
Spying Out Accurate User Preferences for
Search Engine Adaptation

Lin Deng, Wilfred Ng, Xiaoyong Chai, and Dik-Lun Lee

Department of Computer Science
Hong Kong University of Science and Technology
{ldeng, wilfred, carnamel, dlee}@cs.ust.hk

Abstract. Most existing search engines employ static ranking algo-
rithms that do not adapt to the specific needs of users. Recently, some
researchers have studied the use of clickthrough data to adapt a search
engine’s ranking function. Clickthrough data indicate for each query the
results that are clicked by users. As a kind of implicit relevance feedback
information, clickthrough data can easily be collected by a search en-
gine. However, clickthrough data is sparse and incomplete, thus, it is a
challenge to discover accurate user preferences from it. In this paper, we
propose a novel algorithm called “Spy Näıve Bayes” (SpyNB) to identify
user preferences generated from clickthrough data. First, we treat the
result items clicked by the users as sure positive examples and those not
clicked by the users as unlabelled data. Then, we plant the sure positive
examples (the spies) into the unlabelled set of result items and apply
a näıve Bayes classification to generate the reliable negative examples.
These positive and negative examples allow us to discover more accu-
rate user’s preferences. Finally, we employ the SpyNB algorithm with a
ranking SVM optimizer to build an adaptive metasearch engine. Our ex-
perimental results show that, compared with the original ranking, SpyNB
can significantly improve the average ranks of users’ click by 20%.

1 Introduction

The information on the Web is huge and growing rapidly. An effective search
engine is an important means for users to find the desired information from
billions of Web pages. Besides standalone search engines, metasearch engines
are also very useful because they allow users to access multiple search engines
simultaneously with a uniform interface.

Adapting a search engine to cater for specific users and queries is an im-
portant research problem and has many applications. In general, there are two
aspects of search engine adaptation that need to be addressed. The first aspect
is query specific adaptation; that is, how to return the best results for a query
from the underlying search engines that have different coverage and focuses. The
second aspect is user specific adaptation that aims to meet the diversified pref-
erences of different users in the search results. A well-adapted metasearch engine
should be able to optimize its ranking function for different query categories and

2

different user communities. The challenging task is how to adapt the ranking
function of a metasearch engine to cater for different users’ preferences.

Some previous studies employed users’ explicit relevance feedback to adapt
the search engine’s ranking function [1, 2]. However, users are usually unwilling
to give explicit feedback because of the manual efforts involved, making the
feedback data too few to be representative. To overcome this problem, researchers
have recently studied the use of clickthrough data, which is a kind of implicit
relevance feedback data, to optimize the ranking functions [3–5] in an automatic
manner.

Formally, clickthrough data are represented as a triplet (q, r, c), where q is the
input query, r is the ranked result links (l1, . . . , ln), and c is the set of links that
a user has clicked on. Figure 1 illustrates an example from clickthrough data of
the query “apple” and three links l1, l7 and l10 are in bold, indicating that they
have been clicked by the user. The main advantage of using clickthrough data is
that it does not require extra effort from the user, and thus can be obtained at a
very low cost. However, clickthrough data are ambiguous when used as a sign of
user preferences. As a consequence, it is more difficult to interpret clickthrough
data and discover user preferences than explicit relevance feedback data.

In essence of search engine adaptation using clickthrough data, there are
two steps. The first step is to identify user preferences (i.e., the user prefers
one result over another). The second step is to optimize the ranking function
based on the preferences obtained in the first step. There exists an effective
algorithm called ranking SVM [4] for the second step, but little research has
been done for the first step. In this paper, we focus on the accurate elicitation
of user preferences from clickthrough data. In particular, we propose a novel
learning technique called Spy Näıve Bayes (SpyNB), which analyzes the titles,
abstracts and URLs of the returned links to identify any actual irrelevant links.
We show that SpyNB is an effective way to discover accurate user preferences
from clickthrough data by incorporating SpyNB (for the first step) with a ranking
SVM (for the second step) to construct an adaptive metasearch engine ranker.
Notice that SpyNB can be used to adapt the ranking function of a standalone
search engine. However, metasearch is chosen in this paper, since it does not
only serve as an important search tool but allows us to focus on the adaptive
ranking of the results without considering crawling and indexing, which are not
the goal of our paper. In addition, metasearch allows us to choose underlying
search engines with different strengths, coverages and focuses, thus giving us a
new dimension to observe the effectiveness of SpyNB.

Finally, we develop a metasearch engine prototype that comprises MSNSearch,
WiseNut and Overture for conducting experimental performance evaluations.
The empirical results show that SpyNB algorithm can accurately elicit user
preferences from clickthrough data and thus improve the ranking quality of a
metasearch engine. Importantly, the ranking quality produced with SpyNB is
shown to be significantly better than that of Joachims algorithm and the origi-
nal rankings from the underlying search engines.

3

Links The list of search results with titles, abstracts and URLs of webpages

l1 Apple
(clicked) Opportunities at Apple. Visit other Apple sites . . .

http://www.apple.com/

l2 Apple - QuickTime - Download
Visit the Apple Store online or at retail locations . . .
http://www.apple.com/quicktime/download/

l3 Apple - Fruit
Apples have a rounded shape with a depression at the top . . .
http://www.hort.purdue.edu/ext/senior/fruits/apple1.htm

l4 www.apple-history.com
A brief history of the company that changed the computing world . . .
http://www.apple-history.com/

l5 MacCentral: Apple Macintosh News
Steve Jobs unveils Apple mini stores. . . .
http://www.macworld.com/news/

l6 Adams County Nursery, apple trees
One of the most widely planted apple cultivars worldwide.
http://www.acnursery.com/apples.htm

l7 Apple .Mac Welcome
(clicked) . . .member specials throughout the year. See . . .

http://www.mac.com/

l8 AppleInsider
. . . Apple seeds Mac OS X Server 10.3.6 build 7R20.
http://www.appleinsider.com/

l9 ROSE APPLE Fruit Facts
The rose apple is too large to make a suitable container plant. . . .
http://www.crfg.org/pubs/ff/roseapple.html

l10 Apple - Support
(clicked) Support for most Apple products provided by Apple Computer

http://www.info.apple.com/

Fig. 1. A clickthrough for the query “apple”. Links in bold are clicked by the user.

The rest of this paper is organized as follows. In Section 2, we briefly review
the related works. In Section 3, we present our SpyNB algorithm to identify user
preferences from clickthrough data. In Section 4, we revisit the idea of a ranking
SVM. In Section 5, the experimental results related to the effectiveness of our
SpyNB algorithm are reported. Section 6 concludes the paper.

2 Related Work

Related work on search engine adaptation using clickthrough data falls into two
subareas. The first one is the analysis of clickthrough data to identify user’s pref-
erences. The second one is the study of the optimization of a search engines’ rank-
ing function using the identified preferences. For ranking function optimization,

4

ranking SVM[4] is an effective algorithm, which can learn an optimized ranking
function using user preferences as input. Recently, an RSCF algorithm [5] has
been proposed to extend ranking SVM to a co-training framework in order to
tackle the lack of clickthrough data for training.

For clickthrough data analysis, a simple algorithm was proposed by Joachims [4],
which elicits preference pairs from clickthrough data. We call this method “Joachims
algorithm” throughout this paper. Joachims algorithm assumed that the user
scans the ranked results strictly from top to bottom. Therefore, if a user skips
link li and clicks on link lj which ranks lower than link li (i < j), Joachims
algorithm assumed that the user must have observed link li and decided not to
click on it. Then preference pairs are elicited as lj <r′ li, where <r′ represents
the target ranking of search results.

For example, in the clickthrough of the “apple” query shown in Figure 1, the
user does not click on l2, l3, l4, l5, and l6, but clicks on l7. Therefore according
to Joachims algorithm, l7 is more relevant to the user than the other five links.
In other words, l7 should rank ahead of those five links in the target ranking.
Similarly, l10 should rank ahead of l2, l3, l4, l5, l6, l8, and l9 in the target ranking.
All preferences obtained using Joachims algorithm are shown in Figure 2.

Preference pairs Preference pairs Preference pairs
arising from l1 arising from l7 arising from l10

Empty Set l7 <r′ l2 l10 <r′ l2
l7 <r′ l3 l10 <r′ l3
l7 <r′ l4 l10 <r′ l4
l7 <r′ l5 l10 <r′ l5
l7 <r′ l6 l10 <r′ l6

l10 <r′ l8
l10 <r′ l9

Fig. 2. Preferences derived from the clickthrough of Figure 1 using Joachims algorithm

3 Learning Preferences from Clickthrough Data

We first discuss some inadequacies of Joachims algorithm. We then introduce a
new interpretation of clickthrough data, and based on that the SpyNB algorithm
for learning preferences from clickthrough data.

3.1 Inadequacy of Joachims algorithm

As depicted in Section 2, Joachims algorithm is simple and efficient. However, we
argue that the assumption made by Joachims algorithm of how users scan search
results is too strong in reality, since users’ behaviors are diverse. Therefore, there

5

could be a problem in that Joachims algorithm assumes that the user scans search
results strictly from top to bottom, as in reality a user may leap over several
results. In short, the up-to-down scanning may not in reality be strict.

Moreover, we notice that Joachims algorithm is unfair to the high-ranking
links, which means that the high-ranking links (e.g. l1, l2) are more likely to
be “penalized” than the low-ranking links (e.g. l9, l10). Consider the preference
example shown in Figure 2. Link l1 and l10 are both clicked links; however l1
appears on the left hand side of preference pairs (meaning it should be ranked
high in target ranking) much less than l10. (l1, 0 times; l10, 7 times.) On the other
hand, link l2 and l9 are both unclicked links; however, l2 appears on the right
hand side of preference pairs (means it should be ranked low in target ranking)
more than l9. (l2, twice; l9, 1 times.) Therefore, the high-ranking links (e.g. l1,
l2) are more likely to be ranked low after learning. We note the phenomenon
where Joachims algorithm is apt to penalize the high-ranking links.

3.2 New Clickthrough Interpretation

In order to address the above problems, we propose to interpret the clickthrough
data in a new manner. We note that the user typically clicks on the links whose
titles, abstracts or URLs are interesting to them. Therefore, we assume the
clicked links are liked by the user. Moreover, users in general are unlikely to click
all the links that match his interests. For example, after a user has obtained the
desired information, he stops scanning the results. Thus, we further assume that
the unclicked links contain both the links that the user likes and dislikes. Finally,
we assume that the disliked links are the links that are most different in content
to the clicked links.

Based on the new interpretation, we label the clicked links as positive and
the unclicked links as unlabeled samples. Then the problem of discovering user’s
preferences becomes how to identify the reliable negative samples from the unla-
beled set, where negative indicates that the link does not match user’s interests.
After the reliable negatives are identified, the user preference can be reflected
in the way that the user prefers all links in the positive set to those in the neg-
ative set. Let P denote the positive set, U denote the unlabeled set and RN
denote the reliable negative set, where RN ⊂ U . The pairwise preferences can
be represented as:

li <r′ lj , ∀ li ∈ P, lj ∈ RN (1)

Equation (1) indicates that all links in the positive set should rank ahead of
those from the negative set in the target ranking.

3.3 Spy Näıve Bayes

The problem now can be formulated as how to identify the reliable negative ex-
amples from an unlabeled set using only positive and unlabeled data. Recently,
partially supervised classification [6–9] provides a novel paradigm for construct-
ing classifiers using positive examples and a large set of unlabeled examples.

6

Finding reliable negative examples can be solved by partially supervised clas-
sification techniques, such as Spy technique [8], 1-DNF [9], and the Rocchio
method [6]. In particular, we incorporate the spy technique with näıve Bayes to
design a Spy Näıve Bayes (SpyNB) algorithm for identifying the reliable negative
examples. We choose the spy technique, because it has been shown to be effec-
tive for common text classification [8]. However, clickthrough data have some
unique characteristics compared to common texts. For instance, the titles and
abstracts are both very short texts, and the size of positive set (the number of
clicked links) is also very small. Consequently, the identified RN is not reliable
if only a small portion of positive examples are used as spies. Thus we further
employ a voting procedure to strengthen SpyNB. In this section, we elaborate
on the SpyNB algorithm in detail.

We first illustrate how the Näıve Bayes [10] (NB for short) is adapted in
clickthrough analysis as follows. Let “+” and “–” denote the positive and neg-
ative classes, respectively. Let L = {l1, l2, · · · , lN} denote a set of N links (doc-
uments) in the search results. Each link li can be described as a word vector,
W = (w1, w2, · · · , wM), in the vector space model [11], where we count the occur-
rences of wi appearing in the titles, abstracts and URLs. Then, a NB classifier
is built by estimating the prior probabilities (Pr(+) and Pr(−)), and likelihood
(Pr(wj |+) and Pr(wj |−)), as shown in Algorithm 1.

Algorithm 1 Näıve Bayes Algorithm
Input:

L = {l1, l2, . . . , lN} /∗ a set of links ∗/
Output:

Prior probabilities: Pr(+) and Pr(−);
Likelihoods: Pr(wj |+) and Pr(wj |−) ∀j ∈ {1, . . . , M}

Procedure:

1: Pr(+) =

∑N

i=1
δ(+|li)

N
;

2: Pr(−) =

∑N

i=1
δ(−|li)

N
;

3: for each attribute wj ∈ W do

4: Pr(wj |+) =
λ+

∑N

i=1
Num(wj ,li)δ(+|li)

λM+
∑M

j=1

∑N

i=1
Num(wj ,li)δ(+|li)

;

5: Pr(wj |−) =
λ+

∑N

i=1
Num(wj ,li)δ(−|li)

λM+
∑M

j=1

∑N

i=1
Num(wj ,li)δ(−|li)

;

6: end for

In Algorithm 1, δ(+|li) indicates the class label of link li. Its value is 1 if
li is positive; and 0 otherwise. Num(wj , li) is a function counting the number
of keywords wj appearing in link li. λ is the smoothing factor, where λ = 1 is
known as Laplacian smoothing [12], which we use in our experiments.

7

When testing, NB classifies a link l by calculating the posterior probability
using Bayes rule:

Pr(+|l) =
Pr(l|+)Pr(+)

Pr(l)

where Pr(l|+) =
∏|wl|

j=1 Pr(wlj |+) is the product of the likelihoods of the key-
words in link l. Then, link l is predicted to belong to class “+”, if P (+|l) is
larger than P (−|l); and “–” otherwise.

When the training data contain only positive and unlabeled examples, spy
technique is used to learn an NB classifier [8]. The idea behind spy technique
is shown in Figure 3. First, a set of positive examples S are selected from P
and put in U , to act as “spies”. Then, the unlabeled examples in U together
with S are regarded as negative to train a NB classifier using Algorithm 1. The
obtained classifier is then used to assign probabilities Pr(+|l) to each example
in U ∪ S. After that, a threshold Ts is decided on by the probabilities assigned
to S. An unlabeled example in U is selected as a reliable negative example if
its probability is less than Ts, and thus RN is obtained. The examples in S
act as “spies”, since they are regarded as positive examples and are put into U
pretending to be negative examples. During classification, the unknown positive
examples in U are assumed to have comparative probabilities with the spies.
Therefore, the reliable negative examples RN can be identified.

R
N
i

n
e
g
a
t
i
v
e
 p
o
s
i
t
i
v
e

U

S
p
y
i

N
a
i
v
e

B
a
y
e
s

S
p
y
i

P

U

P

Fig. 3. Spy technique of SpyNB

Due to the unique characteristics of clickthrough data, we further employ a
voting procedure (Figure 4) to make Spy Näıve Bayes more robust. The idea of
voting procedure is as follows. The algorithm runs an n-time iteration, where
n = |P | is the number of positive examples. In each iteration, a positive example
pi in P is selected to act as a spy. It is then put into U to train an NB classifier
NBi. The probability Pr(+|pi) assigned to the spy pi can be used as a threshold

8

Ts to select a candidate for a reliable negative example set (RNi). That is, any
unlabeled example uj with a smaller probability of being a positive example than
the spy (Pr(+|uj) < Ts) is selected into RNi. Consequently, n candidate reliable
negative sets: RN1, RN2, · · · , RNn are identified. Then, a voting procedure is
taken to combine all RNi into the final RN . An unlabeled example is included
in the final RN , if and only if, it appears in at least a certain portion (Tv)
of RNi. The advantage of adopting the voting procedure in SpyNB is that the
procedure makes full use of all positive examples in P . Also, the procedure makes
decisions on RN by taking opinions from all possible spies and thus minimizes
the influence of a random selection of spies.

P

U

R
N
1
 R
N
3
 R
N
n

R
N

V
o
t
i
n
g

o
n
e
-
s
t
e
p

S
p
y
N
B

Fig. 4. Voting procedure of SpyNB

The SpyNB algorithm is given in Algorithm 2. Steps 2 to 15 use the Spy
technique to generate n candidates of reliable negative example sets RNi. Steps
16 to 21 combine all RNi into the final RN using the voting procedure.

To analysis the time complexity of SpyNB algorithm, let |P | denote the
number of clicked links (positive examples), |U | denote the number of unclicked
links (unlabeled examples) and N denote the number of all links. Training näıve
Bayes (Algorithm 1) requires only one time scan of all links, thus the time
complexity of training is O(N). The predication of näıve Bayes costs O(|U |)
time, where |U | < N . Thus the steps 2 to 15 of SpyNB algorithm cost O(|P | ×
(N+|U |)) = O(|P |×N) time. With similar analysis, the time complexity of steps
16 to 21 of SpyNB algorithm is O(|P | × |U |), which is smaller than O(|P | ×N).

Thus overall, the time complexity of the SpyNB algorithm is O(|P |×N). We
know that the time complexity of Joachims algorithm is O(N). It seems that
SpyNB algorithm is not as efficient as Joachims algorithm. However, we note that
in most realistic cases, |P | (the number of links clicked by the user) is usually very
small, and actually can be considered as having a constant bound. For example,
the empirical clickthrough data reported in [5] has merely an average of 2.94
clicks per query. Therefore, without losing the generality, we can assume no user

9

Algorithm 2 Spy Näıve Bayes (SpyNB) Algorithm

Input:
P – a set of positive examples; U – a set of unlabeled examples; Tv – a voting
threshold; Ts – a spy threshold

Output:
RN – the set of reliable negative examples

Procedure:
1: RN1 = RN2 = · · · = RN|P | = {} and RN = {};
2: for each example pi ∈ P do
3: Ps = P − {pi};
4: Us = U ∪ {pi};
5: Assign each example in Ps the class label 1;
6: Assign each example in Us the class label -1;
7: Build a NB classifier on Ps and Us;
8: Classify each example in Us using the NB classifier;
9: Spy threshold Ts = Pr(+|pi);

10: for each uj ∈ U do
11: if Pr(+|uj) < Ts then
12: RNi = RNi ∪ {uj};
13: end if
14: end for
15: end for
16: for each uj ∈ U do
17: V otes = the number of RNi such that uj ∈ RNi

18: if V otes > Tv × |P | then
19: RN = RN ∪ {uj};
20: end if
21: end for

10

clicks more than 10 (or any large enough integer) links for a query. Then, |P | < 10
and the time complexity of SpyNB algorithm becomes O(10×N) = O(N).

In short, although the SpyNB algorithm is more sophisticated than Joachims
algorithm, due to the characteristics of clickthrough data, the practical complex-
ity of SpyNB is still at the same level as Joachims algorithm, according to the
previous analysis.

4 Optimizing Ranking Functions

After preferences are identified by SpyNB, we employ a ranking SVM [4] to
optimize the ranking function using the identified preferences. We now briefly
revisit the basic idea of ranking SVM as follows.

For a training data set, T = {(q1, r
′
1), (q2, r

′
2), . . . , (qn, r′n)}, where qi in T is a

query and r′i is the corresponding target ranking, ranking SVM aims at finding a
linear ranking function f(q, d), which holds as many preferences in T as possible.
f(q, d) is defined as the inner product of a weight vector −→ω and a feature vector
of query-document mapping φ(q, d). φ(q, d) describes how well a document d of
a link in the ranking matches a query q (will be detailed in Section 5.2). −→ω gives
a weighting of each feature.

Given a weight vector, −→ω , retrieved links can be ranked by sorting the values:
f(q, d) = −→ω ·φ(q, d). Then, the problem of finding a ranking function, f , becomes
finding a weight vector, −→ω , that makes the maximum number of the following
inequalities hold:

For all (di, dj) ∈ r′k , (1 ≤ k ≤ n)
−→ω · φ(qk, di) > −→ω · φ(qk, dj) (2)

where (di, dj) ∈ r′k is a document pair corresponding to the preference pair
(li <r′

k
lj) of qk, which means di should rank higher than dj in the target ranking

of r′k. Figure 5 illustrates the effect of different weight vectors on ranking three
documents, d1, d2 and d3, while the target ranking is d1 <r∗ d2 <r∗ d3. As we
can see, −→ω1 is better than −→ω2: the documents are correctly ranked as (d1, d2, d3)
by −→ω1, but are ranked as (d2, d1, d3) by −→ω2 in which d1 < d2 does not hold.

However, solving −→ω with the constraints in Equation (2) is NP-hard [13]. An
approximate solution can be obtained by introducing non-negative slack vari-
ables, ξijk, to the inequalities to tolerate some ranking errors. The inequalities
are rewritten as:

For all (di, dj) ∈ r′k , (1 ≤ k ≤ n)
−→ω · φ(qk, di) > −→ω · φ(qk, dj) + 1− ξijk, ξijk ≥ 0 (3)

and ranking SVM is then formulated as a constrained optimization problem,
which is stated as minimizing the target function:

V (−→ω , ξ) =
1
2
−→ω · −→ω + C

∑
ξijk, (4)

11

1�
���

2�
���

1d 2d

3d

1�

2�

Fig. 5. Ranking the documents d1, d2, and d3 with the weight vectors −→ω1 and −→ω2

subject to the constraints given in Equation (3).
The idea of solving the above optimization problem is: let δ be the distance

between the two closest projected documents along a weight vector. In Figure 5,
δ1 and δ2 are the distances between the two closest projections along −→ω1 and
−→ω2, respectively. If there are several weight vectors that are able to make all the
rankings hold subject to the condition in Equation (3), the one that maximizes
the margin δ is preferred. This is because the larger value of δ, the more defi-
nite the ranking, and hence the better the quality of the weight vector −→ω . The
summation term,

∑
ξijk, of slack variables in target function (4) is the sum of

the errors in ranking pairs. Therefore, minimizing this term can be viewed as
minimizing the total training errors made. Finally, parameter C is introduced
to allow a trade-off between the margin size δ and the total training errors.

As output, ranking SVM gives a weight vector −→ω , which can be used to
rank future retrieved results by sorting the value: f(q, d) = −→ω · φ(q, d). The
ranking SVM algorithm is implemented in a SVM-Light software, which can be
downloaded from [14].

5 Experimental Evaluations

We conduct extensive experiments to evaluate our method. Section 5.1 describes
how we set up the experiment. Section 5.2 explains the specification of the imple-
mented ranking function. Section 5.3 introduces a baseline method mJoachims
algorithm and Section 5.4 reports the experimental results.

5.1 Experiment Setup

In order to evaluate the effectiveness of our method, we develop a metasearch
engine that comprises three search engines: MSNSearch1, WiseNut2 and Over-
1 http://search.msn.com
2 http://www.wisenut.com

12

ture3. At the time of this writing, MSNSearch is regarded as one of the best
major search engines in the world; WiseNut is a new and growing search engine;
and Overture is an advertising search engine which ranks results based on the
prices paid by the sponsors. We choose the three search engines that have differ-
ent strengths in terms of retrieval quality and focus, as we can test our methods
in a query-specific adaptation context.

Our metasearch engine works as follows. When a query is submitted to the
system, top 100 links from each search engine are retrieved. Then the combined
list presented to the user is produced in a round-robin manner [15] to ensure
that there is no bias towards any source. If a result is returned by more than
one search engine, we only present it once. The titles, abstracts and URLs of
the retrieved results are displayed in a uniform style. Therefore, the users do not
know which search engine a particular link is from.

To collect clickthrough data, we asked five graduate students in our depart-
ment to test the system. The users are considered to share the same interests
as they come from the same community. We gave the users three categories
of queries for searching: Computer Science (CS), news and shopping, and each
category contains 30 queries. This setting aims to test the methods in a query-
specific context. However, in essential, the result can also apply to user-specific
context. Figure 6 shows some statistics of the clickthrough we collected.

Query category Computer Science News Shopping

Number of queries 30 30 30

Number of clicks 123 87 130

Average clicks per query 4.1 2.9 4.3

Average rank clicked on 5.87 5.6 5.59

Fig. 6. Statistics of experiment data

5.2 Linear Ranking Function

Our metasearch engine adopts a linear ranking function to rank search re-
sults. Suppose q is a submitted query, and d is a document (link) retrieved
from underlying search engines. The links are ranked according to the value
f(q, d) = −→ω · φ(q, d), where φ(q, d) is a feature vector representing the match
between query q and document d, and −→ω is a weigh vector that can be learned
by our personalization approach. We then define the feature vector φ(q, d) as
three kinds of features, namely, Rank Features, Common Features and Similar-
ity Features:

1. Rank Features (3 numerical and 12 binary features).

3 http://www.overture.com

13

Let search engine E ∈ {M, W,O} (M stands for MSNsearch, W for WiseNut,
and O for Overture) and T ∈ {1, 3, 5, 10}. We define numerical features
Rank E and binary features Top E T of document d as follows:

Rank E =
{

11−X
10 if d ranks X in E, X <= 10

0 otherwise.

Top E T =
{ 1 if d ranks top T in E;

0 otherwise.
2. Common Features (2 binary features).

Com 2 =
{ 1 if d ranks top 10 in two search engines;

0 otherwise.

Com 3 =
{ 1 if d ranks top 10 in three search engines;

0 otherwise.
3. Similarity Features (1 binary and 2 numerical features).

Sim U =
{ 1 if any word in query appears in URL;

0 otherwise.
Sim T = Cosine similarity between query and title.

Sim A = Cosine similarity between query and abstract.

Overall, φ(q, l) contains 20 features as shown below:

(Rank M,Top M 1, . . . , T op M 10, Rank W, . . . ,

Rank O, . . . , Com 2, Com 3, Sim U, . . . , Sim A) (5)

The corresponding weight vector −→ω contains 20 weight values, each of which
reflects the importance of a feature in Equation (5). There are other ways to
define φ(q, d) and −→ω . Our definition only reflects the intuition about what we
think are important for a metasearch engine to rank search results and still easy
for implementation.

5.3 mJoachims Algorithm

As pointed out in Section 3.1, Joachims algorithm unfairly penalizes the high-
ranking links, which in practice may lead to problems. To verify this point, we
modify a bit the way of Joachims algorithm generating preference pairs, and call
it “mJoachims algorithm”. The mJoachims algorithm adds some preferences to
standard Joachims algorithm with the high-ranking links appearing in the left
hand side, for alleviating the penalty. In particular, suppose li is a clicked link,
lj is the next clicked link right after li (that is, none of clicked links exists
between li and lj), and lk is any skipped link ranks between li and lj , then the
preferences derived with mJoachims algorithm are those derived with standard
Joachims algorithm added with the pairs of li <r′ lk (i < k < j). Figure 7 shows
the preference pairs derived using mJoachims algorithm from the clickthrough
of Figure 1. The difference between Joachims and mJaochims algorithm can be
seen by comparing Figure 2 and Figure 7.

14

Preference pairs Preference pairs Preference pairs
arising from l1 arising from l7 arising from l10

l1 <r′ l2 l7 <r′ l2 l10 <r′ l2
l1 <r′ l3 l7 <r′ l3 l10 <r′ l3
l1 <r′ l4 l7 <r′ l4 l10 <r′ l4
l1 <r′ l5 l7 <r′ l5 l10 <r′ l5
l1 <r′ l6 l7 <r′ l6 l10 <r′ l6

l7 <r′ l8 l10 <r′ l8
l7 <r′ l9 l10 <r′ l9

Fig. 7. Preferences derived using mJoachims algorithm

5.4 Experimental Results

The experiment consists of three parts. We first compare the effectiveness of
SpyNB with Joachims and mJoachims algorithm on ranking quality. Secondly,
we analyze the effect of training data size on the performance of algorithms.
Finally, we make some interesting observation on the learned ranking functions.

Evaluation on Ranking Quality In order to evaluate SpyNB algorithm on
ranking quality, we incorporate SpyNB, Joachims and mJoachims algorithms
with ranking SVM, and obtain 3 learned ranking functions. Particularly, we set
the voting threshold of SpyNB (Tv in Algorithm 2) as 50% just by random.
Then we evaluate the ranking functions by using them to rerank the original
clickthrough, and see if the ranking quality can be improved.

We measure ranking quality in terms of the average rank of users’ clicks,
denoted as Ψ . Intuitively, a good ranking function should rank the user desired
links high. Thus, the smaller the value of Ψ , the better the ranking quality. To
show the actual improvement, we define a metric relative average rank of users’
clicks, denoted as Ψr, as the Ψ derived from a personalized ranking function
divided by the Ψ of the original search result. Ψr < 1 indicates that an actual
improvement is achieved.

The results are shown in Figure 8. First, the values of Ψr of SpyNB are
all about 0.8 < 1, which means the ranking function derived with SpyNB can
improve the ranking quality by about 20% for all 3 categories. This result in-
dicates that SpyNB algorithm can effectively discover user’s preferences from
clickthrough data.

Moreover, we find that Joachims algorithm and mJoachims algorithm fail
to achieve actual improvement after reranking the original search results, since
their Ψr values are greater than 1. We explain this finding as because their strong
assumptions do not hold on our empirical clickthrough data. Thus the prefer-
ences identified by the existing algorithms are incorrect. Particularly, mJoachims
algorithm is relatively better than Joachims algorithm, which can be interpreted
that Joachims algorithm is apt to penalize high-ranking links, while mJoachims
algorithm alleviates this penalty. Finally, we can conclude that the preferences

15

Computer Science Social Science Finance
0

0.5

1

1.5

2

2.5

Students from Three Different Departments

R
el

at
iv

e
A

ve
ra

ge
 R

an
k

of
 U

se
r’s

 C
lic

ks

SpyNB
Joachims
mJoachims

Fig. 8. Comparison on Relative Average Rank of Users’ Clicks of three methods

discovered by SpyNB algorithm are much more accurate than those by Joachims
and mJoachims algorithms.

Effect of Varying Data Size In order to study the impact of data set size
on the ranking function optimizer, we randomly select n queries to evaluate our
SpyNB algorithm and the Joachims algorithm, where n is set to 6, 12, 18, 24 and
30. The experimental settings are the same as those described in Section 5.4. We
also compute the Ψr parameter and present the results in Figure 9.

From Figure 9, we can see that when the data size is small, the performance
of SpyNB is not satisfactory (i.e. Ψr > 1). The reason is that when the data
size is too small, the training data is not representative enough for learning an
effective ranking function. When the data size is growing, the performance of
SpyNB is gradually improved, and when the training data szie increase to 30, the
Ψr value decreases to around 0.8, which means that SpyNB can achieve about
20% improvement compared with the original ranking. Moreover, we note that
the performance curves at point of 30 become quite flat, so we suppose the best
performance of SpyNB will converge at some level a bit samller than 0.8. On
the other hand, this result also indicates that the least number of clickthrough
data for training SpyNB is quite small: just 30 training clickthrough can train
an effective SpyNB ranking function optimizer.

Learned Weights of Ranking Functions As detailed in Section 5.2, the
learned ranking function in our experiment is a weight vector comprising 20 com-
ponents. We list the weight vectors learned on the query categories of “Computer
Science”, and “Shopping” in Figure 10 and Figure 11 respectively.

16

5 10 15 20 25 30
0.5

1

1.5

2

R
el

at
iv

e
A

ve
ra

ge
 R

an
k

of
 U

se
rs

’ C
lic

ks

Number of Queries in the Training Set

(a) “Computer Science” category

5 10 15 20 25 30
0.5

1

1.5

2

R
el

at
iv

e
A

ve
ra

ge
 R

an
k

of
 U

se
rs

’ C
lic

ks

Number of Queries in the Training Set

(b) “News” category

5 10 15 20 25 30
0.5

1

1.5

2

R
el

at
iv

e
A

ve
ra

ge
 R

an
k

of
 U

se
rs

’ C
lic

ks

Number of Queries in the Training Set

(c) “Shopping” category

Fig. 9. Relative Average Rank Ψr of SpyNB and Joachims algorithm on varying data
size

Intuitively, the features with high absolute weights have a large impact on the
resulted ranking. In particular, a higher positive (negative) weight indicates that
the links with this feature would be ranked higher (lower) in the combined list.
As we can see, the weight vector of the “Computer Science” category and the
“Shopping” category are quite distinguishable, which clearly indicates that the
underlying search engines have different strengths in terms of topical specialty.

We can also draw some user preference information of the group of users in
our experiment from the learned weight vector. Generally speaking, the numer-
ical Rank Features Rank M , Rank O and Rank W reflect the relative impor-
tance of MSNSearch, Overture and WiseNut respectively. As we can see from
Figure 10 and Figure 11, the values of Rank M are the largest for both the
“Computer Science” and the “Shopping” categories. The value of Rank O is
small for the “Computer Science” category, but large (almost equal to Rank M)
for the “Shopping” category. Moreover, the values of Rank W are relative small
for both categories. These observations indicate that MSNSearch are strong in all

17

Feature Weight Feature Weight

Rank M 1.811 Rank W 1.275

Top M 1 0.566 Top W 1 0.480

Top M 3 -0.003 Top W 3 0.229

Top M 5 0.063 Top W 5 -0.138

Top M 10 -0.021 Top W 10 -0.458

Rank O 0.415 Sim A 0.357

Top O 1 -0.677 Sim T 0.785

Top O 3 0.447 Sim U 0.288

Top O 5 -0.087 Com2 0.186

Top O 10 -0.440 Com3 -0.226

Fig. 10. Learned weight vector of the
“Computer Science” category

Feature Weight Feature Weight

Rank M 1.154 Rank W -0.217

Top M 1 0.108 Top W 1 0.355

Top M 3 0.563 Top W 3 0.362

Top M 5 -0.045 Top W 5 -0.364

Top M 10 -0.757 Top W 10 -1.429

Rank O 1.019 Sim A 0.025

Top O 1 0.718 Sim T 0.520

Top O 3 0.586 Sim U -0.106

Top O 5 0.528 Com2 0.240

Top O 10 -0.864 Com3 0

Fig. 11. Learned weight vector of the
“Shopping” category

the queries in both categories, Overture is particularly good at shopping queries,
and WiseNut does not perform outstandingly in any query category. These con-
clusions are consistent with the common knowledge that MSNSearch is one of
the best general search engines in the world, Overture is an advertising search
engine, and WiseNut is a growing search engine which still needs to perfect itself.

As another interesting observation, we can see that the similarity between
query and title seems to be more important than the similarity between query
and abstract, for the reason that the values of Sim T are larger than those of
Sim A in Figure 10 and Figure 11. This observation can be explained as follows:
the abstracts sometimes are not very informative and the titles usually have
larger influences on users’ relevance judgement than the abstracts. In short,
analysis of the learned weight vector can be useful to understand the users’
preferences and behaviors.

6 Conclusions

In this paper, we first identify some problems of an existing algorithm for dis-
covering user’s preferences from clickthrough data. We then introduce a new
clickthrough interpretation and propose a novel SpyNB algorithm for discover-
ing preferences based on analyzing the texts (titles, abstracts) of clickthrough
data. Furthermore, we present an approach to adapting a search engine’s ranking
function using SpyNB algorithm plus a ranking SVM optimizer.

To evaluate our methods, we conducted controlled experiments, particularly
in a query-specific adaptation context. The experimental results demonstrated
that our method significantly improved the ranking quality in terms of the av-
erage rank of users’ clicks by 20% compared with the original ranking and even
more when compared with existing Joachims algorithm.

There are several directions we are going to study in the future. First, we
would like to test a more sophisticated Spy Näıve Bayes technique by extending
current black-and-white (0 or 1) voting procedure to incorporate continuous

18

probability into vote values. Moreover, we plan to conduct online interactive
experiments to further evaluate our method and also evaluate our method in a
user-specific adaptation context.

References

1. Bartell, B., G.Cottrell, Belew, R.: Automatic combination of multiple ranked
retrieval systemss. In: Proc. of the 17th ACM SIGIR Conference. (1994) 173–181

2. Cohen, W., Shapire, R., Singer, Y.: Learning to order things. Journal of Artifical
Intelligence Research 10 (1999) 243–270

3. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing
web search engines. In: Proc. of AAAI workshop on Internet-Based Information
System. (1996)

4. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. of the
8th ACM SIGKDD Conference. (2002) 133–142

5. Tan, Q., Chai, X., Ng, W., Lee, D.: Applying co-training to clickthrough data for
search engine adaptation. In: Proc. of the 9th DASFAA conference. (2004) 519–532

6. Li, X., Liu, B.: Learning to classify text using positive and unlabeled data. In:
Proc. of 8th International Joint Conference on Artificial Intelligence. (2003)

7. Liu, B., Dai, Y., Li, X., Lee, W.S.: Building text classifiers using positive and
unlabeled examples. In: Proc. of the 3rd International Conference on Data Mining.
(2003)

8. Liu, B., Lee, W.S., Yu, P., Li, X.: Partially supervised classification of text docu-
ments. In: Proc. of the 19th International Conference on Machine Learning. (2002)

9. Yu, H., Han, J., Chang, K.: PEBL: Positive example based learning for web page
classification using svm. In: Proc. of the 8th ACM SIGKDD Conference. (2002)

10. Mitchell, T.: Machine Learning. McGraw Hill, Inc. (1997)
11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-wesley-

Longman, Harlow, UK (1999)
12. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text

classification. In: Proc. of AAAI/ICML-98 Workshop on Learning for Text Cate-
gorization. (1998) 41–48

13. Hoffgen, K., Simon, H., Horn, K.V.: Robust trainability of single neurons. Journal
of Computer and System Sciences 50 (1995) 114–125

14. Joachims, T.: Making large-scale SVM learning practical. In: B. Scholkoph et al.,
editor, Advances in Kernel Methods – Support Vector Learning, MIT Press (1999)
http://svmlight.joachims.org/.

15. Joachims, T.: Evaluating retrieval performance using clickthrough data. In: Proc.
of the SIGIR Workshop on Mathematical/Formal Methods in Information Re-
trieval. (2002)

