
Discovering Significant Relaxed Order-Preserving
Submatrices

Qiong Fang Wilfred Ng
Department of Computer Science and

Engineering
Hong Kong University of Science and

Technology
Hong Kong, China

{fang,wilfred}@cse.ust.hk

Jianlin Feng
School of Software

Sun Yat-Sen University
Guangzhou, China

fengjlin@mail.sysu.edu.cn

ABSTRACT
Mining order-preserving submatrix (OPSM) patterns has re-
ceived much attention from researchers, since in many sci-
entific applications, such as those involving gene expression
data, it is natural to express the data in a matrix and also
important to find the order-preserving submatrix patterns.
However, most current work assumes the noise-free OPSM
model and thus is not practical in many real situations when
sample contamination exists.

In this paper, we propose a relaxed OPSM model called
ROPSM. The ROPSM model supports mining more rea-
sonable noise-corrupted OPSM patterns than another well-
known model called AOPC (approximate order-preserving
cluster). While OPSM mining is known to be an NP-hard
problem, mining ROPSM patterns is even a harder prob-
lem. We propose a novel method called OPSM-Growth to
mine ROPSM patterns. Specifically, two pattern growing
strategies, such as column-centric strategy and row-centric
strategy, are presented, which are effective to grow the seed
OPSMs into significant ROPSMs. An effective median-rank
based method is also developed to discover the underlying
true order of conditions involved in an ROPSM pattern. Our
experiments on a biological dataset show that the ROPSM
model better captures the characteristics of noise in gene
expression data matrix compared to the AOPC model. Im-
portantly, we find that our approach is able to detect more
quality biologically significant patterns with comparable ef-
ficiency with the counterparts of AOPC. Specifically, at least
26.6% (75 out of 282) of the patterns mined by our approach
are strongly associated with more than 10 gene categories
(high biological significance), which is 3 times better than
that obtained from using the AOPC approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

General Terms
Algorithm, Experimentation, Performance

Keywords
biclustering, order-preserving submatrices, backbone order,
relaxed order-preserving submatrics

1. INTRODUCTION
The advent of DNA microarray technologies has greatly

advanced the studies of gene expression. Gene expression
data are usually arranged in a matrix, with each row cor-
responding to one gene, each column to one condition, and
each entry in the matrix representing the expression level of
a gene under a specific condition. In the area of gene expres-
sion analysis, an important research problem is to discover
submatrix patterns in the gene expression matrix. We follow
the convention in [3] and call this problem biclustering and
the discovered patterns biclusters. A bicluster consists of a
set of genes that have similar expression levels under a set of
conditions. Based on different similarity functions, different
bicluster models can be formulated. One typical example
is the order-preserving submatrix model (or the OPSM for
short), proposed by Ben-Dor et al. [1].

Table 1: An example of order-preserving submatrix
````````Genes

Conds
t1 t2 t3 t4 t5

g1 7 13 16 2 30
g2 9 16 23 6 0
g3 4 6 8 3 5
g4 8 6 2 13 5

An order-preserving submatrix consists of a subset of genes
and a subset of experimental conditions such that the ex-
pression levels of every gene induce the same linear order
of the conditions. This linear order of the conditions repre-
sents the consensus trend that the expression levels of all the
genes in the subset follow. Considering the gene-condition
matrix shown in Table 1, there is a submatrix (P,Q) with
P = {g1, g2, g3} and Q = {t1, t2, t3, t4}, as highlighted in
bold font. For any gene gi in P , we order its expression
levels under conditions in Q in ascending order and then re-
place the values by their corresponding condition labels. We
find that all the genes in P induce an identical linear order
on Q, i.e., [t4 � t1 � t2 � t3]. Thus, the submatrix (P,Q)
is an order-preserving submatrix.



While it has been shown in extensive research work that
the adoption of the OPSM model promotes the detection of
important biological associations in gene expression analysis
[1, 12, 8, 7, 10], researchers also find that it may not be
realistic to assume that, as required by the OPSM model,
all the rows in the submatrix induce the same linear orders
in applications. The reason is that, due to the instrumental
limitations or measurement errors, it is inevitable that the
data in gene expression matrix are corrupted by noise [1, 12].
In this case, the strict OPSM model prohibits the discovery
of larger (usually more significant) but noise-contaminated
OPSMs. Therefore, it is necessary to relax the strict OPSM
model in order to allow more significant order-preserving
submatrices to be discovered.

Recently, Zhang et al. [12] proposed a relaxation to the
OPSM model with the general idea as follows: a pre-specified
fraction of rows in the bicluster are required to induce the
same linear order of columns, and this linear order is called
the core order of the bicluster, while every other row is only
required to induce a similar order with the core order. Such
a bicluster is called an approximate order preserving cluster
(or AOPC for short). The core order is used to capture the
consensus trend that all the rows in the AOPC follow. This
relaxation has enabled the discovery of more biologically sig-
nificant biclusters.

In this paper, we propose a new bicluster model as follows.
We assume there exactly exists a backbone order associated
with a bicluster and require that all the rows in the biclus-
ter be similar enough to the backbone order. In contrast
to the AOPC model, our model removes the fraction re-
quirement that a pre-specified fraction of the rows involved
in an AOPC are required to induce exactly the same or-
der. In fact, our relaxation is motivated by the observation
that two valid AOPCs can be merged into a bigger bicluster
which is biologically more significant, yet the bigger biclus-
ter is not a valid AOPC pattern because it fails to satisfy
the fraction requirement, as demonstrated by the example in
Section 2.3. We call the proposed model the relaxed order-
preserving submatrix (ROPSM for short). Our empirical
studies show that our ROPSM model is more effective in
finding significant biclusters including many that are missed
by the AOPC model.

As it is already known that mining strict OPSMs is an NP-
hard problem [1], mining ROPSMs, which is a more general
problem, is even more difficult to resolve. There are also
other challenges as follows. First, the OPSMs patterns hold
some nice properties like anti-monotonicity, which can re-
duce the search space when the OPSMs are mined. However
such a property is no longer held by ROPSM patterns. Sec-
ond, due to the presence of noise, it is very difficult to iden-
tify the backbone order of the ROPSM patterns. The AOPC
mining method assumes that the core order of an AOPC pat-
tern is maintained by a fraction of rows, and is passed on
through the merging process. However, this method cannot
be used for mining ROPSM patterns, since we cannot expect
that any one of the rows in the ROPSM should retain the
backbone order of the pattern. Thus, we adopt a new strat-
egy for mining ROPSM patterns, which takes seed patterns
as input and expands them until maximal ROPSM patterns
are reached.

In summary, the main contributions of this paper are as
follows.

1. We propose a new relaxation model, called ROPSM,

to lift the restriction of the OPSM model. We demon-
strate that our model is effective to capture the char-
acteristics of noisy OPSM patterns, and to detect sig-
nificant patterns from real biological data.

2. We propose an ROPSM mining method, which starts
with OPSM patterns, and adopts efficient strategies to
expand those OPSM patterns into maximal ROPSM
patterns. A median-rank based method is also pro-
posed to identify the backbone order of the ROPSM
patterns.

3. Extensive empirical studies have been conducted us-
ing real biological data sets. The experiment results
show that our method significantly outperforms exist-
ing work as evidenced by the fact that more biologi-
cally significant patterns can be discovered.

The organization of the rest of this paper is as follows. In
Section 2, we first introduce some notations that are used
throughout the paper, and then propose our new ROPSM
model. Following that, a comparison with an existing noisy
OPSM model is presented. In Section 3, an ROPSM mining
method is introduced. Experiments on real gene expression
datasets are presented in Section 4. In Section 5, related
works are discussed. Finally, we conclude the paper in Sec-
tion 6.

2. THE ROPSM MODEL
In this section, we first introduce some notations that are

used throughout the paper. Then, we give formal defini-
tions of our ROPSM model. A comparison with another
relaxed OPSM model is also presented to further illustrate
the modeling capabilities of ROPSM.

2.1 Basic Notations
We denote a gene expression matrix with n genes and

m conditions as M(G,T ), where the gene set is given by
G = {g1, . . . , gn} and the condition set is given by T =
{t1, . . . , tm}. Given P ⊆ G and Q ⊆ T , M ′(P,Q) is called
a submatrix of M(G,T ). We may use a lighter notation
(P,Q) in subsequent discussion to mean M ′(P,Q) whenever
no ambiguity arises.

Given a gene gi ∈ G and a set of conditions Q, we order
gi’s expression values under conditions in Q in ascending
order and then replace the values by their corresponding
condition labels. The resultant linear order of condition la-
bels in Q, denoted as o

(gi)
Q , is called the induced order of gi

on Q, e.g., o
(g1)
Q = [t4 � t1 � t2 � t3] in Table 1. We denote

by O(P,Q) the set of all o
(gi)
Q for gi ∈ P and call O(P,Q) the

induced order set of the submatrix (P,Q). In particular, if
all the orders in O(P,Q) are identical, we call the submatrix
(P,Q) an order-preserving submatrix of M . For example,
the submatrix ({g1, g2, g3}, {t1, t2, t3, t4}) is an OPSM pat-
tern of the matrix shown in Table 1.

2.2 The Model
In this subsection, we define our ROPSM model, which

tries to capture the characteristics of noisy OPSM patterns.
We adopt a similarity function defined based on the con-

cept of longest common subsequence (or simply LCS), and
the similarity function is formally defined as follows.



Definition 2.1. the LCS similarity. Given two orders
o1 and o2, the LCS similarity between o1 and o2, denoted as
dLCS(o1, o2), is defined as

dLCS(o1, o2) =
|LCS(o1, o2)|
|T (o1) ∪ T (o2)| ,

where |LCS(o1, o2)| is the length of the longest common sub-
sequence between o1 and o2, and T (oi) is the set of items
involved in oi.

For example, given two orders o1 = [t1 � t2 � t3 � t4] and
o2 = [t2 � t1 � t3 � t4], the longest common subsequences
between o1 and o2 are [t1 � t3 � t4] and [t2 � t3 � t4],
both of which have the length of 3. Therefore, the LCS
similarity between o1 and o2 is 3

4
. The LCS similarity and

its variants are widely used in molecular biology [2], and can
be computed by using dynamic programming in O(n2) time.

We now define our relaxed OPSM model, called ROPSM,
as follows.

Definition 2.2. Relaxed Order-Preserving SubMa-
trix (ROPSM). Given a similarity threshold α, a subma-
trix (P,Q) is an ROPSM if there exists a linear order τQ of
Q such that the LCS similarity between τQ and the induced
order of every row in P is larger than or equal to α. The
linear order τQ is called the backbone order of the ROPSM
(P,Q).

Since an ROPSM (P,Q) is always associated with a back-
bone order τQ, we also denote the ROPSM as (P,Q : τQ).
Consider the matrix shown in Table 1 again. Suppose that
the entry (g2, t4) in the matrix is corrupted and its value
changes from 6 to 10, and assume that the similarity thresh-
old α is set to be 0.75. Although the submatrix ({g1, g2, g3},
{t1, t2, t3, t4}) is not an OPSM, it is an ROPSM satisfying
α, with [t4 � t1 � t2 � t3] as the backbone order. Note that
OPSM is a special case of ROPSM, i.e., ROPSM satisfying
the threshold α = 1.

An ROPSM (P,Q : τQ) is said to be maximal if there does
not exist any other ROPSM (P ′, Q′ : τQ′) such that P ⊆ P ′,
Q ⊆ Q′, and τQ is a subsequence of τQ′ .

Having defined the ROPSM model, we then formulate the
ROPSM mining problem as follows:

Definition 2.3. ROPSM mining problem. Given a
data matrix M and a similarity threshold α, the goal is to
mine from M the maximal ROPSMs that satisfy the thresh-
old α.

2.3 Comparison with the AOPC Model
The AOPC model was proposed in [12]. A submatrix

(P,Q) is called an AOPC if the following two requirements
are satisfied. First, at least σs · |P | rows induce an identical
linear order of Q. This order is called the core order of
the AOPC and is denoted as πQ. Second, the linear orders
induced from the other (1 − σs) · |P | rows share with πQ
a longest common subsequence with the length of at least
σc ∗ |Q|.

While both the ROPSM model and the AOPC model
adopt a similarity threshold, i.e., α and σc, to restrict the
amount of noise existing in the pattern, our ROPSM model
does not assume the core order and removes the first require-
ment of the AOPC model. Such relaxation is not trivial,
in the sense that more significant biclusters, which are not

Table 2: Significance comparison of AOPCs
AOPC M ′1 AOPC M ′2 Merged
(P1, Q1) (P2, Q2) M ′(P, Q)

Number of columns 7 7 7
Number of rows

121(30) 98 (30) 159 (30)
(Number of main rows)

Number of strongly
12 8 15

associated categories

The smallest p-value 10−20 10−15 10−24

discovered based on the AOPC model, now becomes valid
ROPSMs. This point was testified in our experiments, and
can be seen in the following example illustrated in Table 2.

Since the similar dataset is used, we implement the AOPC
mining method and mine the AOPCs by setting σs and σc
the same values as used in [12], i.e., σs = 0.2 and σc =
0.6. Among the set of AOPCs that are generated, there
are two AOPCs, respectively denoted as M ′1(P1, Q1) and
M ′2(P2, Q2), whose information is listed in Table 2. These
two AOPCs contain the same set of columns, i.e., Q1 =
Q2, and the core orders of the two AOPCs, i.e., πQ1 and
πQ2 , are also the same. In AOPC M ′1, 30 out of 121 rows
induce identical orders as the core order, while 30 out of 98
rows in AOPC M ′2 induce identical orders as the core order.
We call this portion of rows maintaining rows (main rows
for short). Then, we try to merge these two AOPCs into
a bigger submatrix, denoted as M ′(P,Q), such that P =
P1 ∪ P2 and Q = Q1 ∪ Q2. The merged submatrix M ′

contains 7 columns with the same core order as πQ1 and
πQ2 , and 159 rows with 30 maintaining rows. M ′ is not a
valid AOPC because the fraction of maintaining rows, i.e.,
30/159, is smaller than the pre-specified threshold σs = 0.2.
However, when we check the biological significance of the
two AOPCs and the merged submatrix M ′ using the widely-
used p-value measure [10, 6], the two AOPCs have 12 and
8 strongly associated gene categories (with p-value ≤ 10−9

[12]) respectively, and have the smallest p-value of 10−20

and 10−15 with their most strongly associated categories. In
contrast, the biological significance of the merged submatrix
M ′ is strongly associated with 15 categories and has the
smallest p-value of 10−24 with the most strongly associated
category, which means that the merged submatrix is more
biologically significant than the two AOPCs.1

Under the ROPSM model, the merged submatrix M ′ is
an ROPSM pattern that satisfies the similarity threshold
α = 0.6, although it is not a valid AOPC.

3. THE OPSM-GROWTH ALGORITHM
In this section, we propose an efficient algorithm called

OPSM-Growth for mining ROPSM patterns.
Notably, given a data matrixM(G,T ), for a set of columns

Q with Q ⊆ T and a linear order τQ, we can simply check
every row in G to see if it supports τQ or not. A row in G
is said to support τQ if its induced order on Q has the LCS
similarity with τQ no smaller than α. Let P be the set of
rows that supports τQ. We can see that P can be determin-
istically identified and that (P,Q) is an ROPSM with the
backbone order τQ. Thus, it appears that a straightforward
way of mining ROPSM patterns is to exhaustively search all
possible linear orders of combinations of columns in T . How-
ever, as discussed in [1], the cost of such an exhaustive search

1Detailed information about this example is available at
http://www.cse.ust.hk/~fang/aopc-example.html.



is prohibitively expensive and is infeasible when the number
of columns in T is larger than or equal to 4. On the other
hand, we should avoid searching some linear orders which
may finally lead to insignificant patterns. While we aim to
discover patterns that show strong biological significance, a
consensus is that, considering the size of the patterns, for a
fixed number of columns (or rows), a larger number of rows
(or columns) usually leads to more significance [7]. There-
fore, when mining ROPSM patterns, we focus on searching
some linear orders that likely lead to patterns with larger
size.

The backbone orders of OPSM patterns are good candi-
dates for such linear orders. Given an OPSM (P,Q : τQ)
and the similarity threshold α, we can always expand the
OPSM by ( 1

α
− 1)|Q| columns, denoted as the column set

∆Q, and get a submatrix (P,Q ∪∆Q). We then get a lin-
ear order of (Q ∪ ∆Q), denoted as τQ∪∆Q, such that τQ
is a subsequence of τQ∪∆Q. Since the induced order of ev-
ery row in the submatrix (P,Q ∪∆Q) shares with τQ∪∆Q a
longest common subsequence with the length of at least |Q|,
the LCS similarity between them is at least α. Therefore,
the submatix (P,Q∪∆Q) is an ROPSM with τQ∪∆Q as the
backbone order.

On the other hand, intuitively, a significant ROPSM very
likely contains at least one order-preserving submatrix. Con-
sidering a noise-contaminated data matrix, it is reasonable
to assume the probability that an entry in the matrix is
corrupted by noise is less than 50%. Otherwise, we can-
not distinguish whether the mined patterns really show the
association among the involved genes or they are simply
formed because of noise. Moreover, noise does not always
affect the formation of OPSM patterns. For example, in
Table 1, even if the entry (g2, t4) changes to 7 due to some
noise, the induced order of row g2 on {t1, t2, t3, t4} remains
the same, i.e., [t4 � t1 � t2 � t3]. Thus, the submatrix
({g1, g2, g3}, {t1, t2, t3, t4}) is still an OPSM pattern. There-
fore, only the noise that causes the entries of the matrix
deviating from respecting the original induced order of the
corresponding row may finally affect the discovery of OPSM
patterns. The probability that such noise exists, however,
should be even smaller. Thus, it is reasonable to assume
that a significant ROPSM pattern may still contain a non-
contaminated order-preserving submatrix.

Motivated by the above ideas, we propose an ROPSM
mining method as follows: we first mine a set of OPSMs
that satisfy some size thresholds; then we take those OPSMs
as seeds and expand them until maximal ROPSMs patterns
are reached.

3.1 Mining Seed OPSMs
We adopt an existing OPSM mining method, called the

OPC-Tree [8], to mine seed OPSMs. The OPC-Tree method
was proposed to exhaustively mine all OPSMs that satisfy
two size thresholds rmin and cmin, which means that the
OPSMs contain at least rmin rows and at least cmin columns.
The general idea of the OPC-Tree method is that, for ev-
ery induced linear order of columns, its subsequences that
may lead to a valid OPSM are enumerated and organized
in a compact prefix-sharing tree structure. Then, the size
thresholds are used to further prune the tree. Finally, a lin-
ear scan over the tree is conducted to output all OPSMs
that satisfy the thresholds.

Here, we adapt this method to mining all maximal OPSMs

that satisfy the two size thresholds rmin and cmin. Note
that, although our ROPSM mining method also takes OPSMs
as an input, which seems to be similar to the AOPC mining
method, the resultant ROPSMs mined by our method are
hardly influenced by the settings of the thresholds rmin and
cmin, which however have a big effect on the performance of
the AOPC mining method.

The AOPC mining method takes the set of OPSMs as an
input, and merges all possible pairs of OPSMs that may re-
sult in a valid AOPC pattern. Therefore, those rows that
appear in some final AOPC patterns should definitely ap-
pear in some initial OPSMs. However, it may happen that
the setting of the thresholds rmin and cmin exclude the dis-
covery of some OPSM patterns, which contain correlated
rows to a certain significant AOPC pattern. These rows
will fail to appear in the AOPC pattern as the final result.
To avoid missing promising rows of significant patterns, we
search for ROPSMs by expansion with the remaining part
of the matrix being probed in an efficient way.

3.2 OPSM-Growth
In this subsection, we introduce the OPSM-Growth algo-

rithm, which grows the seed OPSMs into ROPSM patterns.
Given an ROPSM (initially an OPSM), the OPSM-Growth
algorithm can expand it column wise and row wise. We re-
spectively implement the columm-wise and row-wise expan-
sion as Col-Expand and Row-Expand procedures. The Col-
Expand procedure always takes the best column (in terms of
some criterion) to expand the current ROPSM (or OPSM)
pattern. The Row-Expand procedure simply scans the re-
maining rows that are not included in the current pattern,
and expand the pattern by those rows which have high enough
LCS similarity with its backbone order. When the current
pattern is expanded by a new column, the backbone order
of the pattern needs to be updated accordingly, while the
backbone order does not change during row-wise expansion.

We can grow an OPSM pattern by calling the Col-Expand
and Row-Expand procedures in different order, which leads
to different pattern growing strategies. Also, different meth-
ods can be adopted to update the backbone order during
column-wise expansion. Next, we introduce the techniques
adopted by OPSM-Growth algorithm that handles pattern
growing and backbone order updating.

3.2.1 Pattern Growing Strategies
Combining the Col-Expand and Row-Expand procedures

in different order leads to different pattern growing strate-
gies. Here we discuss two representative strategies: column-
centric strategy and row-centric strategy.

a. Column-centric Strategy
The basic idea of the column-centric strategy is that
the seed OPSM pattern is repetitively expanded col-
umn wise by calling Col-Expand until no more columns
can be added. Then, the Row-Expand procedure is
called for one time in order to guarantee that all the
rows that are similar with the backbone order of the
current pattern are included. The column-centric strat-
egy can be demonstrated as follows:

(P,Q)
Col-Expand
=====⇒ (P,Q∪∆Q)

Row-Expand
======⇒ (P∪∆P,Q∪∆Q),

where (P,Q) is an initial seed OPSM.



We can see that the seed OPSM pattern (P,Q) is part
of the resultant ROPSM pattern it grows into. Thus,
the rows in P should definitely support the backbone
order of the resultant ROPSM. Therefore, it is reliable
to identify the column set as well as the backbone order
of the resultant ROPSM based on the rows of the seed
OPSM, which is the motivation of the column-centric
strategy.

b. Row-centric Strategy
While the column-centric strategy postpones the row-
wise expansion until the last minute, the row-centric
strategy calls the Row-Expand procedure whenever there
are new rows that can be taken to expand the current
pattern. The basic idea of the row-centric strategy is
that, every time the current pattern is updated by a
new column (note that the backbone order should also
be updated accordingly), we compute the LCS similar-
ity between every row in the pattern and the updated
backbone order, and denote the smallest LCS simi-
larity as µ∗. Then, Row-Expand expands the current
pattern with those rows that have the LCS similarity
with the updated backbone order no less than µ∗. Sim-
ilarly, the row-centric expansion can be demonstrated
as follows:

(P,Q)
Col-Expand
=====⇒ (P,Q ∪ {t1})

Row-Expand
======⇒ (P ∪∆P1, Q ∪ {t1})

Col-Expand
=====⇒ · · · Row-Expand

======⇒ (P ∪∆P,Q ∪∆Q)

We can see that the threshold µ∗ used for row-wise
expansion decreases over iterations as the pattern be-
comes larger. Intuitively, the resultant ROPSM pat-
tern is approached by gradually relaxing the noise-
controlling criterion as the size of the pattern becomes
larger. When the size of the pattern is small, less noise
should be allowed. As the pattern grows larger, more
noise will be tolerated.

Note that both the column-centric strategy and the row-
centric strategy guarantee that the resultant ROPSMs are
maximal.

3.2.2 Backbone Order Updating
In the OPSM-Growth algorithm, when a new column is

taken to expand the current pattern, the backbone order
of the current pattern should be updated accordingly. We
propose a median-rank based method for updating the back-
bone order, and call the method MedRank Updating.

The concept of median rank is effective for reducing the
effect of noise on rankings, which is adopted in [4, 5] for
producing the consensus (linear or bucket) order of a set of
permutations. We define a median-rank based score, called
MedScore (denoted as Sm), and determine the backbone or-
der of a pattern according to the MedScores of its columns.
The definition of MedScore is as follows.

Definition 3.1. Median Rank Based Score (MedScore)
Given an input matrix M(G,T ), and an ROPSM pattern
(P,Q), the MedScore of a column t ∈ Q, denoted as Sm(t),
is computed as:

Sm(t) = median{. . . , r(o(gi)
T , t), . . . |gi ∈ P},

where o
(gi)
T is the induced order of row gi on the column set

T , r(o
(gi)
T , t) is the rank of column t in o

(gi)
T , and the function

median() returns the median value of the set of ranks.

We use the following example to further illustrate the
computation of MedScore. Suppose there is an input ma-
trix (G,T ) with G = {g1, . . . , g5} and T = {t1, . . . , t6}, and
its induced order set is listed in the second column of Ta-
ble 3. Given a pattern (P,Q) with P = {g1, g2, g3, g4} and
Q = {t1, t2, t3, t4}, we compute the MedScore of column t2

based on (P,Q). We first get t2’s ranks in order o
(g1)
T , o

(g2)
T ,

o
(g3)
T , and o

(g4)
T , which respectively are 2, 2, 4, and 3; then

the MedScore of t2, i.e., Sm(t2), is the median of the four
ranks which is 2.5. The function median() returns the aver-
age of the two median ranks when the number of ranks are
even.

Table 3: Illustration of MedScore computation
Induced orders on T Induced orders on Q

g1 [t1 � t2 � t5 � t6 � t3 � t4] [t1 � t2 � t3 � t4]
g2 [t1 � t2 � t6 � t5 � t3 � t4] [t1 � t2 � t3 � t4]
g3 [t1 � t6 � t3 � t2 � t5 � t4] [t1 � t3 � t2 � t4]
g4 [t1 � t3 � t2 � t6 � t5 � t4] [t1 � t3 � t2 � t4]
g5 [t6 � t2 � t4 � t3 � t5 � t1] [t4 � t3 � t2 � t1]

Having computed the MedScores of all the columns in Q,
the columns are ordered in increasing order of their Med-
Score, and the resultant order of the columns is the MedRank
backbone order of the above pattern (P,Q). For exam-
ple, the MedRank backbone order of the pattern (P,Q) is
[t1(1) � t2(2.5) � t3(4) � t4(6)], where the number in the
bracket is the MedScore of the column. (P,Q) is an ROPSM
pattern satisfying α = 0.75. We expect that the MedRank
backbone order could well tolerate the influence of noise and
express the underlying true order of the columns in the pat-
tern.

Note that, the MedScore of columns are computed based
on their ranks in the induced orders on T instead of the ranks
in the induced orders on Q. In this way, the gaps between
the ranks of columns in the induced orders on T can be
kept, so that the ordering relationship among columns may
be more distinguishable.

Let us consider the example in Table 3 again. The ranks
of column t3 in the induced orders on T are respectively
5, 5, 3, 2, and thus its MedScore is Sm(t3) = 4. Since
Sm(t2) is smaller than Sm(t3), t2 is ranked higher than t3
in the MedRank backbone order. The ordering relationship
between t2 and t3 in the backbone order intuitively well
respects the truth that t2 has high ranks in the majority of
the induced orders of (G,T ) while t3 gets comparatively low
ranks. However, when we check the ranks of t2 and t3 in the
induced orders on Q as listed in the third column of Table 3,
both t2 and t3 have ranks of 2, 2, 3, 3 and thus they have the
same median rank of 2.5. The ordering relationship between
t2 and t3 cannot be determined in this way.

In addition to the advantage that computing the MedScore
using the ranks in induced orders on T can better keep the
ordering relationship between columns, another benefit of
computing MedScore in this way is that, those ranks are
fixed throughout the expansion process. Thus, an inverted
index can be built for fetching the ranks of items efficiently.

Algorithm 1 shows the details of the MedRank-Updating
method. Given an ROPSM (P,Q : τQ) and a new column



Algorithm 1: MedRank-Updating

Input: ROPSM (P,Q : τQ) with τQ = [t1 � · · · � t|Q|];
column t to be expanded

Output: τQ∪{t} - the MedRank backbone order of
(P,Q ∪ {t})

Variable: O(P,T ) - induced orders from (P, T )

1. V(P,T )(t) = {ranks of t in oi with oi ∈ O(P,T )};
2. Sm(t) equals to the median of ranks in V(P,T )(t);
3. τQ∪{t} = [t1 � · · · � tk � t � tk+1 · · · � t|Q|] such that

Sm(ti) ≤ Sm(t) with 1 ≤ i ≤ k and Sm(ti) > Sm(t) with
k + 1 ≤ i ≤ |Q|;

Algorithm 2: ROW-MED-Growth

Input: a set U of OPSMs; the similarity threshold α
Output: a set V of ROPSMs
Variable: µ∗ - current smallest LCS similarity

1. for (P,Q : τQ) ∈ U do
2. if (P,Q) is a submatrix of an ROPSM in V then
3. discard (P,Q : τQ);
4. else
5. while Col-Expand((P,Q : τQ), α, µ∗) = succeed

do
6. Row-Expand((P,Q : τQ), µ∗);
7. end

8. end

9. end
10. Add (P,Q : τQ) to V ;

t, the MedScore of t, i.e., Sm(t) is firstly computed (Lines
1 and 2). Then, the column t is inserted into τQ such that
the MedScores of all the columns before t are no larger than
Sm(t) (Line 3).

Time Complexity. The time complexity of the MedRank-
Updating method is analyzed as follows. Suppose the final
ROPSM pattens contain at most k rows and s columns, each
call of the MedRank-Updating method costs O(k log k) time,
which is actually the cost of computing the MedScore of
newly added columns.

3.2.3 The OPSM-Growth Algorithm
Having illustrated the pattern growing strategies and the

backbone updating method, we now introduce the OPSM-
Growth algorithm. Taking different growing strategies, we
devise two variants of the OPSM-Growth algorithm, called
COL-MED-Growth and ROW-MED-Growth. The ROW-MED-
Growth method adopts the row-centric pattern growing strat-
egy, and its details are shown in Algorithm 2. The two pro-
cedures Col-Expand and Row-Expand are shown in Algorithm
3 and 4, respectively.

First, let us see the procedure Col-Expand (Algorithm 3).
Suppose (P,Q : τQ) is the current ROPSM pattern. Every
remaining column tj in (T −Q) is taken to update the cur-
rent backbone order τQ (Line 2). Then, both the smallest
LCS similarity µ between the updated backbone order and
induced orders and the sum of the LCS similarities SLCS
are recorded (Lines 3 and 4). Among all the columns in
(T −Q), column tk which has the largest µ value is picked;
if there are ties, the column with larger SLCS wins (Line 6).
We set µ∗ as the µ value of column tk (Line 7). If µ∗ is no

Algorithm 3: Col-Expand

Input: an ROPSM (P,Q : τQ); the similarity threshold
α, current smallest LCS similarity µ∗

Output: succeed if (P,Q) is updated by a new column;
fail otherwise

Variable: O(P,Q) - the induced order set of (P,Q)

1. for tj ∈ T −Q do
2. τQ∪{tj} = MedRank-Updating((P,Q : τQ), tj);

3. µ(Q, tj) = min{dLCS(τQ∪{tj}, oi), ∀oi ∈ O(P,Q∪{tj})};
4. SLCS(Q, tj) =

P
oi∈O(P,Q∪{tj})

dLCS(τQ∪{tj}, oi);

5. end
6. Pick tk such that µ(Q, tk) = max{µ(Q, tj), ∀tj ∈ T −Q};

ties are broken with larger SLCS ;
7. µ∗ = µ(Q, tk);
8. if µ∗ ≥ α then
9. Update τQ to τQ∪{tk}; Q ∪ {tk} → Q;

10. Return succeed;

11. end
12. Return fail;

Algorithm 4: Row-Expand

Input: an ROPSM (P,Q : τQ); current smallest LCS
similarity µ∗

Variable: o
(gj)

Q - the inducd orders of row gj on Q

1. ∆P = φ;
2. for row gj in G− P do

3. if dLCS(τQ, o
(gj)

Q ) ≥ µ∗ then
4. ∆P ∪ {gj} → ∆P ;
5. end

6. end
7. P ∪∆P → P ;

smaller than the similarity threshold α, column tk is chosen
to update the current pattern (P,Q) as well as the back-
bone order, and the Col-Expand procedure returns succeed ;
otherwise, it returns fail (Lines 8 to 11).

The Row-Expand procedure (Algorithm 4) takes the cur-
rent ROPSM pattern (P,Q : τQ) and the current smallest
LCS similarity µ∗, which is passed from Col-Expand, as input
parameters. It conducts a linear scan of the remaining rows
in the input matrix. Those rows whose induced order has
the LCS similarity with τQ no smaller than µ∗ are chosen to
expand the current ROPSM pattern (Lines 2 to 7).

We now introduce the ROW-MED-Growth algorithm as
shown in Algorithm 2. For every seed OPSM (P,Q : τQ),
we first detect whether it is a submatrix of some ROPSM
pattern that is mined. If it is, we discard this OPSM and
continue with a new OPSM (Lines 2 to 4). We call this step
early pruning, which will be explained in more detail later.
Then, an OPSM that passes the early pruning is expanded
with the row-centric growing strategy being adopted. That
is, Col-Expand and Row-Expand are alternately called until
a maximal ROPSM is reached (Lines 5 to 7). Finally the
newly generated ROPSM is added to V (Line 10).

We omit the details of the algorithm COL-MED-Growth,
i.e., the other variant of OPSM-Growth. Generally speaking,
the COL-MED-Growth algorithm takes the column-centric



pattern growing strategy. That is, for every seed OPSM
that passes the early pruning step, the Col-Expand procedure
is repetitively called until no more columns can be added.
Finally, one round of Row-Expand is performed.

Early Pruning. We observe that, no matter which vari-
ant of the OPSM-Growth algorithm is taken, it is possible
that similar OPSMs may finally grow into the same ROPSM
pattern. In order to avoid useless expansion that may pro-
duce an ROPSM already found, we adopt an early pruning
step as follows. Before expanding an OPSM, we first check
whether it is a submatrix of some mined ROPSM. The early
pruning step is quite efficient, since we only need to check
if the backbone order of a given OPSM is a subsequence of
the backbone order of some ROPSM. If it is, the OPSM is
surely the submatrix of the ROPSM.

It might be argued that some seed OPSMs that will finally
lead to new ROPSM patterns may also get pruned during
the early pruning step. However, such new ROPSM pat-
terns will be very similar to some other ROPSM patterns,
which may, for example, catch similar functional associa-
tions among a similar set of genes. Considering real appli-
cations, such similar patterns may not be very informative
even they are significant. Therefore, we still prefer to adopt
the strict early pruning step in order to avoid generating
many similar patterns.

Time Complexity. Suppose the input matrix contains
n rows and m columns, and the mined ROPSM patterns
contain at most p rows and q columns. The running time of
the Col-Expand procedure is O(m(q log q + q2) + m) where
O(q log q) is spent updating the MedRank backbone order
and O(q2) is spent computing the LCS similarity between
orders. The running time of the Row-Expand procedure is
O(nq2). Then the time complexity of the ROW-MED-Growth
method is O(p(m + n)q2). The COL-MED-Growth method
calls the procedure Col-Expand p times and calls Row-Expand
only once, and therefore its time complexity is O((pm +
n)q2).

Table 4: Data matrix (G,T ) with G = {g1, g2, g3, g4}
and T = {t1, t2, t3, t4, t5}

Matrix (G, T ) The induced order set
t1 t2 t3 t4 t5 O(G,T )

g1 4 2 3 1 5 [t4 � t2 � t3 � t1 � t5]
g2 2 3 4 1 5 [t4 � t1 � t2 � t3 � t5]
g3 2 4 5 3 1 [t5 � t1 � t4 � t2 � t3]
g4 2 4 5 1 3 [t4 � t1 � t5 � t2 � t3]

Next, we further illustrate the ROW-MED-Growth algo-
rithm in the following example. Suppose there is an input
matrix (G,T ) as shown in Table 4, and the induced orders
of the rows are listed in the last column of the table. The
similarity threshold α is 0.75. We start with a seed OPSM
(P,Q) where P = {g2, g3, g4} and Q = {t1, t2, t3}. The ini-
tial backbone order is τQ = [t1(2) � t2(4) � t3(5)] where the
numbers in the bracket are the MedScores of the columns.
First, (P,Q) are expanded column-wise. For the remain-
ing two columns t4 and t5, we find that expanding (P,Q)
with either one will lead to the µ∗ value of 0.75. How-
ever, when t4 is taken for expansion, the sum of LCS simi-
larities (i.e., SLCS value) is larger. Therefore, the OPSM
is expanded with column t4, i.e., Q = Q ∪ {t4}. Since
the MedScore of t4 is 1, the backbone order is updated to
τQ = [t4(1) � t1(2) � t2(4) � t3(5)]. Then, the current

ROPSM is expanded row-wise. We find that the induced

order of g1 on Q, i.e., o
(g1)
Q , is [t4 � t2 � t3 � t1], and

the LCS similarity between o
(g1)
Q and τQ is 0.75 which is no

smaller than µ∗. Thus, the current ROPSM is expanded by
row g1, and turns out to be ({g1, g2, g3, g4}, {t1, t2, t3, t4}).
We try to expand the ROPSM column-wise again, and find
that the remaining column t5 cannot be taken for expan-
sion. We therefore stop with the final ROPSM pattern as
({g1, g2, g3, g4}, {t1, t2, t3, t4} : [t4 � t1 � t2 � t3]).

4. EXPERIMENTS
In this section, we study the performance of the two vari-

ants of our ROPSM mining algorithm, i.e., COL-MED-Growth
and ROW-MED-Growth, through a series of experiments. We
also compare them with the AOPC mining algorithm in
terms of the biological significance of the mined patterns.
All the experiments are conducted on a Macbook Pro with
2.53GHZ CPU and 4G memory.

The AOPC mining method takes a set of OPSMs as an
input, and merges all possible pairs of OPSMs that may re-
sult in a valid AOPC pattern. The validity of the AOPCs
is evaluated using the two thresholds σs and σc. We respec-
tively set σs and σc to be 0.2 and 0.6, which are the same as
those adopted by the experiments in [12]. To improve the
efficiency of the AOPC mining method, the input OPSM set
can be divided into groups. The AOPC mining algorithm
runs on every group, and the resultant AOPCs produced
by each running are gradually combined. Referring to [12],
we run the AOPC mining method by respectively setting
the initial number of groups to be 1 and 64, and we denote
the AOPC mining method with these two different settings
respectively as AOPC-1 and AOPC-64.

The dataset we use is a real gene expression data set – the
yeast cell cycle data from [11], which contains the expression
levels of 771 regulated genes across 18 time points. We use
the tool Gene Ontology Term Finder (GO-TermFinder)2 to
validate the biological significance of the mined ROPSMs.
The GO-TermFinder tool computes the p-values between
the mined patterns and known gene categories. A smaller
p-value indicates a stronger association between the patterns
and the category. In the experiments, for a particular pat-
tern (ROPSM, AOPC, and OPSM), we only count those
categories the pattern strongly associates with. We took
the same p-value threshold, i.e., 10−9, for strong associa-
tion as the experiments in [12]. That is, a pattern is said
to be strongly associated with a known gene category if the
p-value between the pattern and the category is less than
10−9.

We first adopt the OPC-Tree method to mine all maximal
OPSMs satisfying the thresholds lmin = 60 and smin = 5.
There are totally 595 OPSMs having been mined, which
form the input set of OPSMs for both the OPSM-Growth
algorithm and the AOPC mining method.

4.1 Effectiveness of OPSM-Growth
In the first set of experiments, we study the effectiveness

of the COL-MED-Growth and ROW-MED-Growth methods as
the similarity threshold α changes. Intuitively the α value
should be larger than 0.5, and thus we respectively set α to
be 0.6, 0.7, and 0.8.

2http://search.cpan.org/dist/GO-TermFinder/



0

30

60

90

120

150

0.6 0.7 0.8
similarity threshold ALPHA

T
im

e 
(s

ec
)

COL-MED-Growth

ROW-MED-Growth

(a) Running time

0

50

100

150

200

250

300

350

0.6 0.7 0.8
similarity threshold ALPHA

N
u
m

b
er

 o
f 

R
O

P
S

M
s

COL-MED-Growth

ROW-MED-Growth

(b) Number of patterns

0

0.3

0.6

0.9

1.2

1.5

0.6 0.7 0.8
similarity threshold ALPHA

T
im

e 
(s

ec
)

COL-MED-Growth

ROW-MED-Growth

(c) Unit time

Figure 1: Effectiveness of the OPSM-Growth algorithm

Figure 1(a) shows the running time of the two methods,
Figure 1(b) shows the number of ROPSM patterns being
mined, and Figure 1(c) shows the amount of time that is
spent in finding a single pattern, which we call unit time.
We can see from Figure 1(a) that, the running time of both
methods increases as α becomes smaller. The reason is that
when more noise is allowed to exist in the ROPSM patterns,
more time is needed for each seed OPSM to grow into a
bigger ROPSM. On the other hand, when α is smaller, a
seed OPSM tends to grow into an ROPSM with larger size,
which is accordingly more likely to cover other seed OPSMs
and prune them during the early pruning step. Therefore,
less ROPSMs are finally mined when α is smaller, as shown
in Figure 1(b).

Comparing these two methods, we can see that COL-MED-
Growth is more efficient in terms of the running time, and
the advantage is more significant when α is small. The rea-
son is that the row-centric growing strategy needs to scan
the remaining rows (in Row-Expand) repetitively during the
expansion. Although one scan only takes linear time, it is
still time-consuming since the number of rows contained in
the gene expression matrix is much larger than the number
of columns. Considering the number of mined ROPSMs,
we can see that ROW-MED-Growth mines slightly more pat-
terns. This is because the column-centric expansion tends
to mine patterns with more columns, and thus the seed
OPSMs are more likely to be pruned by those previously
mined ROPSM patterns. Therefore, less ROPSMs can be
finally mined by COL-MED-Growth.

The efficiency and scalability of the COL-MED-Growth are
more apparent in Figure 1(c), which shows the unit time
of the two methods under differnt α values. When α is
0.6, the COL-MED-Growth method on average spends about
0.53 seconds to find one ROPSM pattern, while the ROW-
MED-Growth method needs 1.18 seconds to find one ROPSM
pattern, which is more than two times longer.

4.2 Biological Significance of ROPSMs
We conduct the second set of experiments to compare the

biological significance of the ROPSMs that are mined by
the ROW-MED-Growth method and the COL-MED-Growth
method. The experiment results are shown in Figure 2,
where the x-axis of the two histograms are the number of cat-
egories that an ROPSM strongly associates with, and each
bar corresponds to a combination of the ROPSM mining
method and the α value. For each method and under ev-
ery α value, we respectively count the number of ROPSMs
that strongly associate with more than a certain number
of categories (e.g., 12, 11, . . .). The histogram in (a) shows

the statistics of the number of significant ROPSMs, and the
histogram in (b) shows the statistics of the fraction of sig-
nificant ROPSMs.

If we consider the ROPSMs that strongly associate with
more than 10 categories, we can see that both methods mine
a larger percentage (67.9% and 70.0%, respectively) of such
ROPSMs when α is 0.6, which means that setting α to be 0.6
better captures the characteristics of noisy OPSM patterns
in this data set. However, the total number of ROPSMs
mined when α is 0.6 is smaller, as already illustrated in the
previous subsection. Both methods mine the most absolute
number (98 and 102, respectively) of such ROPSMs when α
is 0.7.

When comparing the COL-MED-Growth method and the
ROW-MED-Growth method, we find that, generally, ROW-
MED-Growth mines a larger percentage of the significant pat-
terns when α is 0.6; while COL-MED-Growth mines more per-
centage of significant patterns when α is 0.8. The results im-
ply that the column-centric expansion performs better when
less noise is allowed to exist in the ROPSM patterns while
the row-centric expansion performs better when more noise
is allowed.

4.3 Performance Comparison with AOPC
The last set of experiments is conducted to compare the

biological significance of the patterns (ROPSM, AOPC, or
OPSM) respectively mined by our OPSM-Growth algorithm,
the AOPC mining method, and the OPC-Tree method. For
the AOPCs, we list the statistical records of AOPCs mined
by both AOPC-1 and AOPC-64. The AOPC-64 method
runs much faster than AOPC-1, although several significant
patterns that strongly associate with more than 12 cate-
gories fail to be mined.

Note that our OPSM-Growth algorithm and the AOPC
mining method aim at mining different kinds of noisy OPSM
patterns, i.e., ROPSMs and AOPCs. To make the results of
these two algorithms comparable in some sense, we impose
a possible requirement, that is, the amount of time spent
in mining one pattern should be roughly the same. Accord-
ing to this requirement, we choose the COL-MED-Growth
method for comparison with α set to 0.8. The experiment
results are listed in Table 5.

The COL-MED-Growth method spends 5.78 seconds in find-
ing 282 ROPSMs, and thus mining a single ROPSM pattern
costs 0.0205 second. In comparison, the AOPC-64 method
only spends 0.0167 seconds in finding an AOPC. Although
the unit time cost for finding an ROPSM is slightly longer
than the unit time cost for finding an AOPC, more number
of significant patterns have been found by our COL-MED-



0

50

100

150

200

250

>12 >11 >10 >9 >8 >7 <= 7
# categories an ROPSM strongly associates with

N
u

m
b

er
 o

f 
si

g
n

if
ic

an
t 

R
O

P
S

M
s

(COL-MED-Growth, 0.6)

(ROW-MED-Growth, 0.6)

(COL-MED-Growth, 0.7)

(ROW-MED-Growth, 0.7)

(COL-MED-Growth, 0.8)

(ROW-MED-Growth, 0.8)

(a) Number of Significant ROPSMs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

>12 >11 >10 >9 >8 >7 <= 7
# categories an ROPSM strongly associates with

F
ra

ct
io

n
 o

f 
si

g
n
if

ic
an

t 
R

O
P

S
M

s

(COL-MED-Growth, 0.6)

(ROW-MED-Growth, 0.6)

(COL-MED-Growth, 0.7)

(ROW-MED-Growth, 0.7)

(COL-MED-Growth, 0.8)

(ROW-MED-Growth, 0.8)

(b) Fraction of Significant ROPSMs

Figure 2: Biological significance of the ROPSM patterns

Table 5: Comparison with AOPC
COL-MED-Growth AOPC-1 AOPC-64 OPSM

#Patterns 282 222 239 595
Running time 5.78 sec 74.49 sec 3.99 sec −

Unit Time 0.0205 sec 0.3355 sec 0.0167 sec −
# categories a pattern strongly associate with

> 12 17(6.03%) 5(2.25%) 2(0.84%) 0
> 11 43(15.25%) 10(4.5%) 11(4.6%) 5(0.84%)
> 10 75(26.60%) 19(8.56%) 20(8.37%) 16(2.69%)
> 9 119(42.20%) 29(13.06%) 32(13.39%) 35(5.88%)
> 8 166(58.87%) 39(17.57%) 42(17.57%) 44(7.39%)
> 7 201(71.28%) 67(30.18%) 68(28.45%) 75(12.61%)
≤ 7 81(28.72%) 155(69.82%) 171(71.55%) 520(87.39%)

Growth method. For example, considering the patterns that
strongly associate with more than 10 gene categories, 75 out
of 282 (26.60%) ROPSMs mined by COL-MED-Growth are
such patterns. In contrast, neither AOPC-1 nor AOPC-64
mines more than 20 (or more than 8.56%) AOPCs that ful-
fill such level of significance. Actually, more significant num-
ber of patterns are mined by our COL-MED-Growth methods
considering any level of significance. It should also be noted
that COL-MED-Growth with α to be 0.8 is never the best set-
ting for mining significant patterns. If we consider the trade-
off between the unit time and the quality of the mined pat-
tern, COL-MED-Growth with α set to be 0.7 spends 0.0733
seconds in finding one ROPSM which is about 4.3 times
longer than the unit time cost by AOPC-64. However, the
number of significant ROPSM patterns surely exceeds 4.4
times that of significant AOPC patterns at the same level,
especially when those patterns strongly associate with 9 or
more categories are considered.

The last column of Table 5 lists the statistical records
of the OPSMs that are taken as the input of our OPSM-
Growth algorithm. We can see that even less number (or
percentage) of OPSMs, i.e., 16 (or 2.69%) strongly associate
with more than 10 categories. However, starting from these
OPSM patterns with much lower level of significance, our
OPSM-Growth algorithm can mine considerably more signif-
icant patterns.

5. RELATED WORK
The concept of biclustering was first introduced to dis-

cover submatrix patterns (biclusters) in gene expression data
matrix by Chen and Church [3]. Madeira et al. [9] clas-

sify four major types of biclusters: constant-value bicluster,
constant-row (or -column) bicluster, coherent-value biclus-
ter, and coherent-evolution bicluster. The order-preserving
submatrix (OPSM) is a typical type of coherent-evolution
bicluster, which was defined by Ben-Dor et al. [1].

While the OPSM model is shown to be biologically sig-
nificant, mining OPSM patterns is very challenging and the
problem is NP-hard. Therefore, Ben-Dor et al. first pro-
posed a model-based method that keeps a limited number
of partial models which are smaller OPSMs for possible fur-
ther expansion, and then expand them into full OPSMs.
Their method however is designed to identify only a single
pattern, and the significance of the pattern is very sensitive
to the selection of partial models. Liu et al. later proposed
an OPSM mining method that mines multiple OPSMs at
the same time. Their method adopts a tree structure that
organizes all the candidate OPSMs, with some pruning tech-
niques being also applied. However, the computation cost is
still large, especially when the number of columns increases.
Gao et al.’s KiWi framework [7] also adopts a tree struc-
ture to store all necessary information for searching twig
OPSMs, which is characterized by containing a large num-
ber of columns and a few rows.

Ben-Dor et al. also noticed that the OPSM model is too
strict with the presence of noise, and thus they developed
a probabilistic noise model under the assumption of uni-
formly random noises. Zhang et al. later proposed an in-
tuitive relaxation called the approximate order-preserving
cluster (AOPC) [12]. The AOPC model only requires a
pre-specified fraction of rows in the bicluster to induce the
same linear order of columns, while the remaining rows only



need to be similar enough. Based on the AOPC model,
they also proposed an AOPC mining method that merges
pairs of smaller AOPCs (initially OPSMs) into bigger ones
in a greedy manner. Our ROPSM model further relaxes the
AOPC model and demonstrates much better effectiveness in
mining quality patterns.

Chen and Church’s algorithm (CC’s algorithm for short)
[3], which similarly adopts column-wise and row-wise expan-
sion or deletion, is designed for finding approximate constant-
value and constant-row (or column) biclusters. CC’s algo-
rithm adopts a two-phase strategy. First rows and columns
are iteratively removed from the original input matrix until
a valid pattern is reached. The pattern discovered in the first
phase can be regarded as a seed, and it is then iteratively
expanded by previously removed columns and rows until a
maximal valid pattern is reached. This two-phase method,
however, is very time-consuming. Besides, if more patterns
are needed, those previously discovered patterns are masked
by random values to avoid finding identical patterns, which
accordingly influences the quality of the following discov-
ered patterns. In comparison, we take maximal OPSMs as
seeds, which is shown to be more likely to obtain significant
patterns.

6. CONCLUSION
In this paper, we study the problem of mining noisy OPSM

patterns and develop a new relaxed OPSM model called the
ROPSM model. In contrast to the strict OPSM model,
ROPSM only requires that each gene in the bicluster in-
duces a linear order that is sufficiently similar with respect
to the backbone order of the biclusters. Thus, our proposed
model is able to better capture the biological fact that corre-
lated genes usually induce similar but not exactly the same
orders on the same set of conditions.

We propose a new method called OPSM-Growth to mine
ROPSM patterns, which uses an effective median rank based
method to generate (or approximate) the backbone order
and hence find the ROPSMs. Our experiment on a biolog-
ical dataset shows that the ROPSM model better captures
the characteristics of noise in gene expression data matrix
compared to the AOPC model. Importantly, compared with
the more effective version of AOPC, our ROPSM mining
method mines more quality biologically significant patterns
and needs far less time to process the mining than its coun-
terpart. When compared with the more efficient version
of AOPC, we need comparable mining time but gain far
more significant patterns. Thus, our OPSM-Growth method
achieves a better balance between the efficiency in process-
ing the mining and the quality of the mined patterns.

7. ACKNOWLEDGEMENTS
This work is partially supported by China NSF Grant

60970043 and HKUST RGC Grant 618509. We would like
to thank KDD reviewers for giving us insightful comments.

8. REFERENCES
[1] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini.

Discovering local structure in gene expression data:
the order-preserving submatrix problem. In RECOMB
’02, pages 49–57. ACM, 2002.

[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of
longest common subsequence algorithms. In SPIRE
2000, pages 39–48, 2000.

[3] Y. Cheng and G. M. Church. Biclustering of
expression data. In Proc. Int. Conf. Intell. Syst. Mol.
Biol., pages 93–103, 2000.

[4] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In SIGMOD ’03. ACM, 2003.

[5] J. Feng, Q. Fang, and W. Ng. Discovering bucket
orders from full rankings. In SIGMOD ’08, pages
55–66. ACM, 2008.

[6] R. A. Fisher. On the interpretation of X 2 from
contingency tables, and the calculation of P. Journal
of the Royal Statistical Society, 85(1):87–94, 1922.

[7] B. J. Gao, O. L. Griffith, M. Ester, and S. J. M.
Jones. Discovering significant opsm subspace clusters
in massive gene expression data. In SIGKDD ’06,
pages 922–928. ACM, 2006.

[8] J. Liu and W. Wang. Op-cluster: Clustering by
tendency in high dimensional space. In ICDM ’03.
IEEE Computer Society, 2003.

[9] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: A survey.
IEEE/ACM TCBB, 1(1):24–45, 2004.

[10] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, and
et al. A systematic comparison and evaluation of
biclustering methods for gene expression data.
Bioinformatics, 22(9):1122–1129, 2006.

[11] P. T. Spellman, G. Sherlock, M. Q. Zhang, and et al.
Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Molecular Biology of the
Cell, 9(12):3273–3297, 1998.

[12] M. Zhang, W. Wang, and J. Liu. Mining approximate
order preserving clusters in the presence of noise. In
ICDE ’08, pages 160–168, 2008.


