
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Personalized Concept-Based Clustering of
Search Engine Queries

Kenneth Wai-Ting Leung, Wilfred Ng, and Dik Lun Lee

Abstract—The exponential growth of information on the Web has introduced new challenges for building effective search
engines. A major problem of web search is that search queries are usually short and ambiguous, and thus are insufficient for
specifying the precise user needs. To alleviate this problem, some search engines suggest terms that are semantically related
to the submitted queries so that users can choose from the suggestions the ones that reflect their information needs. In this
paper, we introduce an effective approach that captures the user’s conceptual preferences in order to provide personalized
query suggestions. We achieve this goal with two new strategies. First, we develop online techniques that extract concepts from
the web-snippets of the search result returned from a query and use the concepts to identify related queries for that query.
Second, we propose a new two-phase personalized agglomerative clustering algorithm that is able to generate personalized
query clusters. To the best of the authors’ knowledge, no previous work has addressed personalization for query suggestions.
To evaluate the effectiveness of our technique, a Google middleware was developed for collecting clickthrough data to conduct
experimental evaluation. Experimental results show that our approach has better precision and recall than the existing query
clustering methods.

Index Terms—Clickthrough, concept-based clustering, personalization, query clustering, search engine.

—————————— ——————————

1 INTRODUCTION

he amount of information available on the web is
growing rapidly. Google [4] reported that its index
size was over 8 billion pages in 2004, and it was esti-

mated that it had 20 billion pages in 2005. As the web
keeps expanding, the number of pages indexed in a
search engine increases correspondingly. With such a
large volume of data, finding relevant information satis-
fying user needs based on simple search queries becomes
an increasingly difficult task.

Queries submitted by search engine users tend to be
short and ambiguous. A study by M. Jansen [20] found
that the average query length on a popular search engine
was only 2.35 terms. These short queries are not likely to
be able to precisely express what the user really needs. As
a result, lots of pages retrieved may be irrelevant to the
user needs because of the ambiguous queries. On the
other hand, users may not want to reformulate their que-
ries using more search terms, since it imposes additional
burden on them during searching.

To improve user’s search experience, most major com-
mercial search engines provide query suggestions to help
users formulate more effective queries. When a user sub-
mits a query, a list of terms that are semantically related
to the submitted query is provided to help the user to
identify terms that he/she really wants, hence improving
the retrieval effectiveness. Yahoo's “Also Try” [6] and
Google's “Searches related to” features provide related

queries for narrowing search, while Ask Jeeves [2] sug-
gests both more specific and more general queries to the
user as shown in Fig. 2. Unfortunately, these systems pro-
vide the same suggestions to the same query without
considering users’ specific interests.

In this paper, we propose a method that provides per-
sonalized query suggestions based on a personalized con-
cept-based clustering technique. In contrast to existing
methods which provide the same suggestions to all users,
our approach uses clickthrough data to estimate user‘s
conceptual preferences and then provides personalized
query suggestions for each individual user according to
his/her conceptual needs. The motivation of our research
is that queries submitted to a search engine may have
multiple meanings. For example, depending on the user,
the query “apple” may refer to a fruit, the company Ap-
ple Computer or the name of a person, etc. Thus, provid-
ing personalized query suggestion (e.g. users interested in
“apple” as a fruit get suggestions about fruit, while users
interested in “apple” as a company get suggestions about
the company's products) certainly helps users to formu-
late more effective queries according to their needs.

The underlying idea of our proposed technique is
based on concepts and their relations extracted from the
submitted user queries, the web-snippets1 and the click-
through data. Clickthrough data was exploited in the per-
sonalized clustering process to identify user preferences:
a user clicks on a search result mainly because the web-
snippet contains a relevant topic which the user is inter-
ested in. Moreover, clickthrough data can be collected
easily without imposing extra burden on users, and thus
providing a low-cost means to capture user's interest.

1 “web-snippet” denotes the title, summary and URL of a Web page
re-turned by search engines.

 T

————————————————
• K.W. Leung, W. Ng, and D.L. Lee are with the Department of Computer

Science and Engineering, Hong Kong University of Science and Technol-
ogy, Clear Water Bay, Hong Kong. E-mail: {kwtleung, wilfred,
dlee}@cse.ust.hk.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE 1
THE CLICKTHROUGH DATA FOR THE QUERY “APPLE”

Links Clicked Web-Snippets for the Search Results
l1 √ Apple Hong Kong (http://www.appleclub.com.hk/)

l2
Apple Hong Kong - iPod + iTunes
(http://www.appleclub.com.hk/ipod/)

l3 apple daily (http://www.atnext.com)
l4 √ Apple (http://www.apple.com/)
l5 Apple - iPod + iTunes (http://www.apple.com/itunes/)

l6
Apple Inc. - Wikipedia, the free encyclopedia
(http://en.wikipedia.org/wiki/Apple_Computer)

l7
Apple II series - Wikipedia, the free encyclopedia
(http://en.wikipedia.org/wiki/Apple_II)

l8 Apple .Mac (http://www.mac.com/)
l9 √ The Apple Store (US) (http://store.apple.com/)
l10 Apple - Support (http://www.info.apple.com/)

Fig. 1. The general process of concept-based clustering.

Our approach consists of the following four major
steps. First, when a user submits a query, concepts (i.e.
important terms or phrases in web-snippets) and their
relations are mined online from web-snippets to build a
concept relationship graph. Second, clickthroughs are
collected to predict user's conceptual preferences. Third,
the concept relationship graph together with the user's
conceptual preferences is used as input to a concept-
based clustering algorithm that finds conceptually close
queries. Finally, the most similar queries are suggested to
the user for search refinement. Fig. 1 shows the general
process of our approach.

To evaluate the performance of our approach, we de-
veloped a Google middleware for clickthrough data col-
lection.2 40 users were invited to use our middleware to
search 200 test queries selected from a spectrum of topical
categories. When a user submits a query, concepts related
to the query are mined and stored in our databases. If the
user clicks on one of the search results, the user's click-
throughs together with his/her concept preference profile
for the query are updated.

The clustering results on the 200 test queries are com-
pared against the predefined clusters prepared by human
editors. We evaluate the performance of our approach
using the standard recall-precision measures. Beeferman
and Berger's agglomerative clustering algorithm [11] (or
simply called BB’s algorithm in this paper) is used as the
baseline to compare with our concept-based approach.
Our experimental results show that the average precision
at any recall level is better than the baseline method.

The main contributions of this paper are summarized
below:

1. Most of the previous approaches on query clustering

consider two different queries to be semantically simi-
lar if they lead to common clicks on the same pages.
However, the chance for different queries leading to-
common clicks on the same URLs are rare in web
search engines (see Section 2 for more discussion)

Based on this important observation, we propose to
use concepts, not pages, as the common ground for re-
lating semantically similar queries. That is, two que-
ries are considered related if they lead to clicks on
pages that share some common concepts, which are
mined from the web-snippets in the search results.

2 The middleware approach is for facilitating experimentation. The
techniques developed in this paper can be directly integrated into any
search engine to provide personalized query suggestions.

2. To our knowledge, there is no previous study on the
personalization of query suggestions. We propose a
two-phase clustering method to cluster queries first
within the scope of each user and then for the com-
munity.

3. We conduct experiments to evaluate different meth-
ods and show that our concept-based, two-phase clus-
tering method yields the best precison and recall.

The rest of this paper is organized as follows. In Sec-

tion 2, we compare our method with other similar ap-
proaches. We also discuss some works related to concept
mining. In Section 3, we review BB’s algorithm, which is
also an effective technique in personalized query cluster-
ing. In Section 4, our concept mining method for extract-
ing concepts from web-snippets is presented. In Section 5,
we adapt BB's algorithm to our concept-based approach.
We further extend the concept-based BB's algorithm to a
personalized clustering algorithm by utilizing the user
concept preference profiles. Experimental results compar-
ing BB's algorithm with our methods are presented in
Section 6. Section 7 concludes the paper.

2 RELATED WORK
Query clustering techniques have been developed in di-
versified ways. The very first query clustering technique
comes from information retrieval studies [26]. Similarity
between queries was measured based on overlapping
keywords or phrases in the queries. Each query is repre-
sented as a keyword vector. Similarity functions such as
cosine similarity or Jaccard similarity [26] were used to
measure the distance between two queries. One major
limitation of the approach is that common keywords also
exist in unrelated queries. For example, the queries, “ap-
ple iPod” (an mp3 player) and “apple pie” (a dessert), are

AUTHOR ET AL.: TITLE 3

very similar since they both contain the keyword “apple”.
However, the queries are actually expressing two differ-
ent search needs.

Chuang and Chien [14] proposed to cluster and organ-
ize users' queries into a hierarchical structure of topic
classes. A Hierarchical Agglomerative Clustering (HAC)
[25] algorithm is first employed to construct a binary-tree
cluster hierarchy. The binary-tree hierarchy is then parti-
tioned in order to create sub-hierarchies forming a multi-
way-tree cluster hierarchy like the hierarchical organiza-
tion of Yahoo [6] and DMOZ [3].

Baeza-Yates et al. [10] proposed a query clustering
method that groups similar queries according to their
semantics. The method creates a vector representation Q
for a query q, and the vector Q composes of terms from
the clicked documents of q. Cosine similarity is applied to
the query vectors to discover similar queries. More re-
cently, Zhang and Nasraoui [33] presented a method that
discovers similar queries by analyzing users' sequential
search behavior. The method assumes that consecutive
queries submitted by a user are related to each other. The
sequential search behaviour is combined with a tradi-
tional content-based similarity method to compensate for
the high sparsity of real query log data.

Recently, Beitzel et al. [12] proposed a query classifica-
tion method that combines multiple classifiers. The
method combines techniques from machine learning and
computational linguistics. Their results were compared to
those from the 2005 KDD Cup [5], showing that their
combined approach produced higher recall and smoother
tradeoffs between recall and precision than any of the
component approaches.

On web search engines, clickthrough data is a kind of
implicit feedback from users. Table 1 is an example click-
through data for the query “apple”, which shows the
URLs returned from the search engine for the query and
the URLs clicked on by the user. Clearly, it is a valuable
resource for capturing the user's interest for building per-

sonalized web search systems [7], [8], [17], [18], [21], [22],
[24], [27], [28], [29]. Joachims [21] proposed a method
which employs preference mining and machine learning
to rerank search results according to user's personal pref-
erences. Later on, Smyth et al. [27] suggested that user
search behaviour is repetitive and regular. They proposed
to rerank search results such that the results which have
been previously selected for a given query are promoted
ahead of other search results. More recently, Deng et al.
[17] proposed an algorithm which combines a spying
technique together with a novel voting procedure to de-
termine user preferences from the clickthrough data. Dou
et al. [18] also performed a large scale evaluation on dif-
ferent personalized search strategies, including click-
through-based and profile-based personalization. They
suggested that click-based personalization strategies per-
form consistently and considerably well when compared
to profile-based methods.

Fig. 2. Above is part of the search result page generated by Ask.com in
response to the query “apple”. A list of query suggestions is provided
showing many possible choices for query refinement.

To resolve the disadvantage of keyword-based cluster-
ing methods, clickthrough data has been used to cluster
queries based on common clicks on URLs. Beeferman and
Burger [11] proposed an agglomerative clustering algo-
rithm (i.e. BB’s algorithm) to exploit query-document re-
lationships from clickthrough data. Given a search engine
log, BB's algorithm first constructs a bipartite graph with
one set of vertices corresponding to queries, and another
corresponding to documents. If a user clicks on a docu-
ment, a link between the corresponding query and docu-
ment is created on the bipartite graph. After the bipartite
graph is obtained, agglomerative clustering algorithm is
used to obtain the clusters. The algorithm is content-
independent in the sense that it exploits only the query-
document links on the bipartite graph to discover similar
queries and similar documents without examining the
keywords in the queries or the documents. The details of
the algorithm will be described in Section 3.

Wen et al. [31] proposed a clustering algorithm com-
bining both query contents and URL clicks. They sug-
gested that two queries should be clustered together, if
they contain the same or similar terms, and lead to the
selection of the same documents. However, since web
search queries are usually short and common clicks on
documents are rare (see discussion below), Wen et al's
method may not be effective for disambiguating web que-
ries. In contrast, our approach relates the queries with a
set of extracted concepts in order to identify the precise
semantics of the search queries.

One major problem with clickthrough-based method is
that the number of common clicks on URLs for different
queries is limited. This is because different queries will
likely retrieve very different result sets in very different
ranking orders. Thus, the chance for the users to see the
same results would be small, let alone clicking on them. It
was reported that in a large clickthrough dataset from a
commercial search engine the chance for two random
queries to have a common click is merely 6.38x10-5 [11].
The small number of common clicks leads to low recall.

To alleviate this problem, we introduce the notion of
concept-based graphs by considering concepts extracted
from web-snippets and adapt BB's method to this new

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE 2
FREQUENTLY USED SYMBOLS

Symbol Description
G A bipartite graph

m
The number of iterations (i.e. merges) required for agglom-
erative clustering

nb The number of black vertices in G
nw The number of white vertices in G

|N|max The maximum number of neighbors of any vertex in G
sim(x,y) Similarity between vertices x and y in G
simR(ti,tj) Similarity between concepts ti and tj

sf(ti) Snippet frequency of the keyword/phrase ti

support(ti)
Interestingness of a particular keyword/phrase ti with respect
to the returned web-snippets arising from a query

|ti| The number of terms in the keyword/phrase ti
upper
bound

The upper bound for the number of operations required for
agglomerative clustering

Fig. 3. (a) Queries q1 and q3 seem unrelated before document cluster-
ing. (b) After document clustering, queries q1 and q3 are then related to
each other because they are both linked to the document cluster
{d1,d2}.

Fig. 4. (a) A bipartite graph without “noise”. (b) A bipartite graph with a
“noise” link, where the solid edges represent “real” links and the dash
edge represents a “noise” edge.

context. In contrast to the existing methods, our approach
provides effective personalization effect by using the con-
cept preference profiles that are built upon the extracted
concepts and clickthroughs. The use of concepts helps to
reduce the size of the resulted profiles, while retaining the
accuracy and capability to capture user's interests.

Along the line of concept extraction from web-
snipplets, Koester [23] combined web mining techniques
and formal concept analysis to extract concepts from web-
snippets and build a concept lattice capturing user's con-
ceptual needs. However, it was not concerned with per-
sonalization. Xu et al. [32] proposed a method to extract
concepts from users’ browsed documents to create hierar-
chical concept profiles for personalized search in a pri-
vacy-enhanced environment. Their method assumes that
the system knows the documents that user is interested in,
instead of using clickthrough. Thus, their method is quite
different from ours.

Another technique to discover related queries is query
expansion. The aim of query expansion is to improve re-
trieval effectiveness by expanding the query with words
or phrases to match additional documents. Cui et al. [15]
proposed a query expansion method based on user inter-
actions recorded in the clickthrough data. The method
focuses on mining correlations between query terms and
document terms by analyzing user's clickthroughs.
Document terms that are strongly related to the input
query are used together to narrow down the search.

3 BB'S GRAPH-BASED CLUSTERING ALGORITHM
In BB’s graph-based clustering [11], a query-page bipar-
tite graph is firstly constructed with one set of the nodes
corresponds to the set of submitted queries, and the other
corresponds to the sets of clicked pages. If a user clicks on
a page, a link between the query and the page is created
on the bipartite graph. After obtaining the bipartite graph,
an agglomerative clustering algorithm is used to discover
similar queries and similar pages. During the clustering
process, the algorithm iteratively combines the two most
similar queries into one query node, then the two most

similar pages into one page node, and the process of al-
ternative combination of queries and pages is repeated
until a termination condition is satisfied. The main reason
for not clustering all the queries first and then all the
pages next is that two queries may seem unrelated prior
to page clustering because they link to two different
pages but they may become similar to each other if the
two pages have a high enough similarity to each other
and are merged later. The example in Fig. 3 helps illus-
trate this scenario.

To compute the similarity between queries or docu-
ments on a bipartite graph, the algorithm considers the
overlap of their neighboring vertices as defined in the
following equation:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
>∪

∪
∩

=
 otherwise 0

0)()(if
)()(
)()(

),(

yNxN
yNxN
yNxN

yxsim
 (1)

where N(x) is the set of neighboring vertices of x, and N(y)
is the set of neighboring vertices of y. Intuitively, the simi-
larity function formalizes the idea that x and y are similar
if their respective neighboring vertices largely overlap
and vice versa.

As discussed in Section 2, a problem of the BB’s
method is its low recall rate since the number of common
clicks on the URLs is rather small. Another problem of the
similarity function proposed by BB is that it cannot iden-
tify “noise” links in the clustering process. Consider the
example shown in Fig. 4, where the number attached to a
link is the total number of clicks on the document. In Fig.
4(a), q2 is a hot query which generates 1000 clicks for each
of the documents d2 and d3, while q1 is a cold query which
only generates 10 clicks for each of the documents d1 and
d2. Even though the click distributions for q1 and q2 are
different, we can see that d1 and d2 are both relevant to q1
because the number of clicks on d1 and the number of
clicks on d2 are roughly the same for q1 (i.e. 10 clicks).

AUTHOR ET AL.: TITLE 5

Similarly, we can see that d2 and d3 are both relevant to q2
because the number of clicks on d2 and the number of
clicks on d3 are roughly the same for q2 (i.e. 1000 clicks).
Thus, we conclude that q1 and q2 are similar queries be-
cause they share the common relevant document d2.
However, in Fig. 4(b), d2 cannot be considered relevant to
q1 because only a small fraction of the clicks (10 out of
1010) supports that conclusion. Consequently, we cannot
conclude that q1 and q2 are similar queries. BB’s similarity
function does not detect the “noise” link as shown Fig.
4(b). It gives the same similarity score of 1/3 in both cases.
To solve the problem, the following similarity function
was proposed in our earlier work [13].

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
>∪

∪
=

 otherwise 0

0)()(if
)()(

),(

),(

yLxL
yLxL

yxL

yxsim
 (2)

TABLE 3
EXTRACTED CONCEPTS FOR THE QUERY “APPLE”

Concept ti support(ti) Concept ti support(ti)
mac 0.1 macintosh 0.05
ipod 0.1 tour 0.05

iphone 0.1 slashdot apple 0.04
hardware 0.09 picture 0.04
software 0.09 apple ii 0.04
big apple 0.08 apple variety 0.04

apple store 0.06 music 0.04
mac os 0.06 farm market 0.04

apple orchard 0.06 apple grower 0.04
apple valley 0.06 gift shop 0.04

apple and macintosh 0.06 apple farm 0.04
apple blossom festival 0.06

where L(x,y) is the set of links connecting x and y to the
same vertices, L(x) and L(y) are all the links connecting to
x and y, respectively, and|L()|is the cardinality of L().

Applying the similarity function, we get a similarity
score of 1010/2020 = 1/2 for sim(q1,q2) in Fig. 4(a), and
similarity score of 1010/3010 = 1/3 for sim(q1,q2) in Fig.
4(b). Note that the score for sim(q1,q2) in Fig. 4(a) is higher
than that of Fig. 4(b), because most people are selecting
document d1 in Fig. 4(b), and the links between q1 and d2
can be considered as “noise”. Therefore, it is reasonable to
assign a lower score to sim(q1,q2) in Fig. 4(b). Using the
noise-tolerant similarity function, the similarity between
two vertices always lies between [0,1]. The similarity for
two vertices is 0, if they share no common neighbor, and
the similarity between two vertices is 1, if they have ex-
actly the same neighbor vertices.

It is noted that noise elimination by itself is a difficult
problem since it requires complex inference rules to dis-
tinguish the informative from the erroneous clicks. Since
the noise-tolerant version has been shown to be superior
to the original version [13] and we are not aware of any
better methods, in the rest of this paper, BB’s algorithm
refers to this improved version of similarity function.

4 CONCEPT EXTRACTION
Before explaining our concept-based clustering method,
we first describe our concept extraction method, which is
composed of the following three basic steps: 1) extracting
concepts using the web-snippets returned from the search
engine, 2) mining concept relations, and 3) creating a user
concept preference profile using the extracted concepts,
concept relations and user ‘s clickthroughs.

4.1 Concept Extraction Using Web-Snippets
Our concept extraction method is inspired by the well-
known problem of finding frequent item sets in data min-
ing [9], [19]. When a user submits a query to the search
engine, a set of web-snippets are returned to the user for

identifying the relevant items. We assume that if a key-
word or a phrase appears frequently in the web-snippets
of a particular query, it represents an important concept
related to the query because it co-exists in close proximity
with the query in the top documents. We use the follow-
ing support formula for measuring the interestingness of
a particular keyword/phrase ti with respect to the re-
turned web-snippets arising from a query q:

()

i
i

i t
n
tsftsupport ⋅=)((4)

where n is the total number of web-snippets returned, sf(ti)
is the snippet frequency of the keyword/phrase ti (i.e., the
number of web-snippets containing ti) and |ti| is the
number of terms in the keyword/phrase ti. For simplicity,
we omit q in the above expression if no ambiguity arises.

To extract concepts for a query q, we first extract all the
keywords and phrases from the web-snippets returned by
the query. After obtaining a set of keywords/phrases (ti),
we compute the support for all ti (support(ti)). If the sup-
port of a keyword/phrase ti is bigger than the threshold s
(support(ti) > s), we would treat ti as a concept for the
query q. Table 3 illustrates the extracted concepts for the
query q = “apple”.

4.2 Mining Concept Relations
To find relations between concepts, we apply a well-
known signal-to-noise ratio formula from data mining
[16] to establish similarity between terms t1 and t2. The
similarity value of Church and Hanks' formula always
lies between [0,1], and thus can be used directly in Step 3.

n
tdftdf
ttdfnttsim log

)()(
)(),(

21

21
21 ⋅

∪⋅
= (5)

where n is the number of documents in the corpus,
df(t1∪ t2) is the joint document frequency of t1 and t2 and
df(t) is the document frequency of the term t.

In our context, two concepts ti, tj could co-exist in a
web-snippet in the following situations: 1) ti and tj co-
exist in the title, 2) ti and tj co-exist in the summary or 3) ti
exists in the title, while tj exists in the summary (or vice

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

versa). Therefore, we modify Church and Hanks' formula
for the three different cases in our context as follows.

() ()),(),(,, ,,, jiotherRjisummaryRjititleRjiR ttsimttsimttsimttsim ++= (6)

where simR(ti,tj) is the similarity between concepts ti and tj,

which is composed of simR,title(ti,tj), simR,summary(ti,tj) and
simR,other(ti,tj) as follows.

n
tsftsf

ttsfn
ttsim

jtitleititle

jititle
jititleR log

)()(
)(

log),(, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
∪⋅

⋅= α (7)

n
tsftsf

ttsfn
ttsim

jsummaryisummary

jisummary
jisummaryR log

)()(
)(

log),(, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
∪⋅

⋅= α (8)

n
tsftsf

ttsfn
ttsim

jotheriother

jiother
jiotherR log

)()(
)(

log),(, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
∪⋅

⋅= α (9)

where n is the total number of web-snippets returned,
sftitle(ti tj) is the joint snippet frequency of concepts ti
and tj in document titles, sftitle(t) is the snippet frequency
of concept t in document titles, sfsummary(ti tj) is the joint
snippet frequency of ti and tj in document summaries,
sfsummary(t) is the snippet frequency of concept t in docu-
ment summaries, sfother(ti tj) is the joint snippet fre-
quency of concept ti in a document title and tj in the
document's summary (or vice versa) and sfother(t) is the

snippet frequency of concept t in either document sum-
maries or document titles.

∪

∪

∪

Fig. 5. (a) A concept relationship graph for the query “apple” derived
without incorporating user clickthroughs. (b) A concept preference
profile constructed using the user clickthroughs and the concept rela-
tionship graph in (a). wti is the interestingness of the concept ti to the
user. More clicks on a concept gradually increase the interestingness
wti of the concept.

Using the extracted concepts and concept relations, we
can create a concept relationship graph with the extracted
concepts as nodes and mined concept relations as links.
Fig. 5(a) shows a concept preference graph for the query q
= “apple”. A link is created between concept ti and tj, if
their similarity, simR(ti,tj), is greater than zero. The
strength of each link is determined by simR(ti,tj) which is
the similarity between concepts ti and tj.

4.3 Creating User Concept Preference Profile
The concept relationship graph is firstly derived without
taking user clickthroughs into account. Intuitively, the
graph shows the possible concept space arising from
user's queries. The concept space, in general, covers more
than what the user actually wants. For example, when the
user searches for the query “apple”, the concept space
derived from the web-snippets contains concepts such as
“ipod”, “iphone” and “recipe”. If the user is indeed inter-
ested in the concept “recipe” and clicks on pages contain-
ing the concept “recipe”, the clickthroughs should gradu-
ally favor the concept “recipe” and its neighborhood (by
assigning higher weights to the nodes), but the weights of
the unrelated concepts such as “iphone”, “ipod” and their
neighborhood should remain zero. Therefore, we propose
the following formulas to capture user's interestingness
wti on the extracted concepts ti when a clicked web-
snippet sj, denoted by click(sj), is found:

() 1, +=∈∀⇒

ii ttjij wwstsclick (10)

() 0),(if),(, >+=∈∀⇒ jiRjiRttjij ttsimttsimwwstsclick
jj

 (11)

where sj is a web-snippet, wti is the interestingness weight
of the concept ti and tj is the neighborhood concept of ti.

When a user clicks on sj, the weight of concepts ti ap-
pearing in sj is incremented by 1 to reflect the user's inter-
estingness on the concepts embedded in the clicked page
sj. For other concepts that are related to the clicked con-
cepts on the concept relationship graph, they are incre-
mented according to the similarity score given in Equa-
tion (5), which is normalized to the range [0,1]. Therefore,
if a concept is closely related to the clicked concept, it is
incremented to a higher value (which could be as close to
1 as the clicked concepts). Otherwise, it is only incre-
mented by a small fraction (close to 0). By imposing user's
interestingness on the concepts, a concept preference pro-
file with respect to the input query is created. Fig. 5(b)
shows an example of concept preference profile in which
the user is interested in information about “apple macin-
tosh”. wti in Fig 5(b) represents the interestingness of the
concepts to the user. The values of wti for “macintosh”
and “mac” are highest because the users have interest in
them (and the values of wti are incremented using Equa-
tion (10)). Indirectly, the values of wti for “mac os”, “soft-
ware”, “apple store”, “iPod”, “iPhone”, and “hardware”
are increased because they are related to “apple macin-
tosh” and thus incremented using Equation (11). Finally,
the weights of the concepts about “apple” as fruit are not

AUTHOR ET AL.: TITLE 7

changed. As a result, the concepts formed two clusters
representing the user concept preference profile.

5 CONCEPT-BASED CLUSTERING
Using the concepts extracted from web-snippets, we pro-
pose two concept-based clustering methods. We first ex-
tend BB’s algorithm to a concept-based algorithm in Sec-
tion 5.1. In Section 5.2, the concept-based algorithm is
further enhanced to achieve effective personalized clus-
tering.

5.1 Clustering on Query-Concept Bipartite Graph
We now describe our concept-based algorithm (i.e. BB’s
algorithm using query-concept bipartite graph) for clus-
tering similar queries. Similar to BB's algorithm, our tech-
nique is composed of two steps: 1) Bipartite graph con-
struction using the extracted concepts, and 2) agglomera-
tive clustering using the bipartite graph constructed in
Step 1.

Using the extracted concepts and clickthrough data,
the first step of our method is to construct a query-
concept bipartite graph, in which one side of the vertices
correspond to unique queries, and the other corresponds
to unique concepts. If a user clicks on a search result, con-
cepts appearing in the web-snippet of the search result
are linked to the corresponding query on the bipartite
graph. Algorithm 1 shows the first step of our method.

After the bipartite graph is constructed, agglomerative
clustering algorithm is applied to obtain clusters of simi-
lar queries and similar concepts. The noise-tolerant simi-
larity function (recall Equation (2)) is used for finding
similar vertices on the bipartite graph G. The agglomera-
tive clustering algorithm would iteratively merge the
most similar pair of white vertices, and then merge the
most similar pair of black vertices and so on. We present
the details in Algorithm 2.

Algorithm 1 Bipartite Graph Construction
Input: Clickthrough data CT, Extracted Concepts E
Output: A Query-Concept Bipartite Graph G

1: Obtain the set of unique queries Q = {q1,q2,q3…} from CT
2: Obtain the set of unique concepts C = {c1,c2,c3…} from E
3: Nodes(G) = Q C where Q and C are the two sides in G ∪
4: If the web-snippet s retrieved using qi ∈ Q is clicked by
a user, create an edge e = (qi,cj) in G, where cj is a concept
appearing in s.

Algorithm 2 - Agglomerative Clustering
Input: A Query-Concept Bipartite Graph G
Output: A Clustered Query-Concept Bipartite Graph Gc

1: Obtain the similarity scores for all possible pairs of que-
ries in G using the noise-tolerant similarity function given
in Equation (2).
2: Merge the pair of queries (qi,qj) that has the highest
similarity score.
3: Obtain the similarity scores for all possible pairs of con-
cepts in G using the noise-tolerant similarity function

given in Equation (2).
4: Merge the pair of concepts (ci,cj) that has the highest
similarity score.
5. Unless termination is reached, repeat Steps 1-4.

The terminating condition for BB’s algorithm is when
all connected components in Gc satisfy the following con-
ditions:

.0),(and 0),(==

∈∈
ji

C,cc
ji

Q,qq
ccsimmaxqqsimmax

jiji

However, this terminating condition possibly gener-

ates a single big cluster of queries and a single big cluster
of concepts because having the similarity threshold set to
zero means that two queries (concepts) would be as-
signed to the same cluster even if they have only a tiny
fraction of overlapping concepts (queries). To resolve this
problem, we apply higher similarity thresholds, which
have been observed from our experiments to yield high
precision and recall:

.18.0),(and .180),(==

∈∈
ji

C,cc
ji

Q,qq
ccsimmaxqqsimmax

jiji

5.2 Personalized Concept-Based Clustering
We now explain the essential idea of our personalized
concept-based clustering algorithm with which ambigu-
ous queries can be clustered into different query clusters.
Personalized effect is achieved by manipulating the user
concept preference profiles in the clustering process.

In contrast to BB’s agglomerative clustering algorithm,
which represents the same queries submitted from differ-
ent users by one query node, we need to consider the
same queries submitted by different users separately to
achieve personalization effect. In other words, if two
given queries, whether they are identical or not, mean
different things to two different users, they should not be
merged together because they refer to two different sets
of concepts for the two users.

Therefore, we treat each individual query submitted
by each user as an individual vertex in the bipartite graph
by labeling each query with a user identifier. Moreover,
concepts appearing in the web-snippet of the search re-
sult with interestingness weights greater than zero in the
concept preference profile are linked to the corresponding
query on the bipartite graph. An example is shown in Fig.
6(a). We can see that the query “apple” submitted by us-
ers User1 and User3 become two vertices “apple(User1)”
and “apple(User3)”. If User1 is interested in the concept
“apple store”, as recorded in the concept preference pro-
file, a link between the concept “apple store” and the
query “apple(User1)” would be created. On the other hand,
if User3 is interested in the concept “fruit”, a link between
the concept “fruit” and “apple(User3)” would be created.

After the personalized bipartite graph is created, our
initial experiements revealed that if we apply BB’s algo-
rithm directly on the bipartite graph, the query clusters
generated will quickly merge queries from different users
together and thus losing the personalization effect. We

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 6. Performing personalized concept-based clustering algorithm on a small set of clickthrough data. Starting from top left: (a) The original
bipartite graph. (b), (c) Initial Clustering. (d), (e) Community Merging.

found that identical queries, though issued by different
users and having different meanings, tend to have some
generic concept nodes such as “information” in common,
e.g., “apple(User1)” and “apple(User3)” both connect to the
“information” concept node in Fig. 6(a). Thus, these query
nodes will likely be merged in the first few iterations and
causing more queries from different users to be merged
together in subsequent iterations. Considering Fig. 6(a)
again, if “apple(User1)” and “apple(User3)” are merged, the
next iteration will merge the concept nodes “apple store”,
“fruit” and “information”. When the clustering algorithm
goes further, queries across users will be further clustered
together. At the end, the resulting query clusters have no
personalization effect at all.

To resolve the problem, we divide clustering into two
steps. In the initial clustering step, an algorithm similar to
BB’s algorithm is employed to cluster all the queries, but
it would not merge identical queries from different users.
After obtaining all the clusters from the initial clustering
step, the community merging step is employed to merge
query clusters containing identical queries from different
users. We can see from Fig 6(d) that “apple(User1)” and “ap-
ple(User3)” belong, correctly, to different clusters. We will
see further in Section 6.3 that the initial clustering step is
able to generate high precision rate because it preserves
the preference of each user, while the community merg-
ing step is able to improve the recall rate because of the
collaborative filtering effect.

Algorithm 3 shows the details of the personalized clus-
tering algorithm. Similar to the BB's algorithm, a query-
concept bipartite graph is created as input for the cluster-
ing algorithm. The bipartite graph construction algorithm
is similar to Algorithm 1, except each individual query
submitted by each user is treated as an individual vertex
in the bipartite graph.

Initial clustering (i.e. Steps 1-5 of Algorithm 3) is simi-
lar to BB's agglomerative algorithm as already discussed
in Section 5.1. However, queries from different users are
not allowed to be merged in initial clustering. Fig. 6(b)
and 6(c) show examples of query and concept merging,
respectively. Fig. 6(d) illustrates the result of initial clus-
tering. In community merging (i.e. Step 6-8 of Algorithm
3), query clusters containing identical queries from differ-
ent users are compared for merging. Fig. 6(d) and 6(e)
show an example of query cluster merging. The query
clusters {apple computer(User2), apple(User1)} and {apple(User2)
and apple mac(User1)} both contain the query “apple”, and
are leading to the same concept “apple store”. Therefore,
they are merged in community merging as one big cluster.

Good timing to start community merging is important
for the success of the algorithm. If we stop initial cluster-
ing too early (i.e. not all clusters are well formed), com-
munity merging merges all the identical queries from
different users first, and thus generates a single big clus-
ter without much personalization effect. However, if we
stop initial clustering too late (i.e. clusters are being
overly merged in this case), the low precision rate gener-
ated by initial clustering would not be improved by com-
munity merging. To obtain the optimal results in our ex-
periments, we use the following terminating conditions
for initial clustering (i-clustering) and community merging
(c-merging) in Algorithm 3. These parameters are empiri-
cally investigated in our experiment. We will further jus-
tify our choice using Table 10 in Section 6.3.

.29.0),(and .290),(== −

∈
−
∈

jiclusteringi
C,cc

jiclusteringi
Q,qq

ccsimmaxqqsimmax
jiji

.39.0),(and .390),(== −
∈

−
∈

jimergingc
C,cc

jimergingc
Q,qq

ccsimmaxqqsimmax
jiji

AUTHOR ET AL.: TITLE 9

TABLE 4
CATEGORIES OF THE TEST QUERIES

Category Description Category Description
1 Cooking 6 Computer Programming
2 Dining 7 Computer Gaming
3 Internet Shopping 8 Music
4 Traveling 9 Computer Science Research
5 Automobile Repairing 10 Computer Hardware

TABLE 6
USER’S INFORMATION NEEDS FOR THE 2ND EXPERIMENT

User Group Information Needs
1 Purchase of digital cameras
2 Purchase of printers
3 Information on camera films
4 Information on dessert cooking recipes
5 Purchase of clothes
6 Download of Mac software
7 Purchase of Macintosh
8 Purchase of iPod

TABLE 7
STATISTICS OF THE CLICKTHROUGH DATA COLLECTED FOR 2ND

PART OF THE EXPERIMENTATION

TABLE 5
STATISTICS OF THE CLICKTHROUGH DATA COLLECTED IN THE 1ST

EXPERIMENT

Statistics
Number of users 30
Number of queries assigned to each use 5
Number of test Queries 150
Number of unique Queries 150
Maximum number of retrieved URLs for a query 100
Maximum number of extracted concepts for a query 217
Maximum number of extracted words for a query 1,093
Number of URLs retrieved 14,880
Number of unique URLs retrieved 12,430
Number of concepts retrieved 13,321
Number of unique concepts retrieved 6,008
Number of words retrieved 117,924
Number of unique words retrieved 21,920

Statistics
Number of users 10
Number of queries assigned to each use 5
Number of test Queries 50
Number of unique Queries 38
Maximum number of retrieved URLs for a query 100
Maximum number of extracted concepts for a query 168
Maximum number of extracted words for a query 938
Number of URLs retrieved 4,962
Number of unique URLs retrieved 3,239
Number of concepts retrieved 4,130
Number of unique concepts retrieved 1,971
Number of words retrieved 38,831
Number of unique words retrieved 8,891

The query clusters outputted by the algorithm are
shown in Fig. 6(e). We assume in this example that the
links between the generic concept nodes, "information",
and the two query clusters are weak and the terminating
similarity is able to prevent the merging the query clus-
ters about "apple computer" and "apple juice". We can see
in the resulting clusters that User1 and User2 both submit
the query “apple” in order to seek information about
“apple computer”, while User3 submits the query “ap-
ple” to look for information about “apple juice”. In this
example, even the query “apple” submitted by User1,
User2 and User3 appear to be the same, the algorithm can
successfully differentiate them to archive personalization
effect according to individual user conceptual preferences.
Finally, we can see that queries about “apple computer”
(e.g. “apple mac”, “apple computer”) are suggested to
User1 and User2, while queries about “apple juice” (e.g.
“apple juice”) are suggested to User3.

Algorithm 3 Personalized Agglomerative Clustering
Input: A Query-Concept Bipartite Graph G
Output: A Personalized Clustered Query-Concept Bipar-
tite Graph Gp

// Initial Clustering
1: Obtain the similarity scores in G for all possible pairs of
queries using the noise-tolerant similarity function given
in Equation (2).
2: Merge the pair of most similar queries (qi,qj) that does
not contain same queries from different users.
3: Obtain the similarity scores in G for all possible pairs of
concepts using the noise-tolerant similarity function given

in Equation (2).
4: Merge the pair of concepts (ci,cj) having highest similar-
ity score.
5. Unless termination is reached, repeat Steps 1-4.
// Community Merging
6. Obtain the similarity scores in G for all possible pairs of
queries using the noise-tolerant similarity function given
in Equation (2).
7. Merge the pair of most similar queries (qi,qj) that con-
tains same queries from different users.
8. Unless termination is reached, repeat Steps 6-7.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the pro-
posed clustering methods for obtaining related queries
using user clickthroughs. In Section 6.1, we first describe
the experimental setup for collecting the required click-
through data. In Section 6.2, we compare the performance
of BB's algorithm using query-URL, query-word, and
query-concept bipartite graphs (or simply called the QU,
QW and QC methods). In Section 6.3, we evaluate the
effectiveness of our proposed personalized concept-based
clustering (or simply called the P-QC method). In Section
6.4, we discuss the algorithmic complexities based on the
related parameters.

6.1 Experimental Setup
To collect the clickthrough data to evaluate our proposed

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

methods, we implemented a Google middleware to track
user clicks. Google3 was chosen as a common basis for
comparing the performance of the methods under evalua-
tion.

We invited 40 students from our department to use the
middleware to search 200 given test queries which are
accessible at [1]. To avoid any bias, the test queries are
randomly selected from ten different categories and sub-
mitted to Google without any modification by the mid-
dleware. Table 4 shows the topical categories in which the
queries we have chosen. When a query is submitted to the
middleware, the top 100 search results from Google are
retrieved, and the web-snippets of the search results are
displayed to the users. Since most users would examine
only the top 10 results, our concept extraction method,
digging deep into the first 100 results, will discover con-
cepts related to the query that would otherwise be missed
by the users.

The extracted concept relationship graph is then stored
in our database. If a user clicks on one of the web-
snippets of the returned results, the user's clickthrough
together with his/her concept preference profile are up-
dated as discussed in Section 4.3. The threshold s for con-
cept mining was set to 0.03 and the threshold for estab-
lishing concept relations (as specified in Eqn 11) is set to
zero. We chose these small thresholds so that as many
concepts as possible are mined. The quality of the query
suggestions is then relied more on the clustering algo-
rithms, which are the main focus of this paper.

In the first experiment (will be described in Section 6.2),
30 students were asked to search the 150 test queries, all
of which have unambiguous meanings (e.g. “apple pie”
and “cheese cake”). The 150 test queries are separated
into 10 predefined clusters (e.g. the queries “apple pie”,
“cheese cake” and “brownies” belong to the cluster about
dessert recipes). The users were asked to click on the web-
snippets of the returned results that are relevant to the
queries. The clickthrough data collected are used to
measure the performance of the concept-based clustering
method as discussed in Section 5.1. Table 5 shows the
statistics of our collected clickthrough data for this ex-
periment.

In the second experiment (will be described in Section
6.3), 10 students were asked to search using another 50
test queries. Some of the test queries are intentionally de-
signed to have ambiguous meanings (e.g. the query
“Canon” could mean a digital camera or a printer). The 50
test queries are separated into 8 predefined clusters. Some
of the queries could possibly exist in more than one clus-
ter (e.g. the query “Canon” could belong to the cluster
about digital cameras or the cluster about printers). Each
user is assigned with one of the information seeking tasks
shown in Table 6. The users are then asked to click on the
web-snippets of the returned results that are both rele-
vant to the queries and their information needs. The click-
through data collected are used to measure the perform-

ance of the personalized concept-based clustering method
as discussed in Section 5.2. Table 7 shows the statistics of
our collected clickthrough data for this experiment.

6.2 Comparing QU, QW and QC methods
We now discuss the result of the first experiment, which
compares the performance of QU, QW and QC methods.
QU method is the original input of BB’s algorithm which
serves as a baseline for comparison. QW method uses
query-word bipartite graph which is similar to the query-
concept bipartite graph in that they are both constructed
using Algorithm 1. The difference is that the former con-
tains all words (excluding stopwords) from the web-
snippets and the latter contains the extracted concepts.
QW and QC methods are necessary, since they allow us
to study the benefits of concept extraction. The three
methods are also employed to cluster the collected data.
The results are compared to our predefined clusters for
precision and recall. Given a query q and its correspond-
ing query cluster {q1,q2,q3…} generated by a clustering
algorithm, the precision and recall are computed using
the following formulas:

retrievedQ
retrievedQrelevantQ

qprecision
_

__
)(

∩
= (12)

relevantQ
retrievedQrelevantQ

qrecall
_

__
)(

∩
= (13)

where Q_relevant is the set of queries that exist in the pre-
defined cluster for q, Q_retrieved is set of the related que-
ries {q1,q2,q3…} generated by the algorithm. The precision
and recall values from all queries are averaged for plot-
ting the precision-recall figures. The performance of the
three methods is compared using precision-recall figures
and best F-measure values.

Fig. 7 shows the precision-recall figures for QU, QW,
QC methods. We observe that QC method yields better
recall rate than QU method (i.e. the original BB’s algo-
rithm), while preserving high precision rates. This can be
attributed to the fact that the average number of overlap-
ping URLs between queries is only 16.3 according to the
statistics in Table 5, whereas the average number of over-
lapping concepts between the queries is 48.8, which is
much higher than the URL overlap rate. As a result, re-
lated queries that cannot be discovered by URL overlap
can be brought together by our QC method, and thus im-
proving the recall rate. The effect of high concept overlap
rate is also apparent in Fig. 7, which shows that the recall
of QU method can only go up to around 0.8, while QW
and QC methods can go beyond 0.9. Note that QU
method can yield high precision rate because of the valu-
able URL overlaps between queries. However, QC
method benefits both precision and recall comparing to
QU method, showing that the use of extracted concepts is
much better for finding similar queries.

 We also observe that QW method performs the worst
among the three methods because common non-stop
words such as “discussion”, “information” and “news”
bring unrelated queries together, and thus lowering both

3 Google is one of the most popular commercial search engines. If a dif-
ferent search engine is used, we expect the absolute performances of the
methods under evaluation to be different but their relative performances
remain the same.

AUTHOR ET AL.: TITLE 11

Fig. 8. Change of precision when performing QU, QW and QC meth-
ods.

TABLE 8
BEST F-MEASURE VALUES OF QU, QW AND QC METHODS

FOR THE 1ST EXPERIMENT

Best F-Measure Values
 Precision Recall F-measure
QU method 0.737 0.640 0.685
QW method 0.775 0.493 0.603
QC method 0.768 0.727 0.747

Fig. 9. Change of recall when performing QU, QW and QC methods.

Fig. 7. Precision vs. recall when performing QU, QW and QC methods.

the precision and recall rate. The main difference between
QW and QC methods is the availability of concept extrac-
tion. Intuitively, QC method outperforms QW method
because the concept extraction process can successfully
eliminate unrelated common words within web-snippets.

Fig. 8 and 9 show the change of precision and recall re-
spectively for the three clustering methods. In Fig. 8,
when the cutoff similarity score is around 0.3, the preci-
sion obtained using QU method is very close to that of
QC method, which is much better than the precision ob-
tained using QW method. In Fig. 9, at the same cutoff
similarity score, the recall obtained using QU method is
close to zero, which is much lower comparing to the re-
calls obtained using QW and QC methods. We can easily
see from Fig. 8 and 9 that QC method is able to generate
good recall, while achieving a precision comparable to
that of QU method.

We observe that the three methods are able to achieve
their optimal precision/recall at different cutoff similarity
scores. To obtain and compare the best F-measures [30]
(i.e. evenly weighted harmonic means of precisions and
recalls) for the three different methods, the following
three terminating strategies are used:

.017.0),(and .0170),(==

∈∈
jiURL

C,cc
jiURL

Q,qq
ccsimmaxqqsimmax

jiji

.39.0),(and .390),(==
∈∈

jiword
C,cc

jiword
Q,qq

ccsimmaxqqsimmax
jiji

.18.0),(and 18.0),(==
∈∈

jiconcept
C,cc

jiconcept
Q,qq

ccsimmaxqqsimmax
jiji

 The F-measure, F, is defined by the following formula:

()recallprecision
recallprecisionF
+
⋅

⋅=
)(2 (14)

Table 8 shows the best F-measure values for the QU,

QW, and QC method. From the results, we can conclude
that query clusters obtained using QC method are much
more accurate comparing to those obtained from QU and
QW methods.

6.3 Personalized Concept-Based Clustering
In the second experiment, QU, QW, QC and P-QC meth-
ods are employed to cluster queries which are intention-
ally designed to have ambiguous meanings. Again, the
results are compared to our predefined clusters in terms
of precision and recall. We analyze the performance of P-
QC method using precision-recall figures and best F-
measure values.

Fig. 10 shows the precision-recall figures of P-QC
methods. The solid line is the precision-recall graph if
only initial clustering is performed. We can observe that
recall is max out at 0.62. The other three lines illustrate
how community merging can further improve recall be-

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

yond the limit of initial clustering. We observe that the
timing for switching from initial clustering to community
merging is very important to the precision and recall of
the final query clusters. When initial clustering is stopped
too early (see the dark-triangle and white-triangle graphs
in Fig. 10), initial clustering achieves high precision and
low recall, as can be expected, but community merging
fails to improve the recall – it drags down precision with-
out improving recall. The drop of precision is due to easy
merging of identical queries from different users, and
thus generating a single big cluster without personaliza-
tion benefit.

TABLE 9
BEST F-MEASURE VALUES OF QU, QW, QC AND P-QC

METHODS FOR THE 2ND EXPERIMENT

Best F-Measure Values
 Precision Recall F-measure
QU method 0.521 0.685 0.592
QW method 0.469 0.694 0.559
QC method 0.541 0.768 0.635
P-QC method 0.783 0.657 0.715

Fig. 11. Change of precision when P-QC method. The solid line repre-
sents the results obtained from initial clustering of Algorithm 3, and the
dash lines represent the results obtained from community merging of
Algorithm 3.

Fig. 10. Precision vs. recall when performing P-QC method. The solid
line represents the results obtained from initial clustering of Algorithm 3
and the dash lines represent the results obtained from community
merging of Algorithm 3.

Fig. 12. Change of recall when P-QC method. The solid line represents
the results obtained from initial clustering of Algorithm 3, and the dash
lines represent the results obtained from community merging of Algo-
rithm 3.

When initial clustering is switched to community
merging at the optimal point (see the white-circle graph
in Fig. 10), community merging clearly boosts up the pre-
cision-recall envelop, meaning that both the precision and
recall achieved in initial clustering are improved. This
indicates that community merging is successful in choos-
ing query clusters with identical queries from different
users for merging.

Finally, when the switching from initial clustering to
community merging is performed later than the optimal
point, we can observe that recall is increased but precision
is lowered, which is a typical phenomenon resulted from
the conflicting nature of precision and recall. The behav-
ior is due to the fact that overly merged clusters from ini-
tial clustering are further merged in community merging
(see the dark-box graph in Fig. 10), and thus further low-

ering the low precision generated in initial clustering.
Although community merging at late stage generates low
precision, it extends the recall from 0.65 obtained by ini-
tial clustering to 1.0 (i.e. at precision=0.14 in Fig. 10).

Fig. 11 and 12 show the change of precision and recall
when performing P-QC method. In Fig. 11, we observe
that the precisions generated by community merging are
slightly lower than those generated by initial clustering
because some unrelated queries can be wrongly merged
in community merging. In Fig. 12, we observe that the
recalls generated by community merging are much higher
than those generated by initial clustering because com-
munity merging can successfully merge conceptually re-
lated clusters together. We can easily see from Fig. 11 and
12 that only a small fraction of precision is used to trade
for a much better recall in community merging.

In order to further justify our choice of the parameters
used in P-QC, we show in Table 10 different terminating
values near the optimal point for initial clustering and

AUTHOR ET AL.: TITLE 13

TABLE 10
CUTOFF VALUES FOR INITIAL CLUSTERING AND COMMUNITY MERGING IN THE 2ND EXPERIMENT

Initial Clustering Community Merging
Cutoff Precision Recall F-measure Cutoff Precision Recall F-Measure
0.3104 0.74 0.406667 0.524884 0.442 0.786667 0.535556 0.637266
0.3075 0.733333 0.416667 0.531401 0.4093 0.762857 0.545556 0.636162
0.3073 0.753333 0.452222 0.565174 0.3922 0.782857 0.616667 0.689895
0.3038 0.753333 0.472222 0.580538 0.3922 0.782857 0.636667 0.702234
0.2901 0.753333 0.49222 0.59541 0.3922 0.78286 0.65667 0.71423
0.276 0.753333 0.501111 0.601866 0.3922 0.762857 0.647778 0.700623
0.2758 0.733333 0.505556 0.598505 0.3922 0.742857 0.652222 0.694596
0.2602 0.691111 0.505556 0.583947 0.3995 0.701538 0.612222 0.653844
0.2483 0.691111 0.514444 0.589833 0.3995 0.701538 0.621111 0.658879

TABLE 11
SAMPLE QUERY CLUSTERS GENERATED BY P-QC METHOD

Query Clusters Query Clusters
hp(User2) + canon(User2) + epson(User2) macintosh(User8) + apple(User8) + imac(User8) + mac mini(User8) + macbook(User8)

gap(User6) + calvin klein(User6) + banana republic(User6) ipod mini(User9) + ipod nano(User9) + apple(User9) + ipod(User9) + itunes(User9)
apple(User5) + banana(User4) + fruit(User4) + apple(User4) mac os(User7) + apple(User7) + apple software(User7) + mac games(User7)

fuji(User3) + kodak(User3) + photo film(User3) + camera film(User3) +
xerox(User2) + fuji(User2) + konica(User3)

fuji(User1) + kodak(User1) + canon(User10) + konica(User1) + hp digital camera(User10)
+ canon(User1) + minolta(User10) + pentax(User10) + hp(User1) + olympus(User10)

community merging in the second experiment. Two best
cut-off values listed in the fifth row of the table (approx.
0.29 and 0.39) are used for defining the terminating condi-
tions of initial clustering (i-clustering) and community
merging (c-merging) in Algorithm 3 in order to obtain the
best results. (Recall the terminating conditions for per-
sonalized agglomerative clustering given in Section 5.2.)

The best F-measure value obtained is shown in Table 9.
We observe that the best F-measure value for P-QC
method is better than those obtained using QU, QW and
QC methods. Therefore, we conclude that query clusters
obtained from P-QC method are more accurate compar-
ing to those obtained from QU, QW and QC methods,
and that P-QC method can effectively group similar que-
ries together even when the queries are ambiguous.

Table 11 shows some of the query clusters generated

by Algorithm 3 on the collected data. In Table 11, User7,
User8 and User9 have submitted the query “apple” to our
middleware. User7 gets query suggestions about “macin-
tosh’s software” (Cluster12) because he/she is interested
in concepts on “macintosh’s software”. User8 gets query
suggestions about “macintosh hardware” (Cluster11), and
User9 gets query suggestions about “iPod” (Cluster10).
By using P-QC method, query suggestions according to
individual user’s conceptual preferences can be found
effectively. Moreover, the algorithm yields high precision
accuracy and better recall rate, clearly outperforming BB’s
algorithm.

6.4 Data Size
Clustering web pages by content requires manipulating a
staggeringly large amount of data. An advantage of BB's
algorithm is that it is content-independent which is im-
portant for web-scale data size. The sizes of the bipartite
graphs in the two experiments are shown in Tables 12
and 13, where upper bound is the upper bound for the
number of operations required for agglomerative cluster-
ing, nb is the number of black vertices in the bipartite
graph G, nw is the number of white vertices in the bipar-
tite graph G (i.e. corresponding to the sets of queries and
concepts respectively in our setting), |N|max is the maxi-
mum number of neighbors of any vertex in the bipartite
graph G and m is the number of iterations (i.e. merges)
required for agglomerative clustering.

The bipartite graphs constructed using QC and P-QC
methods are even smaller than that of the original BB's
algorithm, because the number of concepts extracted from
the web-snippets is small and the number of concepts
resulting from web-snippets clicked by users is even
smaller. The bipartite graph containing all words from the
web-snippets (i.e. QW method) is the largest among the
four methods, resulting in low clustering performance.

TABLE 13
PARAMETER VALUES OBTAINED FROM QU, QW, QC AND PQ-

C METHODS IN THE 2ND EXPERIMENT

Values of Clustering Parameters
 nb nw |N|max m Upper Bound
QU method 3239 38 100 184 32,843,600
QW method 8891 38 938 572 7,858,273,220
QC method 1917 38 168 97 55,243,104
P-QC method 1917 50 152 113 55,592,544

TABLE 12
PARAMETER VALUES OBTAINED FROM QU, QW AND QC

METHODS IN THE 1ST EXPERIMENT

Values of Clustering Parameters
 nb nw |N|max m Upper Bound
QU method 12,430 150 100 513 126,005,200
QW method 21,920 150 1,093 972 26,370,153,014
QC method 6,008 150 217 416 290,335,150

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

From the experimental results, we can conclude that our
concept-based clustering method is efficient because of
the significant reduction of the size of the bipartite graph
but at the same time effective as evident from the high
precision and recall achieved.

7 CONCLUSIONS
As search queries are ambiguous, we study effective
methods for search engines to provide query suggestions
on semantically related queries in order to help users to
formulate more effective queries to meet their diversified
needs. In this paper, we propose a new personalized con-
cept-based clustering technique which is able to obtain
personalized query suggestions for individual users
based on their conceptual profiles. The technique makes
use of clickthough data and the concept relationship
graph mined from web-snippets, both of which can be
captured at the backend and as such do not add extra
burden to users. An adapted agglomerative clustering
algorithm is employed for finding queries which are con-
ceptually close to one another. Our experimental results
confirm that our approach can successfully generate per-
sonalized query suggestions according to individual user
conceptual needs. Moreover, it improves prediction accu-
racy and computational cost comparing to BB's algorithm,
which is the state-of-the-art technique of query clustering
using clickthroughs for the similar objective.

There are several directions for extending the work in
the future. First, instead of considering only query-
concept pairs in the clickthrough data, we can consider
the relationships between users, queries and concepts to
obtain more personalized and accurate query suggestions.
Second, clickthrough data and concept relationship
graphs can be directly integrated into the ranking algo-
rithms of a search engine so that it can rank results
adapted to individual users’ interests.

REFERENCES
[1] http://www.cse.ust.hk/~dlee/tkde08/query.html.
[2] http://www.ask.com/.
[3] http://www.dmoz.org/.
[4] http://www.google.com/.
[5] http://www.sigkdd.org/kdd2005/kddcup.html.
[6] http://www.yahoo.com/.
[7] E. Agichtein, E. Brill, and S. Dumais, “Learning User Interaction

Models for Predicting Web Search Result Preferences,” Proc. of
ACM SIGIR Conference, 2006.

[8] E. Agichtein, E. Brill, S. Dumais, and R. Rango, “Improving
Web Search Ranking by Incorporating User Behavior Informa-
tion,” Proc. of ACM SIGIR Conference, 2006.

[9] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. of ACM
SIGMOD Conference, 1993.

[10] R. A. Baeza-Yates, C. A. Hurtado and M. Mendoza, “Query
Recommendation using Query Logs in Search Engines,” EDBT
Workshop, vol. 3268, pp. 588-596, 2004.

[11] D. Beeferman and A. Berger, “Agglomerative Clustering of a
Search Engine Query Log,” Proc. of ACM SIGKDD Conference,
2000.

[12] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman and O.
Frieder, “Hourly Analysis of a Very Large Topically Catego-
rized Web Query Log,” Proc. of ACM SIGIR Conference, 2004.

[13] V.W. Chan, K.W. Leung, and D.L. Lee, “Clustering Search En-
gine Query Log Containing Noisy Clickthroughs,” Proc. of
SAINT Conference, 2004.

[14] S. Chuang and L. Chien, “Automatic Query Taxonomy Genera-
tion for Information Retrieval Applications,” Online Information
Review, vol. 27, Issue 4, pp. 243-255, 2003.

[15] H. Cui, J. Wen, J. Nie and W. Ma, “Query Expansion by Mining
User Logs,” IEEE TKDE, vol. 15, Issue 4, pp. 829-839, 2003.

[16] K.W. Church, W. Gale, P. Hanks, and D. Hindle, “Using Statis-
tics in Lexical Analysis,” In: Zernik U. Lexical Acquisition: Ex-
ploiting On-Line Resources to Build a Lexicon. New Jersey: Lawrence
Erlbaum, 1991.

[17] L. Deng, W. Ng, X. Chai, and D.L. Lee, “Spying Out Accurate
User Preferences for Search Engine Adaptation,” LNCS 3932,
Advances in Web Mining and Web Usage Analysis, pp. 87-103, 2006.

[18] Z. Dou, R. Song, and J.R. Wen, “A Largescale Evaluation and
Analysis of Personalized Search Strategies,” Proc. of WWW Con-
ference, 2007.

[19] B. Goethals and M. Zaki, “Frequent Itemset Mining Implemen-
tations,“ Proc. of the ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI), 2003.

[20] M. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real Life Informa-
tion Retrieval: A Study of User Queries on the Web,” ACM SIGIR Fo-
rum, vol. 32, pp. 5-17, 1998.

[21] T. Joachims, “Optimizing search engines using clickthrough
data,” Proc. of ACM SIGKDD Conference, 2002.

[22] T. Joachims and F. Radlinski, “Search Engines that Learn from
Implicit Feedback,” IEEE Computer, vol. 40, No. 8, pp. 34-40,
2007.

[23] B. Koester, “Conceptual Knowledge Retrieval with FooCA:
Improving Web Search Engine Results with Contexts and Con-
cept Hierarchies,” Proc. of IEEE ICDM, 2006.

[24] F. Liu, C. Yu, and W. Meng, “Personalized Web Search for Im-
proving Retrieval Effectiveness,” IEEE TKDE, vol. 16, pp. 28-40,
2004.

[25] B. Mirkin, Mathematical Classification and Clustering, Kluwer,
1996.

[26] G. Salton and M.J. Mcgill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[27] B. Smyth et al, “Exploiting Query Repetition and Regularity in
an Adaptive Community-based Web Search Engine,” User Mod-
eling and User-Adapted Interaction, vol. 14, Issue 5, pp. 383-423,
2005.

[28] M. Speretta and S. Gauch, “Personalized Search Based on User
Search Histories,” Proc. of IEEE/WIC/ACM International Confer-
ence on Web Intelligence, 2005.

[29] Q. Tan, X. Chai, W. Ng, and D.L. Lee, “Applying Co-training to
Clickthrough Data for Search Engine Adaptation,” Proc. of
DASFAA Conference, 2004.

[30] C. J. Van Rijsbergen, Information Retireval. Butterworths, 1979.
[31] J. Wen, J. Nie, and H. Zhang, “Query Clustering Using User

Logs,” ACM TOIS, vol. 20, no. 1, pp. 59-81, 2002.
[32] Y. Xu, B. Zhang, Z. Chen and K. Wang, “Privacy-Enhancing

Personalized Web Search,” Proc. of WWW Conference, 2007.
[33] Z. Zhang and O. Nasraoui, “Mining Search Engine Query Logs

for Query Recommendation,” Proc. of WWW Conference, 2006.

	1 Introduction
	2 Related Work
	3 BB's Graph-Based Clustering Algorithm
	4 Concept Extraction
	4.1 Concept Extraction Using Web-Snippets
	4.2 Mining Concept Relations
	4.3 Creating User Concept Preference Profile

	5 Concept-Based Clustering
	5.1 Clustering on Query-Concept Bipartite Graph
	5.2 Personalized Concept-Based Clustering

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Comparing QU, QW and QC methods
	6.3 Personalized Concept-Based Clustering
	6.4 Data Size

	7 Conclusions

