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Efficient Correlation Search from Graph Databases
Yiping Ke, James Cheng, and Wilfred Ng

Abstract— Correlation mining has gained great success in
many application domains for its ability to capture underlying
dependencies between objects. However, research on correlation
mining from graph databases is still lacking despite that graph
data, especially in scientific domains, proliferate in recent years.

We propose a new problem of correlation mining from graph
databases, called Correlated Graph Search (CGS). CGS adopts
Pearson’s correlation coefficient as the correlation measure to
take into account the occurrence distributions of graphs. How-
ever, the CGS problem poses significant challenges, since every
subgraph of a graph in the database is a candidate but the
number of subgraphs is exponential. We derive two necessary
conditions that set bounds on the occurrence probability of
a candidate in the database. With this result, we devise an
efficient algorithm that mines the candidate set from a much
smaller projected database and thus we are able to obtain a
significantly smaller set of candidates. Three heuristic rules are
further developed to refine the candidate set. We also make use
of the bounds to directly answer high-support queries without
mining the candidates. Our experimental results demonstrate the
efficiency of our algorithm. Finally, we show that our algorithm
provides a general solution when most of the commonly used
correlation measures are used to generalize the CGS problem.

Index Terms— Correlation, Graph Databases, Pearson’s Cor-
relation Coefficient.

I. I NTRODUCTION

Correlation mining is recognized as one of the most impor-
tant data mining tasks for its capability to identify underlying
dependencies between objects. It has a wide range of applica-
tion domains and has been studied extensively in market-basket
databases [1], [2], [3], [4], [5], [6], quantitative databases [7],
multimedia databases [8], data streams [9], and many others.
However, little attention has been paid to mining correlations
from graph databases, in spite of the popularity of graph data
models pertaining to various domains, such as biology [10],[11],
chemistry [12], social science [13], the Web [14] and XML [15].

In this paper, we study a new problem of mining correlations
from graph databases [16]. We propose to usePearson’s correla-
tion coefficient[17] to measure the correlation between aquery
graph and ananswergraph. We formulate this mining problem,
namedCorrelated Graph Search(CGS), as follows. Given a graph
databaseD that consists ofN graphs, a query graphq and a
minimum correlation thresholdθ, the problem of CGS is tofind
all graphs whose Pearson’s correlation coefficient with respect to
q is no less thanθ.

Our problem of CGS has a close connection to graph similarity
search. There are two types of similarity in graph databases:
structural similarity (i.e., two graphs are similar in structure)
and statistical similarity (i.e., the occurrence distributions of
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two graphs are similar). Existing work [18], [19], [20], [21],
[22] mainly focuses on structural similarity search. However,
in many applications, two graphs that are structurally dissimilar
but always appear together in a graph in the database may be
more interesting. For example, in chemistry,isomers refer to
molecules with the same chemical formula and similar structures.
The chemical properties of isomers can be quite different due
to different positions of atoms and functional groups. Consider
the case that the chemist needs to find some molecule that
shares similar chemical properties to a given molecule. Structural
similarity search is not relevant, since it mostly returns isomers
of the given molecule that have similar structures but different
chemical properties, which is undesirable. On the contrary, CGS is
able to obtain the molecules that share similar chemical properties
but may or may not have similar structures to the given molecule.
Therefore, our proposed CGS solves an orthogonal problem of
structural similarity search and the discovered correlated graphs
are very useful in many real applications such as drug design,
anomalous detection, etc.

We use Pearson’s correlation coefficient to define CGS since it
is shown to be one of the most desirable correlation measuresin
[17] for its ability to capture the departure of two variables from
independence. It has been widely used to describe the strength
of correlation among boolean variables in transaction databases
[17], [5], [6]. This motivates us to apply the measure in the
context of graph databases. However, graph mining is a much
harder problem due to the high complexity of graph operations
(e.g., subgraph isomorphism testingis NP-complete [23]). The
difficulty of the problem is further compounded by the fact that
the search space of CGS is often large, since a graph consistsof
exponentially many subgraphs and any subgraph of a graph in
D can be a candidate graph. Thus, there are great challenges in
tackling the problem of CGS.

How can we reduce the large search space of CGS to avoid
expensive graph operations as much as possible?We investigate
the properties of Pearson’s correlation coefficient and derive two
necessary conditions for the correlation condition to be satisfied.
More specifically, we derive the lower bound and upper bound
of the occurrence probability (also calledsupport), supp(g), of
a candidate graphg. This effectively reduces the search space
from the set of all subgraphs of all graphs inD to be the set of
Frequent subGraphs(FGs) [24] with the support values between
the lower and upper bounds ofsupp(g).

However, mining FGs fromD is still expensive when the
lower bound ofsupp(g) is small or whenD is large. Moreover,
we still have a large number of candidates and the solution is
not scalable. Thus, we need to reduce further the number of
candidates and address the scalability problem. The underlying
idea of our solution, namedCGSearch, is as follows.

Let Dq be the projected database ofD on q, which is the
set of all graphs inD that are supergraphs ofq. We prove that
the set of FGs mined fromDq using lowerbound(supp(g))

supp(q)
as the

minimum support threshold iscompletewith respect to the answer
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set. SinceDq is much smaller thanD while lowerbound(supp(g))
supp(q)

is greater thanlowerbound(supp(g)), our findings not only save
the computational cost for generating the candidate set, but also
significantly reduce the number of candidates. Furthermore, we
develop three heuristic rules to be applied on the candidateset
generated from the projected database to identify the graphs that
are guaranteed to be in the answer set, as well as to prune the
graphs that are guaranteed to be false positives.

Since candidate generation involves a mining operation, which
can still be expensive, we further improve the CGSearch algorithm
to avoid performing this mining operation. More specifically, we
maintain a set of FGs at a minimum support thresholdσ. Given a
query whose correspondinglowerbound(supp(g)) is no less than
σ, we propose to generate its candidate set by querying from the
set of FGs. We name this processFGQuery. To reduce the number
of candidate verifications, we further develop another set of three
heuristic rules to be applied on the candidate set produced by
FGQuery. By integrating CGSearch and FGQuery, we present a
more efficient solution to the CGS problem, namedCGSearch*.

Our extensive experiments on both real and synthetic datasets
show that our algorithm CGSearch processes a wide range of
queries with short response time and small memory consumption.
Compared with the approach that generates candidate sets by
mining the entire database with a support range, CGSearch is
orders of magnitude faster and consumes up to 40 times less
memory. The effectiveness of the candidate generation from
the projected database and that of the three heuristic rulesare
also demonstrated. The results also show that the algorithm
CGSearch* further improves the response time of CGSearch by
an order of magnitude, with comparable memory consumption,
for queries that are of high support.

Finally, considering that there are also many other well-
established correlation measures [17], we generalize the CGS
problem to adopt other correlation measures. In order to find
a general solution, we model the generalized CGS problem as
a system of inequalities. By solving this inequality system, we
prove that our solution for Pearson’s correlation coefficient also
serves as an effective and efficient solution for the majority of
the correlation measures.

Contributions. We make the following specific contributions.
• We formulate the new problem of correlation search in graph

databases, which takes into account the occurrence distribu-
tions of graphs using Pearson’s correlation coefficient.

• We present an efficient algorithm, CGSearch, to solve the
problem of CGS. We propose to generate the candidate set
by mining FGs from the projected database of the query
graph. We develop three heuristic rules to further reduce the
size of the candidate set. We also prove the soundness and
completeness of the query results returned by CGSearch.

• We present an improved algorithm, CGSearch*, which is
able to avoid performing the mining process of candidate
generation for queries of high support. Three more heuristic
rules are presented to be applied on this candidate set to
further reduce the search space.

• We conduct a comprehensive set of experiments to verify
the efficiency of the algorithm and the effectiveness of the
candidate set generation and the heuristic rules.

• We generalize the CGS problem to adopt other correlation
measures and show that our algorithm provides a general
solution for most of the commonly used measures.

Organization. We give preliminaries in Section II. We define
the CGS problem in Section III. We propose effective candidate
generation from a projected database in Section IV. We present
the CGSearch algorithm in Section V. We present the improved
algorithm, CGSearch*, together with FGQuery, in Section VI. We
analyze the performance in Section VII. Then, we generalizethe
CGS problem and discuss its solution in Section VIII. Finally,
we discuss related work in Section IX and conclude our paper in
Section X.

II. PRELIMINARIES

In this paper, we restrict our discussion toundirected, labelled
connected graphs(or simply graphshereinafter), but our method
can be easily extended to process directed and unlabelled graphs.

A graph g is defined as a4-tuple (V, E, L, l), whereV is the
set of vertices,E is the set of edges,L is the set of labels and
l is a labelling function that maps each vertex or edge to a label
in L. We define thesizeof a graphg as size(g) = |E(g)|.

Given two graphs,g = (V, E, L, l) and g′ = (V ′, E′, L′, l′), g

is called asubgraphof g′ (or g′ is asupergraphof g), denoted as
g ⊆ g′ (or g′ ⊇ g), if there exists an injective functionf : V → V ′,
such that∀(u, v) ∈ E, (f(u), f(v)) ∈ E′, l(u) = l′(f(u)), l(v) =

l′(f(v)), and l(u, v) = l′(f(u), f(v)). The injective functionf is
called asubgraph isomorphismfrom g to g′. Testing subgraph
isomorphism is known to beNP-complete [23].

Let D = {g1, g2, . . . , gN } be agraph databasethat consists of
N graphs. GivenD and a graphg, we denote the set of all graphs
in D that are supergraphs ofg asDg = {g′ : g′ ∈ D, g′ ⊇ g}.
We callDg the projected databaseof D on g. The frequencyof
g in D, denoted asfreq(g;D), is defined as|Dg |. The supportof
g in D, denoted assupp(g;D), is defined asfreq(g;D)

|D| . A graph
g is called aFrequent subGraph(FG) [25], [24], [26] in D if
supp(g;D) ≥ σ, whereσ (0 ≤ σ ≤ 1) is a user-specifiedminimum
support threshold. For simplicity, we usefreq(g) and supp(g)

to denote the frequency and support ofg in D when there is
no confusion. Given two graphs,g1 and g2, we define thejoint
frequency, denoted asfreq(g1, g2), as the number of graphs in
D that are supergraphs of bothg1 and g2, i.e., freq(g1, g2) =

|Dg1 ∩ Dg2 |. Similarly, we define thejoint supportof g1 andg2

as supp(g1, g2) =
freq(g1,g2)

|D| .
The support measure isanti-monotone, i.e., if g1 ⊆ g2, then

supp(g1) ≥ supp(g2). Moreover, by the definition of joint sup-
port, we have the following properties:supp(g1, g2) ≤ supp(g1)

and supp(g1, g2) ≤ supp(g2).

EXAMPLE 1: Figure 1 shows a graph database,D, that consists
of 10 graphs,g1, . . . , g10. For simplicity of illustration, all the
nodes have the same label (not shown in the figure); while the
charactersa, b andc represent distinct edge labels.

The graphg8 is a subgraph ofg2. The projected database ofg8,
i.e.,Dg8 , is {g2, g3, g6, g7, g8}. The frequency ofg8 is computed
as freq(g8) = |Dg8 | = 5. The support ofg8 is supp(g8) =
freq(g8)

|D| = 5
10 = 0.5. As for g9, we haveDg9 = {g6, g7, g9}.

The joint frequency ofg8 and g9 is computed asfreq(g8, g9) =

|Dg8 ∩ Dg9 | = |{g6, g7}| = 2. Therefore, the joint support ofg8

andg9 is computed assupp(g8, g9) =
freq(g8,g9)

|D| = 0.2. �

III. T HE CGS PROBLEM

We first definePearson’s correlation coefficient[27] for two
graphs. Pearson’s correlation coefficient for boolean variables is
also known as the “φ correlation coefficient” [28].
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Fig. 1. A Graph Database,D = {g1, . . . , g10}

DEFINITION 1: (PEARSON’ S CORRELATION COEFFICIENT)
Given two graphsg1 andg2, thePearson’s Correlation Coefficient
of g1 andg2, denoted asφ(g1, g2), is defined as follows:

φ(g1, g2) =
supp(g1, g2)− supp(g1)supp(g2)

√

supp(g1)supp(g2)(1− supp(g1))(1− supp(g2))
.

Whensupp(g1) or supp(g2) is equal to0 or 1, φ(g1, g2) is defined
to be0.

The range ofφ(g1, g2) falls within [−1, 1]. If φ(g1, g2) is
positive, theng1 and g2 are positively correlated; ifφ(g1, g2)

is zero, theng1 and g2 are independent; otherwise,g1 and g2

are negatively correlated. In this paper, we focus on positively
correlated graphs defined as follows.

DEFINITION 2: (CORRELATED GRAPHS) Two graphsg1 and
g2 arecorrelatedif and only if φ(g1, g2) ≥ θ, whereθ (0 < θ ≤ 1)
is a user-specifiedminimum correlation threshold.

We now define the correlation mining problem in graph
databases as follows.

DEFINITION 3: (CORRELATED GRAPH SEARCH) Given a
graph databaseD, a correlation query graphq and a minimum
correlation thresholdθ, the problem ofCorrelated Graph Search
(CGS) is to find the set of all graphs that are correlated withq.
Theanswer setof the CGS problem is defined asAq = {(g,Dg) :

φ(q, g) ≥ θ}.
For each correlated graphg of q, we associateDg with g

to form a pair (g,Dg) in the answer set in order to indicate
the distribution ofg in D. We also define the set of correlated
graphs in the answer set as thebaseof the answer set, denoted as
base(Aq) = {g : (g,Dg) ∈ Aq}. In the subsequent discussions, a
correlation query graph is simply called aquery.

Table I presents the notation used throughout the paper.

IV. CANDIDATE GENERATION

A crucial step for solving the problem of CGS is to obtain
the set of candidate graphs. Obviously, it is infeasible to test all
subgraphs of the graphs inD because there are exponentially
many subgraphs. In this section, we discuss how to effectively
generate a small set of candidates for a given query.

A. Support Bounds of Correlated Graphs

We begin by investigating the bounds on the support of a
candidate graph,g, with respect to the support of a queryq. We
state and prove the bounds in Lemma 1.

TABLE I

NOTATION USED THROUGHOUT THEPAPER

Notation Description
D a graph database
q a query graph
θ a minimum correlation threshold,0 < θ ≤ 1

φ(q, g) Pearson’s correlation coefficient ofq andg
Aq the answer set ofq

base(Aq) the base of the answer set
Dg the projected database ofD on graphg

freq(g), supp(g) the frequency/support ofg in D
freq(q, g), supp(q, g) the joint frequency/support ofq andg in D

freq(g;Dq), supp(g;Dq) the frequency/support ofg in Dq

freq(q, g;Dq), supp(q, g;Dq) the joint frequency/support ofq andg in Dq

lower supp(g), upper supp(g) the lower/upper bound ofsupp(g)

lower supp(q,g), upper supp(q,g) the lower/upper bound ofsupp(q, g)

LEMMA 1: If q andg are correlated, then the following bounds
of supp(g) hold:

supp(q)
θ−2(1−supp(q))+supp(q)

≤ supp(g) ≤ supp(q)
θ2(1−supp(q))+supp(q)

.

Proof: By the definition of joint support, we have
supp(q, g) ≤ supp(g) and supp(q, g) ≤ supp(q).

Since q and g are correlated,φ(q, g) ≥ θ. By replacing
supp(q, g) with supp(g) in φ(q, g), we obtain the lower bound
as follows:

supp(g)− supp(q)supp(g)
√

supp(q)supp(g)(1− supp(q))(1− supp(g))
≥ θ

⇒ supp(g) ≥ supp(q)

θ−2(1− supp(q)) + supp(q)
.

Similarly, by replacingsupp(q, g) with supp(q) in φ(q, g), we
obtain the upper bound as follows:

supp(g) ≤ supp(q)

θ2(1− supp(q)) + supp(q)
.

For simplicity, we uselower supp(g) and upper supp(g) to de-
note the respective lower and upper bounds ofsupp(g) with
respect toq, as given in Lemma 1. The above lemma states
a necessary condition for a correlated answer graph, that is,
a candidate graph should have support within the range of
[lower supp(g), upper supp(g)].

With the result in Lemma 1, we are able to obtain the candidate
set by mining the set of FGs [24], [26], [29] fromD using
lowersupp(g) as the minimum support threshold andupper supp(g)

as the maximum support threshold. However, according to the
anti-monotone property of the support measure, the graphs with
higher support values are always generated before those with
lower support values, no matter whether a breadth-first or a depth-
first strategy is adopted. As a result, the maximum threshold
upper supp(g) is not able to speed up the mining process. There-
fore, generating the candidate set by mining the FGs fromD
with a support range is still not efficient enough, especially when
lowersupp(g) is small orD is large. This motivates us to devise a
more efficient and effective approach to generating the candidates.

B. Candidate Generation From a Projected Database

From Definition 1, it follows that if φ(q, g) > 0, then
supp(q, g) > 0. This means thatq and g must appear together
in at least one graph inD. This also implies that∀g ∈ base(Aq),
g appears in at least one graph in the projected database ofq,
Dq. SinceDq is in general much smaller thanD, this gives rise
to the following natural question: can we mine the candidateset
more efficiently fromDq instead of fromD?



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 4

The challenge is that we need to determine a minimum support
threshold that can be used to mine the FGs fromDq, so that no
correlated answer graph is missed. Obviously, we cannot usea
trivial threshold to mine all FGs since it is too expensive. In this
subsection, we derive a minimum support threshold that enables
us to compute the candidates fromDq efficiently. Our solution is
inspired by an important observation as stated in Lemma 2.

LEMMA 2: Given a graphg, supp(g;Dq) = supp(q, g;Dq) =
supp(q,g)
supp(q) .

Proof: By the definition of the projected database, it
follows that all graphs inDq contain q. Therefore, each graph
in Dq that containsg must also containq. Thus,supp(g;Dq) =

supp(q, g;Dq) holds. Since the number of graphs containing both
q and g in D is the same as that inDq, that is, freq(q, g) =

freq(q, g;Dq), we havesupp(q,g)
supp(q)

=
freq(q,g)/|D|
freq(q)/|D| =

freq(q,g;Dq)
|Dq| =

supp(q, g;Dq).
Lemma 2 states that the support of a graphg in the projected

databaseDq is the same as the joint support ofq and g in Dq.
This prompts us to derive the lower bound and upper bound for
supp(q, g;Dq), given thatg is correlated withq. Then, we can use
the bounds as the minimum and maximum support thresholds to
compute the candidates fromDq.

Sincesupp(q, g;Dq) =
supp(q,g)
supp(q)

by Lemma 2, we try to derive
the bounds forsupp(q, g).

First, by the definition of joint support, we obtain the upper
bound ofsupp(q, g) as follows:

supp(q, g) ≤ supp(q). (1)

Then, we derive a lower bound forsupp(q, g). Givenφ(q, g)≥θ,
the following inequality can be obtained from Definition 1.

supp(q, g) ≥ f(supp(g)), (2)

where

f(supp(g)) = θ
√

supp(q)supp(g)(1− supp(q))(1− supp(g))

+ supp(q)supp(g).

The lower bound ofsupp(q, g) stated in Inequality (2) cannot be
directly used, since it is a function ofsupp(g), whereg is exactly
what we want to get by usingsupp(q, g). However, since we have
obtained the range ofsupp(g), i.e., [lower supp(g), upper supp(g)]

as stated in Lemma 1, we now show that this range can be used
in Inequality (2) to obtain the lower bound ofsupp(q, g), which
is independent ofg.

By investigating the property of the functionf , we find that
f is monotonically increasing withsupp(g) in the range of
[lower supp(g), upper supp(g)]. Therefore, by substitutingsupp(g)

with lower supp(g) in Inequality (2), we are then able to obtain
the lower bound ofsupp(q, g). We state and prove the bounds of
supp(q, g) in the following lemma.

LEMMA 3: If q andg are correlated, then the following bounds
of supp(q, g) hold:

supp(q)

θ−2(1− supp(q)) + supp(q)
≤ supp(q, g) ≤ supp(q).

Proof: The upper bound follows by the definition of joint
support.

To show that the lower bound holds, we need to prove that
the function f is monotonically increasing within the bounds
of supp(g) given in Lemma 1. This can be done by applying
differentiation tof with respect tosupp(g) as follows:

f ′(supp(g))=
θ·supp(q)(1−supp(q))(1−2·supp(g))

2
√

supp(q)supp(g)(1−supp(q))(1−supp(g))
+supp(q).

Thus, we need to prove that, within the range of
[lower supp(g), upper supp(g)], f ′(supp(g)) ≥ 0 or, equivalently,
the following inequality:

1− 2 · supp(g)
√

supp(g)(1− supp(g))
≥ −2

θ

√

supp(q)

1− supp(q)
. (3)

First, if supp(g) ≤ upper supp(g) ≤ 0.5, then(1−2·supp(g)) ≥
0 and hencef ′(supp(g)) ≥ 0.

Now, we consider the case whenupper supp(g) ≥ supp(g) >

0.5. Since the left hand side of Inequality (3) is less than 0, we
square both sides of Inequality (3) and obtain:

(1− 2 · supp(g))2

supp(g)(1− supp(g))
≤ 4 · supp(q)

θ2(1− supp(q))

⇔ a · (supp(g))2 − a · supp(g) + θ2(1− supp(q)) ≤ 0, (4)

wherea = 4θ2(1− supp(q)) + 4supp(q).
The left-hand side of Inequality (4) is a quadratic function,

which is monotonically increasing within the range of[0.5,∞].
Since0.5 < supp(g) ≤ upper supp(g), we replacesupp(g) with
upper supp(g) in this quadratic function:

a · (upper supp(g))
2 − a · upper supp(g) + θ2(1− supp(q))

= θ2(1− supp(q))(−4 · upper supp(g) + 1)

< θ2(1− supp(q))(−4× 0.5 + 1) (Sinceupper supp(g) > 0.5)

< 0.

Therefore, when0.5 < supp(g) ≤ upper supp(g), Inequality (4)
holds and hencef ′(supp(g)) ≥ 0.

Thus, f is monotonically increasing within the range of
[lower supp(g), upper supp(g)]. The lower bound ofsupp(q, g) fol-
lows by substitutingsupp(g) with lower supp(g) in Inequality (2):

supp(q, g) ≥ f(supp(g))

≥ f(
supp(q)

θ−2(1− supp(q)) + supp(q)
)

=
supp(q)

θ−2(1− supp(q)) + supp(q)
.

From now on, we uselowersupp(q,g) and upper supp(q,g) to
denote the lower and upper bounds ofsupp(q, g) with respect to
q, as given in Lemma 3.

With the results of Lemmas 2 and 3, we propose to generate
the candidates by mining FGs fromDq using

lowersupp(q,g)

supp(q)
as the

minimum support threshold. A generated candidate set,C, is said
to be completewith respect toq, if ∀g ∈ base(Aq), g ∈ C. We
establish the result of completeness by the following theorem.

THEOREM 1: Let C be the set of FGs mined fromDq with the
minimum support threshold of

lowersupp(q,g)

supp(q)
. Then,C is complete

with respect toq.
Proof: Let g ∈ base(Aq). Since φ(q, g) ≥ θ, it fol-

lows that lower supp(q,g) ≤ supp(q, g) ≤ upper supp(q,g) by
Lemma 3. Dividing these expressions bysupp(q), we have
lowersupp(q,g)

supp(q)
≤ supp(q,g)

supp(q)
≤ 1. By Lemma 2, we have

lowersupp(q,g)

supp(q)
≤ supp(g;Dq) ≤ 1. The resultg ∈ C follows, since

C is the set of FGs mined fromDq using
lowersupp(q,g)

supp(q) as the
minimum support threshold.

The result of Theorem 1 is significant, since it implies that
we are now able to mine the set of candidate graphs from a
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much smaller projected databaseDq (compared withD) with
a greater minimum support threshold

lowersupp(q,g)

supp(q)
(compared

with lower supp(g) which is equal tolowersupp(q,g), as shown
in Lemmas 1 and 3).

V. CGSEARCH ALGORITHM

In this section, we present our solution to the CGS problem.
The framework of the solution consists of the following foursteps.

1) Obtain the projected databaseDq of q.
2) Mine the set of candidate graphsC from Dq, using

lowersupp(q,g)

supp(q) as the minimum support threshold.
3) RefineC by using three heuristic rules.
4) For each candidate graphg ∈ C,

a) ObtainDg .
b) Add (g,Dg) to Aq if φ(q, g) ≥ θ.

Step 1 obtains the projected database ofq. This step can be
efficiently performed using any existing graph indexing technique
(e.g., [30], [31]) that can be used to obtain the projected database
of a given graph.

Step 2 mines the set of FGs fromDq using some existing FG
mining algorithm [24], [26], [29]. The minimum support threshold
is determined by Theorem 1. The set of FGs forms the candidate
set,C. For each graphg ∈ C, the set of graphs inDq that contain
g is also obtained by the FG mining process.

In Step 3, three heuristic rules are applied toC to further prune
the graphs that are guaranteed to be false positives, as wellas to
identify the graphs that are guaranteed to be in the answer set.

Finally, for each remaining graphg in C, Step 4(a) obtainsDg

using the same indexing technique as in Step 1. Then, Step 4(b)
checks the correlation condition ofg with respect toq to produce
the answer set. Note that the joint support ofq and g, which
is needed for computingφ(q, g), is computed as (supp(g;Dq) ·
supp(q)) according to Lemma 2.

In the remainder of this section, we present the three heuristic
rules and our algorithm,CGSearch, to solve the problem of CGS.

A. Heuristic Rules

To check whether each graphg in C is correlated withq, a query
operation is needed to obtainDg for each candidateg (Step 4(a)).
This step can be expensive if the candidate set is large. Thus, we
develop three heuristic rules to further refine the candidate set.

First, if we are able to identify the graphs that are guaranteed
to be correlated withq before processing Step 4, we can save the
cost of verifying the result. We achieve this goal by Heuristic 1.

HEURISTIC 1: Given a graphg, if g ∈ C and g ⊇ q, then
g ∈ base(Aq).

Proof: Since g ⊇ q, we have supp(q, g) = supp(g).
Moreover, sinceg ∈ C, we havesupp(g, q;Dq) ≥ lowersupp(q,g)

supp(q) .
By Lemma 2, we further havesupp(q, g) ≥ lowersupp(q,g).

By replacingsupp(q, g) with supp(g) in φ(q, g), we have

φ(q, g) =

√

1− supp(q)

supp(q)
·
√

supp(g)

1− supp(g)
.

Now, φ is monotonically increasing withsupp(g), and
supp(g) = supp(q, g) ≥ lower supp(q,g). We replacesupp(g) with

its lower bound oflower supp(q,g) =
supp(q)

θ−2(1−supp(q))+supp(q)
in

φ(q, g). Then, we have the following expression:

φ(q, g) ≥
√

1− supp(q)

supp(q)
·
√

θ2supp(q)

1− supp(q)

= θ.

Therefore,g ∈ base(Aq).
Based on Heuristic 1, if we find that a graphg in the candidate

set is a supergraph ofq, we can add (g,Dg) into the answer set
without checking the correlation condition. In addition, sinceg is
a supergraph ofq, Dg can be obtained for free wheng is mined
from the projected databaseDq.

We next seek to save the cost of unrewarding query operations
by pruning those candidate graphs that are guaranteed to be
uncorrelated withq. For this purpose, we develop the following
two heuristic rules.

Before introducing Heuristic 2, we establish the following
lemma, which describes a useful property of the functionφ.

LEMMA 4: If both supp(q) and supp(q, g) are fixed, then
φ(q, g) is monotonically decreasing withsupp(g).

Proof: Since bothsupp(q) andsupp(q, g) are fixed, we first
simplify φ for clarity of presentation. Letx = supp(g), a =

supp(q, g), b = supp(q), andc = supp(q)(1−supp(q)). Then, we
have

φ(x) =
a− b · x

√

c · x(1− x)
.

The derivative ofφ at x is given as follows:

φ′(x) =
1√
c
· (2a− b)x− a

2x(1− x)
√

x(1− x)
.

Since0 ≤ x ≤ 1, we havex(1−x) ≥ 0. Thus, the sign ofφ′(x)

depends on the sign of((2a− b)x−a). Since((2a− b)x−a) is a
linear function, we can derive its extreme values by replacing x

with 0 and 1 in the function. The two extreme values of((2a −
b)x − a) are (−a) and (a − b), both of which are non-positive
sincea ≥ 0 and a ≤ b. Therefore, we have((2a − b)x − a) ≤ 0

andφ′(x) ≤ 0. It follows thatφ(q, g) is monotonically decreasing
with supp(g).

HEURISTIC 2: Given two graphsg1 andg2, whereg1 ⊇ g2 and
supp(g1, q) = supp(g2, q), if g1 /∈ base(Aq), theng2 /∈ base(Aq).

Proof: Sinceg1 ⊇ g2, we havesupp(g1) ≤ supp(g2). Since
supp(g1, q) = supp(g2, q) and supp(q) is fixed, by Lemma 4,
we haveφ(q, g1) ≥ φ(q, g2). Since g1 /∈ base(Aq), we have
φ(q, g1) < θ. Therefore,φ(q, g2) ≤ φ(q, g1) < θ. Thus, we have
g2 /∈ base(Aq).

By Lemma 2, if supp(g1, q)=supp(g2, q), then supp(g1;Dq)

=supp(g2;Dq). Thus, Heuristic 2 can be applied as follows: if
we find that a graphg is uncorrelated withq, we can prune all
the subgraphs ofg in C that have the same support asg in Dq.

We now use the functionf again to present the third heuristic:

f(supp(g1)) = θ
√

supp(q)(1− supp(q))supp(g1)(1− supp(g1))

+ supp(q)supp(g1).

HEURISTIC 3: Given two graphsg1 andg2, whereg1 ⊇ g2, if
supp(g2, q) < f(supp(g1)), theng2 /∈ base(Aq).

Proof: Since g1 ⊇ g2, we havesupp(g1)≤supp(g2). By
Lemma 1, the necessary condition forφ(q, g2)≥θ is thatsupp(g2)

should fall within the range[lower supp(g), upper supp(g)]. As
shown in the proof of Lemma 3, the functionf is monoton-
ically increasing within the range[lower supp(g), upper supp(g)].
Therefore, we havesupp(g2, q)<f(supp(g1))≤f(supp(g2)). By
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replacingsupp(g2, q) with f(supp(g2)) in φ(q, g2), we derive the
following expressions:

φ(q, g2) <
f(supp(g2))− supp(q)supp(g2)

√

supp(q)supp(g2)(1− supp(q))(1− supp(g2))

=
θ
√

supp(q)supp(g2)(1− supp(q))(1− supp(g2))
√

supp(q)supp(g2)(1− supp(q))(1− supp(g2))

= θ.

It thus follows the result thatg2 /∈ base(Aq).
Note that in Heuristic 3,supp(g2, q)<f(supp(g1)) also implies

g1 /∈ base(Aq). This is becauseg1 ⊇ g2 implies supp(g1, q) ≤
supp(g2, q). Therefore, we havesupp(g1, q) < f(supp(g1)).
Similarly, by replacingsupp(g1, q) with f(supp(g1)) in φ(q, g1),
we can haveφ(q, g1) < θ and thusg1 /∈ base(Aq).

By Lemma 2, we havesupp(g2, q) = supp(g2;Dq) · supp(q).
Thus, if supp(g2, q) < f(supp(g1)), then supp(g2;Dq) <
f(supp(g1))

supp(q)
. Thus, Heuristic 3 can be applied as follows: if we

find that a graphg is uncorrelated withq, we can prune all the
subgraphs ofg in C that have support less thanf(supp(g))

supp(q) in Dq.

B. CGSearch Algorithm

Now, we present the CGSearch algorithm. As shown in Algo-
rithm 1, after we obtain the candidate setC from the projected
databaseDq (Lines 1-2), we process each candidate graph inC
according to the descending order of the graph sizes. Then, Lines
4-5 apply Heuristic 1 to include the supergraphs ofq ∈ C directly
into the answer set without performing the query operation (as
in Line 7). For other graphs inC, we first obtain their projected
databases (Line 7). If they are verified to be correlated withq, we
include them in the answer set (Lines 8-9); otherwise, Heuristic 2
(Lines 11-12) and Heuristic 3 (Lines 13-14) are applied to further
reduce the search space so that the unrewarding query costs for
false-positives are saved.

Algorithm 1 CGSearch
Input: A graph databaseD, a query graphq, and a correlation
thresholdθ.
Output: The answer setAq.
1. ObtainDq ;

2. Mine FGs fromDq using
lower supp(q,g)

supp(q)
as the minimum support

threshold and add the FGs toC;
3. for each graphg ∈ C in size-descending orderdo
4. if (g ⊇ q)
5. Add (g,Dg) to Aq ;
6. else
7. ObtainDg ;
8. if (φ(q, g) ≥ θ)
9. Add (g,Dg) to Aq ;
10. else
11. H2 ← {g′ ∈ C : g′ ⊆ g, supp(g′;Dq) = supp(g;Dq)};
12. C ← C −H2;
13. H3 ← {g′ ∈ C : g′ ⊆ g, supp(g′;Dq) < f(supp(g))

supp(q)
};

14. C ← C −H3;
15. return Aq;

We now prove the soundness and completeness of the result
returned by CGSearch. In other words, we prove that CGSearch
is able to returnAq with respect to a givenq precisely.

THEOREM 2: The answer set,Aq, returned by Algorithm 1, is
soundandcompletewith respect toq.

Proof: We first prove the soundness.∀(g,Dg) ∈ Aq, (g,Dg)

is added toAq in either Line 5 or Line 9. For the case of Line 5,

we have proved in Heuristic 1 thatg is correlated withq; while
for the case of Line 9, the soundness is guaranteed in Line 8.
Thus, the soundness ofAq follows.

We now prove the completeness. By Theorem 1, the candidate
set,C, produced in Line 2 of Algorithm 1 is complete.∀g ∈ C, if
g is not included inAq, thenφ(q, g) is checked to be less thanθ
(Line 10) org is pruned by Heuristics 2 or 3 (Lines 11-14). For
all these cases,g is proved to be uncorrelated withq and thus is
not in Aq. Therefore, the completeness ofAq follows.

EXAMPLE 2: Consider again the graph database in Figure 1
and the queryq in Figure 2(a). Letθ = 0.6. CGSearch (Line 1)
first obtainsDq = {g1, g2, g3, g4}. Thus, we havesupp(q) = 0.4

and lowersupp(q,g) = 0.19. Then, CGSearch (Line 2) mines FGs
from Dq using 0.19

0.4 = 0.475 as the minimum support threshold
and obtains nine candidates, which are shown in Figure 2(b).The
number following the colon “:” in the figure is the support of each
candidate inDq.

Since the candidates are sorted in descending order of their
size, CGSearch first processesc1. Since c1 is a supergraph of
q, (c1,Dc1) is directly included inAq by Heuristic 1. Note that
Dc1 = {g1, g2} can be obtained in the process of mining the
candidates fromDq, sincec1 is a supergraph ofq.

Then, CGSearch processesc2 to obtainDc2 = {g2, g3, g6, g7}.
Therefore, we haveφ(q, c2) = 0.5×0.4−0.4×0.4√

0.4×0.6×0.4×0.6
= 0.17 < θ.

Then, CGSearch computesH2 = {c6} since c6 ⊂ c2 and
supp(c6;Dq) = supp(c2;Dq) = 0.5. CGSearch further computes
H3 = {c4, c9} since c4 ⊂ c2, c9 ⊂ c2, and supp(c4;Dq) =

supp(c9;Dq) = 0.75 < 0.76 =
f(supp(c2 ))

supp(q)
, as shown in Figure

2(b). Therefore, after processingc2, C = {c3, c5, c7, c8}.
Similar to c1, CGSearch directly includes(c3,Dc3) into Aq

since c3 is a supergraph ofq. For c5, after obtainingDc5 ,
CGSearch computesφ(c5, q) = 0.61 ≥ θ, so (c5,Dc5) is added
to Aq. Finally, by queryingc7 and c8, sinceφ(c7, q) = 0.4 < θ

andφ(c8, q) = 0.82 ≥ θ, CGSearch adds(c8,Dc8) to Aq.
Therefore,Aq = {(c1,Dc1), (c3,Dc3), (c5,Dc5), (c8,Dc8)}.

Among the nine candidates, five of them do not need to perform
correlation verification by applying Heuristics 1 to 3.

When carrying out the exhaustive search, there are 40 sub-
graphs for such a small and simple graph database. If we generate
the candidate set by mining FGs fromD using lowersupp(g) =

0.19 and upper supp(g) = 0.64 as support thresholds, there are
still 16 graphs in the candidate set. This clearly illustrates that
the candidate generation from the projected database significantly
reduces the search space indeed.�

C. Discussion

To apply the three heuristic rules in our algorithm, we need to
obtain supergraphs or subgraphs of a given graph (Lines 4, 11and
13 of Algorithm 1) by testing subgraph isomorphism. However,
subgraph isomorphism testing is expensive and should be avoided
as much as possible. We find that the number of subgraph
isomorphism tests can be effectively reduced by using a depth-
first FG mining algorithm (such asgSpan[26]) for the candidate
generation. In a depth-first mining process, the FGs generated
can be organized in a prefix tree, in which a child is a supergraph
of its parent. Thus, by following theroot-to-leaf pathsin the
prefix tree, we are able to determine the subgraph-supergraph
relationship without performing subgraph isomorphism testing.

If we only follow a path in the prefix tree and do not check
the relationship of the graphs that appear in different paths, we
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Fig. 2. An Example Query and Its Candidate Set

are not able to identify all the graphs inH2 andH3 of Algorithm
1 and all the supergraphs ofq. However, we observe that there
is a trade-off here. On the one hand, if we fully apply the three
heuristic rules by cross-checking the graphs in different paths
to find all the subgraph-supergraph relationships, more subgraph
isomorphism tests have to be performed but fewer candidatesare
needed for verification of the correlation condition. On theother
hand, if we only partially apply the three heuristic rules bysimply
following the paths in the prefix tree, no subgraph isomorphism
test is needed but more candidates are required for verification.
We further demonstrate this trade-off in our experiments.

VI. CGSEARCH* A LGORITHM

An essential step in the CGSearch algorithm introduced in
Section V is to mine the set of candidates from the projected
database (Line 2 of Algorithm 1). Although mining from the
projected database is much cheaper than mining from the whole
database, the mining operation is still expensive. In this section,
we further improve the CGSearch algorithm to avoid performing
the mining process for queries that are of high support.

More specifically, we organize the set of FGs (as well
as their corresponding projected databases) with a minimum
support thresholdσ according to the support values of FGs.
In this way, the set of FGs within the support range of
[lower supp(g), upper supp(g)], i.e., the set of candidate graphs, can
be obtained directly iflower supp(g) ≥ σ. We call this process
of obtaining the candidate setFGQuery. Since FGQuery is much
cheaper than the mining operation, we can significantly reduce the
response time for processing query graphs whose corresponding
lowersupp(g) is no less thanσ.

Let CQ be the candidate set returned by FGQuery andC be the
candidate set generated from the projected database by CGSearch.
The cost of correlation verification for a candidate graphg ∈ CQ
is significantly lower that forg ∈ C. To check the correlation
condition, i.e.,φ(q, g) ≥ θ, we need the values ofsupp(g) and
supp(q, g). For g ∈ C, the value ofsupp(q, g) is obtained when
mining the projected database ofq. To check whetherg is an
answer, we should obtain the projected database ofg, Dg , (Line 7
of Algorithm 1) to getsupp(g), which is an expensive operation.
On the other hand, forg ∈ CQ, the value ofsupp(g) and the
projected databaseDg are indexed in FGQuery. Thus, to verify
whetherg is an answer, we only need to intersectDq andDg to

computesupp(q, g), which is much cheaper than the operation to
obtainDg in the case wheng ∈ C.

Although FGQuery can save candidate generation time and
candidate verification inCQ is also cheaper than that inC, CQ
is usually much larger thanC. To reduce the number of candidate
verifications required for the candidates inCQ, we develop another
set of heuristic rules to be applied toCQ.

In the remainder of this section, we first discuss the heuristic
rules. Then, we describe how the heuristic rules are applied.
Finally, we present the improved algorithm, namedCGSearch*,
which uses FGQuery to avoid mining for queries of high support.

A. Heuristic Rules

Similar to Heuristic 1, the following heuristic is to identify the
candidate graphs inCQ that are guaranteed to be answer graphs.

HEURISTIC 4: Given a graphg, if g ∈ CQ and g ⊇ q, then
g ∈ base(Aq).

Proof: Since g ⊇ q, we have supp(q, g) = supp(g).
Furthermore, sinceg ∈ CQ, we havelowersupp(g) ≤ supp(g) ≤
upper supp(g).

By replacingsupp(q, g) with supp(g) in φ(q, g), we have

φ(q, g) =

√

1− supp(q)

supp(q)
·
√

supp(g)

1− supp(g)
,

which is monotonically increasing withsupp(g). We further
replacesupp(g) with its lower bound oflower supp(g) in the above
φ(q, g) and obtain the following expression:

φ(q, g) ≥
√

1− supp(q)

supp(q)
·
√

lowersupp(g)

1− lowersupp(g)
= θ.

Therefore,g ∈ base(Aq) follows.
By Heuristic 4, if we find that a graph inCQ is a supergraph of

q, we can directly add it to the answer set without any verification.
The following two heuristic rules are not only useful for iden-

tifying answer graphs without performing correlation checking,
but also effective for eliminating false-positives.

HEURISTIC 5: Given two graphsg1 and g2, whereg1 ⊇ g2

andsupp(g1) = supp(g2), the following two statements are true:

(a) g1 ∈ base(Aq) if and only if g2 ∈ base(Aq).
(b) g1 /∈ base(Aq) if and only if g2 /∈ base(Aq).

Proof: Sinceg1 ⊇ g2 and supp(g1) = supp(g2), we know
thatg1 appears in every graph in whichg2 appears. Thus, we have
supp(q, g1) = supp(q, g2). By Definition 1, we haveφ(q, g1) =

φ(q, g2) and hence the results of 5(a) and 5(b) follow.
By Heuristic 5, when a candidate graphg in CQ is included in

or excluded from the answer set, the same result also appliesto
g’s supergraphs or subgraphs that have the same support.

HEURISTIC 6: Given two graphsg1 and g2, whereg1 ⊇ g2,
the following two statements are true:

(a) If supp(g2) ≤ h(supp(q, g1)), theng2 ∈ base(Aq).
(b) If supp(g1) > h(supp(q, g2)), theng1 /∈ base(Aq).

The functionh is defined as follows:
h(supp(q, g))

=
a(2 · supp(q, g)− a) + c− b

√

c− (2 · supp(q, g)− a)2

2c
,

wherea = supp(q); b = θ
√

a(1− a) and c = a2 + b2.
Proof: We first prove that the functionh is monotonically

increasing withsupp(q, g). The derivative ofh is given as follows:
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h′(supp(q , g))

=
a
√

c− (2 · supp(q, g)− a)2 + b(2 · supp(q, g)− a)

c
√

c− (2 · supp(q, g)− a)2
. (5)

If supp(q, g)≥ supp(q)
2 , that is,(2 ·supp(q, g)−a) ≥ 0, Equation

(5) is no less than0. This proves that the functionh monotonically
increases withsupp(q, g) within the range of[ supp(q)

2 , 1].
We now consider the case whensupp(q, g)<

supp(q)
2 . We have

0≤(a−2 · supp(q, g))≤a. Thus, it follows from Equation (5) that:

h′(supp(q , g))

=
a
√

c− (a− 2 · supp(q, g))2 − b(a− 2 · supp(q, g))

c
√

c− (2 · supp(q, g)− a)2
(6)

=
a
√

a2 + b2 − (a− 2 · supp(q, g))2 − b(a− 2 · supp(q, g))

c
√

c− (2 · supp(q, g)− a)2
(7)

≥ ab− b(a− 2 · supp(q, g))

c
√

c− (2 · supp(q, g)− a)2
(8)

≥ 0. (9)

Equation (7) is obtained by replacingc with (a2 + b2) in the
numerator of Equation (6). The last two inequalities follow, since
a ≥ (a− 2 · supp(q, g)).

Therefore, we have proved that the functionh is monotonically
increasing withsupp(q, g).

Now, we prove Heuristic 6(a). Sinceg1 ⊇ g2, we have
supp(q, g1) ≤ supp(q, g2). Since the functionh is monotonically
increasing withsupp(q, g), we havesupp(g2) ≤ h(supp(q, g1)) ≤
h(supp(q, g2)). By Lemma 4,φ(q, g2) is monotonically decreas-
ing with supp(g2) when other parameters are fixed. Therefore, by
replacingsupp(g2) with h(supp(q, g2)) in φ(q, g2), we derive the
following expression:

φ(q, g2)

≥ supp(q, g2)− supp(q)h(supp(q, g2))
√

supp(q)(1− supp(q))h(supp(q, g2))(1− h(supp(q, g2)))

= θ.

The resultg2 ∈ base(Aq) follows.
Heuristic 6(b) can be proved similarly as Heuristic 6(a).
Note that in Heuristic 6(a),supp(g2)≤h(supp(q, g1)) also im-

pliesg1 ∈ base(Aq). This is becauseg1 ⊇ g2 implies supp(g1) ≤
supp(g2) ≤ h(supp(q, g1)). As similar proof to that for Heuristic
6(a) applies,g1 ∈ base(Aq) follows. Similarly, in Heuristic 6(b),
supp(g1) > h(supp(q, g2)) also impliesg2 /∈ base(Aq).

By Heuristic 6, if we find that a candidate graphg is an answer,
we can directly include its subgraph inCQ whose support value is
no greater thanh(supp(q, g)). On the other hand, if we find that a
candidate graphg is not an answer, we can prune its supergraph
in CQ whose support value is greater thanh(supp(q, g)).

B. Application of Heuristic Rules in FGQuery

In this section, we show how Heuristics 4 to 6 can be effectively
applied in FGQuery. Since a set of FGs is usually indexed by
the indexing technique (such as FG-index [31]) for obtaining the
projected database, we implement FGQuery on this set of FGs.

Let F be the set of FGs indexed by FG-index. To apply the
heuristics, we construct a lattice onF , called theFG-lattice. To
build the lattice, we associate achildren list and aparents list
for each g ∈ F , where the children list keeps all subgraphs
of g that have one less edge thang and the parents list keeps

all supergraphs ofg that have one more edge thang. The FG-
lattice can be constructed during the construction of FG-index,
without incurring too much extra cost. The only change to the
algorithm for the construction of FG-index is by deleting Line 9
of Algorithm 1 in [31] and computing the children list and the
parents list of each FG.

Algorithm 2 FGQuery
Input: A query graphq and a set of FGsF .
Output: The answer setAq.
1. ObtainCQ from F ;
2. Initialize two empty queues,QY andQN ;
3. for each g ⊇ q, whereg ∈ CQ, do
4. Add (g,Dg) to Aq and markg;
5. for each unmarkedchild, c, of g do
6. Child Y(c, g, QY , QN , Aq);
7. while (QN is not empty)
8. Popg out of QN ;
9. for each unmarkedparent,p, of g do

10. Parent N(p, g, QY , QN , Aq);
11. for each unmarkedchild, c, of g do
12. Child N(c, g, QY , QN , Aq);
13. while (QY is not empty)
14. Popg out of QY ;
15. for each unmarkedparent,p, of g do
16. Parent Y(p, g, QY , QN , Aq);
17. for each unmarkedchild, c, of g do
18. Child Y(c, g, QY , QN , Aq);
19. if (QN is not empty) goto Line 7;
20. else if (QY is not empty) goto Line 13;
21. else /∗ both QN andQY are empty∗/
22. ScanCQ until an unmarkedgraphg is found;
23. Mark g;
24. if (Check(g))
25. Add (g,Dg) to Aq , pushg into QY , andgoto Line 13;
26. else
27. Pushg into QN andgoto Line 7;
28. return Aq;

Since many graphs share a large number of supergraphs and
subgraphs, we need an effective strategy to apply Heuristics 4 to
6, so that the graphs will not be processed duplicately. We devise
an efficient algorithm,FGQuery, as shown in Algorithm 2, to
apply the three heuristics to computeAq.

FGQuery first obtains the candidate setCQ from F . Since
whether or not a graph belongs toCQ is determined by its support,
F can be pre-sorted in ascending order of the support of the FGs.
Thus,CQ is simply the sub-arrayF [lower supp(g), upper supp(g)],
where lowersupp(g) and upper supp(g) of a given q can be
computed by using Lemma 1.

According to Heuristics 5 and 6, given the knowledge of
whether or not a graphg is in the answer set, we can directly
determine the inclusion/exclusion of many supergraphs andsub-
graphs ofg into/from the answer set. Thus, in Algorithm 2, we
use two queues,QY andQN , for keeping graphs that have been
determined to be in and not in the answer set, respectively. We
mark a candidate whenever we push it into a queue to avoid it
being processed repeatedly.

There are four cases when Heuristics 5 and 6 can be applied.
We express these four cases in Procedures 1 to 4. If a candidate
graph g is determined to be an answer, i.e.,g ∈ QY , we can
processg’s child, c, by calling Child Y() as given in Procedure
1. Heuristics 5(a) and 6(a) are applied in Line 1 of Procedure1
to include the qualified subgraph ofg into the answer set. When
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the graphc cannot be determined by the heuristics (Lines 3-6 of
Procedure 1), we check the correlation condition ofc using the
boolean operationCheck(), which is true when the correlation
condition is true. The graphc is then included in eitherQY (and
Aq) or QN . Procedure 2 applies Heuristic 5(a) to include the
qualified supergraph ofg ∈ QY into the answer set. Similarly,
Procedure 3 applies Heuristic 5(b) to prune the subgraph ofg ∈
QN from the candidate set; while Procedure 4 applies Heuristics
5(b) and 6(b) to prune the supergraph ofg ∈ QN .

Procedure 1Child Y(c, g, QY , QN , Aq)

1. if (supp(c) = supp(g) or supp(c) ≤ h(supp(q, g)))
2. Add (c,Dc) to Aq and pushc into QY ;
3. else if (Check(c))
4. Add (c,Dc) to Aq and pushc into QY ;
5. else
6. Pushc into QN ;
7. Mark c;

Procedure 2Parent Y(p, g, QY , QN , Aq)

1. if (supp(p) = supp(g))
2. Add (p,Dp) to Aq and pushp into QY ;
3. else if (Check(p))
4. Add (p,Dp) to Aq and pushp into QY ;
5. else
6. Pushp into QN ;
7. Mark p;

Procedure 3Child N(c, g, QY , QN , Aq)

1. if (supp(c) = supp(g))
2. Pushc into QN ;
3. else if (Check(c))
4. Add (c,Dc) to Aq and pushc into QY ;
5. else
6. Pushc into QN ;
7. Mark c;

Procedure 4Parent N(p, g, QY , QN , Aq)

1. if (supp(p) = supp(g) or supp(p) > h(supp(q, g)))
2. Pushp into QN ;
3. else if (Check(p))
4. Add (p,Dp) to Aq and pushp into QY ;
5. else
6. Pushp into QN ;
7. Mark p;

Algorithm 2 consists of four main parts. First, Lines 3-6 process
the supergraphs ofq by Heuristic 4, using the parents list of
the candidate graphs in the FG-lattice. The algorithm also uses
the children list of the graphs to include the children ofq’s
supergraphs in eitherQY (andAq) or QN by calling Child Y().

Next, Lines 7-12 process the subgraphs and supergraphs of the
graphs inQN by calling Child N() andParent N(), respectively.
Then, Lines 13-18 process the subgraphs and supergraphs of the
graphs inQY by calling Child Y() andParent Y(), respectively.

When bothQY and QN become empty (Lines 21-27), we
linearly scanCQ. When anunmarkedcandidateg is found, we
check whetherg is an answer, push it intoQY or QN , and then
continue to apply Heuristics 5 and 6 to process the candidates
that areg’s supergraphs and subgraphs.

Finally, the algorithm returnsAq when all candidates inCQ are
marked.

C. CGSearch* Algorithm

We now present the overall algorithm,CGSearch*, which is
a more efficient solution to the CGS problem by integrating the
CGSearch algorithm and the FGQuery algorithm.

Algorithm 3 CGSearch*
Input: A graph databaseD, a query graphq, a correlation
thresholdθ, and a minimum support thresholdσ.
Output: The answer setAq.

1. ObtainDq;
2. if (lower supp(g) ≥ σ)
3. FGQuery;
4. else
5. CGSearch;
6. return Aq ;

As shown in Algorithm 3, the first step is to obtain the projected
database ofq using the indexing technique. Then, we compute
the lower bound of a candidate graph,lower supp(g), as given in
Lemma 1. If lowersupp(g) is no less than the minimum support
thresholdσ used in the indexing technique,FGQuery is invoked
to avoid the mining operation for candidate generation; otherwise,
CGSearchis invoked to generate the candidates from the projected
database. We remark that, the calling ofCGSearchin Algorithm 3
skips processing Line 1 of Algorithm 1 since it has been executed
by Line 1 of CGSearch*.

VII. PERFORMANCEEVALUATION

We evaluate the performance of our solution to the CGS
problem on both real and synthetic datasets.

A. Experimental Settings

The real dataset contains the compound structures of cancer
and AIDS data from the NCI Open Database Compounds1. The
original dataset contains about249K graphs. After removing the
disconnected graphs, we randomly select100K graphs for our
experiments. On average, each graph in the dataset has 21 nodes
and 23 edges. The number of distinct labels for nodes and edges
is 88. The real dataset is used in the experiments in Sections
VII-B, VII-C, and VII-D.

Since the graphs in the real dataset are generally small and of
low density, we use synthetic datasets to evaluate the performance
of the algorithms on graphs with different sizes and densities in
Sections VII-E and VII-F. We develop a synthetic graph generator
(see details in GraphGen2) for our experiments. We first vary the
average number of edges in a graph from 40 to 100, by fixing the
average graph density to 0.15. Then, we fix the average number
of edges in a graph to 60, and vary the average graph density
from 0.05 (50 nodes) to 0.2 (25 nodes). Each synthetic dataset
has 100K graphs and the number of distinct labels is 30.

Since the complexity of the CGS problem mainly depends
on the support of the query, we randomly generate four sets
of queries,F1, F2, F3, and F4, for each of the datasets tested.
EachFi contains 100 queries. The support ranges for the queries
in F1 to F4 are [0.02, 0.05], (0.05, 0.07], (0.07, 0.1] and (0.1, 1),
respectively. We set the minimum correlation thresholdθ to 0.8

for all experiments, except for Sections VII-B and VII-D, where

1http://cactus.nci.nih.gov/ncidb2/download.html
2http://www.cse.ust.hk/graphgen
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we test the effect of heuristic rules and the performance of
algorithms when varyingθ.

The efficiency of CGSearch is based on the effective candidate
generation from the projected database and the applicationof
Heuristics 1 to 3. Since there is no existing work on mining
correlations from graph databases, we mainly assess the effects
of the candidate generation method and the heuristic rules on
the performance of our algorithm. First, to show the efficiency
gained by using the projected database for candidate generation,
we compare with the approach, calledRange, for which the
candidates are mined from the original database with a support
range. Second, to show the effect of Heuristics 1 to 3 on refining
the candidate set, we implement three variants of our algo-
rithm: CGSearchP, CGSearchF andCGSearchN. Among them,
CGSearchP and CGSearchF are implemented based on the
different strategies of applying Heuristics 1 to 3 as discussed in
Section V-C. We also test the CGSearch* algorithm to assess the
efficiency improvement by using FGQuery. Table II summarizes
the algorithms tested in this experiment.

TABLE II

ALGORITHMS TESTED

Name Description
Range Generate the candidate set fromD using

[lower supp(g), uppersupp(g)] as a support range.
CGSearchP Partially apply Heuristics 1 to 3 in CGSearch.
CGSearchF Fully apply Heuristics 1 to 3 in CGSearch.
CGSearchN Do Not apply Heuristics 1 to 3 in CGSearch.
CGSearch* A hybrid approach: invoke FGQuery for high-support

queries and CGSearchP for low-support queries.

We useFG-index [31] to obtain the projected database of a
graph. In all experiments, we set the minimum support threshold σ

and the frequency tolerance factorδ in FG-index to0.03 and0.05,
respectively. The same value ofσ is also used for our CGSearch*
algorithm. We usegSpan[26] to mine the FGs for generating the
set of candidates. All experiments are run on a linux machine
with an AMD Opteron 248 CPU and 1 GB RAM.

B. Effect of Heuristic Rules

We first show the effect of applying Heuristics 1 to 3 presented
in Section V-A. Figure 3 shows the running time onF4 for the
three variants of CGSearch at different values ofθ. In order
to focus on the effect of the heuristic rules, we do not include
the time taken by the candidate generation and only present the
time for querying the candidates and checking the correlation
condition. The time for processing other query sets followssimilar
trends and is hence omitted for brevity.
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Fig. 3. Effect of Heuristic Rules

When θ = 0.6, the number of candidates is large. There-
fore, CGSearchF performs the best, since the cost for querying

the candidates is much larger than the cost forfully applying
the heuristic rules. In this case, CGSearchP is slower than
CGSearchF since partially applying the heuristic rules is not
able to reduce the number of candidates as effectively as does
CGSearchF. However, with the increase inθ, and hence the
decrease in the size of the candidate set, CGSearchP outperforms
CGSearchF. This is because, given the smaller number of can-
didates, the full application of the heuristic rules, whichinvolves
subgraph isomorphism testings, is more costly than querying
the candidates by FG-index. This suggests a good strategy for
applying the heuristic rules: when the number of candidatesis
large, we can use CGSearchF to reduce the search space as much
as possible; when the number of candidates is relatively small,
we can simply use CGSearchP.

In most of the cases, CGSearchN is the worst, since all the
candidates need to go through the verification of the correlation
condition. However, if the number of candidates is small, itis
possible that CGSearchF is even slower than CGSearchN due
to too many subgraph isomorphism tests that need to be performed
when fully applying the heuristic rules. Therefore, it can be seen
from Figure 3 that the running time of CGSearchF is almost the
same as that of CGSearchN whenθ is high. However, in general,
CGSearchP outperforms CGSearchN, since the partial applica-
tion of the heuristic rules requires no subgraph isomorphism test
due to the prefix tree, as discussed in Section V-C.

In the rest of the experiments, we use CGSearchP when we
compare the algorithm CGSearch with CGSearch* and Range,
since CGSearchP on average achieves the best performance
among all the variants.

C. Performance on Varying Query Support

We now assess the performance of our algorithm on queries
with different support ranges. Figure 4 presents the results for
CGSearch*, CGSearchP and Range on the query setsF1 to F4.

Figures 4(a-b) show the average running time per query and
the peak memory consumption. From these two figures, we can
see that CGSearchP is almost two orders of magnitude faster
and consumes ten times less memory than Range. The results
also show that CGSearch* is even over an order of magnitude
faster than CGSearchP, with comparable memory consumption.
For both CGSearchP and Range, the dominating factor in the
running time is the candidate generation process, which involves
mining the projected database for CGSearchP and mining the
entire database for Range. On the other hand, the cost of candidate
generation is minimal for CGSearch* since most of the queries
are processed directly using FGQuery.

We observe that CGSearchP is slightly slower for processing
F1 and F4. This is because the cost of candidate generation not
only depends on the size of the projected database (i.e.,supp(q)),
but also on the minimum support threshold (i.e.,

lower supp(q,g)

supp(q)
).

Although the minimum support threshold forF4 is the largest
among all the query sets, its projected database is also the
largest, which increases the mining time; while forF1, its low
minimum support threshold results in slightly longer processing
time. Compared with Range, the running time of CGSearchP is
much more stable. For all support ranges, CGSearchP takes 2
to 4 seconds for each query, while the running time of Range is
greatly influenced by the support of the queries. With the decrease
in the support of the queries, the running time of Range increases
rapidly from 100 seconds to 400 seconds. For CGSearch*, since
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only a small number of queries performs the mining operation
for candidate generation, the performance is very stable and
significantly better than the other two algorithms.

We show the sizes of the candidate sets of CGSearch*,
CGSearchP and Range in Figure 4(c). The size of the answer
set is also shown as a reference. The result shows that the size
of the candidate set produced by CGSearchP is over an order of
magnitude smaller than Range and is close to that of the answer
set. Note that the set of candidates of CGSearch* is the same as
that of Range in this experiment; however, CGSearch* obtains
the candidates from the FGQuery rather than mines them from
the database as does Range.

We further study the structural similarity of correlated graphs.
We compute theMaximum Common Subgraph (MCS)of a queryq
and each of its correlated answer graphg. The structural similarity
of q andg is then computed as|MCS(q,g)|

max(|q|,|g|) , where|g| denotes the
size of a graphg. Figure 4(d) presents the cumulative probability
distributions of the structural similarity of correlated graphs in
F1 to F4. The result shows that most of the answer graphs are
structurally dissimilar to query graphs. About70% of the answer
graphs have a structural similarity of less than0.12 to the query
graphs inF1 and F4, while for the query graphs inF2 and
F3, about60% of the answer graphs have a structural similarity
of less than0.24. The result indicates that the high correlation
between a query graph and its answer graph is mostly due to
their co-occurrences rather than their structural similarity. This
demonstrates the contribution of our new proposal of correlated
graphs since correlated graphs are not able to be discoveredby
existing approaches for structural similarity search.

D. Performance on Varyingθ

Figure 5 shows the performance of CGSearch*, CGSearchP
and Range when varying the minimum correlation thresholdθ

from 0.6 to 1. We test all query sets on the real dataset but for
clarity of presentation, we only present the results forF1 andF4.
We also do not presentF1 for Range because its running time is
too long.
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Fig. 5. Performance on Varyingθ

As shown in Figure 5, for all values ofθ, CGSearchP is
over an order of magnitude faster and consumes 6.5 times less
memory than Range onF4, while CGSearch* is near an order
of magnitude faster than CGSearchP. In processingF1, when
θ < 0.8, CGSearch* invokes CGSearchP to process the queries
since their correspondinglower supp(g) is less thanσ, while for
θ ≥ 0.8, with the use of the FGQuery, CGSearch* is significantly
faster than CGSearchP.

E. Performance on Varying Graph Size

Since the graphs in the real dataset are of small size (on average
23 edges per graph), we use synthetic datasets to assess the
performance of the algorithms on different graph sizes.

We report the results forF1 and F4, which are of the
largest and the smallest support ranges, respectively. Figure 6
shows the performance of CGSearch*, CGSearchP and Range.
For F1, CGSearchP is up to four orders of magnitude faster
and consumes 40 times less memory than Range. Note that
CGSearch* invokes CGSearchP to processF1. Therefore, the
running time of CGSearch* and CGSearch forF1 is the same.
ForF4, CGSearchP is still over an order of magnitude faster than
Range, while CGSearch* is even an order of magnitude faster
than CGSearchP. The smaller improvement on the performance
of CGSearchP over Range forF4 is because the average number
of candidates of Range forF4 is over three orders of magnitude
smaller than that of Range forF1 (111, 955 for F1 and 795 for
F4). However, we can use the more efficient algorithm CGSearch*
instead of CGSearchP for processingF4. The memory consump-
tion of both CGSearch* and CGSearchP for F4 is significantly
less than that of Range. CGSearch* for graph sizes of80 and
100 consumes slightly more memory, since the number of FGs
for larger graph sizes is larger and consequently the space needed
to build the FG-lattice is larger.
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Fig. 6. Performance on Varying Graph Size

Overall, the results in Figure 6 show that our algorithms, both
CGSearch* and CGSearchP, are efficient for all graph sizes tested
and their performance is also much more stable than that of
Range.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 200X 12

F. Performance on Varying Graph Density

We assess the performance of the algorithms on different graph
densities. We test the average densities of 0.05, 0.1, 0.15 and
0.2, which correspond to 50, 35, 30 and 25 nodes per graph,
respectively. The average number of edges in a graph is 60.

Again, we present the results forF1 and F4 in Figure 7. For
F1, CGSearchP is more than two orders of magnitude faster
than Range. Note that CGSearch* invokes CGSearchP to process
F1 and hence their running time forF1 is the same. ForF4,
CGSearchP is almost an order of magnitude faster than Range,
but CGSearch* is three orders of magnitude faster than Range.
The longer running time of CGSearchP in processingF4 is
mainly due to the large projected databases of the queries inF4,
since large projected databases result in a more costly candidate
generation. In fact, over 99% of the running time is used to mine
the candidates in CGSearchP for F4. However, in this case,
CGSearch* can be used instead of CGSearchP to processF4.
The memory consumption of both CGSearch* and CGSearchP is
significantly less than that of Range for all densities. The slightly
more memory consumption of CGSearch* forF4 is due to larger
number of FGs for building the FG-lattice in FGQuery.
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Fig. 7. Performance on Varying Graph Density

For all the densities tested, the results also show that both
CGSearch* and CGSearchP are very stable in processing both
F1 andF4.

VIII. G ENERALIZATION OF THE CGS PROBLEM

In the previous sections, we study an efficient solution to the
CGS problem. The CGS problem adopts Pearson’s correlation
coefficient as the correlation measure; however, there are many
other well-established correlation measures proposed in the liter-
ature [17].Does our method work only for Pearson’s correlation
coefficient? Or does it work for other correlation measures as
well? In this section, we generalize our problem definition to
adopt other measures and show that our method is a general
solution for a majority of correlation measures being used.

We first define the generalized CGS problem as follows.
DEFINITION 4: (GENERALIZED CORRELATED GRAPH

SEARCH) Given a graph databaseD, a correlation query graphq
and a minimum correlation thresholdθ, the generalized problem
of correlated graph search isto find the set of all graphs that are
correlated withq as defined by a correlation measureM.

It is challenging to find a general solution for the above
generalized CGS problem since the various correlation measures
are not only defined differently but also carry very different
semantic meanings. We set up the following system of inequalities
to model the generalized CGS problem. By solving this system
of inequalities, we show how our solution developed for the CGS
problem applies to the generalized CGS problem.























supp(q, g) ≤ supp(g)

supp(q, g) ≤ supp(q)

supp(q, g) ≥ 0

supp(g) ≤ 1

M(supp(q, g), supp(g)) ≥ θ

where the first two inequalities are the properties of joint support,
the third and fourth inequalities represent the bounds of the
support measure, and the last inequality expresses the correlation
condition of the generalized CGS problem.
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Fig. 8. Graph of the Inequality System

If a graphg is an answer to the generalized CGS problem, the
corresponding pair(supp(g), supp(q, g)) must satisfy the above
inequality system. Thus, the inequality system defines a necessary
condition and we can find the set of candidate graphs by solving
the inequality system without missing any answer graph. Note that
a pair (supp(g), supp(q, g)) that satisfies the inequality system is
not necessary to correspond to an answer graph, because there
may not be such a graph with these support and joint support
values in the database.

The solution to the above inequality system can be better
visualized by graphing the inequalities and shading the solution
region. Figure 8 shows four thick lines that represent the cor-
responding equalities of the first four inequalities. The shaded
trapezoid represents the region where the first four inequalities
are true, i.e., the solution to these four inequalities. Therefore, the
solution to the inequality system is the overlap of this trapezoid
and the region defined by the last inequality.

Now the problem is: how do we plot the last inequality, i.e., the
correlation condition, in the graph? To do this, we need to first
investigate the properties of a correlation measure. According to
Piatetsky-Shapiro [32], a good measureM of two variablesA

andB should satisfy the following three key properties:
P1: M = 0 if A andB are statistically independent;
P2: M monotonically increases withp(A, B) when p(A) and

p(B) are fixed;
P3: M monotonically decreases withp(A) (or p(B)) when

p(A,B) andp(B) (or p(A)) are fixed.
Here,p(A) represents the probability ofA andp(A,B) repre-

sents the joint probability ofA and B. In our problem,p(A) is
equivalent tosupp(A) andp(A,B) is equivalent tosupp(A,B).

Now, we state and prove an important property of the corre-
lation condition (M(supp(q, g), supp(g)) ≥ θ) in the following
lemma.

LEMMA 5: If a correlation measureM satisfies P2 and P3,
then supp(q, g) is monotonically increasing withsupp(g) in the
functionM(supp(q, g), supp(g)) = θ.

Proof: Let g1 and g2 be two graphs, wheresupp(g1) ≥
supp(g2). We show thatsupp(q, g1) ≥ supp(q, g2), given that
M(supp(q, g1), supp(g1)) = M(supp(q, g2), supp(g2)) = θ.
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First, sinceM satisfies P3, by fixingsupp(q, g1), it follows that
M(supp(q, g1), supp(g1)) ≤ M(supp(q, g1), supp(g2)). Then,
since M(supp(q, g1), supp(g1)) = M(supp(q, g2), supp(g2)),
it follows that M(supp(q, g2), supp(g2)) ≤
M(supp(q, g1), supp(g2)). Finally, since M satisfies P2,
it follows that supp(q, g) monotonically increases withM
when supp(g) and supp(q) are fixed. Therefore, we have
supp(q, g2) ≤ supp(q, g1) and the result follows.

According to Lemma 5, the curve of the correlation condition
should be plotted from the lower left to the upper right in Figure
8. Moreover, according to P2, the region where the inequality of
the correlation condition is true should be located in the upper left
of the figure. Therefore, the overlap of this region and the shaded
trapezoid, i.e., the solution to the inequality system, depends on
the intersection points of the curve of the correlation condition
and the four sides of the trapezoid.

We now investigate the cases of the intersection points to
derive the solution to the inequality system. We first find that
the correlation curve has no intersection point with the line
“supp(q, g) = 0”. This is because, when the joint support of two
variables is zero, the correlation of these two variables defined
by any correlation measure is no greater than zero; while the
correlation of two variables represented by a point in the curve
is θ, which is greater than zero. Therefore, there are two cases
when the correlation curve intersects with the other three sides of
the trapezoid as follows:

Case 1: The correlation curve has an intersection point with
the line “supp(q, g) = supp(g)”.

Case 2: The correlation curve has no intersection point with
the line “supp(q, g) = supp(g)”.

We now discuss these two cases in detail.
In Case 1, there is a lower bound forsupp(q, g), i.e., the value

of supp(q, g) of the intersection point. It is a lower bound since the
region where the correlation condition is true is located above the
curve. Therefore, we can solve the generalized CGS problem ef-
ficiently by generating the candidates from the projected database
as in the CGS problem. Moreover, there is also a lower bound
for supp(g), i.e., the value ofsupp(g) of the intersection point.
This lower bound is the same as the lower bound forsupp(q, g)

since the intersection point is on the line “supp(q, g) = supp(g)”.
Therefore, if the lower bound ofsupp(g) is no less than the
minimum support threshold for building the index (as discussed
in Section VI), we can compute the query results efficiently using
FGQuery and avoid candidate generation through a more costly
mining process.

By investigating the commonly used measures introduced in
[17], we find that, among all the fourteen measures that possess
both properties of P2 and P3, ten of them fall under Case 1. They
are as follows:

• Pearson’s correlation coefficient;
• Cohen’s kappa coefficient;
• Mutual information;
• Cosine measure;
• Piatetsky-Shapiro’s measure;
• Certainty factor;
• Added value;
• Collective strength;
• Jaccard index;
• Klosgen’s evaluation function.

Therefore, the generalized CGS problem defined by most
correlation measures can be efficiently solved by our current
solution. The only difference is that the expressions of thebounds
in Lemmas 1 and 3 vary for different measures. The bounds
can be obtained by computing the intersection point of the
correlation condition with the line “supp(q, g) = supp(g)”. The
corresponding heuristic rules for further reducing the search space
can also be obtained in a similar way as in the case of Pearson’s
correlation coefficient.

Figure 9 shows the graph of the inequality system when
Pearson’s correlation coefficient is applied as the correlation
measure. The thick curve represents the cases when the Pearson’s
correlation coefficient of two graphs equalsθ. The shaded region,
which is the overlap of the trapezoid and the region above the
thick curve, is the solution to the inequality system. According
to this solution, we can identify the lower and upper bounds for
bothsupp(g) andsupp(q, g) as indicated in the axes of the figure.
These bounds are the key to the design of our efficient solution:
candidate generation from projected databases and effective use
of the index for answering high-support queries.
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Fig. 10. Graph of the Inequality System whenM is Odds Ratio

In Case 2, the correlation curve intersects with either the line
“supp(q, g) = supp(q)” or the line “supp(g) = 1”. Thus, there is
no non-trivial lower bound for bothsupp(q, g) and supp(g). To
generate the candidate set from either the projected database or
the whole database, the trivial minimum support threshold of 0

has to be used. In many real applications, mining all FGs from
the whole database is infeasible. Moreover, mining FGs from
the projected database is always cheaper than from the whole
database using the same minimum support threshold. Therefore,
candidate generation from the projected database is the only
existing solution, although it can still be costly when the projected
database is large or dense. Fortunately, the number of correlation
measures that fall within Case 2 is very small, including odds
ratio and its two normalizations (Yule’s Q and Yule’s Y) and
the interest measure. Figure 10 gives the graph of the inequality
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system when odds ratio is used as the correlation measure. Itcan
be seen from the figure that there is no non-trivial lower bounds
for the support values in the solution region.

In conclusion, the discussions in this section show that our
algorithm CGSearch* still serves as an efficient and effective
solution when most of the correlation measures are used to
generalize the CGS problem.

IX. RELATED WORK

There have been a number of studies on mining correlations
from various types of databases. Pearson’s correlation coeffi-
cient, as well as its computation form for binary variables,the
φ correlation coefficient, are prevalently used as a correlation
measure. Sakurai et al. [9] use Pearson’s correlation coefficient
to define the lag correlation between two time sequences. Xiong
et al. [5] apply theφ correlation coefficient to define the strongly
correlated pairs in transaction databases. An upper bound of φ, as
well as monotonic properties of the upper bound, are identified
to facilitate the efficient mining process. Recently, Zhangand
Feigenbaum [6] also adopt theφ correlation coefficient to measure
correlated pairs in transaction databases. An efficient algorithm
that uses min-hash functions as the pruning method is developed.
To the best of our knowledge, our work is the first applicationof
the φ correlation coefficient in the context of graph databases.

In literature, many other correlation measures are proposed for
different applications. For market-basket data, correlation mea-
sures includeχ2 [1], interest [1], all-confidence [2], [3], bond [3],
h-confidence [4], and so on. For multimedia data, Pan et al. [8]
use random walks with restart to define the correlation between
the nodes in the graph that is constructed from a multimedia
database. For quantitative databases, Ke et al. [7] utilizemutual
information and all-confidence to define the correlated patterns.

X. CONCLUSIONS

We formulate the problem of CGS, which finds the set of
graphs that exhibit high correlation to a given query graph,as
measured by Pearson’s correlation coefficient. The search space
of the problem is exponential; however, by deriving the theoretic
bounds for the support of a candidate graph, we effectively reduce
the search space to a small set of candidates mined from the
projected database of the query graph. We develop three effective
heuristic rules to further reduce the size of the candidate set. Using
the above results, we devise an efficient algorithm, CGSearch, to
solve the problem of CGS. The soundness and completeness of
the query results returned by CGSearch are also formally proved.
We further eliminate the mining process of candidate generation
for queries of high support by FGQuery. Combining FGQuery
and CGSearch, we present an improved algorithm CGSearch*.
The experimental results justify the efficiency and effectiveness
of our candidate generation and heuristic rules. Compared with
the approach that mines the candidates from the whole database
by a support range, our solution is orders of magnitude faster and
consumes much less memory. More importantly, our algorithm
achieves very stable performance when varying the support of
the queries, the minimum correlation threshold, the graph size, as
well as the graph density.

A significant finding of this paper is that, when the CGS
problem is generalized to adopt other correlation measures, our
algorithm still serves as an efficient solution for most of the
existing measures [17].
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