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Abstract—The exponential growth of information on the Web has introduced new challenges for building effective search 
engines. A major problem of web search is that search queries are usually short and ambiguous, and thus are insufficient for 
specifying the precise user needs. To alleviate this problem, some search engines suggest terms that are semantically related 
to the submitted queries so that users can choose from the suggestions the ones that reflect their information needs. In this 
paper, we introduce an effective approach that captures the user’s conceptual preferences in order to provide personalized 
query suggestions. We achieve this goal with two new strategies. First, we develop online techniques that extract concepts from 
the web-snippets of the search result returned from a query and use the concepts to identify related queries for that query. 
Second, we propose a new two-phase personalized agglomerative clustering algorithm that is able to generate personalized 
query clusters. To the best of the authors’ knowledge, no previous work has addressed personalization for query suggestions. 
To evaluate the effectiveness of our technique, a Google middleware was developed for collecting clickthrough data to conduct 
experimental evaluation. Experimental results show that our approach has better precision and recall than the existing query 
clustering methods. 

Index Terms—Clickthrough, concept-based clustering, personalization, query clustering, search engine. 
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1 INTRODUCTION

he amount of information available on the web is 
growing rapidly. Google [4] reported that its index 
size was over 8 billion pages in 2004, and it was esti-

mated that it had 20 billion pages in 2005. As the web 
keeps expanding, the number of pages indexed in a 
search engine increases correspondingly. With such a 
large volume of data, finding relevant information satis-
fying user needs based on simple search queries becomes 
an increasingly difficult task. 

Queries submitted by search engine users tend to be 
short and ambiguous. A study by M. Jansen [20] found 
that the average query length on a popular search engine 
was only 2.35 terms. These short queries are not likely to 
be able to precisely express what the user really needs. As 
a result, lots of pages retrieved may be irrelevant to the 
user needs because of the ambiguous queries. On the 
other hand, users may not want to reformulate their que-
ries using more search terms, since it imposes additional 
burden on them during searching. 

To improve user’s search experience, most major com-
mercial search engines provide query suggestions to help 
users formulate more effective queries. When a user sub-
mits a query, a list of terms that are semantically related 
to the submitted query is provided to help the user to 
identify terms that he/she really wants, hence improving 
the retrieval effectiveness. Yahoo's “Also Try” [6] and 
Google's “Searches related to” features provide related 

queries for narrowing search, while Ask Jeeves [2] sug-
gests both more specific and more general queries to the 
user as shown in Fig. 2. Unfortunately, these systems pro-
vide the same suggestions to the same query without 
considering users’ specific interests. 

In this paper, we propose a method that provides per-
sonalized query suggestions based on a personalized con-
cept-based clustering technique. In contrast to existing 
methods which provide the same suggestions to all users, 
our approach uses clickthrough data to estimate user‘s 
conceptual preferences and then provides personalized 
query suggestions for each individual user according to 
his/her conceptual needs. The motivation of our research 
is that queries submitted to a search engine may have 
multiple meanings. For example, depending on the user, 
the query “apple” may refer to a fruit, the company Ap-
ple Computer or the name of a person, etc. Thus, provid-
ing personalized query suggestion (e.g. users interested in 
“apple” as a fruit get suggestions about fruit, while users 
interested in “apple” as a company get suggestions about 
the company's products) certainly helps users to formu-
late more effective queries according to their needs. 

The underlying idea of our proposed technique is 
based on concepts and their relations extracted from the 
submitted user queries, the web-snippets1 and the click-
through data. Clickthrough data was exploited in the per-
sonalized clustering process to identify user preferences: 
a user clicks on a search result mainly because the web-
snippet contains a relevant topic which the user is inter-
ested in. Moreover, clickthrough data can be collected 
easily without imposing extra burden on users, and thus 
providing a low-cost means to capture user's interest. 
 

1 “web-snippet” denotes the title, summary and URL of a Web page 
re-turned by search engines. 
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TABLE 1
THE CLICKTHROUGH DATA FOR THE QUERY “APPLE” 

Links Clicked Web-Snippets for the Search Results 
l1 √ Apple Hong Kong (http://www.appleclub.com.hk/) 

l2  
Apple Hong Kong - iPod + iTunes 
(http://www.appleclub.com.hk/ipod/) 

l3  apple daily (http://www.atnext.com) 
l4 √ Apple (http://www.apple.com/) 
l5  Apple - iPod + iTunes (http://www.apple.com/itunes/) 

l6  
Apple Inc. - Wikipedia, the free encyclopedia 
(http://en.wikipedia.org/wiki/Apple_Computer) 

l7  
Apple II series - Wikipedia, the free encyclopedia 
(http://en.wikipedia.org/wiki/Apple_II) 

l8  Apple .Mac (http://www.mac.com/) 
l9 √ The Apple Store (US) (http://store.apple.com/) 
l10  Apple - Support (http://www.info.apple.com/) 

 
Fig. 1. The general process of concept-based clustering. 

Our approach consists of the following four major 
steps. First, when a user submits a query, concepts (i.e. 
important terms or phrases in web-snippets) and their 
relations are mined online from web-snippets to build a 
concept relationship graph. Second, clickthroughs are 
collected to predict user's conceptual preferences. Third, 
the concept relationship graph together with the user's 
conceptual preferences is used as input to a concept-
based clustering algorithm that finds conceptually close 
queries. Finally, the most similar queries are suggested to 
the user for search refinement. Fig. 1 shows the general 
process of our approach. 

To evaluate the performance of our approach, we de-
veloped a Google middleware for clickthrough data col-
lection.2 40 users were invited to use our middleware to 
search 200 test queries selected from a spectrum of topical 
categories. When a user submits a query, concepts related 
to the query are mined and stored in our databases. If the 
user clicks on one of the search results, the user's click-
throughs together with his/her concept preference profile 
for the query are updated. 

The clustering results on the 200 test queries are com-
pared against the predefined clusters prepared by human 
editors. We evaluate the performance of our approach 
using the standard recall-precision measures. Beeferman 
and Berger's agglomerative clustering algorithm [11] (or 
simply called BB’s algorithm in this paper) is used as the 
baseline to compare with our concept-based approach. 
Our experimental results show that the average precision 
at any recall level is better than the baseline method. 

The main contributions of this paper are summarized 
below: 

 
1. Most of the previous approaches on query clustering 

consider two different queries to be semantically simi-
lar if they lead to common clicks on the same pages. 
However, the chance for different queries leading to-
common clicks on the same URLs are rare in web 
search engines (see Section 2 for more discussion)  

Based on this important observation, we propose to 
use concepts, not pages, as the common ground for re-
lating semantically similar queries. That is, two que-
ries are considered related if they lead to clicks on 
pages that share some common concepts, which are 
mined from the web-snippets in the search results. 

2  The middleware approach is for facilitating experimentation. The 
techniques developed in this paper can be directly integrated into any 
search engine to provide personalized query suggestions. 

2. To our knowledge, there is no previous study on the 
personalization of query suggestions. We propose a 
two-phase clustering method to cluster queries first 
within the scope of each user and then for the com-
munity. 

3. We conduct experiments to evaluate different meth-
ods and show that our concept-based, two-phase clus-
tering method yields the best precison and recall. 

 
The rest of this paper is organized as follows. In Sec-

tion 2, we compare our method with other similar ap-
proaches. We also discuss some works related to concept 
mining. In Section 3, we review BB’s algorithm, which is 
also an effective technique in personalized query cluster-
ing. In Section 4, our concept mining method for extract-
ing concepts from web-snippets is presented. In Section 5, 
we adapt BB's algorithm to our concept-based approach. 
We further extend the concept-based BB's algorithm to a 
personalized clustering algorithm by utilizing the user 
concept preference profiles. Experimental results compar-
ing BB's algorithm with our methods are presented in 
Section 6. Section 7 concludes the paper. 

2 RELATED WORK 
Query clustering techniques have been developed in di-
versified ways. The very first query clustering technique 
comes from information retrieval studies [26]. Similarity 
between queries was measured based on overlapping 
keywords or phrases in the queries. Each query is repre-
sented as a keyword vector. Similarity functions such as 
cosine similarity or Jaccard similarity [26] were used to 
measure the distance between two queries. One major 
limitation of the approach is that common keywords also 
exist in unrelated queries. For example, the queries, “ap-
ple iPod” (an mp3 player) and “apple pie” (a dessert), are 
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very similar since they both contain the keyword “apple”. 
However, the queries are actually expressing two differ-
ent search needs. 

Chuang and Chien [14] proposed to cluster and organ-
ize users' queries into a hierarchical structure of topic 
classes. A Hierarchical Agglomerative Clustering (HAC) 
[25] algorithm is first employed to construct a binary-tree 
cluster hierarchy. The binary-tree hierarchy is then parti-
tioned in order to create sub-hierarchies forming a multi-
way-tree cluster hierarchy like the hierarchical organiza-
tion of Yahoo [6] and DMOZ [3]. 

Baeza-Yates et al. [10] proposed a query clustering 
method that groups similar queries according to their 
semantics. The method creates a vector representation Q 
for a query q, and the vector Q composes of terms from 
the clicked documents of q. Cosine similarity is applied to 
the query vectors to discover similar queries. More re-
cently, Zhang and Nasraoui [33] presented a method that 
discovers similar queries by analyzing users' sequential 
search behavior. The method assumes that consecutive 
queries submitted by a user are related to each other. The 
sequential search behaviour is combined with a tradi-
tional content-based similarity method to compensate for 
the high sparsity of real query log data. 

Recently, Beitzel et al. [12] proposed a query classifica-
tion method that combines multiple classifiers. The 
method combines techniques from machine learning and 
computational linguistics. Their results were compared to 
those from the 2005 KDD Cup [5], showing that their 
combined approach produced higher recall and smoother 
tradeoffs between recall and precision than any of the 
component approaches. 

On web search engines, clickthrough data is a kind of 
implicit feedback from users. Table 1 is an example click-
through data for the query “apple”, which shows the 
URLs returned from the search engine for the query and 
the URLs clicked on by the user. Clearly, it is a valuable 
resource for capturing the user's interest for building per-

sonalized web search systems [7], [8], [17], [18], [21], [22], 
[24], [27], [28], [29]. Joachims [21] proposed a method 
which employs preference mining and machine learning 
to rerank search results according to user's personal pref-
erences. Later on, Smyth et al. [27] suggested that user 
search behaviour is repetitive and regular. They proposed 
to rerank search results such that the results which have 
been previously selected for a given query are promoted 
ahead of other search results. More recently, Deng et al. 
[17] proposed an algorithm which combines a spying 
technique together with a novel voting procedure to de-
termine user preferences from the clickthrough data. Dou 
et al. [18] also performed a large scale evaluation on dif-
ferent personalized search strategies, including click-
through-based and profile-based personalization. They 
suggested that click-based personalization strategies per-
form consistently and considerably well when compared 
to profile-based methods. 

 
Fig. 2. Above is part of the search result page generated by Ask.com in 
response to the query “apple”. A list of query suggestions is provided 
showing many possible choices for query refinement. 

To resolve the disadvantage of keyword-based cluster-
ing methods, clickthrough data has been used to cluster 
queries based on common clicks on URLs. Beeferman and 
Burger [11] proposed an agglomerative clustering algo-
rithm (i.e. BB’s algorithm) to exploit query-document re-
lationships from clickthrough data. Given a search engine 
log, BB's algorithm first constructs a bipartite graph with 
one set of vertices corresponding to queries, and another 
corresponding to documents. If a user clicks on a docu-
ment, a link between the corresponding query and docu-
ment is created on the bipartite graph. After the bipartite 
graph is obtained, agglomerative clustering algorithm is 
used to obtain the clusters. The algorithm is content-
independent in the sense that it exploits only the query-
document links on the bipartite graph to discover similar 
queries and similar documents without examining the 
keywords in the queries or the documents. The details of 
the algorithm will be described in Section 3. 

Wen et al. [31] proposed a clustering algorithm com-
bining both query contents and URL clicks. They sug-
gested that two queries should be clustered together, if 
they contain the same or similar terms, and lead to the 
selection of the same documents. However, since web 
search queries are usually short and common clicks on 
documents are rare (see discussion below), Wen et al's 
method may not be effective for disambiguating web que-
ries. In contrast, our approach relates the queries with a 
set of extracted concepts in order to identify the precise 
semantics of the search queries.  

One major problem with clickthrough-based method is 
that the number of common clicks on URLs for different 
queries is limited. This is because different queries will 
likely retrieve very different result sets in very different 
ranking orders. Thus, the chance for the users to see the 
same results would be small, let alone clicking on them. It 
was reported that in a large clickthrough dataset from a 
commercial search engine the chance for two random 
queries to have a common click is merely 6.38x10-5 [11]. 
The small number of common clicks leads to low recall. 

To alleviate this problem, we introduce the notion of 
concept-based graphs by considering concepts extracted 
from web-snippets and adapt BB's method to this new 
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TABLE 2
FREQUENTLY USED SYMBOLS 

Symbol Description 
G A bipartite graph 

m 
The number of iterations (i.e. merges) required for agglom-
erative clustering 

nb The number of black vertices in G 
nw The number of white vertices in G 

|N|max The maximum number of neighbors of any vertex in G 
sim(x,y) Similarity between vertices x and y in G 
simR(ti,tj) Similarity between concepts ti and tj 

sf(ti) Snippet frequency of the keyword/phrase ti 

support(ti) 
Interestingness of a particular keyword/phrase ti with respect 
to the returned web-snippets arising from a query 

|ti| The number of terms in the keyword/phrase ti 
upper 
bound 

The upper bound for the number of operations required for 
agglomerative clustering 

 
Fig. 3. (a) Queries q1 and q3 seem unrelated before document cluster-
ing. (b) After document clustering, queries q1 and q3 are then related to 
each other because they are both linked to the document cluster 
{d1,d2}. 

 
Fig. 4. (a) A bipartite graph without “noise”. (b) A bipartite graph with a 
“noise” link, where the solid edges represent “real” links and the dash 
edge represents a “noise” edge. 

context. In contrast to the existing methods, our approach 
provides effective personalization effect by using the con-
cept preference profiles that are built upon the extracted 
concepts and clickthroughs. The use of concepts helps to 
reduce the size of the resulted profiles, while retaining the 
accuracy and capability to capture user's interests. 

Along the line of concept extraction from web-
snipplets, Koester [23] combined web mining techniques 
and formal concept analysis to extract concepts from web-
snippets and build a concept lattice capturing user's con-
ceptual needs. However, it was not concerned with per-
sonalization. Xu et al. [32] proposed a method to extract 
concepts from users’ browsed documents to create hierar-
chical concept profiles for personalized search in a pri-
vacy-enhanced environment. Their method assumes that 
the system knows the documents that user is interested in, 
instead of using clickthrough. Thus, their method is quite 
different from ours.  

Another technique to discover related queries is query 
expansion. The aim of query expansion is to improve re-
trieval effectiveness by expanding the query with words 
or phrases to match additional documents. Cui et al. [15] 
proposed a query expansion method based on user inter-
actions recorded in the clickthrough data. The method 
focuses on mining correlations between query terms and 
document terms by analyzing user's clickthroughs. 
Document terms that are strongly related to the input 
query are used together to narrow down the search. 

3 BB'S GRAPH-BASED CLUSTERING ALGORITHM 
In BB’s graph-based clustering [11], a query-page bipar-
tite graph is firstly constructed with one set of the nodes 
corresponds to the set of submitted queries, and the other 
corresponds to the sets of clicked pages. If a user clicks on 
a page, a link between the query and the page is created 
on the bipartite graph. After obtaining the bipartite graph, 
an agglomerative clustering algorithm is used to discover 
similar queries and similar pages. During the clustering 
process, the algorithm iteratively combines the two most 
similar queries into one query node, then the two most 

similar pages into one page node, and the process of al-
ternative combination of queries and pages is repeated 
until a termination condition is satisfied. The main reason 
for not clustering all the queries first and then all the 
pages next is that two queries may seem unrelated prior 
to page clustering because they link to two different 
pages but they may become similar to each other if the 
two pages have a high enough similarity to each other 
and are merged later. The example in Fig. 3 helps illus-
trate this scenario. 

To compute the similarity between queries or docu-
ments on a bipartite graph, the algorithm considers the 
overlap of their neighboring vertices as defined in the 
following equation: 
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where N(x) is the set of neighboring vertices of x, and N(y) 
is the set of neighboring vertices of y. Intuitively, the simi-
larity function formalizes the idea that x and y are similar 
if their respective neighboring vertices largely overlap 
and vice versa. 

As discussed in Section 2, a problem of the BB’s 
method is its low recall rate since the number of common 
clicks on the URLs is rather small. Another problem of the 
similarity function proposed by BB is that it cannot iden-
tify “noise” links in the clustering process. Consider the 
example shown in Fig. 4, where the number attached to a 
link is the total number of clicks on the document. In Fig. 
4(a), q2 is a hot query which generates 1000 clicks for each 
of the documents d2 and d3, while q1 is a cold query which 
only generates 10 clicks for each of the documents d1 and 
d2. Even though the click distributions for q1 and q2 are 
different, we can see that d1 and d2 are both relevant to q1 
because the number of clicks on d1 and the number of 
clicks on d2 are roughly the same for q1 (i.e. 10 clicks). 
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Similarly, we can see that d2 and d3 are both relevant to q2 
because the number of clicks on d2 and the number of 
clicks on d3 are roughly the same for q2 (i.e. 1000 clicks). 
Thus, we conclude that q1 and q2 are similar queries be-
cause they share the common relevant document d2. 
However, in Fig. 4(b), d2 cannot be considered relevant to 
q1 because only a small fraction of the clicks (10 out of 
1010) supports that conclusion. Consequently, we cannot 
conclude that q1 and q2 are similar queries. BB’s similarity 
function does not detect the “noise” link as shown Fig. 
4(b). It gives the same similarity score of 1/3 in both cases. 
To solve the problem, the following similarity function 
was proposed in our earlier work [13]. 
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TABLE 3 
EXTRACTED CONCEPTS FOR THE QUERY “APPLE” 

Concept  ti support(ti) Concept  ti support(ti)
mac 0.1 macintosh 0.05 
ipod 0.1 tour 0.05 

iphone 0.1 slashdot apple 0.04 
hardware 0.09 picture 0.04 
software 0.09 apple ii 0.04 
big apple 0.08 apple variety 0.04 

apple store 0.06 music 0.04 
mac os 0.06 farm market 0.04 

apple orchard 0.06 apple grower 0.04 
apple valley 0.06 gift shop 0.04 

apple and macintosh 0.06 apple farm 0.04 
apple blossom festival 0.06   

 
where L(x,y) is the set of links connecting x and y to the 
same vertices, L(x) and L(y) are all the links connecting to 
x and y, respectively, and|L( )|is the cardinality of L( ). 

Applying the similarity function, we get a similarity 
score of 1010/2020 = 1/2 for sim(q1,q2) in Fig. 4(a), and 
similarity score of 1010/3010 = 1/3 for sim(q1,q2) in Fig. 
4(b). Note that the score for sim(q1,q2) in Fig. 4(a) is higher 
than that of Fig. 4(b), because most people are selecting 
document d1 in Fig. 4(b), and the links between q1 and d2 
can be considered as “noise”. Therefore, it is reasonable to 
assign a lower score to sim(q1,q2) in Fig. 4(b). Using the 
noise-tolerant similarity function, the similarity between 
two vertices always lies between [0,1]. The similarity for 
two vertices is 0, if they share no common neighbor, and 
the similarity between two vertices is 1, if they have ex-
actly the same neighbor vertices. 

It is noted that noise elimination by itself is a difficult 
problem since it requires complex inference rules to dis-
tinguish the informative from the erroneous clicks. Since 
the noise-tolerant version has been shown to be superior 
to the original version [13] and we are not aware of any 
better methods, in the rest of this paper, BB’s algorithm 
refers to this improved version of similarity function. 

4 CONCEPT EXTRACTION 
Before explaining our concept-based clustering method, 
we first describe our concept extraction method, which is 
composed of the following three basic steps: 1) extracting 
concepts using the web-snippets returned from the search 
engine, 2) mining concept relations, and 3) creating a user 
concept preference profile using the extracted concepts, 
concept relations and user ‘s clickthroughs. 

4.1 Concept Extraction Using Web-Snippets 
Our concept extraction method is inspired by the well-
known problem of finding frequent item sets in data min-
ing [9], [19]. When a user submits a query to the search 
engine, a set of web-snippets are returned to the user for 

identifying the relevant items. We assume that if a key-
word or a phrase appears frequently in the web-snippets 
of a particular query, it represents an important concept 
related to the query because it co-exists in close proximity 
with the query in the top documents. We use the follow-
ing support formula for measuring the interestingness of 
a particular keyword/phrase ti with respect to the re-
turned web-snippets arising from a query q: 

 
( )

i
i

i t
n
tsftsupport ⋅=)(  (4) 

 
where n is the total number of web-snippets returned, sf(ti) 
is the snippet frequency of the keyword/phrase ti (i.e., the 
number of web-snippets containing ti) and |ti| is the 
number of terms in the keyword/phrase ti. For simplicity, 
we omit q in the above expression if no ambiguity arises. 

To extract concepts for a query q, we first extract all the 
keywords and phrases from the web-snippets returned by 
the query. After obtaining a set of keywords/phrases (ti), 
we compute the support for all ti (support(ti)). If the sup-
port of a keyword/phrase ti is bigger than the threshold s 
(support(ti) > s), we would treat ti as a concept for the 
query q. Table 3 illustrates the extracted concepts for the 
query q = “apple”. 

4.2 Mining Concept Relations 
To find relations between concepts, we apply a well-
known signal-to-noise ratio formula from data mining 
[16] to establish similarity between terms t1 and t2. The 
similarity value of Church and Hanks' formula always 
lies between [0,1], and thus can be used directly in Step 3. 
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where n is the number of documents in the corpus, 
df(t1∪ t2) is the joint document frequency of t1 and t2 and 
df(t) is the document frequency of the term t. 

In our context, two concepts ti, tj could co-exist in a 
web-snippet in the following situations: 1) ti and tj co-
exist in the title, 2) ti and tj co-exist in the summary or 3) ti 
exists in the title, while tj exists in the summary (or vice 

 



6 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

versa). Therefore, we modify Church and Hanks' formula 
for the three different cases in our context as follows. 

 
( ) ( ) ),(),(,, ,,, jiotherRjisummaryRjititleRjiR ttsimttsimttsimttsim ++=  (6) 

 
where simR(ti,tj) is the similarity between concepts ti and tj, 

which is composed of simR,title(ti,tj), simR,summary(ti,tj) and 
simR,other(ti,tj) as follows. 
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where n is the total number of web-snippets returned, 
sftitle(ti tj) is the joint snippet frequency of concepts ti 
and tj in document titles, sftitle(t) is the snippet frequency 
of concept t in document titles, sfsummary(ti tj) is the joint 
snippet frequency of ti and tj in document summaries, 
sfsummary(t) is the snippet frequency of concept t in docu-
ment summaries, sfother(ti tj) is the joint snippet fre-
quency of concept ti in a document title and tj in the 
document's summary (or vice versa) and sfother(t) is the 

snippet frequency of concept t in either document sum-
maries or document titles.  

∪

∪

∪

 
Fig. 5. (a) A concept relationship graph for the query “apple” derived 
without incorporating user clickthroughs. (b) A concept preference 
profile constructed using the user clickthroughs and the concept rela-
tionship graph in (a). wti is the interestingness of the concept ti to the 
user. More clicks on a concept gradually increase the interestingness 
wti of the concept. 

Using the extracted concepts and concept relations, we 
can create a concept relationship graph with the extracted 
concepts as nodes and mined concept relations as links. 
Fig. 5(a) shows a concept preference graph for the query q 
= “apple”. A link is created between concept ti and tj, if 
their similarity, simR(ti,tj), is greater than zero. The 
strength of each link is determined by simR(ti,tj) which is 
the similarity between concepts ti and tj. 

4.3 Creating User Concept Preference Profile 
The concept relationship graph is firstly derived without 
taking user clickthroughs into account. Intuitively, the 
graph shows the possible concept space arising from 
user's queries. The concept space, in general, covers more 
than what the user actually wants. For example, when the 
user searches for the query “apple”, the concept space 
derived from the web-snippets contains concepts such as 
“ipod”, “iphone” and “recipe”. If the user is indeed inter-
ested in the concept “recipe” and clicks on pages contain-
ing the concept “recipe”, the clickthroughs should gradu-
ally favor the concept “recipe” and its neighborhood (by 
assigning higher weights to the nodes), but the weights of 
the unrelated concepts such as “iphone”, “ipod” and their 
neighborhood should remain zero. Therefore, we propose 
the following formulas to capture user's interestingness 
wti on the extracted concepts ti when a clicked web-
snippet sj, denoted by click(sj), is found: 

 
( ) 1, +=∈∀⇒

ii ttjij wwstsclick   (10) 

( ) 0),( if ),( , >+=∈∀⇒ jiRjiRttjij ttsimttsimwwstsclick
jj

 (11) 

 
where sj is a web-snippet, wti is the interestingness weight 
of the concept ti and tj is the neighborhood concept of ti. 

When a user clicks on sj, the weight of concepts ti ap-
pearing in sj is incremented by 1 to reflect the user's inter-
estingness on the concepts embedded in the clicked page 
sj. For other concepts that are related to the clicked con-
cepts on the concept relationship graph, they are incre-
mented according to the similarity score given in Equa-
tion (5), which is normalized to the range [0,1]. Therefore, 
if a concept is closely related to the clicked concept, it is 
incremented to a higher value (which could be as close to 
1 as the clicked concepts). Otherwise, it is only incre-
mented by a small fraction (close to 0). By imposing user's 
interestingness on the concepts, a concept preference pro-
file with respect to the input query is created. Fig. 5(b) 
shows an example of concept preference profile in which 
the user is interested in information about “apple macin-
tosh”. wti in Fig 5(b) represents the interestingness of the 
concepts to the user. The values of wti for “macintosh” 
and “mac” are highest because the users have interest in 
them (and the values of wti are incremented using Equa-
tion (10)). Indirectly, the values of wti for “mac os”, “soft-
ware”, “apple store”, “iPod”, “iPhone”, and “hardware” 
are increased because they are related to “apple macin-
tosh” and thus incremented using Equation (11). Finally, 
the weights of the concepts about “apple” as fruit are not 
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changed. As a result, the concepts formed two clusters 
representing the user concept preference profile. 

5 CONCEPT-BASED CLUSTERING 
Using the concepts extracted from web-snippets, we pro-
pose two concept-based clustering methods. We first ex-
tend BB’s algorithm to a concept-based algorithm in Sec-
tion 5.1. In Section 5.2, the concept-based algorithm is 
further enhanced to achieve effective personalized clus-
tering. 

5.1 Clustering on Query-Concept Bipartite Graph 
We now describe our concept-based algorithm (i.e. BB’s 
algorithm using query-concept bipartite graph) for clus-
tering similar queries. Similar to BB's algorithm, our tech-
nique is composed of two steps: 1) Bipartite graph con-
struction using the extracted concepts, and 2) agglomera-
tive clustering using the bipartite graph constructed in 
Step 1.  

Using the extracted concepts and clickthrough data, 
the first step of our method is to construct a query-
concept bipartite graph, in which one side of the vertices 
correspond to unique queries, and the other corresponds 
to unique concepts. If a user clicks on a search result, con-
cepts appearing in the web-snippet of the search result 
are linked to the corresponding query on the bipartite 
graph. Algorithm 1 shows the first step of our method. 

After the bipartite graph is constructed, agglomerative 
clustering algorithm is applied to obtain clusters of simi-
lar queries and similar concepts. The noise-tolerant simi-
larity function (recall Equation (2)) is used for finding 
similar vertices on the bipartite graph G. The agglomera-
tive clustering algorithm would iteratively merge the 
most similar pair of white vertices, and then merge the 
most similar pair of black vertices and so on. We present 
the details in Algorithm 2. 

 
Algorithm 1 Bipartite Graph Construction 
Input: Clickthrough data CT, Extracted Concepts E 
Output: A Query-Concept Bipartite Graph G 
 
1: Obtain the set of unique queries Q = {q1,q2,q3…} from CT 
2: Obtain the set of unique concepts C = {c1,c2,c3…} from E 
3: Nodes(G) = Q  C where Q and C are the two sides in G ∪
4: If the web-snippet s retrieved using qi ∈  Q is clicked by 
a user, create an edge e = (qi,cj) in G, where cj is a concept 
appearing in s. 
 
Algorithm 2 - Agglomerative Clustering 
Input: A Query-Concept Bipartite Graph G 
Output: A Clustered Query-Concept Bipartite Graph Gc 
 
1: Obtain the similarity scores for all possible pairs of que-
ries in G using the noise-tolerant similarity function given 
in Equation (2). 
2: Merge the pair of queries (qi,qj) that has the highest 
similarity score. 
3: Obtain the similarity scores for all possible pairs of con-
cepts in G using the noise-tolerant similarity function 

given in Equation (2). 
4: Merge the pair of concepts (ci,cj) that has the highest 
similarity score. 
5. Unless termination is reached, repeat Steps 1-4. 
 

The terminating condition for BB’s algorithm is when 
all connected components in Gc satisfy the following con-
ditions: 
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However, this terminating condition possibly gener-

ates a single big cluster of queries and a single big cluster 
of concepts because having the similarity threshold set to 
zero means that two queries (concepts) would be as-
signed to the same cluster even if they have only a tiny 
fraction of overlapping concepts (queries). To resolve this 
problem, we apply higher similarity thresholds, which 
have been observed from our experiments to yield high 
precision and recall: 
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5.2 Personalized Concept-Based Clustering  
We now explain the essential idea of our personalized 
concept-based clustering algorithm with which ambigu-
ous queries can be clustered into different query clusters. 
Personalized effect is achieved by manipulating the user 
concept preference profiles in the clustering process. 

In contrast to BB’s agglomerative clustering algorithm, 
which represents the same queries submitted from differ-
ent users by one query node, we need to consider the 
same queries submitted by different users separately to 
achieve personalization effect. In other words, if two 
given queries, whether they are identical or not, mean 
different things to two different users, they should not be 
merged together because they refer to two different sets 
of concepts for the two users. 

Therefore, we treat each individual query submitted 
by each user as an individual vertex in the bipartite graph 
by labeling each query with a user identifier. Moreover, 
concepts appearing in the web-snippet of the search re-
sult with interestingness weights greater than zero in the 
concept preference profile are linked to the corresponding 
query on the bipartite graph. An example is shown in Fig. 
6(a). We can see that the query “apple” submitted by us-
ers User1 and User3 become two vertices “apple(User1)” 
and “apple(User3)”. If User1 is interested in the concept 
“apple store”, as recorded in the concept preference pro-
file, a link between the concept “apple store” and the 
query “apple(User1)” would be created. On the other hand, 
if User3 is interested in the concept “fruit”, a link between 
the concept “fruit” and “apple(User3)” would be created. 

After the personalized bipartite graph is created, our 
initial experiements revealed that if we apply BB’s algo-
rithm directly on the bipartite graph, the query clusters 
generated will quickly merge queries from different users 
together and thus losing the personalization effect. We 
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Fig. 6. Performing personalized concept-based clustering algorithm on a small set of clickthrough data. Starting from top left: (a) The original 
bipartite graph. (b), (c) Initial Clustering. (d), (e) Community Merging. 

found that identical queries, though issued by different 
users and having different meanings, tend to have some 
generic concept nodes such as “information” in common, 
e.g., “apple(User1)” and “apple(User3)” both connect to the 
“information” concept node in Fig. 6(a). Thus, these query 
nodes will likely be merged in the first few iterations and 
causing more queries from different users to be merged 
together in subsequent iterations. Considering Fig. 6(a) 
again, if “apple(User1)” and “apple(User3)” are merged, the 
next iteration will merge the concept nodes “apple store”, 
“fruit” and “information”. When the clustering algorithm 
goes further, queries across users will be further clustered 
together. At the end, the resulting query clusters have no 
personalization effect at all.  

To resolve the problem, we divide clustering into two 
steps. In the initial clustering step, an algorithm similar to 
BB’s algorithm is employed to cluster all the queries, but 
it would not merge identical queries from different users. 
After obtaining all the clusters from the initial clustering 
step, the community merging step is employed to merge 
query clusters containing identical queries from different 
users. We can see from Fig 6(d) that “apple(User1)” and “ap-
ple(User3)” belong, correctly, to different clusters. We will 
see further in Section 6.3 that the initial clustering step is 
able to generate high precision rate because it preserves 
the preference of each user, while the community merg-
ing step is able to improve the recall rate because of the 
collaborative filtering effect.  

Algorithm 3 shows the details of the personalized clus-
tering algorithm. Similar to the BB's algorithm, a query-
concept bipartite graph is created as input for the cluster-
ing algorithm. The bipartite graph construction algorithm 
is similar to Algorithm 1, except each individual query 
submitted by each user is treated as an individual vertex 
in the bipartite graph.  

Initial clustering (i.e. Steps 1-5 of Algorithm 3) is simi-
lar to BB's agglomerative algorithm as already discussed 
in Section 5.1. However, queries from different users are 
not allowed to be merged in initial clustering. Fig. 6(b) 
and 6(c) show examples of query and concept merging, 
respectively. Fig. 6(d) illustrates the result of initial clus-
tering. In community merging (i.e. Step 6-8 of Algorithm 
3), query clusters containing identical queries from differ-
ent users are compared for merging. Fig. 6(d) and 6(e) 
show an example of query cluster merging. The query 
clusters {apple computer(User2), apple(User1)} and {apple(User2) 
and apple mac(User1)} both contain the query “apple”, and 
are leading to the same concept “apple store”. Therefore, 
they are merged in community merging as one big cluster.  

Good timing to start community merging is important 
for the success of the algorithm. If we stop initial cluster-
ing too early (i.e. not all clusters are well formed), com-
munity merging merges all the identical queries from 
different users first, and thus generates a single big clus-
ter without much personalization effect. However, if we 
stop initial clustering too late (i.e. clusters are being 
overly merged in this case), the low precision rate gener-
ated by initial clustering would not be improved by com-
munity merging. To obtain the optimal results in our ex-
periments, we use the following terminating conditions 
for initial clustering (i-clustering) and community merging 
(c-merging) in Algorithm 3. These parameters are empiri-
cally investigated in our experiment. We will further jus-
tify our choice using Table 10 in Section 6.3. 
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TABLE 4
CATEGORIES OF THE TEST QUERIES 

Category Description Category Description 
1 Cooking 6 Computer Programming 
2 Dining 7 Computer Gaming 
3 Internet Shopping 8 Music 
4 Traveling 9 Computer Science Research
5 Automobile Repairing 10 Computer Hardware 

TABLE 6 
USER’S INFORMATION NEEDS FOR THE 2ND EXPERIMENT 

User Group Information Needs 
1 Purchase of digital cameras 
2 Purchase of printers 
3 Information on camera films 
4 Information on dessert cooking recipes 
5 Purchase of clothes 
6 Download of Mac software 
7 Purchase of Macintosh 
8 Purchase of iPod 

TABLE 7 
STATISTICS OF THE CLICKTHROUGH DATA COLLECTED FOR 2ND 

PART OF THE EXPERIMENTATION 

TABLE 5
STATISTICS OF THE CLICKTHROUGH DATA COLLECTED IN THE 1ST 

EXPERIMENT 

Statistics 
Number of users 30 
Number of queries assigned to each use 5 
Number of test Queries 150 
Number of unique Queries 150 
Maximum number of retrieved URLs for a query 100 
Maximum number of extracted concepts for a query 217 
Maximum number of extracted words for a query 1,093 
Number of URLs retrieved 14,880 
Number of unique URLs retrieved 12,430 
Number of concepts retrieved 13,321 
Number of unique concepts retrieved 6,008 
Number of words retrieved 117,924
Number of unique words retrieved 21,920 

Statistics 
Number of users 10 
Number of queries assigned to each use 5 
Number of test Queries 50 
Number of unique Queries 38 
Maximum number of retrieved URLs for a query 100 
Maximum number of extracted concepts for a query 168 
Maximum number of extracted words for a query 938 
Number of URLs retrieved 4,962 
Number of unique URLs retrieved 3,239 
Number of concepts retrieved 4,130 
Number of unique concepts retrieved 1,971 
Number of words retrieved 38,831 
Number of unique words retrieved 8,891 

The query clusters outputted by the algorithm are 
shown in Fig. 6(e). We assume in this example that the 
links between the generic concept nodes, "information", 
and the two query clusters are weak and the terminating 
similarity is able to prevent the merging the query clus-
ters about "apple computer" and "apple juice". We can see 
in the resulting clusters that User1 and User2 both submit 
the query “apple” in order to seek information about 
“apple computer”, while User3 submits the query “ap-
ple” to look for information about “apple juice”. In this 
example, even the query “apple” submitted by User1, 
User2 and User3 appear to be the same, the algorithm can 
successfully differentiate them to archive personalization 
effect according to individual user conceptual preferences. 
Finally, we can see that queries about “apple computer” 
(e.g. “apple mac”, “apple computer”) are suggested to 
User1 and User2, while queries about “apple juice” (e.g. 
“apple juice”) are suggested to User3. 

 
Algorithm 3 Personalized Agglomerative Clustering 
Input: A Query-Concept Bipartite Graph G 
Output: A Personalized Clustered Query-Concept Bipar-
tite Graph Gp 
 
// Initial Clustering 
1: Obtain the similarity scores in G for all possible pairs of 
queries using the noise-tolerant similarity function given 
in Equation (2). 
2: Merge the pair of most similar queries (qi,qj) that does 
not contain same queries from different users. 
3: Obtain the similarity scores in G for all possible pairs of 
concepts using the noise-tolerant similarity function given 

in Equation (2). 
4: Merge the pair of concepts (ci,cj) having highest similar-
ity score. 
5. Unless termination is reached, repeat Steps 1-4. 
// Community Merging 
6. Obtain the similarity scores in G for all possible pairs of 
queries using the noise-tolerant similarity function given 
in Equation (2). 
7. Merge the pair of most similar queries (qi,qj) that con-
tains same queries from different users. 
8. Unless termination is reached, repeat Steps 6-7. 

6 EXPERIMENTAL RESULTS 
In this section, we evaluate the performance of the pro-
posed clustering methods for obtaining related queries 
using user clickthroughs. In Section 6.1, we first describe 
the experimental setup for collecting the required click-
through data. In Section 6.2, we compare the performance 
of BB's algorithm using query-URL, query-word, and 
query-concept bipartite graphs (or simply called the QU, 
QW and QC methods). In Section 6.3, we evaluate the 
effectiveness of our proposed personalized concept-based 
clustering (or simply called the P-QC method). In Section 
6.4, we discuss the algorithmic complexities based on the 
related parameters. 

6.1 Experimental Setup 
To collect the clickthrough data to evaluate our proposed 
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methods, we implemented a Google middleware to track 
user clicks. Google3 was chosen as a common basis for 
comparing the performance of the methods under evalua-
tion. 

We invited 40 students from our department to use the 
middleware to search 200 given test queries which are 
accessible at [1]. To avoid any bias, the test queries are 
randomly selected from ten different categories and sub-
mitted to Google without any modification by the mid-
dleware. Table 4 shows the topical categories in which the 
queries we have chosen. When a query is submitted to the 
middleware, the top 100 search results from Google are 
retrieved, and the web-snippets of the search results are 
displayed to the users. Since most users would examine 
only the top 10 results, our concept extraction method, 
digging deep into the first 100 results, will discover con-
cepts related to the query that would otherwise be missed 
by the users.  

The extracted concept relationship graph is then stored 
in our database. If a user clicks on one of the web-
snippets of the returned results, the user's clickthrough 
together with his/her concept preference profile are up-
dated as discussed in Section 4.3. The threshold s for con-
cept mining was set to 0.03 and the threshold for estab-
lishing concept relations (as specified in Eqn 11) is set to 
zero. We chose these small thresholds so that as many 
concepts as possible are mined. The quality of the query 
suggestions is then relied more on the clustering algo-
rithms, which are the main focus of this paper. 

In the first experiment (will be described in Section 6.2), 
30 students were asked to search the 150 test queries, all 
of which have unambiguous meanings (e.g. “apple pie” 
and “cheese cake”). The 150 test queries are separated 
into 10 predefined clusters (e.g. the queries “apple pie”, 
“cheese cake” and “brownies” belong to the cluster about 
dessert recipes). The users were asked to click on the web-
snippets of the returned results that are relevant to the 
queries. The clickthrough data collected are used to 
measure the performance of the concept-based clustering 
method as discussed in Section 5.1. Table 5 shows the 
statistics of our collected clickthrough data for this ex-
periment. 

In the second experiment (will be described in Section 
6.3), 10 students were asked to search using another 50 
test queries. Some of the test queries are intentionally de-
signed to have ambiguous meanings (e.g. the query 
“Canon” could mean a digital camera or a printer). The 50 
test queries are separated into 8 predefined clusters. Some 
of the queries could possibly exist in more than one clus-
ter (e.g. the query “Canon” could belong to the cluster 
about digital cameras or the cluster about printers). Each 
user is assigned with one of the information seeking tasks 
shown in Table 6. The users are then asked to click on the 
web-snippets of the returned results that are both rele-
vant to the queries and their information needs. The click-
through data collected are used to measure the perform-

ance of the personalized concept-based clustering method 
as discussed in Section 5.2. Table 7 shows the statistics of 
our collected clickthrough data for this experiment. 

6.2 Comparing QU, QW and QC methods 
We now discuss the result of the first experiment, which 
compares the performance of QU, QW and QC methods. 
QU method is the original input of BB’s algorithm which 
serves as a baseline for comparison. QW method uses 
query-word bipartite graph which is similar to the query-
concept bipartite graph in that they are both constructed 
using Algorithm 1. The difference is that the former con-
tains all words (excluding stopwords) from the web-
snippets and the latter contains the extracted concepts. 
QW and QC methods are necessary, since they allow us 
to study the benefits of concept extraction. The three 
methods are also employed to cluster the collected data. 
The results are compared to our predefined clusters for 
precision and recall. Given a query q and its correspond-
ing query cluster {q1,q2,q3…} generated by a clustering 
algorithm, the precision and recall are computed using 
the following formulas: 
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where Q_relevant is the set of queries that exist in the pre-
defined cluster for q, Q_retrieved is set of the related que-
ries {q1,q2,q3…} generated by the algorithm. The precision 
and recall values from all queries are averaged for plot-
ting the precision-recall figures. The performance of the 
three methods is compared using precision-recall figures 
and best F-measure values. 

Fig. 7 shows the precision-recall figures for QU, QW, 
QC methods. We observe that QC method yields better 
recall rate than QU method (i.e. the original BB’s algo-
rithm), while preserving high precision rates. This can be 
attributed to the fact that the average number of overlap-
ping URLs between queries is only 16.3 according to the 
statistics in Table 5, whereas the average number of over-
lapping concepts between the queries is 48.8, which is 
much higher than the URL overlap rate. As a result, re-
lated queries that cannot be discovered by URL overlap 
can be brought together by our QC method, and thus im-
proving the recall rate. The effect of high concept overlap 
rate is also apparent in Fig. 7, which shows that the recall 
of QU method can only go up to around 0.8, while QW 
and QC methods can go beyond 0.9. Note that QU 
method can yield high precision rate because of the valu-
able URL overlaps between queries. However, QC 
method benefits both precision and recall comparing to 
QU method, showing that the use of extracted concepts is 
much better for finding similar queries. 

 We also observe that QW method performs the worst 
among the three methods because common non-stop 
words such as “discussion”, “information” and “news” 
bring unrelated queries together, and thus lowering both 

3 Google is one of the most popular commercial search engines. If a dif-
ferent search engine is used, we expect the absolute performances of the 
methods under evaluation to be different but their relative performances 
remain the same.  
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Fig. 8. Change of precision when performing QU, QW and QC meth-
ods. 

TABLE 8
BEST F-MEASURE VALUES OF QU, QW AND QC METHODS 

FOR THE 1ST EXPERIMENT 

Best F-Measure Values 
 Precision Recall F-measure 
QU method 0.737 0.640 0.685 
QW method 0.775 0.493 0.603 
QC method 0.768 0.727 0.747 

 
Fig. 9. Change of recall when performing QU, QW and QC methods. 

 
Fig. 7. Precision vs. recall when performing QU, QW and QC methods.

the precision and recall rate. The main difference between 
QW and QC methods is the availability of concept extrac-
tion. Intuitively, QC method outperforms QW method 
because the concept extraction process can successfully 
eliminate unrelated common words within web-snippets. 

Fig. 8 and 9 show the change of precision and recall re-
spectively for the three clustering methods. In Fig. 8, 
when the cutoff similarity score is around 0.3, the preci-
sion obtained using QU method is very close to that of 
QC method, which is much better than the precision ob-
tained using QW method. In Fig. 9, at the same cutoff 
similarity score, the recall obtained using QU method is 
close to zero, which is much lower comparing to the re-
calls obtained using QW and QC methods. We can easily 
see from Fig. 8 and 9 that QC method is able to generate 
good recall, while achieving a precision comparable to 
that of QU method. 

We observe that the three methods are able to achieve 
their optimal precision/recall at different cutoff similarity 
scores. To obtain and compare the best F-measures [30] 
(i.e. evenly weighted harmonic means of precisions and 
recalls) for the three different methods, the following 
three terminating strategies are used: 
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 The F-measure, F, is defined by the following formula: 
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Table 8 shows the best F-measure values for the QU, 

QW, and QC method. From the results, we can conclude 
that query clusters obtained using QC method are much 
more accurate comparing to those obtained from QU and 
QW methods. 

6.3 Personalized Concept-Based Clustering 
In the second experiment, QU, QW, QC and P-QC meth-
ods are employed to cluster queries which are intention-
ally designed to have ambiguous meanings. Again, the 
results are compared to our predefined clusters in terms 
of precision and recall. We analyze the performance of P-
QC method using precision-recall figures and best F-
measure values. 

Fig. 10 shows the precision-recall figures of P-QC 
methods. The solid line is the precision-recall graph if 
only initial clustering is performed. We can observe that 
recall is max out at 0.62. The other three lines illustrate 
how community merging can further improve recall be-
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yond the limit of initial clustering. We observe that the 
timing for switching from initial clustering to community 
merging is very important to the precision and recall of 
the final query clusters. When initial clustering is stopped 
too early (see the dark-triangle and white-triangle graphs 
in Fig. 10), initial clustering achieves high precision and 
low recall, as can be expected, but community merging 
fails to improve the recall – it drags down precision with-
out improving recall. The drop of precision is due to easy 
merging of identical queries from different users, and 
thus generating a single big cluster without personaliza-
tion benefit. 

TABLE 9
BEST F-MEASURE VALUES OF QU, QW, QC AND P-QC 

METHODS FOR THE 2ND EXPERIMENT 

Best F-Measure Values 
 Precision Recall F-measure 
QU method 0.521 0.685 0.592 
QW method 0.469 0.694 0.559 
QC method 0.541 0.768 0.635 
P-QC method 0.783 0.657 0.715 

 

 
Fig. 11. Change of precision when P-QC method. The solid line repre-
sents the results obtained from initial clustering of Algorithm 3, and the 
dash lines represent the results obtained from community merging of 
Algorithm 3. 

 
Fig. 10. Precision vs. recall when performing P-QC method. The solid 
line represents the results obtained from initial clustering of Algorithm 3
and the dash lines represent the results obtained from community 
merging of Algorithm 3. 

Fig. 12. Change of recall when P-QC method. The solid line represents 
the results obtained from initial clustering of Algorithm 3, and the dash 
lines represent the results obtained from community merging of Algo-
rithm 3. 

When initial clustering is switched to community 
merging at the optimal point (see the white-circle graph 
in Fig. 10), community merging clearly boosts up the pre-
cision-recall envelop, meaning that both the precision and 
recall achieved in initial clustering are improved. This 
indicates that community merging is successful in choos-
ing query clusters with identical queries from different 
users for merging. 

Finally, when the switching from initial clustering to 
community merging is performed later than the optimal 
point, we can observe that recall is increased but precision 
is lowered, which is a typical phenomenon resulted from 
the conflicting nature of precision and recall. The behav-
ior is due to the fact that overly merged clusters from ini-
tial clustering are further merged in community merging 
(see the dark-box graph in Fig. 10), and thus further low-

ering the low precision generated in initial clustering. 
Although community merging at late stage generates low 
precision, it extends the recall from 0.65 obtained by ini-
tial clustering to 1.0 (i.e. at precision=0.14 in Fig. 10). 

Fig. 11 and 12 show the change of precision and recall 
when performing P-QC method. In Fig. 11, we observe 
that the precisions generated by community merging are 
slightly lower than those generated by initial clustering 
because some unrelated queries can be wrongly merged 
in community merging. In Fig. 12, we observe that the 
recalls generated by community merging are much higher 
than those generated by initial clustering because com-
munity merging can successfully merge conceptually re-
lated clusters together. We can easily see from Fig. 11 and 
12 that only a small fraction of precision is used to trade 
for a much better recall in community merging. 

In order to further justify our choice of the parameters 
used in P-QC, we show in Table 10 different terminating 
values near the optimal point for initial clustering and 
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TABLE 10
CUTOFF VALUES FOR INITIAL CLUSTERING AND COMMUNITY MERGING IN THE 2ND EXPERIMENT 

Initial Clustering Community Merging 
Cutoff Precision Recall F-measure Cutoff Precision Recall F-Measure 
0.3104 0.74 0.406667 0.524884 0.442 0.786667 0.535556 0.637266 
0.3075 0.733333 0.416667 0.531401 0.4093 0.762857 0.545556 0.636162 
0.3073 0.753333 0.452222 0.565174 0.3922 0.782857 0.616667 0.689895 
0.3038 0.753333 0.472222 0.580538 0.3922 0.782857 0.636667 0.702234 
0.2901 0.753333 0.49222 0.59541 0.3922 0.78286 0.65667 0.71423 
0.276 0.753333 0.501111 0.601866 0.3922 0.762857 0.647778 0.700623 
0.2758 0.733333 0.505556 0.598505 0.3922 0.742857 0.652222 0.694596 
0.2602 0.691111 0.505556 0.583947 0.3995 0.701538 0.612222 0.653844 
0.2483 0.691111 0.514444 0.589833 0.3995 0.701538 0.621111 0.658879 

TABLE 11
SAMPLE QUERY CLUSTERS GENERATED BY P-QC METHOD 

Query Clusters Query Clusters 
hp(User2) + canon(User2) + epson(User2) macintosh(User8) + apple(User8) + imac(User8) + mac mini(User8) + macbook(User8) 

gap(User6) + calvin klein(User6) + banana republic(User6) ipod mini(User9) + ipod nano(User9) + apple(User9) + ipod(User9) + itunes(User9) 
apple(User5) + banana(User4) + fruit(User4) + apple(User4) mac os(User7) + apple(User7) + apple software(User7) + mac games(User7) 

fuji(User3) + kodak(User3) + photo film(User3) + camera film(User3) + 
xerox(User2) + fuji(User2) + konica(User3) 

fuji(User1) + kodak(User1) + canon(User10) + konica(User1) + hp digital camera(User10) 
+ canon(User1) + minolta(User10) + pentax(User10) + hp(User1) + olympus(User10) 

community merging in the second experiment. Two best 
cut-off values listed in the fifth row of the table (approx. 
0.29 and 0.39) are used for defining the terminating condi-
tions of initial clustering (i-clustering) and community 
merging (c-merging) in Algorithm 3 in order to obtain the 
best results. (Recall the terminating conditions for per-
sonalized agglomerative clustering given in Section 5.2.) 

The best F-measure value obtained is shown in Table 9. 
We observe that the best F-measure value for P-QC 
method is better than those obtained using QU, QW and 
QC methods. Therefore, we conclude that query clusters 
obtained from P-QC method are more accurate compar-
ing to those obtained from QU, QW and QC methods, 
and that P-QC method can effectively group similar que-
ries together even when the queries are ambiguous. 

Table 11 shows some of the query clusters generated 

by Algorithm 3 on the collected data. In Table 11, User7, 
User8 and User9 have submitted the query “apple” to our 
middleware. User7 gets query suggestions about “macin-
tosh’s software” (Cluster12) because he/she is interested 
in concepts on “macintosh’s software”. User8 gets query 
suggestions about “macintosh hardware” (Cluster11), and 
User9 gets query suggestions about “iPod” (Cluster10). 
By using P-QC method, query suggestions according to 
individual user’s conceptual preferences can be found 
effectively. Moreover, the algorithm yields high precision 
accuracy and better recall rate, clearly outperforming BB’s 
algorithm. 

6.4 Data Size 
Clustering web pages by content requires manipulating a 
staggeringly large amount of data. An advantage of BB's 
algorithm is that it is content-independent which is im-
portant for web-scale data size. The sizes of the bipartite 
graphs in the two experiments are shown in Tables 12 
and 13, where upper bound is the upper bound for the 
number of operations required for agglomerative cluster-
ing, nb is the number of black vertices in the bipartite 
graph G, nw is the number of white vertices in the bipar-
tite graph G (i.e. corresponding to the sets of queries and 
concepts respectively in our setting), |N|max is the maxi-
mum number of neighbors of any vertex in the bipartite 
graph G and m is the number of iterations (i.e. merges) 
required for agglomerative clustering. 

The bipartite graphs constructed using QC and P-QC 
methods are even smaller than that of the original BB's 
algorithm, because the number of concepts extracted from 
the web-snippets is small and the number of concepts 
resulting from web-snippets clicked by users is even 
smaller. The bipartite graph containing all words from the 
web-snippets (i.e. QW method) is the largest among the 
four methods, resulting in low clustering performance. 

TABLE 13
PARAMETER VALUES OBTAINED FROM QU, QW, QC AND PQ-

C METHODS IN THE 2ND EXPERIMENT 

Values of Clustering Parameters 
 nb nw |N|max m Upper Bound 
QU method 3239 38 100 184 32,843,600 
QW method 8891 38 938 572 7,858,273,220 
QC method 1917 38 168 97 55,243,104 
P-QC method 1917 50 152 113 55,592,544 

TABLE 12
PARAMETER VALUES OBTAINED FROM QU, QW AND QC 

METHODS IN THE 1ST EXPERIMENT 

Values of Clustering Parameters 
 nb nw |N|max m Upper Bound 
QU method 12,430 150 100 513 126,005,200 
QW method 21,920 150 1,093 972 26,370,153,014
QC method 6,008 150 217 416 290,335,150 
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From the experimental results, we can conclude that our 
concept-based clustering method is efficient because of 
the significant reduction of the size of the bipartite graph 
but at the same time effective as evident from the high 
precision and recall achieved. 

7 CONCLUSIONS 
As search queries are ambiguous, we study effective 
methods for search engines to provide query suggestions 
on semantically related queries in order to help users to 
formulate more effective queries to meet their diversified 
needs. In this paper, we propose a new personalized con-
cept-based clustering technique which is able to obtain 
personalized query suggestions for individual users 
based on their conceptual profiles. The technique makes 
use of clickthough data and the concept relationship 
graph mined from web-snippets, both of which can be 
captured at the backend and as such do not add extra 
burden to users. An adapted agglomerative clustering 
algorithm is employed for finding queries which are con-
ceptually close to one another. Our experimental results 
confirm that our approach can successfully generate per-
sonalized query suggestions according to individual user 
conceptual needs. Moreover, it improves prediction accu-
racy and computational cost comparing to BB's algorithm, 
which is the state-of-the-art technique of query clustering 
using clickthroughs for the similar objective. 

There are several directions for extending the work in 
the future. First, instead of considering only query-
concept pairs in the clickthrough data, we can consider 
the relationships between users, queries and concepts to 
obtain more personalized and accurate query suggestions. 
Second, clickthrough data and concept relationship 
graphs can be directly integrated into the ranking algo-
rithms of a search engine so that it can rank results 
adapted to individual users’ interests. 
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