
MQX: Multi-Query Processing Engine for Compressed
XML Data

Xiaoling Wang, Aoying Zhou, Juzhen He
Department of Computer Science and Engineering

Fudan University
China, 200433

wxling@fudan.edu.cn

Wilfred Ng
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

HongKong
wilfred@cse.ust.hk

ABSTRACT
In this demonstration, we present an XML query engine MQX,
which is developed for processing multiple subscribed XPath
queries over compressed XML documents. MQX is equipped with
efficient mechanisms for query rewriting, query organization and
query optimization. To our knowledge, this is the first prototype
to address the problem of efficiently processing multiple XML
queries in a co-operative framework based on efficient XML-
conscious compression technique. To demonstrate the novel
features of MQX, we build a co-operative network and implement
a content-based subscription system. The most distinguishing
feature of our prototype is that multi-query over compressed
XML data can be processed as a whole, resulting in faster data
dissemination. Another important feature is that the engine
reduces the bandwidth consumption greatly compared to the
traditional XML query engines SAXON.

1. INTRODUCTION
In this demonstration, we present a prototype called MQX

which is capable of processing multiple subscribed XPath query
over compressed XML data.

First, unlike relational data and distributed SQL, XML data
has a complex structure in which the XPath query may consist of
double slash (“//”), wildcard (“*”) and branch prediction (“[]”),
which is fundamentally different from SQL expressions.

Second, XML data are verbose due to their repeated tags and
structures. Most XML documents are compressed in order to
reduce the storage size on the server and during publication.
Previous work has studied the techniques for efficient evaluation
path expressions on original XML document [3] or single-query
processing on compressed data [2,5] based on the different XML
compression methods. However, it is still not clear how to exploit
the existing XML compression techniques to enhance XML
subscribe/dissemination applications [4]. It is not uncommon to
have the network jam-packed when the workload of the server is
heavy. Compressing documents is promising to alleviate the
problem of heavy loading in these applications.

Therefore, the problem motivates us to develop MQX, which
provides valuable strategies to disseminate compressed results to
clients over the network. The system is able to execute users’
subscribed queries over compressed XML data stored in the
server.

The remaining part of this paper is organized as follows. We
briefly explain the architecture of MQX in Section 2. In Section 3
we discuss the research underlying MQX. Finally, Section 4
presents a demonstration plan.

2. THE CO-OPERATIVE NETWORK
To demonstrate the features of MQX, we build a co-

operative network and implement a content-based subscription
system. Assume that there are some co-operation relationships
among clients where the server keeps a large number of
compressed XML documents, and clients request to obtain
information or news from the server in a cooperative way, i.e.,
each client can send results to others. To prevent the server from
becoming a bottleneck, we adopt a distributed approach where all
clients participate in the dissemination process.

The procedure is described in the following steps.

1. The XML documents compressed by an interval
encoding technique [2] and dictionary encoder. The compressed
documents are stored in the server.

2. The clients subscribe XPath queries to server.

3. The server rewrites each subscribed XPath query into
query units which can be evaluated directly over the compressed
documents and reorganizes these units together. By analyzing the
containment relationship among queries, the submitted queries are
organized into a novel Structural-Query-Index Tree (SQIT)[1]
which supports path sharing in multi-query processing. The
results of query can be located in the compressed document by
using the query index. SQIT will be detailed in Section 4.

5. After query evaluation, the server sends the result
fragments and corresponding sub-tree extracted from SQIT to its
first-level children clients according to the SQIT.

6. Each client Ci receives a result fragment <Fi, Si>,
where Si is used as the sub-index to help Ci to obtain results for
its children from the fragment of Fi. The location of results for
each child query has been recorded in the sub-index Si, thus Ci
can locate them directly and sends new result fragments and
related sub-index to corresponding clients.

7. This procedure halts when all leaf clients of SQIT
receive their query results.

3. MQX ENGINE
Figure 1 illustrates the structure of MQX engine, which consists
of four main components described below.

The first one is the XML Compression Tool (abbreviated to
XCT) component, which facilitates data compression and storage.

The second one is the multi-query processor, called MQEngine.
The MQEngine is the kernel of our system, which supports query

rewriting, multi-query organization and optimization. Each query
is rewritten into the processing units and organized into SQIT[1].

The third component is the Dissemination Manager (DM)
which sends the results to specific clients in the first-level of
SQIT. The server delivers the compressed XML fragments to
clients with query nodes as child of root in the SQIT. Then, each
client sends the related results contained in its fragment to its
children nodes in SQIT.

The fourth component is the interface unit for the clients, which
provides a user-friendly interface to show the structure of the
SQIT and the result of the current node.

Query
Collection

MQ Engine
(MQE)

Dissemination
Manager

(DM)

XML
Compression Tool

(XCT)

XML document

GUI

DMGUI

DM

GUI

DM

Query
Submission

Server

ClientA

ClientB

ClientC

Figure 1 A Simplifed Architecture of MQX

4. DEMOSTRATION PLAN
In this demonstration, we plan to set up a network with at least
four laptops to illustrate the MQX applications. One acts as server,
other three are clients. In order to simulate the real-life scenario,
we also build another experimental network that simulates
thousands of (virtual) clients, which interact with the server and
laptops via a load of subscribed queries.

We demonstrate our system using the XMark dataset [7] and
NITF (new industry text format) dataset [6]. XMark contains
about 40 original queries. The queries for NITF are created by
YFilter path generator, where the size of XML document ranges
from 1KB to 50MB. We have four specific objectives as follows.

1. We show the efficiency of this co-operative
environment, where no decompression is involved in query
processing.

2. We present the dissemination process and clarify how
MQX distributes the computation for query processing and how
the computation load of the server is reduced.

3. We show the efficiency of the MQEngine by comparing
it with SAXON [8]. We compare the query processing time

between MQEngine and SAXON by testing complex XPath
queries over the XMark documents with size ranging from 1MB
to 10MB. The performance of our approach is shown in Figure 2.
Our approach outperforms SAXON when the document size
increases.

0
30
60
90

120
150

1 2 3 4 5 6 7
Size of Doc (MB)

Pr
oc

es
si

ng
 T

im
e

(s
)

Saxon MQX

Figure 2 SQIT vs. SAXON

4. We demonstrate the benefit of bandwidth consumption
reduction by comparing the XML fragment results between our
approach and common processing strategies which return original
XML fragments. As Figure 3 shows, the gain of bandwidth
consumption reduction is very large, which proves that our
approach saves the bandwidth significantly.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10
Size of Original Doc (MB)

Si
ze

 o
f R

es
ul

t (
M

B
)

Saxon MQX

Figure 3 Benefits of Result Size

5. REFERENCES
[1] J. He, W. Ng, X. Wang and A. Zhou. An Efficient Co-

operative Framework for Multi-Query Processing over
Compressed XML Data. International Conference of
Database Systems for Advanced Applications. DASFAA
2006

[2] J. Min, M. Park, Chin-Wan Chung. XPRESS: A Queriable
Compression for XML Data. In Proc. Of ACM SIGMOD,
2003

[3] X. Dong, A.Y. Halevy, I. Tatarinov. Containment of Nested
XML Queries, In Proc. of the 30th VLDB, 2004

[4] Y. Diao, S. Rizvi, M. J. Franklin. Towards an Internet-Scale
XML Dissemination Service. In Proc. of the 30th VLDB,
2004

[5] P. Buneman, M. Grohe, C. Koch. Path Queries on
Compressed XML. In Proc. of the 29th VLDB, 2003

[6] NITF. http://www.nitf.org/index.php

[7] XMark benchmark. http://www.xml-benchmark.org/

[8] SAXON. http://saxon.sourceforge.net

