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Abstract. Given a database of trajectories and a set of query locations, location-based trajectory
search finds trajectories in the database that are close to all the query locations. Location-based
trajectory search has many applications such as providing reference routes for travelers who are
planning a trip to multiple places of interest. However, previous studies only consider the spatial
aspect of trajectories, which is inadequate for real applications. For example, one may obtain
the reference route of a tourist who just passed by a place of interest without paying a visit. We
propose thek Important Connected Trajectories(k-ICT) query by associating trajectories with
location importance. For any query location, the result trajectories should contain animportant
point close to it. We describe an effective method to infer the importance of trajectory points from
the temporal information. We also propose efficient R-tree based and grid-based algorithms to
answerk-ICT queries, and verify the efficiency of our algorithms through extensive experiments
on both real and synthetic datasets.

1. Introduction

With the popularity of location-acquisition technology, huge amounts of trajectory data
are being generated at an unprecedented scale. We differentiate two types of trajectory
data. The first type is simply a sequence of time-stamped locations, usually generated
by mobile devices such as cell phones and GPS receivers at a relatively high sampling
rate. The sample points in such trajectories have very little or no semantics, and many
recorded locations are not important. The second type of trajectory is a sequence of lo-
cations with semantics, where each recorded location is usually important. One example
of such a trajectory is a sequence of geo-tagged photos takenby a traveler in a trip. Nu-
merous such trajectories can be obtained from photo-sharing websites such as Flickr
(www.flickr.com), and people usually take photos at locations they like. Another
example of such a trajectory is a sequence of check-in records of some traveler at the
places he/she cares. Such trajectories are available from location-based social network
services such as FourSquare (foursquare.com).
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Fig. 1. Illustration of the weakness of thek-BCT query

The proliferation of trajectory data has spawned many novelapplications. One ex-
ample is searching trajectories by locations [1, 6, 7]. Location-based trajectory search
was first proposed in [1] as thek Best-Connected Trajectories(k-BCT) query. Given
a few query locations, ak-BCT query findsk trajectories that are close to all query
points from a trajectory database. Location-based trajectory search can benefit users in
many real life applications. For example, it can help travelers who are planning a trip
to multiple places of interest in an unfamiliar city, by providing similar routes traveled
by other people for reference. Location-based trajectory search is also useful in human
behavior analysis, where the query locations can be touristattractions (specified by a
travel agency) or the stops of a new metro line (specified by the transport department).

Thek-BCT query, however, considers only the spatial aspect of trajectories, which is
inadequate for many real applications. Consider a travel agency that queries a database
of tourist trajectories for market analysis. Figure 1 showsa database with four trajec-
tories, each belonging to a different tourist. For simplicity, we assume the data space
to be 1D rather than 2D, and we only mark the relevant trajectory samples using△.
For example, Tom spent 15 minutes at the airport (for check-out), 1 hour at Outlet A
(for shopping), 8 seconds at Outlet B (just passing by), and 30 minutes at the hotel (for
check-in and taking a rest). From Figure 1, we can see that young people (e.g., Peter and
Alice) may usually go shopping at Outlet B on their way from the airport to the hotel,
while middle-aged people (e.g., Tom and Mary) would prefer to go shopping at Out-
let A. Unfortunately, a 2-BCT query over the database with query locations,{Airport,
Outlet B, Hotel}, would return the trajectories of Tom and Mary (who actuallywent
shopping at Outlet A), since the 5-th sample in the trajectories of Tom and Mary is
closer to Outlet B than any of the samples in the trajectoriesof Peter and Alice. As a
result, the travel agency may make a wrong arrangement: whena tourist bus picks up
a group of middle-aged tourists at the airport and goes to thehotel, it would stop at
Outlet B for the tourists to go shopping.

This example demonstrates that it is necessary to take location importance into con-
sideration. Although Tom and Mary have a trajectory sample close to Outlet B, the
importance of the sample with respect to the whole trajectory is low since Tom and
Mary just passed by Outlet B. On the contrary, Peter and Alicewent shopping at Out-
let B, though their trajectory samples are farther away fromOutlet B (the samples were
probably recorded at a car park nearby).

In this paper, we propose a new type of location-based trajectory search called the
k Important Connected Trajectories(k-ICT) query, over a database of trajectories asso-
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ciated with location importance. We discuss how to derive the importance of trajectory
sample points from their timestamps, and develop efficient algorithms for answering
k-ICT queries.

The main contributions of this paper are summarized as follows:

– We propose thek-ICT query over a database of trajectories with location importance,
which returns trajectories of much higher utility comparedwith thek-BCT query [1].

– We design a practical method for deriving the importance of trajectory sample points
from their timestamps.

– We propose two R-tree based algorithms for answeringk-ICT queries, founded on
two variants ofThreshold Algorithm(TA) for top-k queries.

– We further develop two grid-based algorithms, which process k-ICT queries using
our grid index built from theMultiplicatively Weighted Voronoi Diagram(MWVD)
of trajectories. The grid-based algorithms address the drawbacks of the R-tree based
algorithms. Experiments show that the grid-based algorithms are more efficient in
terms of both time and space.

The rest of this paper is organized as follows. Section 2 reviews the related work. In
Section 3, we formulate thek-ICT query. Section 4 discusses how to derive trajectory
location importance from raw GPS data. We present our R-treebased algorithms in
Section 5, and describe the grid-based algorithms in Section 6. We report experimental
results in Section 7 and conclude the paper in Section 8.

2. Related Work

Conventional Trajectory Search. Given a query trajectory, conventional trajectory
search findsk trajectories with the shortest distances to the query trajectory. Defini-
tions of the distance function include [2, 3, 4, 5]. However,these definitions ignore the
time dimension of the trajectory samples, and thus may overrate insignificant trajectory
samples.

Trajectory Search by Locations. Location-based trajectory search was first proposed
by [1], where the query input is a set of locations. Compared with searching trajectories
by a complete query trajectory, it is more practical to search trajectories by locations
of interest. Consider the example where a traveler is planning a trip to an unfamiliar
city. He/she can easily specify the places he/she intends tovisit as the query points,
by clicking them on a digital map. On the other hand, it is difficult for a new comer
to specify a preferred route as the query trajectory. Recentresearch starts to enhance
location-based trajectory search with keywords [6, 7]. However, location importance
has not been considered and thus queries may easily overrateinsignificant trajectory
samples.

Mining Important Locations from Trajectories. There are studies on how to mine
important locations from trajectory data, such as raw GPS data [8] and Flickr data [9].
These works measure location importance from all the trajectories. Another work [10]
finds important locations from a single trajectory. The workmodels a trajectory by
stopsandmoves, where a stop is a semantically important part of the trajectory. They
proposed the IB-SMoT algorithm to generate stops: given a database of geographic
objects, if a part of trajectory intersects with the object,and the time span of the sub-
trajectory is above a minimum time threshold, then the sub-trajectory is identified as a
stop. Later work uses density based clustering of the trajectory samples to find stops,
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Fig. 2. Intuition behind distance function in Eq. (2)

such as CB-SMoT [11] and DB-SMoT [12]. Conceptually, the samples of a stop are
important, while the samples of a move are immaterial. However, these methods do not
provide a concrete importance score for the samples (or stops), and thus it is impossible
to compare the importance of different samples (or stops).

3. Problem Formulation

We now formally define thek-ICT query. LetD be a database of trajectories, where
each trajectoryT ∈ D is a sequence of points(p1, p2, . . . , pℓ). We assume that each
point pi is associated with a scorew(pi) ≥ 0, which corresponds to the importance
of pi in trajectoryT . For raw GPS data, we can derive the importance score using
the time stamps of the trajectory samples, which we will further discuss in Section 4.
For trajectories obtained from Flickr photos, the locationimportance of a photo can be
derived using the number of page visits; the score can also bemanually set by the photo
owner.

A k-ICT query,Q, is represented by a set ofm locations (or points):Q = {q1, q2, . . . , qm}.
We first introduce the distance functions that define how ak-ICT query is to be evalu-
ated.

Distance Related to One Query Point. Let us first focus on a specific query point
qi ∈ Q. We define the weighted distance between query pointqi and a trajectory point
pj as follows:

d(qi, pj) =
‖qipj‖

w(pj)
, (1)

where we use‖pq‖ to denote the Euclidean distance between two pointsp andq. Note
that a larger importance scorew(pj) makespj closer toqi (sinced(qi, pj) is smaller).

We define the weighted distance between query pointqi and a trajectoryT =
(p1, p2, . . . , pℓ) as the weighted distance betweenqi and its closest trajectory point in
T :

d(qi, T ) = min
pj∈T
{d(qi, pj)}. (2)

We now illustrate the intuition behind the distance function in Equation (2). Con-
sider the vehicle GPS trajectory fragment shown in Figure 2,which is generated as
follows. A traveler rented a GPS-equipped car to travel around a city. He drove to a car
park near a museum, parked his car, stayed in the museum for anhour, and then drove
to the next destination. Since the car was turned off when it was parked, the on-board
GPS device was also off. As a result, no sample was generated during that one hour
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when the car was parked, andpi ∈ T is the first sample after the traveler drove the car
away from the car park.

In this example, the query pointq in question is the museum. Now assume that
w(p) is proportional to the time the car stopped at pointp. Although‖qpi+1‖ < ‖qpi‖,
it is obvious thatw(pi+1) ≪ w(pi) and thusd(q, pi+1) > d(q, pi) according to Equa-
tion (1), i.e.pi is closer toq thanpi+1. Therefore,d(qi, T ) = d(q, pi) by Equation (2).
Note thatd(q, pi) correctly estimates the confidence that the traveler ofT visited the
museum, since he may instead visit an aquarium nearby after parking his car. In the
latter case,d(q, pi+1) overestimates the confidence that the traveler visited the museum
since he actually visited the aquarium nearby the pointpi+1. Thus,d(q, pi) presents an
accurate estimate in this case.

Overall Distance Function. We now define the weighted distance between a query
Q and a trajectoryT , by aggregatingd(qi, T ) for all query pointsqi ∈ Q. Since we
want to find trajectories close to all query points inQ, we define the overall weighted
distance as:

d(Q, T ) =
m

∑

i=1

d(qi, T ). (3)

Intuitively, d(Q, T ) is the total distance of traveling from the closest positionof T to qi

for all qi ∈ Q.
In addition to the physical meaning described above, Equation (3) is also meaning-

ful from the probabilistic point of view, which we discuss next. Let us denotepni
to be

the trajectory point ofT closest toqi (in terms of weighted distance), thend(qi, T ) =
d(qi, pni

). We also denotep(qi, T ) to be the probability that the owner of the trajec-
tory T visitedqi, and a reasonable assumption is thatp(qi, T ) decays exponentially as
d(qi, pni

) increases. Using the PDF (Probability Density Function) ofthe exponential
distribution, we havep(qi, T ) = λe−λ·d(qi,T ). Since we have no preference of one query
point over another, we use the sameλ for all qi ∈ Q. Since we want a result trajectory
to be close to all query points, the probability that the owner of trajectoryT visited all
qi ∈ Q is:

m
∏

i=1

p(qi, T ) ∝ e−λ
∑m

i=1
d(qi,T ), (4)

where we assume that “whether the owner visited one query location” is independent of
“whether he visited another query location”.

Since we want to maximize the probability value of Equation (4), it is equivalent to
minimized(Q, T ) =

∑m

i=1 d(qi, T ).
The k-BCT query [1] adopts a similarity functionsim(Q, T ) =

∑m

i=1 e−d(qi,T ).
If we fix λ = 1, thensim(Q, T ) =

∑m

i=1 p(qi, T ). Compared with Equation (4), this
similarity function is undesirable, since the similarity value is high as long as one query
point is close toT , even if all other query points are far fromT . Similar observation is
mentioned in [17], which proposes to use a sum-of-Euclidean-distance measure. In this
paper, we use the sum-of-weighted-distance measure to incorporate object importance.

We definek-ICT querying as follows.

Definition 1 (k-ICT Querying). Given a database of trajectoriesD = {T1, . . . , Tn} (n ≥
k), a set of query locationsQ, ak-ICT query is to find a set ofk trajectories,R ⊆ D,
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Fig. 3. Illustration of the evaluation of location importance

such that

d(Q, T ) ≤ d(Q, T ′), ∀T ∈ R, ∀T ′ ∈ D −R.

4. Location Importance

In this section, we discuss how to compute the importance of trajectory samples from
raw GPS data.

Formulation. A GPS reading can be represented by a triplet(latitude, longitude, timestamp).
In order to manipulate the data in Euclidean space, we map thecoordinates of all sample
points from the GPS coordinates(latitude, longitude) to Universal Transverse Merca-
tor (UTM) coordinates(easting, northing), or simply(x, y).

Given a trajectoryT = (p1, p2, . . . , pℓ), where each sample pointpi = (pi.x, pi.y, t(pi)),
we want to compute the importancew(pi) for all the sample pointspi ∈ T .

We define the neighborhood of a sample pointpi ∈ T , denoted byCir(pi), to be
a circle centered atpi with radiusr, wherer is a user-specified parameter. Figure 3(a)
shows the circleCir(pi) and the trajectoryT . Let pl (or respectively,pr) be the first
location onT reaching the boundary ofCir(pi) when going backward (or respectively,
forward) frompi alongT . Note thatpl andpr may not be an existing trajectory sample,
but rather the intersection point betweenCir(pi) and a segmentpjpj+1 as shown in
Figure 3(b). In this case, we use linear interpolation to compute the location and time
stamp ofpr (or pl). Another extreme case is thatpl (or respectively,pr) may be the
first (or respectively, last) trajectory sample that is insideCir(pi), since in this case we
cannot go backward (or respectively, forward) frompi alongT .

We define the following measure usingpl andpr:

∆t(pi) = max{t(pr)− t(pi), t(pi)− t(pl)}. (5)

Here,(t(pr) − t(pi)) is the time spent before the traveler leftCir(pi) from pi in
the forward direction, while(t(pi) − t(pl)) is the time spent before the traveler left
Cir(pi) from pi in the backward direction (or more intuitively, the time spent from
when the traveler stepped inCir(pi) until he reachedpi). Intuitively, ∆t(pi) is defined
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such that as long as the traveler stopped nearpi (no matter in the forward or backward
direction), the importance ofpi is promoted. The greater∆t(pi) is, the more important
the trajectory samplepi is.

This definition of∆t(pi) has two benefits. First, even when the traveler is in an
important location (e.g., a marketplace), he may still be walking around and the accu-
mulated distance can be large. Using a neighborhood circle to cover the marketplace,
we can correctly identify that the locations in the marketplace are important. Second,
when a GPS-equipped car is turned off, so is the GPS device. Thus, we can only con-
sider the last few samples before the car stops, or the first few samples after the car starts
as important (these locations may still be inside the car park), which are better covered
using the neighborhood circle.

The next issue is how to computew(pi) using∆t(pi). Obviously,w(pi) should
increase fast with∆t(pi) when∆t(pi) is small, but increase slowly when∆t(pi) is
large. For example, a 1-minute stop may not be important since it may be due to a red
traffic light, while a 10-minute stop is more likely to be important. On the other hand,
a 1-hour stop quite certainly implies an important location, and the score should not
increase too much even if∆t(pi) becomes 2 hours.

When∆t(pi) = 0, we want the importancew(pi) = 0. Furthermore, we wantw(pi)
to be within[0, 1] so as to carry a probability meaning: the confidence that the traveler
of trajectoryT stops atpi. As a result, we define our importance score as follows:

w(pi) = 1− e−α·∆t(pi), (6)

whereα controls how fastw(pi) increases with∆t(pi).

Computation Details. Next, we discuss the details of computing∆t(pi). We first
describe how we computepr (the computation ofpl is similar) for the scenario in Fig-
ure 3(b), wherepj ∈ T is insideCir(pi) and the next samplepj+1 is outside ofCir(pi).

Instead of directly computingpr, we first compute segment length‖pjpr‖. Accord-
ing to the Cosine Law, we can computecos∠pipjpr as follows:

cos∠pipjpr =
‖pipj‖2 + ‖pjpj+1‖2 − ‖pipj+1‖2

2 · ‖pipj‖ · ‖pjpj+1‖
,

where‖pipj‖, ‖pjpj+1‖ and‖pipj+1‖ can be easily computed from the coordinates of
pi, pj andpj+1.

Then, according to the Cosine Law,‖pjpr‖ can be obtained by solving the following
quadratic equation:

‖pipr‖
2 = ‖pipj‖

2 + ‖pjpr‖
2 −

2 · ‖pipj‖ · ‖pjpr‖ · cos∠pipjpr, (7)

where‖pipj‖ is computed from the coordinates ofpi andpj, and‖pipr‖ = r. The roots
of Equation (7) are:

‖pjpr‖
(1) = ‖pipj‖ · cos∠pipjpr +

√

‖pipj‖2 · cos2 ∠pipjpr − ‖pipj‖2 + r2,

(8)

‖pjpr‖
(2) = ‖pipj‖ · cos∠pipjpr −

√

‖pipj‖2 · cos2 ∠pipjpr − ‖pipj‖2 + r2.

(9)
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However, the second root‖pjpr‖(2) can be discarded since its value is negative. To
see this, recall thatpj is insideCir(pi), and hence‖pipj‖ < r. Thus, we have

√

‖pipj‖2 · cos2 ∠pipjpr − ‖pipj‖2 + r2

>
√

‖pipj‖2 · cos2 ∠pipjpr − r2 + r2

> ‖pipj‖ · cos∠pipjpr.

Therefore,‖pjpr‖(2) < 0 according to Equation (9), and we conclude that the value of
‖pjpr‖ is given by Equation (8).

Algorithm 1 Computing(t(pr)− t(pi))

Input: TrajectoryT = (p1, p2, . . . , pℓ)
Output: ∆t = t(pr)− t(pi)

1: ∆t← 0;
2: for pj := pi to pℓ−1 do
3: if pj+1 is insideCir(pi) then
4: ∆t← ∆t + (t(pj+1)− t(pj));
5: else
6: Compute‖pjpr‖ by Equation (8);

7: ∆t← ∆t +
‖pjpr‖

‖pjpj+1‖
(t(pj+1)− t(pj));

8: return ∆t;
9: return ∆t;

Now we discuss how to compute(t(pr) − t(pi)). The value of(t(pi) − t(pl)) can
be computed similarly, and both of them are then used to compute ∆t(pi) according
to Equation (5). The algorithm is described in Algorithm 1. We check samples forward
alongT starting frompi (Line 2). If the next samplepj+1 is insideCir(pi), then the
whole segmentpjpj+1 is insideCir(pi) (due to the convexity of circles), and we ac-
cumulate the time spent onpjpj+1 to the result (Lines 3-4). Otherwise, we compute
pr and accumulate the time spent onpjpr to the result (Lines 5-7). Note that in the
latter case, we already reach the boundary ofCir(pi) and thus the accumulated time is
directly returned (Line 8).

Parameter Setting. We have two parameters: (1) radiusr of Cir(pi), and (2) the
decay rateα in Equation (6). Typically,r is set as the diagonal length of a market place,
or the distance between a car park and the intended destination. While the parameter
choice is application-dependent, our experiments on several vehicle GPS datasets show
that our method always provides reasonable importance score (judged by human) when
r = 50m andα = 0.002. The details are omitted due to the space limitation.

5. R-Tree Based Algorithms

In this section, we introduce two R-tree based algorithms for answeringk-ICT queries.
Before we present our algorithms, we first describe theThreshold Algorithm(TA) [13],
since our algorithms adopt the TA framework for top-k query processing.
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5.1. Threshold Algorithm and Its Variants

TA [13] has been widely adopted for processing top-k queries, including thek-BCT
querying algorithm [1] and the keyword-aware variants [6, 7]. In the setting of [13], we
are given a database tableD of n tuples, where the schema of the table is(A1, A2, . . . , Am).
For each attributeAi, a listLi is built by sorting all the tuples in non-decreasing order
of the values of attributeAi, and stored on disk. Each entry inLi is a pair(id, val),
whereid is the id of the corresponding tuple, andval is the value of attributeAi for
the tuple. We describe two algorithms that use the lists to find the top-k tuples, where
the ranking score of a tuple equals the summation of the values of all itsm attributes (a
smaller score is preferred).

Fagin’s Algorithm (FA). FA finds the top-k tuples in three steps.Step 1: read a
(id, val) pair from each list in a round-robin manner, until there arek tuples whose id’s
have been seen from all them lists.Step 2: for each tuple id seen (from any list), retrieve
the tuple from the tableD if any of its attribute values are missing (random access to
D is needed).Step 3: compute the ranking score by summing the attribute values for
each tuple whose id has been seen, and return thek tuples with the smallest summation
values.

Threshold Algorithm (TA). Unlike the filter-and-refineframework of FA where
random access toD is only used in the refinement step, TA adopts a more aggressive
approach. TA also reads a(id, val) pair from each list in a round-robin manner, but
for each tuple id seen, TA immediately retrieves the tuple from D by random access,
computes the ranking score, and updates the current top-k tuples. Meanwhile, for each
list Li, TA maintains a variableτi equal toval of the last(id, val) pair read fromLi.
The round-robin operation stops when the ranking score of the current topk-th tuple is
equal to or smaller than

∑m

i=1 τi.

In general, TA reads less pairs from the lists than FA, but performs more random
accesses toD than FA. While we focus on FA and TA when introducing our algorithms,
other variants of TA may also be adopted by our algorithm.

5.2. R-Tree Based Algorithms

We now present our R-tree based algorithms. We first describea key operator used by
our algorithms: theincremental weighted nearest-neighbor(NN) algorithm.

Incremental Weighted NN Algorithm. Unlike [1], in our problem, each trajectory
pointpi is associated with an importance scorew(pi), and its distance to a query point
q is evaluated as‖qpi‖

w(pi)
using Equation (1). Thus, R-tree is no longer sufficient for solv-

ing our problem. Instead, we index the trajectory points by an aggregate R-tree(aR-
tree) [14] with aggregate function MAX, calledMAX R-tree.

Compared with a traditional R-tree, each node entrye of a MAX R-tree maintains
the maximum importance score among all points indexed undere (i.e., indexed in the
subtree rooted at the node pointed to bye). Given an R-tree node entrye, we denote
its MAX aggregate value byw(e). We also denote theMinimum Bounding Rectangle
(MBR) of e by mbr(e). Then, for any trajectory pointp indexed undere, its weighted
distance to query pointq is given by:

d(q, p) =
‖qp‖

w(p)
≥

mindist(q, mbr(e))

w(e)
, (10)
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wheremindist(q, mbr(e)) is the distance fromq to its closest point inmbr(e). The
inequality holds asmindist(q, mbr(e)) ≤ ‖qp‖ andw(e) ≥ w(p).

For simplicity, given an R-tree node entrye and a query pointq, we define:

LB(q, e) =
mindist(q, mbr(e))

w(e)
. (11)

According to Equation (10),LB(q, e) lower bounds the weighted distance from any
point indexed undere to q.

Algorithm 2 Computing the Next Weighted NN ofqi

Input: query locationqi, priority queuemin-heap, Max R-treetree
Output: (d(qi, p), p) wherep is the next NN ofqi

1: while min-heapis not emptydo
2: (LB(qi, e), e)←min-heap.dequeue();
3: if e is a leaf node entrythen
4: p← the trajectory point pointed to bye;
5: return (LB(qi, e), p);
6: else
7: node← the R-tree node pointed to bye;
8: for eachentrye′ of node do
9: ComputeLB(qi, e

′);
10: min-heap.enqueue(LB(qi, e

′), e′);

Algorithm 2 describes our incremental weighted NN algorithm. When processing a
k-ICT query, we maintain a priority queue of R-tree node entries for each query point
qi, so that the next NN ofqi can be incrementally obtained using Algorithm 2. Initially,
the priority queuemin-heapcontains only the root node of the Max R-treetree, and
each call of Algorithm 2 updatesmin-heapand retrieves the next NN ofqi.

We now explain Algorithm 2 in details. In each round, the entry e with the smallest
LB(qi, e) is dequeued frommin-heap(Line 2). If e is an entry of a leaf node, then it
points to a trajectory pointp andLB(qi, e) = d(qi, p). In this case, we can conclude that
p is the next NN (Line 5), since any unseen trajectory pointp′ is indexed under some
node entryen in min-heap, andd(qi, p

′) ≥ LB(qi, en) ≥ LB(qi, e). Otherwise,e is
an entry of a non-leaf nodenode, and we enqueue all the entries ofnode into min-heap
(Lines 7-10).

R-Tree based FA and TA. We now introduce our two R-tree based algorithms for
answeringk-ICT queries, one based on FA and the other based on TA. Both algorithms
use Algorithm 2 for sequentially accessing the next NN of each query pointqi.

Algorithm 3 presents the R-tree based FA for answeringk-ICT queries. Similar to
FA, Algorithm 3 has two phases: the filtering phase (Lines 3-15) and the refinement
phase (Lines 16-20).

In each round of the filtering phase, Algorithm 3 obtains the next NN of eachqi

for processing (Line 4), i.e., the NNs of the query points areprocessed in a round-robin
manner. Since there areN trajectory points indexed bytree, there are at mostN rounds
(Line 3). All the seen trajectories are maintained using a hash tabletable, where the hash
key is the trajectory id. If the trajectory of the obtained point p has not been seen yet, we
know thatd(qi, T ) = d(qi, p), and thus we insertT into table and recordd(qi, p) as the
value of thei-th attribute, denoted byT [i] (Lines 7-9). Otherwise,T is already intable,
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Algorithm 3 R-tree based FA for Answeringk-ICT Queries
Input: k, query setQ, trajectory databaseD, Max R-treetree
Output: k-ICT (the top-k trajectories)

1: table← ∅, d← 1;
2: N ← number of trajectory points inD;
3: while d ≤ N do
4: for eachqi ∈ Q do
5: Retrieve thed-th NN p of qi, together with the weighted distanced(qi, p),

using Algorithm 2;
6: T ← the trajectory thatp belongs to;
7: if T 6∈ table then
8: InsertT into table;
9: T [i]← d(qi, p); /∗ T [i] representsd(qi, T ) ∗/

10: else
11: if T [i] is not yet assignedthen
12: T [i]← d(qi, p);
13: if there arek trajectories intable whose attribute values are all assignedthen
14: gotoLine 16;
15: d← d + 1;
16: for eachT ∈ table do
17: ReadT ;
18: For anyT [i] not yet assigned:T [i]← d(qi, T );
19: Computed(Q, T ) =

∑m

i=1 T [i];
20: Update the top-k trajectories;
21: return the top-k trajectories;

and we check whetherT [i] has been assigned a value (Line 11). IfT [i] has already been
assigned a value, we ignore the obtained pointp since the point inT that is closest to
qi has already been processed before. Otherwise,p is the point inT closest toqi, and
we setT [i] to bed(qi, p). The filtering phase terminates oncek tuples are seen with the
value ofT [i] assigned for allqi ∈ Q, which is similar to the traditional FA.

In the refinement phase, we first computed(qi, T ) for anyT [i] whose value has not
yet been assigned (a more efficient method of obtainingT [i] is actually used, which we
will discuss in Section 6.2). Then, for all the seen trajectories T ∈ table, d(Q, T ) is
computed and thek tuples with the smallest values ofd(Q, T ) are returned.

Algorithm 4 presents the R-tree based TA for answeringk-ICT queries. Recall that
the conventional TA maintains a variableτi for each listLi, whose value equals the
attribute value of the last accessed entry. TA stops when theranking score of the current
top k-th tuple is equal to or smaller than

∑m

i=1 τi. In our problem,τi = d(qi, p) where
p is last accessed NN ofqi. We setτ to 0 at the beginning of a round-robin processing
round (Line 5), and addτi = d(qi, p) to τ for each query pointqi (Line 16). Therefore,
at the end of the round-robin processing round,τ =

∑m

i=1 τi is exactly the pruning
threshold, which is then compared with the topk-th trajectory in Line 17 to determine
the stopping condition.

In Lines 9-15, we only process the trajectoryT of the current pointp if T is not in
table, by accessingT to assignT [i] (a more efficient method discussed in Section 6.2
is actually used here), computingd(Q, T ) and updating the top-k results. Note that ifT
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Algorithm 4 R-tree based TA for Answeringk-ICT Queries
Input: k, query setQ, trajectory databaseD, Max R-treetree
Output: k-ICT (the top-k trajectories)

1: table← ∅, d← 1;
2: N ← number of trajectory points inD;
3: max-heap← ∅;
4: while d ≤ N do
5: τ ← 0;
6: for eachqi ∈ Q do
7: Retrieve thed-th NN p of qi, together with the weighted distanced(qi, p),

using Algorithm 2;
8: T ← the trajectory thatp belongs to;
9: if T 6∈ table then

10: T [i]← d(qi, p);
11: ∀j 6= i, computeT [j] = d(qj , T ) by accessingT ;
12: InsertT into table;
13: Computed(Q, T ) =

∑m

i=1 T [i];
14: max-heap.enqueue(d(Q, T ), T );
15: If max-heap.size() > k: max-heap.dequeue();
16: τ ← τ + d(qi, p);
17: if max-heap.size() = k and max-heap.top() ≤ τ then
18: gotoLine 20;
19: d← d + 1;
20: return thek trajectories inmax-heap;

is in table, thenT [i] must have been assigned for alli = 1, . . . , m (Lines 10-12), and
hence we can ignoreT .

Finally, we note that the correctness of both Algorithms 3 and 4 is easy to see by
following the correctness of FA and TA [13]. We thus omit the details here.

Limitations of R-Tree Based Algorithms. We identify the following limitations of
using an R-tree index built over all the trajectory points inthe database, which motivates
our grid-based algorithm to be introduced in Section 6.

Firstly, the incremental NN search for each queryqi is done over an R-tree that
contains all the trajectory samples. However, if we knowqi beforehand, then only one
sample per trajectory requires examining (i.e., the samplewith the shortest weighted
distance toqi), and there are totallyn = |D| such samples, much less than the number
of all samples inD. Therefore, there is huge room for improvement in terms of sample
candidate pruning.

Secondly, much of the computation done by the R-tree based algorithms could be
wasteful. This is because consecutive samples of a trajectory are close in space, and
are very likely indexed under the same R-tree node. As a result, in consecutive calls of
Algorithm 2 for retrieving the NNs of a query pointqi, many returned NNs may come
from the same trajectory.

Finally, we use the maximum importancew(e) of an R-tree node entry to compute
the lower bound in Equation (11), which is not tight. As long as there is one point
indexed undere with a large weight, the whole entrye has to be accessed early even if
all the other points have very low weight, resulting in the addition of all its child nodes
into the priority queue.
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6. Grid-Based Algorithms

In this section, we present the grid-based algorithms.

Overview. We first give an overview of how our grid-based algorithms address all the
three drawbacks of the R-tree based algorithms mentioned inSection 5.2.

Firstly, to avoid doing NN search over all trajectory points, we divide the data space
by a grid, so that each grid cell covers a small region. We observe that only a small
fraction of samples per trajectory have the chance to be the NN of some location in a
cell. Thus, if a query point locates in a grid cell, we only need to check the samples
relevant to the cell.

Secondly, to avoid checking a lot of samples of a trajectory that do not contribute
to the top-k answers, we propose to pre-compute theMultiplicatively Weighted Voronoi
Diagram(MWVD) of the points of each trajectory. Note that a samplepi is the weighted
NN of q if and only if q locates inside the Voronoi cell ofpi.

Finally, to avoid the interference of samples from different trajectories, we treat
trajectories as the first-class citizen (while the R-tree index treats the trajectory points as
the first-class citizen). Given a grid cell, we group all its relevant samples by trajectories,
and the NN search is done in the unit of trajectories rather than trajectory points.

We discuss these ideas in details in the following subsections.

6.1. Trajectory Preprocessing by MWVD

For each trajectoryT = (p1, p2, . . . , pℓ), we pre-compute the MWVD [15] of its points,
which is then used to build our grid index. We first briefly review the MWVD and then
show how we use it in our solution.

Let U be the data domain. Given two samplesp andp′, thedominant regionof p
overp′ is defined as:

Rp|p′ = {q ∈ U | d(q, p) ≤ d(q, p′)}.

We now consider the shape ofRp|p′ . Let us first assume thatw(p) < w(p′), then
Rp|p′ is characterized by the region within circleCp|p′ , whose centerc and radiusr are
given as follows:

c =

(

w2(p′) · p.x− w2(p) · p′.x

w2(p′)− w2(p)
,
w2(p′) · p.y − w2(p) · p′.y

w2(p′)− w2(p)

)

r =
w(p) · w(p′) · ‖pp′‖

w2(p′)− w2(p)
.

Figure 4 illustrates the concept of dominant region with circle Cp|p′ . In fact,Cp|p′

is an Apollonius circle, since for any pointx on its boundary,‖px‖
‖p′x‖ = w(p)

w(p′) .

Whenw(p) > w(p′), Rp|p′ is characterized by the region outside of circleCp|p′ .
For example, in Figure 4 wherew(p′) > w(p), Rp′|p = U − Cp|p′ . Finally, when
w(p) = w(p′), the perpendicular bisector ofpp′ divides the space into two half planes,
andRp|p′ corresponds to the half plane that containsp, denoted byHp|p′ .

The Voronoi cell of a trajectory pointp ∈ T is given by:

V C(p) =
⋂

p′∈T−{p}

Rp|p′ , (12)
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Fig. 4. Illustration of dominant regions

since any point inV C(p) should be inRp|p′ for anyp′ ∈ T − {p}. Given a sample
p ∈ T , we divide the other samples inT into three sets:T + contains all samplesp′

with w(p′) > w(p), T− contains all samplesp′ with w(p′) < w(p), andT 0 contains all
samplesp′ with w(p′) = w(p).

Equation (12) implies thatV C(p) may be represented byℓ − 1 circles or lines in
the worst case. In fact, not all circles/lines contribute tothe final shape ofV C(p) and
many of them can be pruned by the six pruning rules presented in [16]. We adopt the
best-first search algorithm of [16] for MWVD computation, but the computation is done
in memory since the number of points in each trajectory is usually not large.

6.2. Grid Index

Next, we describe two indices used in our grid-based algorithms. In our problem, we
assume that there exists a rectangular data spaceU , such that all trajectory points and
query points locate insideU . For example,U can be the bounding box of a city region.
Our grid-based approach dividesU by anN ×N grid, denoted byG.

For each trajectoryT , we build arandom accessindex, denoted byRAI[T ], which
returnsd(q, T ) given a query pointq; while for each grid cellG[i, j], we build asequen-
tial accessindex, denoted bySAI[i, j], which returns trajectories in non-decreasing
order ofd(q, T ) for a query pointq falling in G[i, j].

Random Access Index (RAI). We now describe how we buildRAI[T ]. First, we
computeV C(p) for all p ∈ T , whereV C(p) is represented by a set of pairs(p′, Rp|p′).
We say thatp′ is related toV P (p) if (p′, Rp|p′) ∈ V C(p). Then, for each grid cell
G[i, j], we compute the set of Voronoi cells overlapping with the rectangular regionR
thatG[i, j] represents. We denote the set byS(R) = {V CR(pi1), V CR(pi2), . . . , V CR(pis

))}.
Note that a Voronoi cellV CR(p) may contain less pairs of(p′, Rp|p′) than the origi-
nal V C(p), since we only need to characterize its shape withinR. If V C(p) does not
overlap withR, p cannot be the weighted NN of any location inR, and is thus pruned.

We now consider how to computeV CR(p) from the originalV C(p). We divide
the trajectory pointsp′ related toV C(p) into three setsS+, S− andS0, according to
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Condition 1 Condition 2 Action 

p'  S+ G[i, j] is outside of Cp | p'
 Prune  VC(p) 

p'  S+ Cp | p‘ contains G[i, j]  Prune  (p’, Rp | p') 

p'  S-- Cp’  | p contains G[i, j]  Prune  VC(p) 

p'  S-- G[i, j] is outside of Cp’  | p
 Prune  (p’, Rp | p') 

p'  S0 Hp’  | p contains G[i, j]  Prune  VC(p) 

p'  S0 Hp | p‘ contains G[i, j]  Prune  (p’, Rp | p') 

 (a) p'  S+ 

 Cell Pruning 

 Pair Pruning 

U 

 (b) p'  S-- 

 Cell Pruning 

 Pair Pruning 

U 

(c) p'  S0 

 Cell Pruning 

 Pair Pruning 

Fig. 5. Cell Pruning & Pair Pruning

whetherp′ belongs toT +, T− andT 0, respectively. We check each(p′, Rp|p′) ∈ V C(p)
in turn for the following:

– Cell Pruning:if Rp|p′ does not overlap withR, we pruneV CR(p) immediately since
V C(p) ∩Rp|p′ = ∅;

– Pair Pruning:if Rp|p′ containsR, thenp′ has no contribution to the shape ofV CR(p),
and thus(p′, Rp|p′) is not included inV CR(p);

– Otherwise,(p′, Rp|p′) is added toV CR(p).

Figure 5 lists the conditions for Cell Pruning and Pair Pruning whenp′ ∈ S+, S− and
S0.

In our implementation, we do not computeS(R) for each gridG[i, j] with regionR
directly from the original Voronoi set. Instead, we performthe computation by building
a quadtreeqtree whose leaf nodes correspond to the grid cells. By specifyingthe height
of the quadtree ash, we obtain a2h × 2h grid (i.e.,N = 2h).

Each quadtree node,node, is associated with a regionnode.R and a set of the
Voronoi cells overlapping withnode.R, i.e.,S(node.R). Algorithm 5 shows how we
computeS(node.R) for each quadtree nodenode in a recursive manner. Let the quadtree
root beroot with root.R = U andS(root.R) = {V C(p1), · · · , V C(pℓ)}, the recur-
sion is initiated over each child node ofroot with level = 1. For each node, we com-
pute its Voronoi cell set only from that of its parent (Line 3). If the set contains only
one Voronoi cellVnode.R(p), then for any location innode.R, p is its weighted NN. We
stop recursion in that case (Line 5). Otherwise, if the current level is not the leaf level,
we continue to splitnode and construct its four children (Lines 6-8).
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Algorithm 5 Computing Quadtree Nodenode

Input: Current nodenode, Parent nodepar, current levellevel

1: S(node.R)← ∅;
2: for eachV Cpar.R(p) ∈ S(par.R) do
3: ComputeV Cnode.R(p) by checking the pairs inV Cpar.R(p), and do the pruning

listed in Figure 5;
4: If V Cnode.R(p) is not pruned, add it toS(node.R);
5: if level < h and|S(node.R)| > 1 then
6: Split node.R into four equal quadrants,Ri, i = 1, 2, 3, 4;
7: Create child nodeschi, i = 1, 2, 3, 4 with chi.R = Ri;
8: Recurse over each child node;

After the quadtreeqtree is constructed, for all its nodesnode, S(node.R) is al-
ready computed. Then, for each grid cellG[i, j] with regionR, we compute the set of
trajectory points whose Voronoi cells overlap withR, denoted byCT [i, j]. We compute
CT [i, j] by finding the leaf node,leaf , that contains the center ofR usingqtree; and
for eachV Cleaf.R(p) ∈ S(leaf.R), we add the corresponding trajectory pointp into
CT [i, j].

It is easy to see that, for any query location inR, its weighted NN must be some
trajectory point inCT [i, j]. We callCT [i, j] as the candidate set ofG[i, j] from now on.
For each trajectoryT , we storeCT , which is anN × N array of trajectory point lists,
on disk as the random access indexRAI[T ].

Given a query pointq, we identify the grid cellG[i, j] thatq locates in, load the list
CT [i, j] into memory, and computed(q, T ) as follows:

d(q, T ) = min
p∈CT [i,j]

{d(q, p)}. (13)

Compared with loading the whole trajectoryT in memory, it is more efficient to
obtaind(q, T ) using this random access index, since|CT [i, j]| is much smaller than
the trajectory lengthℓ. Therefore, in our implementation, we use this index to compute
d(q, T ) instead of accessingT directly (recall Lines 17-18 of Algorithm 3 and Line 11
of Algorithm 4).

Sequential Access Index (SAI). For each grid cellG[i, j], we also build a listL[i, j]
for retrieving trajectoriesT in non-decreasing order ofd(q, T ), where query pointq
locates inG[i, j]. Sinceq can be any location inG[i, j], the value ofd(q, T ) is not fixed
beforehand. We compute the lower bound ofd(q, T ) instead, denoted byLB(q, T ),
which is given by:

LB(q, T ) = min
p∈CT [i,j]

{

mindist(p, R)

w(p)

}

, (14)

whereR is the region ofG[i, j].
Each trajectoryT has an entry inL[i, j], represented byen(T ) = (T, CT [i, j], LB(q, T )).

The listL[i, j] is constructed by sorting the entries in non-decreasing order ofLB(q, T ).
We store theN ×N list arrayL on disk.

Given a query pointq that falls inG[i, j], in order to retrieve trajectories in non-
decreasing order ofd(q, T ) using L[i, j], we maintain a priority queuemin-heapin
main memory. We get the next trajectoryT with the smallest value ofd(q, T ) in two
steps:
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– We read the next entryen(T ) from L[i, j], evaluated(q, T ) using Equation (13),
and add(T, d(q, T )) into min-heap. The process is repeated until the valued(q, T ′),
whereT ′ = min-heap.top(), is smaller than theLB(q, T ) of the last accessed entry
en(T ). Note that all subsequent entries have lower bound values larger thand(q, T ′).

– We returnT ′ = min-heap.top() as the next NN, and remove it frommin-heap.

The priority queuemin-heapis a memory buffer that reorders the trajectories in
L[i, j] by d(q, T ), and we call it as the sequential access index ofG[i, j], denoted by
SAI[i, j].

Grid-based Algorithms. Our two grid-based algorithms also follow the FA and TA
frameworks, respectively, but use the grid index (i.e., theRAI and SAI) in replace of the
R-tree index.

The grid-based FA differs from Algorithm 3 in the following aspects:

– Line 2 now becomes “N ← n”, wheren = |D|;

– Line 5 is now replaced by “retrieve thed-th NN of qi usingSAI[j, k], whereqi falls
in G[j, k]”;

– Line 6 is no longer necessary sinceSAI[j, k] directly returns the trajectoryT along
with d(qi, T );

– Lines 9 and 12 now become “T [i]← d(qi, T )”;

– We no longer need to do the checking in Line 11, since eachT will be accessed only
once for each query pointqi.

The grid-based TA differs from Algorithm 4 in the following aspects:

– Line 2 now becomes “N ← n”;

– Line 7 is now replaced by “retrieve thed-th NN of qi usingSAI[j, k], whereqi falls
in G[j, k]”;

– Line 8 is no longer necessary;

– Line 10 now becomes “T [i]← d(qi, T )”;

Extension to Skewed Trajectory Distribution. Our current algorithm uses a uniform
grid to partition the rectangular data spaceU . Our experiments show that our algorithm
works quite well on the datasets with trajectories relatively uniformly distributed over
U . However, it is not the best choice when the trajectory distribution is skewed.

Although the road network of most regions occupies the majority of the region’s
bounding boxU (e.g., Colorado), it is not always true. For example, in the bounding
box of Florida, most regions correspond to the ocean where notrajectory can exist, and
it is meaningless to divide such regions into grid cells. Furthermore, there are usually
much more trajectory points in city centers than in outskirts, and thus dense regions
should be divided into finer granularity.

We proposes a heuristics to handle data skewness. Specifically, we first build a linear
quadtree index over all the trajectory points. Then, we build our RAI and SAI indices
over the leaf nodes of the linear quadtree. We have conductedexperiments to compare
the performance of using uniform grid with that of using linear quadtree over skewed
trajectory data, and found that the latter is an order of magnitude faster than the former,
and achieves similar performance compared with using uniform grid over relatively
uniform trajectory data.
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7. Experimental Results

In this section, we evaluate the performance of our algorithms: RTree-TA, RTree-FA,
Grid-TA, andGrid-FA. We implemented our algorithms in JAVA. All the experiments
were run on a public Linux server with eight 3GHz Intel CPU and32GB memory.

7.1. Datasets and Query-sets

We first describe the datasets and query-sets used in our experiments.

Datasets. We use two following two real trajectory datasets:

– Trucks1: This dataset consists of 276 trajectories of 50 trucks delivering concrete to
several construction places around Athens metropolitan area in Greece for 33 distinct
days.

– SchoolBuses2: This dataset consists of 145 trajectories of 2 school busescollecting
(and delivering) students around Athens metropolitan areain Greece for 108 distinct
days.

For both datasets, the length of the trajectories is in the order of hundreds. We choose
these datasets since there exists some important locationsin their underlying applica-
tions, such as construction places and schools.

To further study the scalability of our algorithms when the number of trajectories
increases, we generate synthetic datasets based on theTrucksdataset. Specifically, to
generate a dataset withn trajectories, we repeat the following operationsn times: (1)
randomly pick a trajectory from theTrucksdataset; (2) shift it in a random direction by
a small randomly generated distance (within 200m); (3) insert the new trajectory into
the synthetic dataset.

We generate synthetic datasets from a real dataset since we want the generated tra-
jectories to exhibit the properties of real trajectories.

Query-sets. We do not generate query locations randomly, since vehicle trajectories
usually follow the underlying road network. Moreover, a query location in a sparse
region not covered by the road network is meaningless in realapplications.

We generate a meaningful query-set containingm query locations in the following
way: (1) randomly pick a trajectory from the trajectory dataset to query over; (2) pick
the top-10% points of the trajectory in terms of importance;(3) randomly selectm
locations from these points without replacement; (4) shiftthese locations in a random
direction by a small randomly generated distance (within 200m), and add them to the
query-set.

In this way, we are generating meaningful query locations which are important and
correlated for at least one trajectory in the dataset.

7.2. Evaluation Measures

Thek-ICT query has two query parameters: (1) the number of query points,m; and (2)
the number of trajectories,k, that the user wants the query to return. These parameters

1 http://www.chorochronos.org/?q=node/5
2 http://www.chorochronos.org/?q=node/6
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Table 1.Top-5 Query Answers
Metrics top-1 top-2 top-3 top-4 top-5

Weighted Distance (40, 81189.4) (33, 85939.5) (232, 86572.9) (224, 87504.1) (123, 87625.2)
Euclidean Distance (221, 95943.7) (40, 81189.4) (198, 126783.7) (232, 86572.9) (28, 94666.5)

are usually small in real applications. We also have a parameter for the dataset, which
is the number of trajectories,n.

We measure the following four costs of our algorithms when the above parameters
change: (1) CPU time; (2) number of blocks accessed by sequential index (the Max R-
tree, or the grid index SAI); (3) number of blocks accessed byrandom index (the grid
index RAI); (4) number of priority queue entries in main memory.

Since our algorithms are I/O bound, the number of blocks accessed by sequen-
tial/random indices are the most important performance criteria. When using the grid
indexSAI[i, j] for a query point locating inG[i, j], we maintain a main memory buffer
of one block which is refilled fromL[i, j] whenever it is used up. Therefore, we can
use the number of blocks accessed to evaluate the I/O cost. Asfor R-tree, the nodes are
loaded in blocks, and thus the number of blocks accessed can be measured.

The smaller memory a query requires, the more queries a server can handle simulta-
neously. Therefore, we also measure the memory cost of our algorithms. For the R-tree
based algorithms, the memory cost is dominated by the priority queuemin-heapused
for NN search (see Algorithm 2), while for grid-based ones, the memory cost is dom-
inated by the priority queue ofSAI[i, j] for reorderingL[i, j] (see Section 6.2). The
total number of memory entries equals the sum of the entries in the priority queue for
each query pointqi, and we report the maximum number among all the round-robin it-
erations. Throughout the experiments, we fixr = 50 m andα = 0.002 when generating
sample importance using the method discussed in Section 4, and fix the size of a block
as 512 bytes. We generate 1000 queries in each experiment, and all results are averaged
over the 1000 runs.

7.3. Effect of Query Parameters

To study the performance of our algorithms with respect to the query parametersm and
k, we build grid indices over theTrucksandSchoolBusesdatasets, by constructing a
quadtree of heighth = 5. Accordingly, the grid we use is of size32× 32.

To study the effect ofm, we fix k as5 and process queries withm = 1, 2, . . . , 10.
On the other hand, to study the effect ofk, we fix m as3 and process queries with
k = 1, 2, . . . , 10.

Figure 6 reports the performance of our algorithms for processingk-ICT queries
over theTrucksdataset whenk = 5 and the number of query pointsm increases from 1
to 10.

Figure 6(a) shows that the CPU time ofRTree-FAis much larger than the other three
algorithms, while the grid-based algorithms record the shortest CPU time.

Since all our algorithms are I/O bound, the results reportedin Figure 6(b) and (c)
dominate the overall performance of query processing. According to Figure 6(b),RTree-
FA requires reading a lot of blocks (or R-tree nodes) for the incremental NN search,
and both of the R-tree based algorithms read significantly more blocks for sequential
access than the grid-based algorithms. For example, whenm = 5, RTree-FAreads
over 1844 blocks whileGrid-FA reads only 87 blocks. For random access, Figure 6(c)
shows thatGrid-FA (or respectively,Grid-TA) also reads fewer blocks thanRTree-FA(or
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Fig. 6.Effect ofm using the Trucks dataset

respectively,RTree-TA), though the difference is not as big as in the case of sequential
access.

Overall,Grid-TA is slightly faster thanGrid-FA, several times faster thanRTree-TA,
and an order of magnitude faster thanRTree-FA.

Figure 6(d) shows that the number of data entries maintainedin memory byRTree-
TA and byRTree-FAis from several times to tens of times larger than that by bothof
the grid-based algorithms. Given the fact that the size of anentry maintained by the
grid index is much smaller than an R-tree node entry (which contains MBR and weight
besides the node pointer), the grid-based algorithms are much more memory-efficient
than the R-tree based ones.

Figure 7 reports the performance of our algorithms over theTrucksdataset when
m = 3 andk increases from 1 to 10. The results are similar to that of increasingm we
just discussed, except for the I/O cost of random access. As shown in Figure 7(c), the
two FA-based algorithms,RTree-FAandGrid-FA, read fewer blocks whenm increases,
while the two TA-based algorithms,RTree-TAandGrid-TA, read more blocks whenm
increases.

As for theSchoolBusesdataset, Figure 8 reports the performance of our algorithms
when m changes, and Figure 9 reports the performance of our algorithms whenk
changes. It can be observed that the performance trend of thealgorithms is similar to
that for the Trucks dataset discussed above (we thus omit thedetails).

7.4. Results of Scalability Test

To study the scalability of our algorithms, we generate synthetic datasetsD with |D| =
1k, 2k, · · · , 10k, and process queries withm=3 andk=5. The grid indices are built by
constructing a quadtree of heighth=6, and accordingly, the grid is of size64× 64.
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Fig. 7.Effect ofk using the Trucks dataset

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1  2  3  4  5  6  7  8  9  10

C
P

U
 T

im
e 

(m
s)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8  9  10# 
of

 B
lo

ck
s 

(S
eq

ue
nt

ia
l)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0
 100
 200
 300
 400
 500
 600
 700

 1  2  3  4  5  6  7  8  9  10

# 
of

 B
lo

ck
s 

(R
an

do
m

)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9  10# 
of

 M
ai

n 
M

em
or

y 
E

nt
rie

s

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Fig. 8.Effect ofm using the SchoolBuses dataset
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Fig. 9. Effect ofk using the SchoolBuses dataset
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Figure 10 shows the scalability of our algorithms when the number of trajectories
increases. We can see from Figure 10(c) that for a large database, the number of blocks
read by the algorithms by random access is quite different when compared with the
results for the smaller datasets, asGrid-TA reads significantly fewer blocks than the
other three algorithms. In other respects, the performancetrend is quite consistent with
the results previously reported for changing query parameters in Section 7.3.

Overall, the grid-based algorithms are more efficient than the R-tree based ones, and
Grid-TA is now over an order of magnitude faster thanGrid-FA.

7.5. Quality of Trajectory Answers

Till now, we have only studied the performance of our algorithms. In this subsection, we
compare the quality of the trajectories found by our sum-of-weighted-distance measure
with that of the traditional sum-of-Euclidean-distance measure. We randomly generate
k = 5 query points over the Trucks dataset, and compute the top-5 trajectories using
both measures. A representative query answer is given in Table 1, where each cell in the
table corresponds to a (trajectory ID, sum-of-weighted-distance) pair. After examining
these trajectories, we find that Trajectories 28, 198 and 221, returned by the sum-of-
Euclidean-distance measure, do not even stop in some of the query points and are thus of
low quality. On the other hand, the trajectories found by oursum-of-weighted-distance
measure match and are close to all the query points.

7.6. Summary of Experimental Results

To sum up, we have the following observations: (1) the grid-based algorithms are sig-
nificantly more efficient than the R-tree based algorithms; (2) the TA-based algorithms
are more efficient than the FA-based algorithms; and (3)Grid-TA is much faster than
the other three algorithms on large datasets.

8. Conclusions

We proposed the new problem ofk Important Connected Trajectories(k-ICT) query
processing over trajectories with location importance. Wedesigned effective methods
to infer the importance of trajectory locations from the temporal information, and devel-
oped four algorithms to answer the queries: two based on the R-tree index, and the other
two based on an efficient grid index. The R-tree index based algorithms are adaptations
of the algorithms in [1] to querying trajectories with location importance. However,
the R-tree index only captures the spatial aspects of the trajectory points, and location
weights are only considered during R-tree querying. On the other hand, our grid index
includes the location weights as first-class citizen, and isthus more suitable for querying
trajectories with location importance.

We showed by experiments on both real and synthetic datasetsthat our algorithms
are efficient for answeringk-ICT queries. The grid index based algorithms are espe-
cially efficient in terms of both time and space: they incur one to two orders of mag-
nitude less sequential IO cost and computational overhead compared with R-tree index
based algorithms, due to the more effective pruning power ofthe grid index. As for
trajectory traversal, TA is more effective than FA since theaggressive strategy of TA
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tightens the pruning threshold much faster. Overall, the combination of TA with grid
index offers the best performance.
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