Under consideration for publication in Knowledge and Infation Systems

Efficient Location-based Search of Trajectories
with Location Importance

Da Yari!, James Cheri¢, Zhou Zha® and Wilfred Ng*

tDepartment of Computer Science and Engineering, Hong Karigdusity of Science and Technology
{'yanda, ®zhaozhou, “wi|fred}@se. ust.hk

$Department of Computer Science and Engineering, The Chides/ersity of Hong Kong

%j cheng@se. cuhk. edu. hk

Abstract. Given a database of trajectories and a set of query locafioeetion-based trajectory
search finds trajectories in the database that are closétteeajuery locations. Location-based
trajectory search has many applications such as providifegence routes for travelers who are
planning a trip to multiple places of interest. Howeverviwas studies only consider the spatial
aspect of trajectories, which is inadequate for real appbias. For example, one may obtain
the reference route of a tourist who just passed by a placgtefeist without paying a visit. We
propose theé: Important Connected Trajectorid&-ICT) query by associating trajectories with
location importanceFor any query location, the result trajectories should&onanimportant
point close to it. We describe an effective method to inferithportance of trajectory points from
the temporal information. We also propose efficient R-trasell and grid-based algorithms to
answerk-ICT queries, and verify the efficiency of our algorithmsaihgh extensive experiments
on both real and synthetic datasets.

1. Introduction

With the popularity of location-acquisition technologuge amounts of trajectory data
are being generated at an unprecedented scale. We diféeestmto types of trajectory
data. The first type is simply a sequence of time-stampeditota usually generated
by mobile devices such as cell phones and GPS receivers ktigaly high sampling
rate. The sample points in such trajectories have verg littino semantics, and many
recorded locations are not important. The second type jeicti@y is a sequence of lo-
cations with semantics, where each recorded location &llysmportant. One example
of such a trajectory is a sequence of geo-tagged photos bgkatraveler in a trip. Nu-
merous such trajectories can be obtained from photo-gharégbsites such as Flickr
(www. f1i ckr.com, and people usually take photos at locations they like.tAgio
example of such a trajectory is a sequence of check-in reaafrdome traveler at the
places he/she cares. Such trajectories are available &catidn-based social network
services such as FourSquat®(r squar e. com.

2 D.Yanetal

Airport Outlet A Outiet B Hotel
Customer Age @ @ * o—
15 min 1 hr 8 sec 30 min
Tom 51 A A A A A
16 min 1.5 hr 7 dec 45 min
Mary 46 |AA N AN
12 min 10 sec 115 hr 40 min
Peter 24 NN NN TN N\
. 14 min 6 sec 2Ihr 1 hr
Alice 26 |AATA AN TN

Fig. 1. lllustration of the weakness of theBCT query

The proliferation of trajectory data has spawned many napelications. One ex-
ample is searching trajectories by locations [1, 6, 7]. ltiocabased trajectory search
was first proposed in [1] as the Best-Connected Trajectori¢s-BCT) query. Given
a few query locations, &-BCT query findsk trajectories that are close to all query
points from a trajectory database. Location-based tm@jgctearch can benefit users in
many real life applications. For example, it can help traxg@who are planning a trip
to multiple places of interest in an unfamiliar city, by piding similar routes traveled
by other people for reference. Location-based trajecteaych is also useful in human
behavior analysis, where the query locations can be toattistctions (specified by a
travel agency) or the stops of a new metro line (specified byrdmsport department).

Thek-BCT query, however, considers only the spatial aspecag@ctories, which is
inadequate for many real applications. Consider a travahagthat queries a database
of tourist trajectories for market analysis. Figure 1 shewdatabase with four trajec-
tories, each belonging to a different tourist. For simpjicive assume the data space
to be 1D rather than 2D, and we only mark the relevant trajgctamples using..
For example, Tom spent 15 minutes at the airport (for chadk-& hour at Outlet A
(for shopping), 8 seconds at Outlet B (just passing by), @hchButes at the hotel (for
check-in and taking a rest). From Figure 1, we can see thatgypaople (e.g., Peter and
Alice) may usually go shopping at Outlet B on their way frore Hirport to the hotel,
while middle-aged people (e.g., Tom and Mary) would prefegd shopping at Out-
let A. Unfortunately, a 2-BCT query over the database withrguocations {Airport,
Outlet B, Hote}, would return the trajectories of Tom and Mary (who actualignt
shopping at Outlet A), since the 5-th sample in the trajéesoof Tom and Mary is
closer to Outlet B than any of the samples in the trajectafdBeter and Alice. As a
result, the travel agency may make a wrong arrangement: aheurist bus picks up
a group of middle-aged tourists at the airport and goes tddiel, it would stop at
Outlet B for the tourists to go shopping.

This example demonstrates that it is necessary to takédodatportance into con-
sideration. Although Tom and Mary have a trajectory samjdsecto Outlet B, the
importance of the sample with respect to the whole trajgd®iow since Tom and
Mary just passed by Outlet B. On the contrary, Peter and Alieat shopping at Out-
let B, though their trajectory samples are farther away ftumtlet B (the samples were
probably recorded at a car park nearby).

In this paper, we propose a new type of location-based tajgsearch called the
k Important Connected Trajectori€k-ICT) query, over a database of trajectories asso-

Efficient Location-based Search of Trajectories with Lamatmportance 3

ciated with location importance. We discuss how to derieeithportance of trajectory
sample points from their timestamps, and develop efficibggrdhms for answering
k-ICT queries.

The main contributions of this paper are summarized asvistio

— We propose thé-ICT query over a database of trajectories with locationantgnce,
which returns trajectories of much higher utility compawéth the k-BCT query [1].

— We design a practical method for deriving the importanceajéttory sample points
from their timestamps.

— We propose two R-tree based algorithms for answekidGT queries, founded on
two variants ofThreshold Algorithn{TA) for top-% queries.

— We further develop two grid-based algorithms, which predesCT queries using
our grid index built from theMultiplicatively Weighted Voronoi DiagraitMWVD)
of trajectories. The grid-based algorithms address thefamaks of the R-tree based
algorithms. Experiments show that the grid-based algmstlare more efficient in
terms of both time and space.

The rest of this paper is organized as follows. Section Zwevithe related work. In
Section 3, we formulate the-ICT query. Section 4 discusses how to derive trajectory
location importance from raw GPS data. We present our Riesed algorithms in
Section 5, and describe the grid-based algorithms in Se6tidVe report experimental
results in Section 7 and conclude the paper in Section 8.

2. Related Work

Conventional Trajectory Search. Given a query trajectory, conventional trajectory
search finds: trajectories with the shortest distances to the querydrajg. Defini-
tions of the distance function include [2, 3, 4, 5]. Howetkese definitions ignore the
time dimension of the trajectory samples, and thus may atemsignificant trajectory
samples.

Trajectory Search by Locations. Location-based trajectory search was first proposed
by [1], where the query input is a set of locations. Comparitkd searching trajectories
by a complete query trajectory, it is more practical to sedrajectories by locations

of interest. Consider the example where a traveler is pfanaitrip to an unfamiliar
city. He/she can easily specify the places he/she intendssiibas the query points,
by clicking them on a digital map. On the other hand, it is difft for a new comer

to specify a preferred route as the query trajectory. Reresgarch starts to enhance
location-based trajectory search with keywords [6, 7]. ldoer, location importance
has not been considered and thus queries may easily oversaaificant trajectory
samples.

Mining Important Locations from Trajectories. There are studies on how to mine
important locations from trajectory data, such as raw GR8& [# and Flickr data [9].
These works measure location importance from all the trajexs. Another work [10]
finds important locations from a single trajectory. The wankdels a trajectory by
stopsandmoveswhere a stop is a semantically important part of the trajgcfThey
proposed the IB-SMoT algorithm to generate stops: giventabdae of geographic
objects, if a part of trajectory intersects with the objectd the time span of the sub-
trajectory is above a minimum time threshold, then the saje¢tory is identified as a
stop. Later work uses density based clustering of the ti@jgsamples to find stops,

4 D.Yanetal

1h
30sec 30sec 30sec 1.3OSc—::c 30sec
N —— % —— N — %% — % ————
Di Pi+1

Fig. 2. Intuition behind distance function in Eq. (2)

such as CB-SMoT [11] and DB-SMoT [12]. Conceptually, the pkas of a stop are
important, while the samples of a move are immaterial. H@arethese methods do not
provide a concrete importance score for the samples (ostapd thus it is impossible
to compare the importance of different samples (or stops).

3. Problem Formulation

We now formally define thé&-ICT query. LetD be a database of trajectories, where
each trajectoryl” € D is a sequence of poin{®1, ps, ..., p¢). We assume that each
point p; is associated with a score(p;) > 0, which corresponds to the importance
of p; in trajectoryT. For raw GPS data, we can derive the importance score using
the time stamps of the trajectory samples, which we willlfartdiscuss in Section 4.
For trajectories obtained from Flickr photos, the locaiimportance of a photo can be
derived using the number of page visits; the score can alswameially set by the photo
owner.

A k-ICT query,Q, is represented by a setaflocations (or points)Q = {q1,92,- -, ¢m }-
We first introduce the distance functions that define hdwl@T query is to be evalu-
ated.

Distance Related to One Query Point. Let us first focus on a specific query point
q; € Q. We define the weighted distance between query pgiahd a trajectory point
p; as follows:

llgip; |
d(gi, p;) = : 1)
7 w(py)
where we usé{pq|| to denote the Euclidean distance between two pgirisdg. Note
that a larger importance scougp,;) makesp, closer tog; (sinced(g;, p;) is smaller).
We define the weighted distance between query p@irdnd a trajectoryl’ =
(p1,p2,--.,pe) @s the weighted distance betwegrand its closest trajectory point in

d(q;,T) = g?g%{d(qi,pj)}- 2)

We now illustrate the intuition behind the distance funetin Equation (2). Con-
sider the vehicle GPS trajectory fragment shown in Figure/@ich is generated as
follows. A traveler rented a GPS-equipped car to travel adoaucity. He drove to a car
park near a museum, parked his car, stayed in the museum famapand then drove
to the next destination. Since the car was turned off wherag parked, the on-board
GPS device was also off. As a result, no sample was generatégiycthat one hour

Efficient Location-based Search of Trajectories with Lamatmportance 5

when the car was parked, apde T is the first sample after the traveler drove the car
away from the car park.

In this example, the query poirtin question is the museum. Now assume that
w(p) is proportional to the time the car stopped at pginAlthough||gpi+1]| < |lgp:l,
it is obvious thatw(p;+1) < w(p;) and thusi(q, p;+1) > d(q, p;) according to Equa-
tion (1), i.e.p; is closer tog thanp; 1. Therefored(q;, T) = d(q, p;) by Equation (2).
Note thatd(q, p;) correctly estimates the confidence that the traveleF efsited the
museum, since he may instead visit an aquarium nearby at&mg his car. In the
latter cased(q, p;+1) overestimates the confidence that the traveler visited theeom
since he actually visited the aquarium nearby the pginf. Thus,d(q, p;) presents an
accurate estimate in this case.

Overall Distance Function. We now define the weighted distance between a query
@ and a trajectoryl’, by aggregatingl(q;, T') for all query pointsg; € Q. Since we
want to find trajectories close to all query pointsip we define the overall weighted
distance as:

m

d(@,T) =Y d(g:T). €)

=1

Intuitively, d(Q, T') is the total distance of traveling from the closest positdff’ to ¢;
forall ¢; € Q.

In addition to the physical meaning described above, Eqnd8) is also meaning-
ful from the probabilistic point of view, which we discussdtel_et us denote,,, to be
the trajectory point of”” closest toy; (in terms of weighted distance), theiy;, T) =
d(qi,pn,;). We also denote(q;, T') to be the probability that the owner of the trajec-
tory T visited ¢;, and a reasonable assumption is th@t, 7') decays exponentially as
d(gi,pn,) increases. Using the PDF (Probability Density Functionthef exponential
distribution, we have(q;, T') = A\e~*%%:T)_ Since we have no preference of one query
point over another, we use the samér all ¢; € Q. Since we want a result trajectory
to be close to all query points, the probability that the omafdrajectoryT visited all
g € Qis:

HP(Qi,T) x e iz danT) @
i=1

where we assume that “whether the owner visited one queayitat’ is independent of
“whether he visited another query location”.

Since we want to maximize the probability value of Equatid) it is equivalent to
minimized(Q,T) = >, d(¢:, T).

The k-BCT query [1] adopts a similarity functionim(Q,T) = >_\", e~ Uai,T),
If we fix A = 1, thensim/(Q,T) = Y.~ p(¢:;, T). Compared with Equation (4), this
similarity function is undesirable, since the similariglve is high as long as one query
point is close tdl’, even if all other query points are far frofh Similar observation is
mentioned in [17], which proposes to use a sum-of-Eucliddiatance measure. In this
paper, we use the sum-of-weighted-distance measure tmpioiie object importance.

We definek-ICT querying as follows.

Definition 1 (k-ICT Querying). Given adatabase of trajectoriBs= {71, ..., T} (n >
k), a set of query locationg, ak-ICT query is to find a set of trajectories,R C D,

6 D.Yanetal

Dj+1

Fig. 3. lllustration of the evaluation of location importance

such that
d(Q,T) <d(Q,T"), VT € R,¥T' € D — R.

4. Location Importance

In this section, we discuss how to compute the importanceagédtory samples from
raw GPS data.

Formulation. A GPS reading can be represented by a trifitetitude, longitude, timestamp).
In order to manipulate the data in Euclidean space, we magnthrelinates of all sample
points from the GPS coordinat@atitude, longitude) to Universal Transverse Merca-
tor (UTM) coordinategeasting, northing), or simply(x, y).

Given atrajectory” = (p1, po, - - ., p¢), Wwhere each sample point = (p;.z, p;.y, t(p;)),
we want to compute the importana€p;) for all the sample pointg; € T'.

We define the neighborhood of a sample pgint T', denoted byC'ir(p;), to be
a circle centered at; with radiusr, wherer is a user-specified parameter. Figure 3(a)
shows the circle”ir(p;) and the trajectoryf’. Let p; (or respectivelyp,.) be the first
location onT reaching the boundary @fir(p;) when going backward (or respectively,
forward) fromp; alongT'. Note thaip; andp,. may not be an existing trajectory sample,
but rather the intersection point betwe€tr(p;) and a segmeni;p;41 as shown in
Figure 3(b). In this case, we use linear interpolation to pota the location and time
stamp ofp,. (or p;). Another extreme case is that (or respectivelyp,.) may be the
first (or respectively, last) trajectory sample that isdesi'ir(p;), since in this case we
cannot go backward (or respectively, forward) frpyralong7'.

We define the following measure usipgandp,.:

At(p;) = max{t(p,) — t(pi), t(pi) — t(p1)} (5)

Here, (t(p,) — t(p;)) is the time spent before the traveler 1€fir(p;) from p; in
the forward direction, whilgt(p;) — t(p;)) is the time spent before the traveler left
Cir(p;) from p; in the backward direction (or more intuitively, the time spérom
when the traveler stepped @%r(p;) until he reacheg;). Intuitively, At(p;) is defined

Efficient Location-based Search of Trajectories with Lamatmportance 7

such that as long as the traveler stopped peéno matter in the forward or backward
direction), the importance gf; is promoted. The greatext(p;) is, the more important
the trajectory samplg; is.

This definition of At(p;) has two benefits. First, even when the traveler is in an
important location (e.g., a marketplace), he may still béing around and the accu-
mulated distance can be large. Using a neighborhood cwabever the marketplace,
we can correctly identify that the locations in the markatgl are important. Second,
when a GPS-equipped car is turned off, so is the GPS deviags, T#e can only con-
sider the last few samples before the car stops, or the fwstdenples after the car starts
as important (these locations may still be inside the cat)parhich are better covered
using the neighborhood circle.

The next issue is how to compute(p;) using At(p;). Obviously,w(p;) should
increase fast with\At(p;) when At(p;) is small, but increase slowly whetyt(p;) is
large. For example, a 1-minute stop may not be importantsinmay be due to a red
traffic light, while a 10-minute stop is more likely to be intemt. On the other hand,
a 1-hour stop quite certainly implies an important locatiand the score should not
increase too much evenAt(p;) becomes 2 hours.

WhenAt(p;) = 0, we want the importance(p;) = 0. Furthermore, we want(p;)
to be within[0, 1] so as to carry a probability meaning: the confidence thatrgweler
of trajectoryT stops at;. As a result, we define our importance score as follows:

w(p;) =1 — e AP, (6)
wherea: controls how fastu(p;) increases with\t(p;).

Computation Details. Next, we discuss the details of computiig(p;). We first
describe how we compujg. (the computation op; is similar) for the scenario in Fig-
ure 3(b), where; € T'is insideC'ir(p;) and the next sampjg ;1 is outside oC'ir(p;).

Instead of directly computing,., we first compute segment lendth; p,.||. Accord-
ing to the Cosine Law, we can computss /p;p;p, as follows:

1%+ lpjpjs1ll* = [lpipj+1l?

2 |lpip; I - [Ipspj+1ll
where||p;p;ll. [|p;p;+1|| @and||p;p,+1|| can be easily computed from the coordinates of
pi, pj andp;i1. . .)))

Then, according to the Cosine Lajw;p.-|| can be obtained by solving the following
quadratic equation:

I? I?

pip;
Co8 Zpipjpr = Ipip;

3

= lpip;|I” + llpjpe|I” —

2 \lpipsll - lpiprll - cos Zpipipr, (7)

where||p;p; || is computed from the coordinatesgfandp;, and||p;p. || = r. The roots
of Equation (7) are:

Hpipr

Ippr | = |lpip;]| - cos Lpipspr +

\/ Ipip;|1? - cos® Zpipjpr — llpip; |1 + 72,
(8)
lpipe || = llpip; |l - cos Zpipspr —

JIpsl2 o Zopspe — sl + 72,
©

8 D.Yanetal

However, the second rodip,p..||?) can be discarded since its value is negative. To
see this, recall that; is insideC'ir(p;), and hencdp;p;|| < r. Thus, we have

\/Hpiij2 -cos? Lpipjpr — ||pip;||? + 12

~ \/HW’J’H2 - cos? Lpip;pr — 12 412
> |lpip; || - cos Zpip;pr-

Therefore||p;p|®) < 0 according to Equation (9), and we conclude that the value of
\|p;p.|| is given by Equation (8).

Algorithm 1 Computing(t(p.) — t(p;))

Input: Trajectoryl = (p1,p2, .-, pe)
Output: At = t(p,) — t(p;)

1. At « 0;
2: for p; = p;tope—q do

3. if pjy1 isinsideCir(p;) then

4: At — At + (t(pj+1) — t(py));

5 else

6: Compute||p;p,|| by Equation (8);
8 return At;

9: return At;

Now we discuss how to computé(p,.) — t(p;)). The value of(t(p;) — t(p;)) can
be computed similarly, and both of them are then used to ctenjt(p;) according
to Equation (5). The algorithm is described in Algorithm 1e heck samples forward
alongT starting fromp; (Line 2). If the next sample,; is insideCir(p;), then the
whole segmenp;p;1 is insideCir(p;) (due to the convexity of circles), and we ac-
cumulate the time spent gnp;41 to the result (Lines 3-4). Otherwise, we compute
pr and accumulate the time spent pjp, to the result (Lines 5-7). Note that in the
latter case, we already reach the boundarg'of(p;) and thus the accumulated time is
directly returned (Line 8).

Parameter Setting. We have two parameters: (1) radiu®f Cir(p;), and (2) the
decay ratev in Equation (6). Typicallyr is set as the diagonal length of a market place,
or the distance between a car park and the intended destinatihile the parameter
choice is application-dependent, our experiments on aévehicle GPS datasets show
that our method always provides reasonable importance ¢gamtged by human) when

r = 50m anda = 0.002. The details are omitted due to the space limitation.

5. R-Tree Based Algorithms

In this section, we introduce two R-tree based algorithmsifiswerings-ICT queries.
Before we present our algorithms, we first describeltheeshold Algorithn{TA) [13],
since our algorithms adopt the TA framework for thgjuery processing.

Efficient Location-based Search of Trajectories with Lamatmportance 9

5.1. Threshold Algorithm and Its Variants

TA [13] has been widely adopted for processing togueries, including thé-BCT
querying algorithm [1] and the keyword-aware variants [|6)7the setting of [13], we
are given a database talileof n tuples, where the schema of the tabléds, As, ..., A,,).
For each attributel;, a list L; is built by sorting all the tuples in non-decreasing order
of the values of attributel;, and stored on disk. Each entry I} is a pair(id, val),
whereid is the id of the corresponding tuple, and! is the value of attributed; for

the tuple. We describe two algorithms that use the lists o tfe topk tuples, where
the ranking score of a tuple equals the summation of the saitiall itsm attributes (a
smaller score is preferred).

Fagin’'s Algorithm (FA). FA finds the topk tuples in three stepsStep 1read a
(id,val) pair from each list in a round-robin manner, until therefataples whose id’s
have been seen from all thelists. Step 2for each tuple id seen (from any list), retrieve
the tuple from the tablé® if any of its attribute values are missing (random access to
D is needed)Step 3 compute the ranking score by summing the attribute valaes f
each tuple whose id has been seen, and returh thples with the smallest summation
values.

Threshold Algorithm (TA). Unlike thefilter-and-refineframework of FA where
random access t® is only used in the refinement step, TA adopts a more aggeessiv
approach. TA also reads(ad, val) pair from each list in a round-robin manner, but
for each tuple id seen, TA immediately retrieves the tupbenfD by random access,
computes the ranking score, and updates the currerit taples. Meanwhile, for each
list L;, TA maintains a variable; equal toval of the last(id, val) pair read fromL;.

The round-robin operation stops when the ranking scoreeo€tirent togk-th tuple is
equal to or smaller thal" | 7.

In general, TA reads less pairs from the lists than FA, bufgoers more random
accesses t® than FA. While we focus on FA and TA when introducing our altions,
other variants of TA may also be adopted by our algorithm.

5.2. R-Tree Based Algorithms

We now present our R-tree based algorithms. We first desarksy operator used by
our algorithms: théncremental weighted nearest-neighl{biN) algorithm.

Incremental Weighted NN Algorithm. Unlike [1], in our problem, each trajectory
pointp; is associated with an importance scar@;), and its distance to a query point

q is evaluated aé‘;ﬂ‘%‘)‘ using Equation (1). Thus, R-tree is no longer sufficient favs
ing our problem. Instead, we index the trajectory points byaggregate R-tre¢aR-
tree) [14] with aggregate function MAX, calleMAX R-tree

Compared with a traditional R-tree, each node entof a MAX R-tree maintains
the maximum importance score among all points indexed undiez., indexed in the
subtree rooted at the node pointed tod)yGiven an R-tree node entey we denote
its MAX aggregate value byw(e). We also denote th®linimum Bounding Rectangle
(MBR) of e by mbr(e). Then, for any trajectory point indexed undee, its weighted
distance to query pointis given by:

_Nlgpll . mindist(q, mbr(e))

dla.p) = iy = T (10)

10 D.Yanetal

wheremindist(q, mbr(e)) is the distance frong to its closest point innbr(e). The
inequality holds asnindist(q, mbr(e)) < ||gp|| andw(e) > w(p).
For simplicity, given an R-tree node entyand a query poing, we define:
mindist(q, mbr(e))
w(e) '
According to Equation (10)LB(q, e) lower bounds the weighted distance from any
point indexed undet to q.

(11)

LB((L 6) =

Algorithm 2 Computing the Next Weighted NN qf

Input: query locationy;, priority queuemin-heap Max R-treetree
Output: (d(g:,p),p) wherep is the next NN of;

: while min-heaps not emptydo
(LB(qgi,e),e) —min-heapdequeue();
if e is a leaf node entrthen
p « the trajectory point pointed to by
retun (LB(g;,e), p);
else
node «— the R-tree node pointed to lay
for eachentrye’ of node do
ComputeL B(g;, e');
min-heapenqgueue(LB(g;, '), ¢’);

©oOoNOOAEWONRE

N
e

Algorithm 2 describes our incremental weighted NN alganitiWhen processing a
k-ICT query, we maintain a priority queue of R-tree node estfor each query point
¢;, SO that the next NN of; can be incrementally obtained using Algorithm 2. Initially
the priority queuanin-heapcontains only the root node of the Max R-treee, and
each call of Algorithm 2 updatesin-heapand retrieves the next NN qf.

We now explain Algorithm 2 in details. In each round, the grtwith the smallest
LB(g;,e) is dequeued fronmin-heap(Line 2). If e is an entry of a leaf node, then it
points to a trajectory pointandLB(g;, ¢) = d(q;, p). In this case, we can conclude that
p is the next NN (Line 5), since any unseen trajectory ppins indexed under some
node entryen in min-heap andd(q;,p’) > LB(q;,en) > LB(qg;,e). Otherwiseg is
an entry of a non-leaf nodende, and we enqueue all the entriesrafde into min-heap
(Lines 7-10).

R-Tree based FA and TA. We now introduce our two R-tree based algorithms for
answeringt-ICT queries, one based on FA and the other based on TA. Bgthitdms
use Algorithm 2 for sequentially accessing the next NN ohegery pointy;.

Algorithm 3 presents the R-tree based FA for answekid@T queries. Similar to
FA, Algorithm 3 has two phases: the filtering phase (Liness3-dnd the refinement
phase (Lines 16-20).

In each round of the filtering phase, Algorithm 3 obtains tle&t\N of eachg;
for processing (Line 4), i.e., the NNs of the query points@aressed in a round-robin
manner. Since there afé trajectory points indexed by ee, there are at mosY rounds
(Line 3). All the seen trajectories are maintained usingshttabletable, where the hash
key is the trajectory id. If the trajectory of the obtainedri@ has not been seen yet, we
know thatd(q;, T') = d(q;, p), and thus we inseff into table and recordi(g;, p) as the
value of thei-th attribute, denoted by [:] (Lines 7-9). Otherwis€[is already irntable,

Efficient Location-based Search of Trajectories with Lamatmportance 11

Algorithm 3 R-tree based FA for AnsweringICT Queries

Input: k, query set), trajectory databasP, Max R-treetree
Output: k-ICT (the top# trajectories)

1: table «+ 0,d « 1;

2. N < number of trajectory points ib;

3: whiled < N do

4. for eachq; € Q do

5: Retrieve thed-th NN p of ¢;, together with the weighted distandég;, p),
using Algorithm 2;

6 T «+ the trajectory thap belongs to;

7. if T' & table then

8: InsertT into table;

o: T[] < d(g;,p); /xT[i] representd(q;, T) x/
10: else

11 if T[¢] is not yet assignethen

12: T[i] < d(qi,p);

13: if there aré: trajectories intable whose attribute values are all assigrieen
14: gotoLine 16;

150 d«—d+1;

16: for eachT € table do

17. ReadT};

18: For anyT'[i] not yet assignedt’[i] < d(¢;, T);
19: Computed(Q,T) =Y~ Til;

20: Update the topk trajectories;

21: return the top# trajectories;

and we check whethé&r[i] has been assigned a value (Line 11YJf] has already been
assigned a value, we ignore the obtained ppisince the point iril” that is closest to
¢; has already been processed before. Otherwigethe point inT' closest toy;, and
we setT'[i] to bed(q;, p). The filtering phase terminates oncéuples are seen with the
value ofT'[i] assigned for alf; € @, which is similar to the traditional FA.

In the refinement phase, we first compute;, T') for anyT'[i] whose value has not
yet been assigned (a more efficient method of obtaiffifigis actually used, which we
will discuss in Section 6.2). Then, for all the seen trajge®I” € table, d(Q,T) is
computed and th tuples with the smallest values @fQ, T') are returned.

Algorithm 4 presents the R-tree based TA for answekifi@ T queries. Recall that
the conventional TA maintains a variabtg for each list;, whose value equals the
attribute value of the last accessed entry. TA stops wherattiiéng score of the current
top k-th tuple is equal to or smaller thgn" ; 7;. In our problems; = d(g;, p) where
p is last accessed NN @f. We setr to 0 at the beginning of a round-robin processing
round (Line 5), and add; = d(q;, p) to 7 for each query poing; (Line 16). Therefore,
at the end of the round-robin processing round= "." | 7; is exactly the pruning
threshold, which is then compared with the togh trajectory in Line 17 to determine
the stopping condition.

In Lines 9-15, we only process the trajectdryof the current poinp if 7" is not in
table, by accessing” to assignl’[i] (a more efficient method discussed in Section 6.2
is actually used here), computid@®@, T') and updating the tog-results. Note that if’

12 D.Yanetal

Algorithm 4 R-tree based TA for Answerinig+ICT Queries

Input: k, query set), trajectory databasP, Max R-treetree
Output: k-ICT (the top# trajectories)

1: table «+ 0,d « 1;

2. N < number of trajectory points ib;

3: max-heap- 0);

4; while d < N do

5 170

6: foreachq; € Q do

7 Retrieve thed-th NN p of ¢;, together with the weighted distandég;, p),
using Algorithm 2;

8: T «+ the trajectory thap belongs to;

9: if T' & table then

10: Ti] — d(qi,p);

11 Vj # i, computel'[j] = d(q;,T') by accessing’;
12: InsertT into table;

13: Computed(Q,T) = Y., T'[il;

14: max-heapenqueue(d(Q,T),T);

15: If max-heapsize() > k: max-heaplequeue();
16: T —1+d(qi,p);

17: if max-heapsize() = k£ and max-heapop() < 7 then
18: gotoLine 20;

19: d«—d+1;

20: return thek trajectories ifmax-heap

is in table, thenT'[i] must have been assigned forak= 1,...,m (Lines 10-12), and
hence we can ignor€.

Finally, we note that the correctness of both Algorithms @ 4ris easy to see by
following the correctness of FA and TA [13]. We thus omit thetalls here.

Limitations of R-Tree Based Algorithms. We identify the following limitations of
using an R-tree index built over all the trajectory pointdia database, which motivates
our grid-based algorithm to be introduced in Section 6.

Firstly, the incremental NN search for each quepyis done over an R-tree that
contains all the trajectory samples. However, if we kngweforehand, then only one
sample per trajectory requires examining (i.e., the samjitte the shortest weighted
distance tay;), and there are totally = | D| such samples, much less than the number
of all samples inD. Therefore, there is huge room for improvement in terms pf{da
candidate pruning.

Secondly, much of the computation done by the R-tree baggtitims could be
wasteful. This is because consecutive samples of a trajeate close in space, and
are very likely indexed under the same R-tree node. As atrésuonsecutive calls of
Algorithm 2 for retrieving the NNs of a query point, many returned NNs may come
from the same trajectory.

Finally, we use the maximum importancge) of an R-tree node entry to compute
the lower bound in Equation (11), which is not tight. As lorgythere is one point
indexed undee with a large weight, the whole enteyhas to be accessed early even if
all the other points have very low weight, resulting in théitidn of all its child nodes
into the priority queue.

Efficient Location-based Search of Trajectories with Lamatmportance 13
6. Grid-Based Algorithms

In this section, we present the grid-based algorithms.

Overview. We first give an overview of how our grid-based algorithmsradd all the
three drawbacks of the R-tree based algorithms mention8ddtion 5.2.

Firstly, to avoid doing NN search over all trajectory pojm® divide the data space
by a grid, so that each grid cell covers a small region. We vesthat only a small
fraction of samples per trajectory have the chance to be ti@Nsome location in a
cell. Thus, if a query point locates in a grid cell, we only de¢e check the samples
relevant to the cell.

Secondly, to avoid checking a lot of samples of a trajectbag tio not contribute
to the topk answers, we propose to pre-computelhdtiplicatively Weighted Voronoi
Diagram(MWVD) of the points of each trajectory. Note that a samplis the weighted
NN of ¢ if and only if ¢ locates inside the Voronoi cell gf.

Finally, to avoid the interference of samples from diffdr&ajectories, we treat
trajectories as the first-class citizen (while the R-trekeintreats the trajectory points as
the first-class citizen). Given a grid cell, we group all éewvant samples by trajectories,
and the NN search is done in the unit of trajectories ratraar thajectory points.

We discuss these ideas in details in the following subsestio

6.1. Trajectory Preprocessing by MWVD

For each trajectory” = (p1,p2, - - ., p¢), We pre-compute the MWVD [15] of its points,
which is then used to build our grid index. We first briefly mwvithe MWVD and then
show how we use it in our solution.

Let U be the data domain. Given two sampfeandp’, the dominant regiorof p
overp’ is defined as:

Ry ={q€ U |d(q.p) < d(g,p')}.

We now consider the shape &f,,,. Let us first assume that(p) < w(p’), then
R,,» is characterized by the region within cirag,,,, whose center and radius- are
given as follows:

o (wz(p’) px—wi(p) pla w () py—wi(p) -p’-y)
wi(p') —w(p) w?(p') — w?(p)
_w(p) - w®) - |lpp’||
w?(p') — w?(p)
Figure 4 illustrates the concept of dominant region witltleiC,, . In fact, Cy,,

is an Apollonius circle, since for any poimton its boundary';‘;ﬂl‘l = 5(;”,)).

Whenw(p) > w(p’), R,y is characterized by the region outside of circlg,, .
For example, in Figure 4 where(p’) > w(p), Ry, = U — Cyp,y. Finally, when
w(p) = w(p’), the perpendicular bisector pf’ divides the space into two half planes,
andR,,, corresponds to the half plane that containdenoted byf/,, ,, .

The Voronoi cell of a trajectory point € T is given by:

Vep) = (| R (12)
p’'€T—{p}

14 D.Yanetal

Fig. 4. lllustration of dominant regions

since any point in/C(p) should be inR,,, for anyp’ € T — {p}. Given a sample
p € T, we divide the other samples ff into three sets7+ contains all sampleg’
with w(p’) > w(p), T~ contains all samples with w(p’) < w(p), andT° contains all
sample®’ with w(p') = w(p).

Equation (12) implies thay C(p) may be represented lfy— 1 circles or lines in
the worst case. In fact, not all circles/lines contributéhte final shape oV’ C(p) and
many of them can be pruned by the six pruning rules presentgibi. We adopt the
best-first search algorithm of [16] for MWVD computationfiue computation is done
in memory since the number of points in each trajectory islgmot large.

6.2. Grid Index

Next, we describe two indices used in our grid-based algmst In our problem, we
assume that there exists a rectangular data Sgasech that all trajectory points and
guery points locate insid€. For examplel/ can be the bounding box of a city region.
Our grid-based approach divid&sby anN x N grid, denoted by-.

For each trajector{’, we build arandom accesmdex, denoted byR AI[T], which
returnsd(q, T') given a query poing; while for each grid cell7[i, ;], we build asequen-
tial accessindex, denoted bys AI[i, j], which returns trajectories in non-decreasing
order ofd(q, T) for a query poinyg falling in G[i, j].

Random Access Index (RAI). We now describe how we buill® AI[T]. First, we
computel C(p) forall p € T, whereV C(p) is represented by a set of paifs, R,,|,).
We say tha' is related toV P(p) if (p', R,,») € VC(p). Then, for each grid cell
Glt, j], we compute the set of Voronoi cells overlapping with thetaegular regior?
thatG|s, j] represents. We denote the settyR) = {VCr(p:,), VCr(i,), ..., VCr(p:i.))}-
Note that a Voronoi cell’Cr(p) may contain less pairs ¢p’, R,,,/) than the origi-
nal VC(p), since we only need to characterize its shape wifhif V' C(p) does not
overlap withR, p cannot be the weighted NN of any locationZy and is thus pruned.

We now consider how to compuléCr(p) from the originalVC(p). We divide
the trajectory pointg’ related tolV’ C(p) into three setsS*, S~ andSY, according to

Efficient Location-based Search of Trajectories with Lamatmportance 15

Cell Pruning Cell Pruning Cell Pruning
Pair Pruning Pair Pruning Pair Pruning

D U D U
(@)p' €5 (b)p' € §~ ©p €S

Condition 1 Condition 2

pES G[i, j]is outside of C,|,, Prune VC(p)
pES” C, - contains G[i, /] Prune (p’, R,)
pES C, | ,contains G[i, j] Prune VC(p)
pES G[i, j]is outside of C,.|, Prune (p’, R, ,)
pES H,. ,contains G[i, j] Prune VC(p)
pES H,, . contains GTi, j] Prune (p°, R, ,)

Fig. 5. Cell Pruning & Pair Pruning

whethen’ belongs tdl'+, T~ andT ", respectively. We check ea¢it, Ry) € VC(p)
in turn for the following:

— Cell Pruning:if R

p|p
VC(p) n Rp|p/ =0,

— Pair Pruning:if R,/ containsR, thenp’ has no contribution to the shapelo€x(p),
and thugp’, R,|,») is not included in’ Cr(p);

— Otherwise(p’, R,),/) is added td/Cr(p).

plp’

 does not overlap wittR, we prunel’ C'r (p) immediately since

Fiogure 5 lists the conditions for Cell Pruning and Pair Pngnivhenp’ € S+, S~ and
SY.

In our implementation, we do not compuiéR) for each grid=|:, j] with regionR
directly from the original Voronoi set. Instead, we perfaire computation by building
a quadtre@tree whose leaf nodes correspond to the grid cells. By speciftiadneight
of the quadtree ak, we obtain 2" x 2" grid (i.e., N = 2").

Each quadtree nodeyode, is associated with a regiomode.R and a set of the
Voronoi cells overlapping witmode.R, i.e., S(node.R). Algorithm 5 shows how we
computeS(node.R) for each quadtree nodede in a recursive manner. Let the quadtree
root beroot with root.R = U andS(root.R) = {VC(p1),---,VC(pe)}, the recur-
sion is initiated over each child node @fot with level = 1. For each node, we com-
pute its Voronoi cell set only from that of its parent (Line #)the set contains only
one Voronoi cellV,,,q4..r(p), then for any location imode. R, p is its weighted NN. We
stop recursion in that case (Line 5). Otherwise, if the autrkevel is not the leaf level,
we continue to splibode and construct its four children (Lines 6-8).

16 D.Yanetal

Algorithm 5 Computing Quadtree Nodede
Input: Current nodewode, Parent nodear, current levelevel

1: S(node.R) < {;
2: foreachVCper.r(p) € S(par.R) do
3. ComputeV Co4e.r(p) by checking the pairs i Cy,.. r(p), and do the pruning
listed in Figure 5;
If VChode.r(p) is not pruned, add it t&'(node.R);
if level < h and|S(node.R)| > 1then
Splitnode. R into four equal quadrant®;, i = 1,2, 3, 4;
Create child nodegh;, i = 1,2,3,4 with ch;.R = R;;
Recurse over each child node;

o NG

After the quadtreeytree is constructed, for all its nodesode, S(node.R) is al-
ready computed. Then, for each grid o@lk, j] with region R, we compute the set of
trajectory points whose Voronoi cells overlap with denoted byC'[i, j]. We compute
Crli, j] by finding the leaf noddeaf, that contains the center & usingqgtree; and
for eachV Cicor.r(p) € S(leaf.R), we add the corresponding trajectory pairninto
CT [27]] '

It is easy to see that, for any query locationiinits weighted NN must be some
trajectory pointinC'r[i, j]. We callCr[i, j] as the candidate set 6f]i, 5] from now on.
For each trajectory’, we storeC'r, which is anN x N array of trajectory point lists,
on disk as the random access index[T].

Given a query poing, we identify the grid cell7[¢, j] thatq locates in, load the list
Crli, 4] into memory, and comput&q, T') as follows:

ﬂ%TﬁzpégEﬂ{ﬂ%pﬂ- (13)

Compared with loading the whole trajectdfyin memory, it is more efficient to
obtaind(q,T') using this random access index, sif€&-[i, j]| is much smaller than
the trajectory lengtld. Therefore, in our implementation, we use this index to cotap
d(q,T) instead of accessing directly (recall Lines 17-18 of Algorithm 3 and Line 11
of Algorithm 4).

Sequential Access Index (SAl). For each grid cel(7[i, j], we also build a list_ [z, j]
for retrieving trajectoried” in non-decreasing order @f(q, T"), where query poing
locates inG[i, j]. Sinceg can be any location itr[i, j], the value ofi(q, T') is not fixed
beforehand. We compute the lower boundd¢§, T') instead, denoted by.B(q,T),
which is given by:

(14)

LB(q,T) = min {

mindist(p, R) }
peCrli.j] ’

w(p)

whereR is the region of7[i, j].

Each trajectory” has an entryir.[i, j], represented byn(T') = (T, Cr[i, j], LB(q,T)).
The listL[s, j] is constructed by sorting the entries in non-decreasingratl. B(q, T').

We store theV x N list array L on disk.

Given a query poing that falls inG[i, j], in order to retrieve trajectories in non-
decreasing order of(¢,T") using L[i, j], we maintain a priority queumin-heapin
main memory. We get the next trajectdfywith the smallest value of(q, T') in two
steps:

Efficient Location-based Search of Trajectories with Lamatmportance 17

— We read the next entryn(T) from LJ[s, j], evaluated(q, T') using Equation (13),
and addT, d(q, T)) into min-heap The process is repeated until the valife, "),
whereT’ = min-heaptop(), is smaller than thé& B(q, T) of the last accessed entry
en(T). Note that all subsequent entries have lower bound valugeréhand(q, T").

— We returnT” = min-heaptop() as the next NN, and remove it fromin-heap

The priority queuemin-heapis a memory buffer that reorders the trajectories in
Ll[s, j] by d(q,T), and we call it as the sequential access inde&f j], denoted by
SAIli, j].

Grid-based Algorithms. Our two grid-based algorithms also follow the FA and TA
frameworks, respectively, but use the grid index (i.e. RiA¢ and SAI) in replace of the
R-tree index.

The grid-based FA differs from Algorithm 3 in the followingpects:

— Line 2 now becomesN «— n”, wheren = |D|;

— Line 5 is now replaced by “retrieve thieth NN of ¢; usingSAI[j, k], whereg; falls
in G, k]";

— Line 6 is no longer necessary sinfelI[j, k| directly returns the trajectory along
with d(g;, T);

— Lines 9 and 12 now becom&@i] — d(¢;, T)";

— We no longer need to do the checking in Line 11, since daulill be accessed only
once for each query point.

The grid-based TA differs from Algorithm 4 in the followingpects:

— Line 2 now becomesN « n”;

— Line 7 is now replaced by “retrieve thieth NN of ¢; usingSAI[j, k], whereg; falls
in G[j, k]™;

— Line 8 is no longer necessary;

— Line 10 now becomesT[i] «— d(¢;, T)";

Extension to Skewed Trajectory Distribution. Our current algorithm uses a uniform
grid to partition the rectangular data spdceOur experiments show that our algorithm
works quite well on the datasets with trajectories reldivmiformly distributed over
U. However, it is not the best choice when the trajectory itistion is skewed.

Although the road network of most regions occupies the nitgjof the region’s
bounding boxU (e.g., Colorado), it is not always true. For example, in tbariding
box of Florida, most regions correspond to the ocean wheteajectory can exist, and
it is meaningless to divide such regions into grid cells.tkemmore, there are usually
much more trajectory points in city centers than in outskiand thus dense regions
should be divided into finer granularity.

We proposes a heuristics to handle data skewness. Spégifiefirst build a linear
guadtree index over all the trajectory points. Then, wedbaiir RAl and SAIl indices
over the leaf nodes of the linear quadtree. We have condegfeliments to compare
the performance of using uniform grid with that of using Aneuadtree over skewed
trajectory data, and found that the latter is an order of ritada faster than the former,
and achieves similar performance compared with using tmifgrid over relatively
uniform trajectory data.

18 D. Yan et al
7. Experimental Results

In this section, we evaluate the performance of our algorittRTree-TA RTree-FA
Grid-TA, andGrid-FA. We implemented our algorithms in JAVA. All the experiments
were run on a public Linux server with eight 3GHz Intel CPU &2¢:B memory.

7.1. Datasets and Query-sets

We first describe the datasets and query-sets used in ourirgoes.
Datasets. We use two following two real trajectory datasets:

— Trucks: This dataset consists of 276 trajectories of 50 trucks/éghg concrete to
several construction places around Athens metropolitemiarGreece for 33 distinct
days.

— SchoolBusés This dataset consists of 145 trajectories of 2 school boskscting
(and delivering) students around Athens metropolitan er&eece for 108 distinct
days.

For both datasets, the length of the trajectories is in tderaf hundreds. We choose
these datasets since there exists some important locatidhsir underlying applica-
tions, such as construction places and schools.

To further study the scalability of our algorithms when thenber of trajectories
increases, we generate synthetic datasets based dmutlesdataset. Specifically, to
generate a dataset withtrajectories, we repeat the following operationimes: (1)
randomly pick a trajectory from thErucksdataset; (2) shift it in a random direction by
a small randomly generated distance (within 200m); (3)rintbe new trajectory into
the synthetic dataset.

We generate synthetic datasets from a real dataset sincantgive generated tra-
jectories to exhibit the properties of real trajectories.

Query-sets. We do not generate query locations randomly, since vehiajedtories
usually follow the underlying road network. Moreover, a guécation in a sparse
region not covered by the road network is meaningless inaggalications.

We generate a meaningful query-set containinguery locations in the following
way: (1) randomly pick a trajectory from the trajectory dstato query over; (2) pick
the top-10% points of the trajectory in terms of importan@;randomly selecin
locations from these points without replacement; (4) ghifise locations in a random
direction by a small randomly generated distance (withi@rg)) and add them to the
query-set.

In this way, we are generating meaningful query locationglare important and
correlated for at least one trajectory in the dataset.

7.2. Evaluation Measures

Thek-ICT query has two query parameters: (1) the number of queintg,m; and (2)
the number of trajectorieg, that the user wants the query to return. These parameters

L hittp://www.chorochronos.org/?g=node/5
2 http://www.chorochronos.org/?g=node/6

Efficient Location-based Search of Trajectories with Lamatmportance 19

Table 1. Top-5 Query Answers

Metrics top-1 top-2 top-3 top-4 top-5
Weighted Distance| (40, 81189.4) | (33, 85939.5)| (232, 86572.9) | (224, 87504.1)| (123, 87625.2)
Euclidean Distance| (221, 95943.7)| (40, 81189.4)| (198, 126783.7)| (232, 86572.9)| (28, 94666.5)

are usually small in real applications. We also have a patemf@r the dataset, which
is the number of trajectories,

We measure the following four costs of our algorithms whenahove parameters
change: (1) CPU time; (2) number of blocks accessed by séiquigniex (the Max R-
tree, or the grid index SAl); (3) number of blocks accesseddmglom index (the grid
index RAI); (4) number of priority queue entries in main magno

Since our algorithms are 1/0 bound, the number of blocks ssax by sequen-
tial/random indices are the most important performanderiai. When using the grid
indexS AI[i, 7] for a query point locating iid7[i, 7], we maintain @ main memory buffer
of one block which is refilled froni[:, j] whenever it is used up. Therefore, we can
use the number of blocks accessed to evaluate the 1/O cofidr Rstree, the nodes are
loaded in blocks, and thus the number of blocks accessedecarebsured.

The smaller memory a query requires, the more queries arssréandle simulta-
neously. Therefore, we also measure the memory cost of garitdms. For the R-tree
based algorithms, the memory cost is dominated by the priqtieuemin-heapused
for NN search (see Algorithm 2), while for grid-based onég, memory cost is dom-
inated by the priority queue o§ AI[i, j] for reorderingL|i, j] (see Section 6.2). The
total number of memory entries equals the sum of the entmiéisd priority queue for
each query poing;, and we report the maximum number among all the round-rabin i
erations. Throughout the experiments, werfix 50 m anda = 0.002 when generating
sample importance using the method discussed in Sectiard4ipathe size of a block
as 512 bytes. We generate 1000 queries in each experimdrdll aasults are averaged
over the 1000 runs.

7.3. Effect of Query Parameters

To study the performance of our algorithms with respect éocthery parameters and
k, we build grid indices over th@rucksand SchoolBusedatasets, by constructing a
guadtree of height = 5. Accordingly, the grid we use is of si&2 x 32.

To study the effect ofn, we fix k as5 and process queries with = 1,2,. .., 10.
On the other hand, to study the effect/afwe fix m as3 and process queries with
k=1,2,...,10.

Figure 6 reports the performance of our algorithms for pset®k-ICT queries
over theTrucksdataset whek = 5 and the number of query points increases from 1
to 10.

Figure 6(a) shows that the CPU timeRTree-FAis much larger than the other three
algorithms, while the grid-based algorithms record thetgst CPU time.

Since all our algorithms are 1/O bound, the results repairieigure 6(b) and (c)
dominate the overall performance of query processing. Ating to Figure 6(b)RTree-
FA requires reading a lot of blocks (or R-tree nodes) for theemental NN search,
and both of the R-tree based algorithms read significantlyerbtocks for sequential
access than the grid-based algorithms. For example, whea 5, RTree-FAreads
over 1844 blocks whil&rid-FA reads only 87 blocks. For random access, Figure 6(c)
shows thaGrid-FA (or respectivelysrid-TA) also reads fewer blocks th&Tree-FA(or

20 D.Yanetal

s
—~ 20 ————————— c
o 18+ RTree-TA —<— g
£ 18© RTree-FA g
€] 12 Grid-TA (%2}
.g 10 Grid-FA o
8 X
2 ¢ g
0 o = % &H— L N L 1)
123 456 78 910 *
Number of Query Locations Number of Query Locations
(a) CPU Time " (b) 1/O (Sequential)
= o
£ =
T T T T T T c
S 1200 RTreeTA 5 100000
S 1000 _ b > {
< RTree-FA —=— 5 10000
X 800 Grid-TA —o— ; £
1Y) 600 Grid-FA —= A 1 Q 1000
8 400 = -
o 200 2 = 100 ¢ TA —o— 1
s S = 10 Grid-FA —a—
H* = © S
1234567891042 12345678910
Number of Query Locations Number of Query Locations
(c) 1/0 (Random) (d) Memory Entries

Fig. 6. Effect of m using the Trucks dataset

respectivelyRTree-TA, though the difference is not as big as in the case of selient
access.

Overall,Grid-TAis slightly faster thaiGrid-FA, several times faster th&iTree-TA
and an order of magnitude faster tHRmree-FA

Figure 6(d) shows that the number of data entries maintametmory byRTree-
TA and byRTree-FAis from several times to tens of times larger than that by leéth
the grid-based algorithms. Given the fact that the size oératny maintained by the
grid index is much smaller than an R-tree node entry (whiattaios MBR and weight
besides the node pointer), the grid-based algorithms ahmore memory-efficient
than the R-tree based ones.

Figure 7 reports the performance of our algorithms overTtheksdataset when
m = 3 andk increases from 1 to 10. The results are similar to that oliasingn we
just discussed, except for the I/O cost of random accesshéwsrsin Figure 7(c), the
two FA-based algorithm& Tree-FAandGrid-FA, read fewer blocks whem increases,
while the two TA-based algorithmBRTree-TAandGrid-TA, read more blocks whem
increases.

As for theSchoolBusedataset, Figure 8 reports the performance of our algorithms
when m changes, and Figure 9 reports the performance of our dgasitwhenk
changes. It can be observed that the performance trend afldbathms is similar to
that for the Trucks dataset discussed above (we thus onletads).

7.4. Results of Scalability Test

To study the scalability of our algorithms, we generatelsgtit dataset® with |D| =
1k,2k,--- , 10k, and process queries with=3 andk=5. The grid indices are built by
constructing a quadtree of height6, and accordingly, the grid is of sif& x 64.

Efficient Location-based Search of Trajectories with Lamatmportance

CPU Time (ms)

of Blocks (Random)

CPU Time (ms)

of Blocks (Random)

20 —————————
78 [RTree-TA —<— i
%2 RTree-FA

12 Grid-TA

10 Grid-FA

8

8

2 B p T R
0

RTree-TA ¢

123456738
k
(c) 1/0 (Random)

of Blocks (Sequential)

of Main Memory Entries

10000

RTree-TA —*—]
[W
Grid-TA —e—

123456782910
k
(b) 1/O (Sequential)

100

100000 —————————
[}%}%}4}45~9491545fﬂ
lOOOOW

RTree-TA —<—

1000 RIree-RFA 5=

Grid-TA —6—

Grid-FA —=—

100 S L e
12345678910

k

(d) Memory Entries

Fig. 7. Effect of k using the Trucks dataset

1 23 456 7 8 910
Number of Query Locations
(&) CPU Time

700
600
500
400
300
200
100

0

RTree-TA —=—

RTree-FA —&—
Grid-TA —e—

Grid-FA A

2345678910
Number of Query Locations
(c) 1/0 (Random)

of Blocks (Sequential)

of Main Memory Entries

10000

RTreeTA

1000

100

10““““
12345678910

Number of Query Locations
(b) /O (Sequential)

100000

TA ——
GridFA ——

12345678910
Number of Query Locations

10

(d) Memory Entries

Fig. 8. Effect of m using the SchoolBuses dataset

21

22

CPU Time (ms)

of Blocks (Random)

CPU Time (ms)

of Blocks (Random)

1

2 3456 7 8 910
k
(a) CPU Time

RTree-TA —<—

100000
10000+ _

1000

(c) 1/0 (Random)

of Blocks (Sequential)

of Main Memory Entries

10000

1000

D.Yanetal

8-
= Grid-TA —e—
Grid-FA —&—

W

100 e
12345678910
k
(b) 1/O (Sequential)
100000
WJ
10000[W
RTree-TA —<—
1000 RIree-BFA &5
Grid-TA —o—
Grid-FA —=—
100 SR Ll¥ oS
123456780910
k

(d) Memory Entries

Fig. 9. Effect of k using the SchoolBuses dataset

RTree-TA —x—
RTree-FA
Grid-TA
Grid-FA

100

123456 78910
Number of Trajectories<(1k)

(&) CPU Time

RTree-TA —<—

12345678910
Number of Trajectoriesx(1k)
(c) 1/0 (Random)

of Blocks (Sequential)

of Main Memory Entries

100000

1000OEW

1000+ Grid-FA £
100 ‘W
10

1e+006

i)
10oooo[—}/a/%%{#}ﬂ/alEHE

10000 ¢

10

Fig. 10. Scalability results

5

12345678910
Number of Trajectories<(1k)
(b) /O (Sequential)

oot .. Grid-FA ——
123456780910
Number of Trajectoriesx(1k)

(d) Memory Entries

Efficient Location-based Search of Trajectories with Lamatmportance 23

Figure 10 shows the scalability of our algorithms when thmber of trajectories
increases. We can see from Figure 10(c) that for a large ds¢athe number of blocks
read by the algorithms by random access is quite differe@nadompared with the
results for the smaller datasets, @sd-TA reads significantly fewer blocks than the
other three algorithms. In other respects, the performamrod is quite consistent with
the results previously reported for changing query pararséh Section 7.3.

Overall, the grid-based algorithms are more efficient thaR-tree based ones, and
Grid-TAis now over an order of magnitude faster th@md-FA.

7.5. Quality of Trajectory Answers

Till now, we have only studied the performance of our aldoris. In this subsection, we
compare the quality of the trajectories found by our sumvefghted-distance measure
with that of the traditional sum-of-Euclidean-distanceasigre. We randomly generate
k = 5 query points over the Trucks dataset, and compute the togjéctories using
both measures. A representative query answer is given ile Takvhere each cell in the
table corresponds to a (trajectory ID, sum-of-weightestadice) pair. After examining
these trajectories, we find that Trajectories 28, 198 and 2&#arned by the sum-of-
Euclidean-distance measure, do not even stop in some ofihrg goints and are thus of
low quality. On the other hand, the trajectories found by sum-of-weighted-distance
measure match and are close to all the query points.

7.6. Summary of Experimental Results

To sum up, we have the following observations: (1) the gaddal algorithms are sig-
nificantly more efficient than the R-tree based algorithrsti{e TA-based algorithms
are more efficient than the FA-based algorithms; and3BJ-TA is much faster than
the other three algorithms on large datasets.

8. Conclusions

We proposed the new problem bflmportant Connected Trajectorigg-ICT) query
processing over trajectories with location importance.d#signed effective methods
to infer the importance of trajectory locations from the paral information, and devel-
oped four algorithms to answer the queries: two based on-ineedRndex, and the other
two based on an efficient grid index. The R-tree index basgarithms are adaptations
of the algorithms in [1] to querying trajectories with loicat importance. However,
the R-tree index only captures the spatial aspects of tiectoay points, and location
weights are only considered during R-tree querying. On therchand, our grid index
includes the location weights as first-class citizen, aialis more suitable for querying
trajectories with location importance.

We showed by experiments on both real and synthetic datéesdteur algorithms
are efficient for answering-ICT queries. The grid index based algorithms are espe-
cially efficient in terms of both time and space: they incue do two orders of mag-
nitude less sequential 1O cost and computational overheagbared with R-tree index
based algorithms, due to the more effective pruning powehefgrid index. As for
trajectory traversal, TA is more effective than FA since #ugressive strategy of TA

24 D.Yanetal

tightens the pruning threshold much faster. Overall, theliaation of TA with grid
index offers the best performance.

References

[1] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng and X. Xie. “Searghirrajectories by Locations - An Efficiency
Study”. InSIGMOD, 2010.

[2] B.-K.Yi, H. Jagadish and C. Faloutsos. “Efficient Retakof Similar Time Sequences under Time Warp-
ing”. In ICDE, 1998.

[3] M. Vlachos, G. Kollios and D. Gunopulos. “Discoveringn8liar Multidimensional Trajectories”. In
ICDE, 2002.

[4] L. Chen and R. Ng. “On the Marriage of Lp-norms and EdittBige”. InVLDB, 2004.

[5] L. Chen, M. T.Ozsu and V. Oria. “Robust and Fast Similarity Search for MgwDbject Trajectroies”. In
SIGMOD, 2005.

[6] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng and P. Kalnigs&r Oriented Trajectory Search for Trip
Recommendation”. lEDBT, 2012.

[7] K. Zheng, S. Shang, N. J. Yuan and Y. Yang. “Towards Effiti€earch for Activity Trajectories”. In
ICDE, 2013.

[8] X. Cao, G. Cong and C. S. Jensen. “Mining Significant Semdrocations from GPS Data”. INLDB,
2010.
[9] VY. Yang, Z. Gong, L. H. U. “Identifying Points of Intereby Self-Tuning Clustering”. I'SIGIR 2011.
[10]S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Magé&d Porto and C. Vangenot. “A Conceptual
View on Trajectories”Data & Knowledge Engineeringsol. 65, no. 1, pp. 126-146, Elsevier, 2008.
[11]A. Tietbohl, V. Bogorny, B. Kuijpers and L. O. AlvaresA‘Clustering-Based Approach for Discovering
Interesting Places in Trajectories”. 8AC2008.

[12]J. A. M. R. Rocha, G. Oliveira and V. Bogorny. “DB-SMoT: Birection-Based Spatio-Temporal Clus-
tering Method". In Intelligent Systems, 2010.

[13]R. Fagin, A. Lotem and M. Naor. “Optimal aggregationaithms for middleware”. IrPODS 2001.

[14]l. Lazaridis and S. Mehrotra. “Progressive ApproximAggregate Queries with a Multi-Resolution Tree
Structure”. INSIGMOD, 2001.

[15]A. OKabe, B. Boots, K. Sugihara and S. Chiu. “Spatial sedstions, Concepts and Applications of
Voronoi Diagrams” Wiley, 2000.

[16]D. Wu, M. L. Yiu, C. S. Jensen and G. Cong. “Efficient Conidusly Moving Topk Spatial Keyword
Query Processing”. ItCDE, 2011.

[17]L. A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu and J. Han. “Reting k-Nearest Neighboring Trajectories
by a Set of Point Locations”. IBSTD 2011

