizing average precision. In: SIGIR’07. pp. 271–278 (2007)

