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Mining Bucket Order-Preserving SubMatrices
in Gene Expression Data

Qiong Fang, Wilfred Ng, Jianlin Feng, Yuliang Li

Abstract—The Order-Preserving SubMatrices (OPSMs) are employed to discover significant biological associations between
genes and experiment conditions. Herein, we propose a new relaxed OPSM model by considering the linearity relaxation, which
is called the Bucket OPSM (BOPSM) model. An efficient method called APRIBOPSM is developed to exhaustively mine such
BOPSM patterns. We further generalize the BOPSM model by incorporating the similarity relaxation strategy. We develop a
generalized BOPSM model called GeBOPSM and adopt a pattern growing method called SEEDGROWTH to mine GeBOPSM
patterns. Informally, the SEEDGROWTH algorithm adopts two different growing strategies on rows and columns in order to
expand a seed BOPSM into a maximal GeBOPSM pattern. We conduct a series of experiments using both synthetic and
biological datasets to study the effectiveness of our proposed relaxed models and the efficiency of the relevant mining methods.
The BOPSM model is shown to be able to capture the characteristics of noisy OPSM patterns, and is superior to the strict
counterparts. APRIBOPSM is also significantly more efficient than OPC-Tree, which is the state-of-the-art OPSM mining method.
Compared to all the current relaxed OPSM models, the GeBOPSM model achieves the best performance in terms of the number
of mined quality patterns.

Index Terms—order-preserving submatrix, biclustering, bucket order, linearity relaxation, similarity relaxation, OPSM
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1 INTRODUCTION

In gene expression analysis, the Order-Preserving Sub-
Matrices (OPSMs) are employed to discover significant
biological associations between genes and experiment
conditions. Mining OPSMs has been extensively stud-
ied as a biclustering problem in the area of gene
expression analysis [2], [11], [20], [5], [4], [6]. The gene
expression data are usually presented as a matrix in
which the rows correspond to a set of genes, the
columns correspond to a set of experiment conditions,
and the entries represent the expression levels of
the genes under the conditions. The OPSM model,
first proposed by Ben-Dor et al. [2], aims to capture
the fact that the expression levels of a set of genes
follow the same trend under a set of conditions, but
show no obvious correlation under other conditions.
Specifically, in a gene expression matrix, an OPSM
consists of a subset of genes and a subset of conditions
such that the expression levels of every gene induce
the same linear order of the conditions. This linear
order of the conditions represents the consensus trend
that all the genes in an OPSM follow.

Consider the matrix shown in Table 1 and the en-
tries highlighted in bold font in the submatrix (P,Q)
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TABLE 1
A Gene Expression Matrix Example

````````Genes
Conditions

t1 t2 t3 t4 t5

g1 9 7 16 2 20
g2 10 8 20 6 1
g3 5 16 13 4 10
g4 6 3 9 2 5

with P = {g1, g2, g4} and Q = {t1, t2, t3, t4}. For any
gene gi in P , we order its expression levels under
conditions in Q in ascending order and then replace
the values by their corresponding condition labels.
Hence, all the genes in P induce the same linear order
of Q, i.e., [t4 � t2 � t1 � t3] and in this case, we say
that the submatrix (P,Q) is an OPSM.

The adoption of the OPSM model promotes the dis-
covery of interesting biological associations between
genes and experiment conditions in gene expression
analysis. However, as already pointed out by Ben-
Dor et al. [2], the OPSM model may be too restrictive
in practice. For example, in cancer genome datasets,
correlated genes may have very similar expression
values under the same stage that consists of a subset
of conditions (or a bucket of conditions), but exhibit
some consensus trend from one stage to another stage
during the progression of the disease. In this case, the
strict OPSM model is not effective. In addition, other
sources of noise such as sample contamination, exper-
imental error, and the precision limits of instruments
are not uncommon in bioinformatics data. Thus, more
recent focus turns to relax the OPSM model in order
to allow more general order and tolerate noise in data
[5], [20].
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There are two basic principles that can be adopted
to relax the OPSM model.

1) The induced orders of all the genes in the re-
laxed OPSM patterns are allowed to be only sim-
ilarly ordered instead of identically ordered. We
call this relaxation strategy similarity relaxation.

2) The induced orders of the genes are allowed to
be an identical bucket order, where each bucket
contains a set of conditions. We call this relax-
ation strategy linearity relaxation.

In this paper, we first consider the linearity re-
laxation strategy, and propose a novel Bucket OPSM
(BOPSM) model. The BOPSM model requires that all
the genes in a BOPSM pattern support a consensus
bucket order of a set of conditions, in the sense that
the condition values of a gene in different buckets
should maintain the ordering relationship between
the buckets, and the condition values in the same
bucket should be similar enough.

Then, we further improve the BOPSM model by
considering the similarity relaxation strategy, and
propose a relaxed BOPSM model, called Generalized
BOPSM (GeBOPSM). The GeBOPSM model uses a
backbone bucket order to capture the underlying con-
sensus trend that the genes in a GeBOPSM follow.
Each gene in the GeBOPSM should support a bucket
order such that the similarity between the bucket
order and the backbone bucket order be large enough.

While mining OPSM patterns is known to be an NP-
complete problem [2], mining relaxed OPSM patterns
is even more difficult. To tackle this problem, we
propose an efficient APRIBOPSM method that mines
BOPSM patterns. The APRIBOPSM method adopts the
Apriori-based framework, and makes use of a new
BucketPrefixTree structure to mine BOPSM patterns.
Then, we propose a new GeBOPSM mining method
called SEEDGROWTH that takes BOPSM patterns as
seeds, and expands them into maximal GeBOPSMs.

In summary, the main contributions of this paper
are twofold.

1) We propose a novel BOPSM model and de-
velop an efficient breadth-first method called
APRIBOPSM, which exhaustively mines BOPSM
patterns. Empirical studies show that the adop-
tion of the BOPSM model improves the quality
of the mined patterns compared to the strict
OPSM model. The APRIBOPSM method is also
significantly more efficient than the state-of-the-
art OPSM mining method OPC-Tree, when it is
used to mine strict OPSM patterns. This shows
the robustness of the APRIBOPSM algorithm.

2) We further generalize the BOPSM model and
propose the GeBOPSM model. Experiments
show that, compared to all current relaxed
OPSM models, the GeBOPSM model better cap-
tures the characteristics of noise-contaminated
OPSM patterns in real gene expression data.

We develop an efficient mining method called
SEEDGROWTH, which is able to mine sufficient
GeBOPSM patterns by growing seed BOPSMs
into maximal GeBOPSMs.

The organization of the rest of this paper is as
follows. We introduce the related work in Section 2.
Section 3 introduces the basic concepts and notations.
In Section 4, a new BOPSM model together with its
mining method are given. In Section 5, we introduce
the GeBOPSM model and the method for mining such
patterns. Experiments on both synthetic datasets and
a real gene expression dataset are presented in Section
6. Finally, we conclude the paper in Section 7.

2 RELATED WORK

The problem of mining order-preserving submatri-
ces (OPSM), which can be viewed as a biclustering
problem, has been extensively studied in the area of
gene expression analysis [2], [11], [20], [5], [4], [6]. The
concept of biclustering for gene expression analysis
was firstly introduced by Chen and Church [3]. There
follow different formulations of biclustering problems
in the context in order to capture various biological
associations among correlated genes and experiment
conditions [12], [9], [19], [2], [13], [10], [7], [8].

The OPSM model was originally proposed by Ben-
Dor et al. [2], which captures the fact that the ex-
pression levels of a set of genes exhibit similar trend
under a set of experiment conditions. Experiments
in [16] show that, compared to several other types
of biclustering models such as CC [3] and Bimax
[16], the OPSM model promotes the discovery of
a larger fraction of biologically significant patterns
based on a real biological dataset. However, it has
also been recognized that the OPSM model may be
too strict to be practical, since the real gene expression
data are noisy [2], [20], [5]. Thus, different relaxation
approaches on the model are studied.

The AOPC model [20] relaxes the condition that all
the rows in an OPSM should induce the same linear
order of columns, and it requires only that a pre-
specified fraction of rows induce the same linear or-
der, while the induced orders of other rows only need
to be “similar enough”. The ROPSM model proposed
by Fang et al. [5] is a further relaxation of the AOPC
model also based on “similarity”. The ROPSM model
uses the backbone order to capture the consensus
trend of an ROPSM pattern, and only requires that
the induced orders of all the rows in the pattern
be similar enough to the backbone order. Basically,
both the AOPC model and the ROPSM model only
consider the similarity relaxation approach.

Mining OPSM patterns is shown to be an NP-
complete problem in [2], and mining relaxed OPSMs
accordingly becomes more difficult. Ben-Dor et al.
[2] proposed a model-based method, which aims to
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mine the best OPSM in terms of the statistical signifi-
cance. Their method keeps a limited number of partial
models which are smaller OPSMs, and then expands
the partial models into larger OPSMs. Their method,
however, is heuristic-based, and the significance of the
mined OPSM is very sensitive to the selection of the
partial models. Later, Liu et al. [11] proposed a tree-
based OPSM mining method, called OPC-Tree, which
can exhaustively mine all the OPSMs that satisfy
some size thresholds. Their method enumerates all
possible linear orders of columns in the depth-first
manner with some pruning techniques being adopted.
However, when the number of columns increases, the
size of the tree grows extremely large, which greatly
degrades the performance of pattern mining. Gao et
al. proposed a KiWi framework in [6], which aims
to mine “twig OPSMs”, that are characterized by
containing a large number of columns and very few
rows. The framework expands a limited number of
linear orders of columns in a breadth-first manner,
and applies very strong conditions for pruning those
linear orders that are less likely to grow into twig
OPSMs. Their method is shown to be efficient but
valid twig OPSMs may also get pruned.

The AOPC mining method proposed in [20] takes
a set of OPSMs as input, and merges pairs of OPSMs
into AOPCs in a greedy way until no more AOPCs can
be generated. The ROPSM mining method proposed
in [5] similarly takes a set of OPSMs as input. Instead
of merging OPSMs, it expands those seed OPSMs by
adopting different growing strategies until maximal
ROPSMs are reached.

It is also worth noting that, if we transform the
input matrix into a set of attribute (i.e., column label)
sequences ordered by their values in a row, and
view the collection of these sequences as a trans-
action database, the problem of mining OPSM pat-
terns is actually convertible to the problem of mining
frequent sequential patterns. Therefore, the frequent
pattern mining methods can also be adopted to mine
OPSMs. However, the OPSM mining problem has
some unique properties which render the frequent
pattern mining methods not efficient. First, each at-
tribute item appears at most once in each transaction.
Second, since the gene expression matrix is usually
very dense, the transformed transactions are also
dense, which may greatly degrade the performance of
common frequent sequential pattern mining methods.

PrefixSpan [14], [15] is a well-known efficient fre-
quent sequential mining method, and the OPC-Tree
method improves the basic techniques of PrefixS-
pan and takes into account the characteristics of
the OPSM mining problem (cf. [11] shows that the
OPC-Tree outperforms PrefixSpan in mining OPSMs).
Agrawal et al. proposed an Apriori-based sequential
mining method in [1], [18], and the sequential patterns
they mine can be regarded as “bucket orders”. They
adopted a preprocessing step which first mines all

frequent itemsets (i.e., as buckets) and then transforms
the frequent itemsets into new single items. Their
Apriori-based mining method only mines sequential
linear patterns from the transformed data. However,
their method cannot be used to mine our BOPSM
patterns. One reason is that a gene expression matrix
is usually very dense, and thus the number of such
frequent itemsets grows exponentially large. Another
reason is that our BOPSM model adopts multiple
thresholds to control the quality of BOPSMs, which
cannot be incorporated into their method. These fun-
damental differences will be elaborated in Section 4.

3 PRELIMINARIES

In this section, we introduce some concepts and no-
tations that are used throughout the paper.

We use M(G,T ) to denote an input gene expression
matrix, where G is the set of rows representing genes
and T is the set of columns representing conditions
or items. An entry of the matrix, denoted as M(g, t),
is the expression level of gene g under condition t.

Given a set of items Q = {q1, . . . , qm}, a linear
order of Q is represented as [qi1 � qi2 � · · · � qim ],
where 〈i1, . . . , im〉 is a permutation of {1, . . .m}, and
the order relation “ � ” satisfies the criteria of anti-
symmetry, transitivity and linearity. A bucket order of
Q is represented as τQ = [Q(1) � Q(2) � · · · � Q(r)],
where Q(i) ⊆ Q, ∪ri=1Q

(i) = Q, and Q(i) ∩ Q(j) = φ
for all i and j with i 6= j. When all buckets contain
only one item, the bucket order is reduced to a linear
order, and thus the linear order is a special case of
the bucket order. We use Greek letters such as τ and
π to represent orders. A gene g is said to maintain a
bucket order τQ if the expression levels of g under
all the conditions in Q(i) are less than the expression
levels of g under all the conditions in Q(i+1).

Given two bucket orders τ1 = [Q
(1)
1 � · · · � Q

(r)
1 ]

and τ2 = [Q
(1)
2 � · · · � Q

(s)
2 ], we say that τ2 is the

sub-order of τ1 if there exists 1 ≤ i1 < i2 < · · · < is ≤ r
such that Q(k)

2 ⊆ Q(ik)
1 with 1 ≤ k ≤ s.

4 THE BUCKET OPSM
In this section, we first define the Bucket OPSM
(BOPSM) model, and then introduce an algorithm
called APRIBOPSM that mines BOPSM patterns.

4.1 The BOPSM Model

We now propose a new relaxed OPSM model called
the Bucket OPSM model, or the BOPSM model for
short, as follows.

Definition 4.1. (Bucket OPSM (Preliminary Version))
Given a submatrix (P,Q) of M(G,T ), (P,Q) is said to
be a BOPSM if there exists a bucket order τQ such that all
the genes in P maintain τQ.
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a b c d e f g

g1 2.4 2.7 3 10 10.6 10.2 15
g2 5.8 5.6 6 8.9 8.7 9.0 12
g3 0.4 0.7 1 4.3 4.6 4.6 8

Fig. 1. A Running Example of BOPSM

Note that in Definition 4.1, within each bucket
Q(i), no restrictions are placed on the ordering of
the expression levels. Informally, the bucket order τQ
represents the consensus trend that all the genes in a
BOPSM should follow. We call τQ the backbone (bucket)
order of the BOPSM (P,Q). Since a BOPSM (P,Q)
is always associated with a backbone order τQ, we
usually denote the BOPSM by (P,Q : τQ).

Figure 1 shows a BOPSM example, where the ta-
ble is a submatrix (P,Q) with P = {g1, g2, g3} and
Q = {a, b, c, d, e, f, g}, and the diagram is the graphical
illustration of the table. We can check that all the three
genes in P maintain a bucket order τQ = [{a, b, c} �
{d, e, f} � {g}], and thus (P,Q : τQ) is a BOPSM.

Notably, a gene may maintain more than one pos-
sible bucket order for a given set of conditions. For
example, all the three genes in Figure 1 also maintain
another bucket order τ ′Q = [{a, b} � {c, d, e, f} � {g}].
Clearly, the bucket order τQ better captures the pro-
gression from one stage, which consists of a set of
conditions, to another stage. This is due to the fact
that, for all the genes in P , the expression values
under the conditions in the same bucket of τQ are
more similar than those of τ ′Q while the difference
between the expression values under the conditions
in different buckets of τQ are larger than those of τ ′Q.
This observation motivates us to improve Definition
4.1.

We need two concepts called Intra-bucket Difference
vector and Inter-bucket Gap vector in order to formu-
late an improved version of Definition 4.1. We let
τ = [Q(1) � · · · � Q(r)] and assume a row g maintains
τ .
• The intra-bucket difference vector of g (or sim-

ply DVector of g) with respect to τ , denoted as
∆(g, τ), is an r-dimensional vector ∆(g, τ) =
〈δ1(g, τ), . . . , δr(g, τ)〉, where δi(g, τ) is given by

δi(g, τ) = | max
q∈Q(i)

M(g, q)− min
q∈Q(i)

M(g, q)|.

• The inter-bucket gap vector of gene g (or sim-
ply GVector of g) with respect to τ , denoted as
Γ(g, τ), is an (r− 1)-dimensional vector Γ(g, τ) =

〈γ1(g, τ), . . . , γr−1(g, τ)〉, where γi(g, τ) is given
by

γi(g, τ) = | min
q∈Q(i+1)

M(g, q)− max
q∈Q(i)

M(g, q)|.

Referring to the table in Figure 1, the DVector and
GVector of g1 with respect to τQ and τ ′Q are respec-
tively ∆(g1, τQ) = 〈0.6, 0.6, 0〉, Γ(g1, τQ) = 〈7.0, 4.4〉,
∆(g1, τ

′
Q) = 〈0.3, 7.6, 0〉 and Γ(g1, τ

′
Q) = 〈0.3, 4.4〉. We

can see that all the elements in ∆(g1, τQ) are small
while the elements of Γ(g1, τQ) are comparatively
large. However, we find a relatively large element
in ∆(g1, τ

′
Q) (i.e. 7.6) or a relatively small element in

Γ(g1, τ
′
Q) (i.e. 0.3). Similar situations can be found in

the DVectors and GVectors of g2 and g3.
We now revise Definition 4.1 in order to mine pat-

terns where all the associated genes have sufficiently
small intra-bucket difference and sufficiently large
inter-bucket gap with respect to the backbone order.

Definition 4.2. (Bucket OPSM (Improved Version))
Given a submatrix (P,Q), a difference threshold dmax and
a gap threshold gmin, (P,Q) is said to be a BOPSM if
there exists a bucket order τQ such that, for all gi ∈ P ,

1) gi maintains the bucket order τQ, and
2) δj(gi, τQ) ≤ dmax and γk(gi, τQ) ≥ gmin for all

δj(gi, τQ) ∈ ∆(gi, τQ) and γk(gi, τQ) ∈ Γ(gi, τQ).

Given a bucket order τQ, if a row g maintains τQ
and its DVector and GVector both satisfy the condi-
tions, we say row g supports the bucket order τQ, or
g is a supporting row of τQ. Continuing the example
in Figure 1, if we set the thresholds dmax and gmin
both to be 1.0, (P,Q : τQ) is still a valid BOPSM while
(P,Q : τ ′Q) is not any more.

From now on, we refer to Definition 4.2 the formal
meaning of the BOPSM model in our subsequent
discussion.

In the BOPSM model, two scalar thresholds dmax
and gmin are used to control the quality of BOPSM
patterns. One simple choice for them is the average
gap. That is, for every gene, we get the induced linear
order of conditions, and compute the average of the
gaps between the expression values under every pair
of adjacent conditions in the order. We can set the
thresholds to be the global average gap of all the
genes. Another more sophisticated choice is, consid-
ering the scaling of the expression levels of different
genes, we can set a specific threshold for a particular
gene by using its own average gap. Our proposed
techniques can be straightforwardly extended to this
general settings by replacing the scalar versions of
dmax and gmin with their respective vector versions.

The BOPSM model holds a useful anti-monotonic
property, which will be used to develop an efficient
algorithm for mining BOPSM patterns.

Theorem 4.3. (Anti-Monotonicity) If a row g supports
a bucket order τQ, g also supports all the sub-orders of τQ.
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Proof: Suppose there are two bucket orders τ1 =

[Q
(1)
1 � · · · � Q

(r)
1 ] and τ2 = [Q

(1)
2 � · · · � Q

(s)
2 ],

and τ2 is the sub-order of τ1. Thus, we have s ≤ r
and there exist 1 ≤ i1 < i2 < · · · < is ≤ r such that
Q

(k)
2 ⊆ Q(ik)

1 for 1 ≤ k ≤ s.
Assume that g maintains τ1 and the vectors ∆(g, τ1)

and Γ(g, τ1) respectively satisfy the following thresh-
old conditions: δj(g, τ1) ≤ dmax for 1 ≤ j ≤ r, and
γk(g, τ1) ≥ gmin for 1 ≤ k ≤ (r − 1).

Next, we show that g also maintains τ2, and ∆(g, τ2)
and Γ(g, τ2) also satisfy the threshold conditions.

1) Since g maintains τ1, it follows that

min
q∈Q(k+1)

1

M(g, q) ≥ max
q∈Q(k)

1

M(g, q) for 1 ≤ k < r.

Then, because Q
(k)
2 ⊆ Q

(ik)
1 holds for all k, we

have

min
q∈Q(k+1)

2

M(g, q) ≥ min
q∈Q

(ik+1)

1

M(g, q)

≥ max
q∈Q(ik)

1

M(g, q) ≥ max
q∈Q(k)

2

M(g, q)

Thus, g also maintains τ2.
2) For the DVector ∆(g, τ2), its k-th element is

δk(g, τ2) = | max
q∈Q(k)

2

M(g, q)− min
q∈Q(k)

2

M(g, q)|

≤ | max
q∈Q(ik)

1

M(g, q)− min
q∈Q(ik)

1

M(g, q)| ≤ dmax

For the GVector Γ(g, τ2), its k-th element is

γk(g, τ2) = | min
q∈Q(k+1)

2

M(g, q)− max
q∈Q(k)

2

M(g, q)|

≥ | min
q∈Q

(ik+1)

1

M(g, q)− max
q∈Q(ik)

1

M(g, q)|

≥ | min
q∈Q

(ik+1)

1

M(g, q)− max
q∈Q

(ik+1−1)

1

M(g, q)| ≥ gmin

Thus, it follows that ∆(g, τ2) and Γ(g, τ2) satisfy
the threshold conditions.

�
It is worth noting that, if we set the threshold

dmax to be 0, and gmin to be some positive value
smaller than all the gaps in all the induced orders of
rows, the mined BOPSM patterns are actually OPSM
patterns. We also need to include two size thresholds
to guarantee that sufficiently large and thus significant
patterns can be obtained, since a consensus is that,
given a pattern with a fixed number of columns (or
rows), a larger number of rows (or columns) usually
leads to more significance [6].

We now formalize the BOPSM mining problem as
follows.

Definition 4.4. (The BOPSM Mining Problem) Given
a matrix M(G,T ), the difference threshold dmax, the gap
threshold gmin, the column threshold cmin and the row
threshold rmin, we aim to mine from M all the valid
BOPSMs that contain at least cmin columns and rmin
rows.

Algorithm 1: APRIBOPSM

Input: Matrix M(G,T ), dmax, gmin, cmin, rmin
1. F1 ={size-1 frequent bucket orders};
2. for (k = 2;Fk−1 6= φ; k + +) do
3. Ck= GENCAND(Fk−1) ;
4. COUNTSUP(M, Ck);
5. Fk = {τ |τ ∈ Ck, supp(τ) ≥ rmin} ;
6. if k ≥ cmin && Fk 6= φ then
7. Output BOPSMs ;
8. end

4.2 Mining BOPSM Patterns

Given a matrix M(G,T ), a naı̈ve way to mine BOPSM
patterns can be carried out as follows: for every set of
columns Q with Q ⊆ T and |Q| ≥ cmin, and for every
possible bucket order τQ, we simply check all the rows
in G to see if they support τQ or not. Let P be the set
of supporting rows of τQ. If the size of P is no less
than rmin, (P,Q) is a valid BOPSM pattern with τQ
as the backbone order. However, such an exhaustive
checking is apparently infeasible, since the number of
such bucket orders is prohibitively large, especially
when the number of columns in T is large.

The anti-monotonic property of the BOPSM estab-
lished in Theorem 4.3 is useful in developing a more
efficient approach to mining BOPSM patterns. Before
searching the supporting rows of a bucket order, we
can first check that whether all its sub-orders are
supported by at least rmin rows. If not, it is already
confirmed that this bucket order does not lead to
a valid BOPSM pattern. This idea motivates us to
develop an Apriori-based framework to mine BOPSM
patterns, as detailed in Algorithm 1.

In Algorithm 1, we define a bucket order τ contain-
ing k columns as a size-k bucket order. In addition, if τ
is supported by at least rmin rows, we say that τ is a
frequent bucket order. We now use Ck and Fk to denote
the size-k bucket order set and the size-k frequent
bucket order set respectively. First, we find all size-1
frequent bucket orders which are simply all the single
columns (Line 1). Then, the GENCAND procedure
(Algorithm 2) is invoked to generate size-k candidate
bucket orders from the set of size-(k − 1) frequent
bucket orders (Line 3). The number of supporting
rows for each candidate bucket order is then counted
by the COUNTSUP procedure (Line 4). The size-k
candidate bucket orders that are supported by at least
rmin rows form the size-k frequent bucket order set
(Line 5). Finally, we output all the BOPSM patterns
(P,Q : τQ), where τQ is a frequent bucket order with
size at least cmin, Q is the set of columns involved in
τQ, and P is the set of rows supporting τQ.

4.2.1 BucketPrefixTree
We develop a BucketPrefixTree (BPTree for short) struc-
ture to organize the candidate bucket orders and to
help count their supporting rows. Given a set of
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Candidate bucket orders
τ1 [{t1, t2, t3} � {t4, t5}]
τ2 [{t1, t2} � {t3} � {t4, t5}]
τ3 [{t2, t3} � {t1, t4, t5}]

Fig. 2. A BucketPrefixTree Example

candidate bucket orders, we first linearize all the
orders by ordering items within each bucket in some
pre-specified manner (alphabetical or numerical). A
special symbol such as “ ∗ ” is used to indicate the
boundary between adjacent buckets. For example, the
linearization of the bucket order [{t2, t1, t3} � {t4, t5}]
is [t1 � t2 � t3 � ∗ � t4 � t5]. Then, we organize the
linearizations of the bucket orders as a prefix-sharing
tree, which is the BPTree.

Figure 2 shows a BPTree example, where three
bucket orders τ1, τ2 and τ3 are listed in the table,
and the figure shows the corresponding BPTree. Since
a path running from the root to a leaf node in the
BPTree corresponds to one candidate bucket order (or
its linearization), we associate with each leaf node a
counting variable ci that stores the number of sup-
porting rows of the corresponding bucket order τi.

Our approach is Apriori-based, which shares the
similar principle with the sequential pattern mining
method proposed in [1]. However, we do not con-
struct a new hash tree at each round for counting
support values to save time. Instead, we only con-
struct an initial BPTree at the first round based on the
set of size-1 frequent bucket orders F1. Then in the
subsequent rounds, the BPTree can be quickly updated
by inserting new candidate bucket orders or deleting
old ones. We denote the BPTree after the k-th round
of candidate generation as BPT (Ck), and denote the
BPTree after the k-th round of supporting counting
and infrequent candidate filtering as BPT (Fk). We
will show how BPTree helps generate the candidate
bucket orders and count the supports in later sections.

4.2.2 Candidate Generation ( GENCAND)
Algorithm 2 aims to generate size-k candidate bucket
orders, i.e., Ck, from Fk−1 by making use of the BPTree.
Depth-first traversal is conducted on BPT (Fk−1).

Given two size-(k − 1) bucket orders in Fk−1, i.e.,
τ1 = [Q

(1)
1 � · · · � Q

(r)
1 ] and τ2 = [Q

(1)
2 � · · · � Q

(s)
2 ],

they can be merged into a size-k bucket order only
when the linearizations of τ1 and τ2 share a prefix
that contains (k−2) items. Therefore, we first traverse
the tree to an item node p such that the bucket order

Algorithm 2: GENCAND

1. while there are untraversed nodes in BPT (Fk−1) do
2. Traverse to item node p s.t. |τ [p]| = k − 2;
3. for item node t1, t2 of p’s children do
4. insert t2 as a child of t1;
5. end
6. if p has a boundary node q as child then
7. for p’s child item node t1 and q’s child item

node t2 do
8. insert branch q → t2 under t1 if t2 6= t1;
9. end

10. for item nodes t1, t2 of q’s children do
11. insert branch q → t2 under t1;
12. insert branch q → t1 under t2;
13. end
14. end
15. for all newly inserted leaf nodes t do
16. if any size-(k − 1) sub-order of τ [t] /∈ Fk−1 then
17. undo insertion of node t;
18. end

τ [p], which corresponds to the path from root to p,
contains (k − 2) item nodes (Line 2). Then, there are
three different cases for merging τ1 and τ2.

1) Case one: the last buckets of τ1 and τ2 both
contain more than one item, and only the last
items of these buckets are different in their lin-
earizations. We then merge the last buckets of
τ1 and τ2, and add a bucket order [Q

(1)
1 � · · · �

Q
(r−1)
1 � Q(r)

1 ∪Q
(s)
2 ] to Ck (Lines 3 - 5).

2) Case two: p is the last but one item in the last
bucket of τ1, while it is the last item in the last
but one bucket of τ2. If the last item in the last
bucket of τ1 is different from the only item in the
last bucket of τ2, we add a bucket order [Q

(1)
1 �

· · · � Q(r)
1 � Q(s)

2 ] into Ck (Lines 6 - 9).
3) Case three: p is the last item in the last but one

bucket in both τ1 and τ2. The last buckets of both
τ1 and τ2 then contain only one item. We add
two size-k bucket orders, [Q

(1)
1 � · · · � Q(r−1)

1 �
Q

(r)
1 � Q

(s)
2 ] and [Q

(1)
1 � · · · � Q

(r−1)
1 � Q

(s)
2 �

Q
(r)
1 ] into Ck (Lines 10 - 13).

Finally, for every newly generated size-k bucket
order, we further check if all of its size-(k − 1) sub-
orders are in Fk−1. If not, this bucket order is surely
not a frequent bucket order and thus can be discarded
(Lines 15 - 18). The updated BPTree is BPT (Ck).

Next, we prove the completeness of the GENCAND
algorithm in order to confirm that all the size-k fre-
quent bucket orders should be added into Ck.

Theorem 4.5. The GENCAND algorithm is complete.

Proof: Let τ = [Q(1) � · · · � Q(r)] be a size-k bucket
order. It suffices to analyse the three cases concerning
the size of the last two buckets Q(r−1) and Q(r) as
follows. They cover all possible situations where a
size-k frequent bucket order can be generated.
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1) Suppose |Q(r)| > 1. We denote the linearization
of Q(r) as π[Q(r)] = [x1 � · · · � xl] with l > 1.
We can get two size-(l − 1) buckets, i.e., Q(r)

1 =

{x1, . . . , xl−1} and Q
(r)
2 = {x1, . . . , xl−2, xl}, and

generate two size-(k − 1) bucket orders, τ1 =

[Q(1) � · · · � Q(r)
1 ] and τ2 = [Q(1) � · · · � Q(r)

2 ].
According to the anti-monotonic property, all the
rows that support τ should definitely also sup-
port τ1 and τ2. In other words, if τ is a frequent
bucket order, τ1 and τ2 must be frequent and
in Fk−1. Moreover, τ1 and τ2 satisfy the first
merging case of the GENCAND algorithm, and
thus they will be merged into τ , and τ is in Ck.

2) Suppose |Q(r)| = 1 and |Q(r−1)| > 1. The
linearization of Q(r−1) is denoted as π[Q(r−1)] =
[x1 � . . . � xl] with l > 1. By deleting the last
item from Q(r−1), we get a new bucket Q(r−1)

1 =
{x1, · · · , xl−1}, and thus a new size-(k−1) bucket
order τ1 = [Q(1) � · · · � Q

(r−1)
1 � Q(r)]. Or, we

delete the last bucket Q(r) and get another size-
(k − 1) bucket order τ1 = [Q(1) � · · · � Q(r−1)].
Similarly, if τ is frequent, τ1 and τ2 must also
be frequent and exist in Fk−1. According to the
second merging case of the algorithm, τ will be
generated by merging τ1 and τ2.

3) Suppose |Q(r)| = |Q(r−1)| = 1. We get two
bucket orders, τ1 = [Q(1) � · · · � Q(r−1)] and
τ2 = [Q(1) � · · · � Q(r−2) � Q(r)]. Similarly, if τ
is a frequent bucket order, τ1 and τ2 must also
be frequent and exist in Fk−1. According to the
third merging case of the algorithm, τ will be
generated by merging τ1 and τ2. �

4.2.3 Support Counting ( COUNTSUP)
The procedure COUNTSUP is used to count the sup-
porting rows for each candidate in Ck. Due to the
space limit, we do not show the details of the algo-
rithm but explain the underlying ideas below.

For a row g, we traverse the BPTree in the depth-
first manner to find all the candidate bucket orders
it supports. There are different operations to handle
different types of nodes as follows.

1) When an item node t is traversed, we set its
associated Min and Max variables respectively
with the minimum and maximum values of
the items in the current bucket encountered so
far. Then, we respectively check whether the
conditions |t.Max− t.Min| ≤ dmax and |t.Min−
p.PMax| ≥ gmin are satisfied, where p is the
boundary node of the current bucket and is just
traversed. If both conditions are satisfied and
node t is a leaf node, we increase the associated
counting variable by 1, and traverse to the next
unvisited node. If both conditions are satisfied
but t is not a leaf node, we continue to traverse
the children of t. Otherwise, we stop traversing
along the current path, backtrack and traverse

to next unvisited node.
2) When a boundary node is traversed, we set

its associated PMax variable as the maximum
value of the items in the bucket just traversed.

Consider the BPTree in Figure 2 again. Suppose
g = {t1 : 10, t2 : 9, t3 : 14, t4 : 17, t5 : 16}, where
the numbers after the colon are the condition values
of g. The thresholds gmin and dmax are both set
to be 2. We start from root and traverse along the
leftmost path. When the node t3 is met, the Min and
Max values are 9 and 14. Since the condition that
|t3.Max−t3.Min| ≤ dmax is not satisfied, we return to
the parent node t2 and visit its next unvisited child,
which is a boundary node. The PMax value of the
boundary node is set to be the Max value of its parent,
which is 10. Then, we continue to traverse the child
of the boundary node all the way till t5. We find that
the two conditions are satisfied. Since t5 is the leaf
node, we increase its associated counting variable c2
by 1, which means that row g supports the candidate
bucket order τ2. We keep traversing the BPTree until
no more nodes need to be visited.

After traversing the BPTree for all the rows, we
prune the tree by deleting the branches whose associ-
ated counting variables are smaller than rmin. These
branches correspond to the candidate bucket orders
that are supported by less than rmin rows, and the
updated BPTree is BPT (Fk).

5 THE GENERALIZED BOPSM
In this section, we relax the BOPSM model by adopt-
ing the similarity relaxation strategy. We propose the
generalized BOPSM model (GeBOPSM) and present
an efficient algorithm that mines GeBOPSM patterns.

5.1 The Generalized BOPSM Model
We first define an LCS similarity function to measure
the similarity between two bucket orders.

Definition 5.1. (The LCS Similarity) Given two bucket
orders, τ1 = [Q

(1)
1 � · · · � Q

(r)
1 ] and τ2 = [Q

(1)
2 � · · · �

Q
(s)
2 ], the LCS similarity between τ1 and τ2, denoted as

dLCS(τ1, τ2), is given by

dLCS(τ1, τ2) =
|LCS(τ1, τ2)|
|T (τ1) ∪ T (τ2)|

,

where |LCS(τ1, τ2)| is the number of items in the longest
common sub-order between τ1 and τ2, and |T (τ1) ∪
T (τ2)| is the number of items involved in τ1 and τ2.

Using similar analysis in [5], the LCS similarity be-
tween two size-k bucket orders can also be computed
in O(k2) time by dynamic programming.

Now, we formally define the generalized BOPSM
model as follows.

Definition 5.2. (Generalized BOPSM (GeBOPSM))
Given a submatrix (P,Q), a similarity threshold α, a
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TABLE 2
A GeBOPSM Example

a b c d e f g h
g1 2.5 2.7 5.0 10.1 10.6 10.2 15.6 15.0
g2 6.3 6.2 6.4 8.9 6.7 9.0 11.3 10.7
g3 0.3 0.7 1.1 4.3 4.6 4.6 8.7 9.1

(a) A submatrix (P,Q) with P = {g1, g2, g3} and Q =
{a, . . . , h}

O(P,Q) dLCS

oQ1 [{a, b} � {c} � {d, e, f} � {g, h}] 0.875

oQ2 [{a, b, c, e} � {d, f} � {g, h}] 0.875

oQ3 [{a, b, c} � {d, e, f} � {g, h}] 1.0

τQ = [{a, b, c} � {d, e, f} � {g, h}]

(b) The supported set O(P,Q) and τQ

difference threshold dmax, and a gap threshold gmin, (P,Q)
is said to be a GeBOPSM if there exists τQ such that for
all gi ∈ P ,

1) gi supports a bucket order oQi , and
2) the LCS similarity between oQi and τQ is at least α.

The bucket order τQ in Definition 5.2 captures the
consensus trend that all the rows in a GeBOPSM pat-
tern follow. We call τQ the backbone (bucket) order of the
GeBOPSM and denote the GeBOPSM as (P,Q : τQ). A
GeBOPSM pattern (P,Q : τQ) is said to be maximal if
there does not exist any other GeBOPSM (P ′, Q′ : τQ′)

such that P ⊆ P ′, Q ⊆ Q′, oQi is the sub-order of oQ
′

i

for all gi ∈ P , and τQ is the sub-order of τQ′ .
We now introduce some terminologies for ease of

discussion. If a row gi supports a bucket order oQi , and
the LCS similarity between oQi and τQ is no smaller
than α, we say that gi α-supports τQ. We call the set of
bucket orders oQi for all the rows in P the supported
set of (P,Q), and denote this set by O(P,Q).

Let us illustrate the GeBOPSM model by the sub-
matrix (P,Q) shown in Table 2(a), where α is 0.8, and
dmax and gmin are both 1.0. We can find O(P,Q) as
shown in Table 2(b) and τQ = [{a, b, c} � {d, e, f} �
{g, h}] such that every row in P α-supports τQ. For ex-
ample, g1 supports oQ1 with respect to gmin and dmax.
Besides, one longest common sub-order between τQ
and oQ1 is [{a, b} � {d, e, f} � {g, h}], and thus the
LCS similarity between them is 7

8 = 0.875, which is
larger than α. Therefore, (P,Q : τQ) is a GeBOPSM.

When setting α to be 1.0, the GeBOPSM model is
reduced to the BOPSM model. On the other hand,
when dmax is set to be 0, and gmin to be a very small
positive value, the order oQi is actually the induced
linear order of row gi on Q. If we also require τQ to be
a linear order, the GeBOPSM model is reduced to the
ROPSM model in [5]. As the ROPSM model is shown
to be a generalization of the AOPC model, we thus
claim that all the known relaxed OPSM models are
actually the specializations of our GeBOPSM model.

Having defined the GeBOPSM model, we now for-
mulate the GeBOPSM mining problem as follows:

Definition 5.3. (The GeBOPSM Mining Problem).

Given a matrix M(G,T ), and the similarity threshold α,
the difference threshold dmax, the gap threshold gmin, the
size thresholds cmin and rmin, we aim to mine from M the
valid maximal GeBOPSM patterns.

Notably, we do not aim to exhaustively mine all
valid maximal GeBOPSM patterns, which is infeasi-
ble. However, we will demonstrate in next section
that our proposed algorithm is capable of generating a
substantial number of significant GeBOPSM patterns.

5.2 Mining GeBOPSM Patterns
One challenge of mining GeBOPSM patterns is
that the GeBOPSM model does not enjoy the anti-
monotonic property and thus it is difficult to develop
an Apriori-based framework to mine GeBOPSM pat-
terns. We now propose a two-phase approach to solve
the mining problem, which has been successfully used
for mining ROPSM patterns in our earlier work [5].
• First phase: we mine a set of seed BOPSMs

by adopting the APRIBOPSM method as already
discussed.

• Second phase: we adopt a pattern growing
method called SEEDGROWTH to expand the seed
BOPSMs into maximal GeBOPSM patterns.

We now detail the SEEDGROWTH algorithm.

5.3 SEEDGROWTH

The algorithm takes BOPSMs as seed patterns and
expands them into maximal GeBOPSM patterns. The
difficulty is that, within the GeBOPSM model, a row
may support more than one bucket order. For exam-
ple, if dmax is 3.0 and gmin is 1.0, g1 in Table 2(a)
supports both [{a, b} � {c} � {d, e, f} � {g, h}] and
[{a, b, c} � {d, e, f} � {g, h}]. Thus, the SEEDGROWTH
algorithm not only needs to identify the backbone
order but also needs to find the appropriate bucket
orders supported by the rows (i.e., the supported set).

5.3.1 Column Expansion and Row Expansion
The SEEDGROWTH algorithm expands a seed BOPSM
by rows and columns. We implement a greedy pro-
cedure called GRDYCOLEXP, which always takes the
“best” possible column (in terms of some criterion)
to expand the current pattern. The row expansion
procedure is called EXHROWEXP, which scans the
remaining rows that are not included in the current
pattern and expands the pattern by those rows that β-
support the backbone order having β ≥ α. The details
of the GRDYCOLEXP and EXHROWEXP procedures
are shown in Algorithms 3 and 4.

The GRDYCOLEXP algorithm takes a GeBOPSM
pattern (initially a seed BOPSM) (P,Q : τQ) as input,
together with the thresholds α, dmax, and gmin. For
every remaining column tj and every bucket order
oi in O(P,Q), we first extend oi by tj and find the
extended bucket orders from oi. The set of extended
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Algorithm 3: GRDYCOLEXP

Input: GeBOPSM (P,Q : τQ); α, dmax and gmin
1. for tj ∈ T −Q do
2. for oi in O(P,Q) do
3. Oi = EXTORDER(oi, tj , dmax, gmin);
4. end
5. τQ∪{tj} = MEDBACKBONE(∪iQi);
6. for gi ∈ P do
7. µ(gi, tj) = max{dLCS(τQ∪{tj}, ok), ok ∈ Oi};
8. end
9. µ(tj) = min{µ(gi, tj), gi ∈ P};

10. end
11. Pick tk s.t. µ(tk) = max{µ(tj),∀tj ∈ T −Q};
12. if µ∗ = µ(tk) ≥ α then
13. Update τQ to τQ∪{tk}; Q = Q ∪ {tk};
14. Add ok to O(P,Q) such that

ok = argmaxoj{dLCS(τQ∪{tk}, oj),∀oj ∈ Oi};
15. Return succeed;
16. Return fail;

bucket orders, denoted as Oi, should still be sup-
ported by row gi (Lines 2-4). Using the extended
bucket orders of all the rows in P , we adopt the
MEDBACKBONE method (discussed later) to compute
the updated backbone order τQ∪{tj} (Line 5). Then,
For each row gi, we pick the extended bucket order
among Oi, which maximizes the LCS similarity with
the updated backbone order τQ∪{tj} (Lines 6-8). We
use µ(tj) to denote the smallest maximum LCS simi-
larity among all the rows in P (Line 9). The column
tk that maximizes µ(tk) is picked (Line 11). If µ(tk) is
no smaller than the similarity threshold α, we expand
the current GeBOPSM by column tk, and update the
backbone order as well as the supported set O(P,Q)
of the updated GeBOPSM (Lines 12-15).

The EXTORDER procedure invoked at Line 3 ex-
tends the bucket order oi supported by row gi with a
new column tj . The requirement is that the extended
bucket orders should still be supported by gi and have
the original oi as a sub-order. Let us use the row g1 in
Table 2(a) to illustrate this point. Suppose g1 supports
a bucket order o1 = [{a, b} � {d, f} � {g, h}], and
the thresholds dmax and gmin are respectively 3.0 and
2.0. When we extend o1 with column c, c can either
be inserted into the first bucket of o1, or form a new
bucket between the first and the second buckets of o1.
Thus, we get two extended bucket orders [{a, b, c} �
{d, f} � {g, h}] or [{a, b} � {c} � {d, f} � {g, h}].

Actually, in general, at most three bucket orders can
be generated when we adopt EXTORDER to extend a
bucket order by a new column (refer to Theorem 5.4).
Thus, the EXTORDER procedure is bounded by O(n)
where n is the number of columns in the input matrix.

Theorem 5.4. Given a bucket order τ = [Q(1) � · · · �
Q(r)] supported by row g, at most three bucket orders can
be generated if τ is extended by a new column c.

Algorithm 4: EXHROWEXP

Input: A GeBOPSM (P,Q : τQ), dmax, gmin, µ∗

1. for gi ∈ G− P do
2. oi = DP-PICKBEST(τQ, gi, dmax, gmin);
3. if dLCS(τQ, oi) ≥ µ∗ then
4. P = P ∪ {gi}; Add oi to O(P,Q);
5. end
6. end

Proof Sketch: If the value M(g, c) falls in the range
of a bucket, say Q(i), in τ , the only way that τ can be
extended with c is to add c to bucket Q(i). If M(g, c)
falls in the gap between two adjacent buckets, say Q(i)

and Q(i+1), we can extend τ by either adding c to Q(i),
or adding c to Q(i+1), or creating a new bucket {c} and
inserting it between Q(i) and Q(i+1).
�
The row-wise expansion algorithm EXHROWEXP

takes as input the current GeBOPSM (P,Q : τQ), the
thresholds dmax and gmin, and the current smallest
LCS similarity µ∗ passed from the last call of GRDY-
COLEXP. For every remaining row gi in (G− P ), we
pick a bucket order oi among all the bucket orders
supported by gi, such that the LCS similarity between
oi and the backbone order τQ is maximized (Line
2). A Dynamic Programming (DP) based method DP-
PICKBEST is adopted to efficiently find oi and com-
pute the LCS similarity. If the LCS similarity between
τQ and oi is no smaller than µ∗, we expand the current
GeBOPSM by gi and add oi to O(P,Q) (Lines 3 - 5).

DP-PICKBEST. Given a row g, the backbone order
τQ = [Q(1) � · · · � Q(r)] of a GeBOPSM, DP-
PICKBEST checks whether g µ∗-supports τQ or not. We
first sort the items (i.e., columns) in every bucket Q(i)

according to the values of g under the corresponding
columns. Then, the DP technique is adopted to find a
bucket order that is supported by g, say τg , and that
maximizes |LCS(τg, τQ)|. The underlying idea of DP
function is that, for a particular item t in some Q(i) of
τQ, the length of LCS(τg, τQ) that ends with t is equal
to the larger of the following two values. One is the
length of LCS(τg, Q

(i)) that ends with t. Another is
the length of LCS(τg, τQ) that ends with some other
item in the bucket before Q(i), plus the number of
items in Q(i) that can be appended.

5.3.2 Backbone Order Generation
When a GeBOPSM (P,Q : τQ) is expanded by a new
column, its backbone order τQ needs to be updated
accordingly. We adopt a median-rank based method
called MEDBACKBONE to generate the backbone order
of a GeBOPSM pattern. MEDBACKBONE takes as in-
put all the bucket orders extended from all the rows
in the GeBOPSM. For every bucket order, ranks are
assigned to the items such that items in the first bucket
have rank 1, items in the second bucket have rank 2,
and so on. For each item, its rank profile is the set
of ranks it gets in all the bucket orders. Then, items
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Algorithm 5: SEEDGROWTH-COL

Input: A set U of BOPSMs, α, dmax and gmin
Output: A set V of GeBOPSMs

1. for (P,Q : τQ) ∈ U do
2. if (P,Q) is a submatrix of a GeBOPSM in V

then
3. discard (P,Q);
4. while GRDYCOLEXP((P,Q :

τQ), α, dmax, gmin, µ
∗) == succeed do

5. continue;
6. end
7. ExhRowExp((P,Q : τQ), dmax, gmin, µ

∗);
8. Add (P,Q : τQ) to V ;
9. end

with the same median rank form a bucket, and the
buckets are sorted in the increasing order in terms of
the median ranks that items in the buckets have. The
generated bucket order is the backbone order of the
GeBOPSM pattern.

5.3.3 The SEEDGROWTH Algorithm
Combining the GRDYCOLEXP and EXHROWEXP pro-
cedures in different order leads to different pattern
growing strategies. Here, we adopt the column-centric
strategy and the row-centric strategy.

The basic idea of the column-centric strategy is
that the seed BOPSM (P,Q) is repetitively expanded
column-wise by invoking GRDYCOLEXP until no
more columns can be chosen for expansion. Then,
one round of row-wise expansion is conducted by
invoking EXHROWEXP as illustrated as follows.

(P,Q)
GRDYCOLEXP
========⇒ (P,Q ∪ {t1})

GRDYCOLEXP
========⇒ · · ·

(P,Q ∪∆Q)
EXHROWEXP
=======⇒ (P ∪∆P,Q ∪∆Q)

We implement the column-centric strategy as
shown in Algorithm 5. First, we carry out an early
pruning step (Lines 2-3) to check if a seed BOPSM
is a submatirx of some mined GeBOPSMs. If it is
the case, the seed BOPSM is discarded. Otherwise,
SEEDGROWTH-COL starts the greedy column-wise
expansion on the BOPSM repetitively until no more
columns can be chosen (Lines 4-6). Then, a round
of row-wise expansion is carried out by invoking
EXHROWEXP (Line 7).

We also implement the row-centric pattern growing
strategy. The basic idea is that, whenever the current
pattern is expanded by a new column, the EXHROW-
EXP procedure is then invoked to further expand the
current pattern with eligible rows. The row-centric
strategy can be illustrated as follows.

(P,Q)
GRDYCOLEXP
========⇒ (P,Q ∪ {t1})

EXHROWEXP
=======⇒ (P ∪∆P1,

Q ∪ {t1})
GRDYCOLEXP
========⇒ · · · EXHROWEXP

=======⇒ (P ∪∆P,Q ∪∆Q).

Using the row-centric strategy, another version of
the SEEDGROWTH algorithm called SEEDGROWTH-
ROW can be straightforwardly developed as follows:

SEEDGROWTH-ROW first conducts the early pruning
step on the seed BOPSM similar to SEEDGROWTH-
COL. Then, it expands the seed BOPSM by taking
GRDYCOLEXP and EXHROWEXP alternately until no
more expansion can be conducted. We omit the details
of SEEDGROWTH-ROW due to space limit.

6 EXPERIMENTS

In this section, we study the performance of the
BOPSM model, the GeBOPSM model, and their min-
ing methods APRIBOPSM and SEEDGROWTH on both
synthetic datasets and a real biological dataset. We
compare our algorithms with the state-of-the-art min-
ing methods of other relaxed models, which include
OPC-Tree, AOPC and OPSM-Growth as follows.
• OPC-Tree is a tree-based OPSM mining method

[11], which exhaustively mines OPSM patterns
that satisfy some size thresholds.

• The AOPC method [20] mines AOPC patterns,
which takes a set of OPSM patterns as input, and
merges them into AOPCs in a greedy way until
no more valid AOPCs can be generated.

• The OPSM-Growth method [5] takes seed OPSMs
as input and expands them into maximal ROPSM
patterns.

All the above algorithms are implemented using C++,
and all the experiments are conducted on a Macbook
Pro with 2.53GHZ CPU and 4G memory.

6.1 Data Preparation
The synthetic datasets that are used to study the
efficiency of the APRIBOPSM algorithm are generated
as follows. We generate r-by-c matrices and vary the
number of rows r to be {200, 400, 600, 800, 1000} and
the number of columns c to be {10, 15, 20, 25, 30}. The
entry values are chosen within the range of [1, 10]. We
implant 10 overlapping OPSMs along the diagonal,
each with 15% ∗ r rows and 40% ∗ c columns in a
generated matrix. Finally, we reorder the rows and
columns to get the input matrix.

The real dataset we use is the cell cycle data of
the yeast Saccharomyces cerevisiae [17]1. It contains the
transcription levels of 4000 genes under 24 exper-
iment conditions, which are the arrest of a cdc15
temperature-sensitive mutant. The tool Gene Ontol-
ogy Term Finder2 is taken to validate the biological
significance of the mined (BOPSM, GeBOPSM, OPSM,
AOPC, or ROPSM) patterns. It computes the p-values
between the mined patterns and known gene cate-
gories. A smaller p-value indicates a stronger asso-
ciation between the pattern and the category. Given
a pattern, we count the number of categories with
which it strongly associates. We take the commonly
used p-value threshold, i.e., 1.0×10−9, for determining

1. http://genome-www.stanford.edu/cellcycle/
2. http://search.cpan.org/dist/GO-TermFinder/
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strong association as adopted in [20], [5]. In short, a
pattern is said to be strongly associated with a known
gene category if its p-value is less than 1.0× 10−9.

6.2 Evaluation Measures

We study the efficiency of different mining methods
by comparing their execution time. Since different
methods generate different number of patterns de-
fined by their underlying model, we compare both
the total running time (or simply the TR-time) and the
average execution time for finding a single pattern (or
simply the SP-time) in the evaluation.

Through the experiments on the real cell cycle
datasets, we study the biological significance of mined
patterns generated by different methods. For each
method, we count for each generated pattern the
number of known gene categories it strongly asso-
ciates with. Then, we count the number and the
fraction of generated patterns that are strongly asso-
ciated with at least a specific number of gene categories,
which we call a significance level. We then compare the
number and the fraction of patterns that reach various
significance levels generated by all the methods.

6.3 BOPSM and APRIBOPSM

6.3.1 Scalability
We study the scalability of the APRIBOPSM algorithm
with respect to the matrix size and compare it with
OPC-Tree using synthetic datasets. As OPC-Tree can
only mine OPSM patterns, we set the thresholds dmax
and gmin to be both 0 for fair comparison, which
means that APRIBOPSM also mines OPSM patterns.
There are still a few exceptional cases. For example,
if the entry values of a row under several columns
are exactly the same, APRIBOPSM considers this row
supporting a bucket order. However, OPC-Tree con-
siders the row supporting a linear order, which is a
linearization of the bucket order. Thus, the number
of OPSMs mined by APRIBOPSM and the number of
OPSMs mined by OPC-Tree are not exactly the same.

First, we fix the number of columns c to be 15, and
vary the number of rows r from 200 to 1000. From
each r-by-c matrix, we mine the OPSM patterns that
contain at least 10%∗r rows and 40%∗c columns. Fig-
ures 3(a) and 3(b) show the TR-time and the SP-time
of APRIBOPSM and OPC-Tree. Clearly, our APRIBOPSM
algorithm is significantly more efficient than OPC-
Tree. As the number of rows increases, both the TR-
time and the SP-time of APRIBOPSM increase slowly
and linearly, while the TR-time and the SP-time of
OPC-Tree exhibit a sharp increase. For example, when
the number of rows increases 5 times (from 200 to
1000), the TR-time of APRIBOPSM also increases about
5 times (from 3.19 secs to 14.65 secs). In comparison,
the TR-time of OPC-Tree increases about 20 times
(from 18.7 secs to 371.5 secs). Similar conclusions can

be drawn when analyzing the SP-time. The fact that
APRIBOPSM is more efficient than OPC-Tree can be
explained as follows. APRIBOPSM generates candidate
bucket orders in a breadth-first way, which controls
better the growth of the number of candidates during
the candidate generation step. Moreover, the adoption
of the BPTree makes this step quite efficient. In con-
trast, the depth-first OPC-Tree method generates ex-
cessively large number of candidates before pruning
those ineligible ones, which is rather time-consuming.

We then study how the number of columns influ-
ences the performance of the algorithms. We fix r to
be 200, vary c from 10 to 30, and mine from each r-
by-c matrix the OPSM patterns that contain at least
10% ∗ r rows and 40% ∗ c columns. Figures 3(c) and
3(d) show that APRIBOPSM also outperforms OPC-
Tree significantly.

On the other hand, the performance of both APRI-
BOPSM and OPC-Tree is more influenced by column
increase than by row increase. The reason may be
that, for both methods, an increase of the number of
columns theoretically leads to the exponential increase
of possible candidates. However, APRIBOPSM better
controls the growth of the number of generated can-
didates during the mining process, and thus it enjoys
a relatively better performance as a result.

6.3.2 Influence of Thresholds gmin and dmax
Next, we use the real dataset to study the impact of
the thresholds gmin and dmax on the execution time
of APRIBOPSM and the quality of the mined BOPSM
patterns. As discussed in Section 4, we can set for
each row in the input matrix its own gmin and dmax
thresholds concerning different scalings of the rows.
In this set of experiments, for each row, we vary its
gmin threshold from 0 to 0.5 times the average gap
and vary its dmax threshold from 0 to 2 times the
average gap. Note that the average gap of different
rows may be different, and also gmin being equal to 0
actually means that gmin is set to be some number that
is smaller than the smallest gap. We mine the BOPSM
patterns with at least 80 rows and 6 columns.

Figures 4(a) and 4(b) show the TR-time and the SP-
time with respect to gmin. The value along the x-axis,
say 0.2, means that gmin equals 0.2 times the average
gap. The series in the legend, say dmax = 2, means
that dmax equals 2 times the average gap. As gmin gets
larger, more patterns are pruned, and thus the TR-
time decreases. However, the SP-time cost for finding
a single pattern increases.

Figures 4(c) and 4(d) show the TR-time and the SP-
time with respect to dmax, and the meaning of the
series name in the legend and the x-axis is similarly
interpreted. As dmax gets larger, more patterns are
mined, and thus the TR-time increases. However,
when dmax is larger than 1.5 times the average gap,
the number of patterns mined increases significantly,
which makes the SP-time decreases.
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Fig. 3. BOPSM - Scalability With Respect To the Size of Matrix
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Fig. 5. BOPSM - Quality of BOPSMs With Respect To gmin and dmax

Figures 5(a) and 5(b) show the number and frac-
tion of BOPSMs that reach different significant lev-
els under various gmin and dmax combinations. The
series name, say (0.5, 1), means that gmin equals 0.5
average gap and dmax equals 1 average gap. When
gmin is large, smaller number of patterns are mined.
However, the quality of the mined patterns increases
apparently. For example, when gmin equals 0, less
than 36% BOPSMs reach the significance level “ > 8”,
however, when gmin equals 0.5 average gap, more
than 45% BOPSMs reach the significance level “ > 8”.
Consider the influence of dmax. Generally, when dmax
gets larger, the number of mined BOPSMs increases.
When gmin is small and dmax gets larger than 1
average gap, the quality of the BOPSMs decreases,
which indicates that the mined patterns may be too
noisy in this case. However, if we set gmin to be
large, say, 0.5 average gap, and increase the dmax
value, the fraction of BOPSMs that reach significance
levels “ > 11” and “ > 12” increases. This interesting

finding implies that the quality of the patterns can be
maintained by using an appropriate combination of
these two thresholds.

6.4 GeBOPSM and SEEDGROWTH

We study the effectiveness of the GeBOPSM model
and the performance of the SEEDGROWTH algorithm
using the real dataset. By adopting different pattern
growing strategies, we have SEEDGROWTH-COL cor-
responding to the column-centric growing strategy
and SEEDGROWTH-ROW corresponding to the row-
centric growing strategy. We adopt the APRIBOPSM
alogrithm to mine the seed BOPSMs with at least 80
rows and 6 columns and with the thresholds gmin and
dmax set to be 0.3 average gap and 0. APRIBOPSM
mines 747 BOPSMs, which are taken as the input for
both SEEDGROWTH-COL and SEEDGROWTH-ROW.
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6.4.1 Efficiency

We first study the impact of similarity threshold α on
SEEDGROWTH-COL and SEEDGROWTH-ROW. Figures
6(a) and 6(b) show the TR-time and the SP-time of
these two algorithms against α.

From Figure 6(a), we can see that, as the similarity
threshold α increases, the TR-time of SEEDGROWTH-
COL remains roughly the same, while the TR-time of
SEEDGROWTH-ROW shows a slight decrease. Com-
pared to SEEDGROWTH-ROW, SEEDGROWTH-COL
costs less time. This indicates that, when the column-
centric strategy is adopted, the seed BOPSMs are
more likely to grow into larger GeBOPSMs, which
may prune more seed BOPSMs during the pruning
step. It can be checked that in Figure 6(b) the SP-
time of both SEEDGROWTH-COL and SEEDGROWTH-
ROW decreases as α increases. It is reasonable, since
less noise is allowed in the mined patterns for larger
α, then less time is needed for growing a pattern
as the mining result. Another interesting finding in
Figure 6(b) is that SEEDGROWTH-COL costs less SP-
time when α is large, while SEEDGROWTH-ROW costs
less SP-time when α is small. This indicates that
SEEDGROWTH-COL likely generates larger patterns
especially when α is small, and thus more rounds
of column-wise expansion are needed, which is rel-

atively more time consuming.

6.4.2 Biological Significance

Figures 7(a) and 7(b) show the biological significance
of mined GeBOPSMs and the seed BOPSMs, where
the respective series names represent the combina-
tions of the versions of SEEDGROWTH and α values.
For example, (COL, 0.7) means that SEEDGROWTH-
COL is used with α = 0.7. Considering the number of
significant patterns in Figure 7(a), we can see that, at
the lower significance levels like “ > 8” and “ > 9”,
the number of seed BOPSMs is obviously larger than
the number of GeBOPSMs mined by SEEDGROWTH
under all settings. However, at the higher significance
levels like “ > 10”, “ > 11”, or “ > 12”, the number
of GeBOPSMs becomes increasingly larger than that
of the seed BOPSMs. This indicates that the adoption
of the GeBOPSM model largely improves the quality
of the mined patterns. The statistics about the fraction
of significant patterns which are shown in Figure 7(b)
more clearly support this claim. For those levels that
are higher than “ > 8”, the fraction of GeBOPSMs
mined by SEEDGROWTH under every setting is larger
than that of the seed BOPSMs. Specifically, only 20%
seed BOPSMs reach the significance level “ > 11”,
while at least 56% GeBOPSMs reach this level.
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In the above set of experiments, we keep gmin
to be 0.3 average gap and dmax to be 0, both of
which are the same as that we adopted to mine the
seed BOPSMs. If we set gmin to be 0.3 average gap
and dmax to be 2 average gaps, the qualities of the
mined GeBOPSMs are further improved. Specifically,
the fractions of GeBOPSMs that reach the significant
levels higher than “ > 10” all increase by 4% to 7%. It
further supports our findings in previous experiments
that using the appropriate settings of the difference
and gap thresholds is able to improve the quality of
mined patterns.

6.5 Comparisons with Related Methods

Finally, we compare the biological significance of
five different types of patterns: GeBOPSM, BOPSM,
ROPSM, AOPC, and OPSM. The GeBOPSM mining
method takes the BOPSM patterns as input, while
the ROPSM and AOPC mining methods take the
OPSM patterns as input. To achieve fair comparison,
we adopt APRIBOPSM to mine BOPSM patterns by
setting gmin and dmax to be 0.3 average gap and 0.
The resultant 747 BOPSMs are also OPSMs, which are
taken as the input for the GeBOPSM, ROPSM, and
AOPC mining methods. The statistical results of all
the methods are presented in Table 3. The detailed
settings for the mining methods are given as follows.

1) GeBOPSM - We adopt SEEDGROWTH-COL to
mine GeBOPSM patterns with α set to be 0.7.
The thresholds gmin and dmax are set to be 0.3
average gap and 2 average gaps.

2) ROPSM - Similar to SEEDGROWTH, OPSM-
Growth [5] also has the column-centric version
and the row-centric version. We studied both
versions by using the best similarity threshold
according to the quality of the mined ROPSMs.

3) AOPC - We implemented the AOPC mining
method in [20], and conducted the experiments
by varying the similarity requirement and the
number of initial groups. The AOPCs with the
best quality are then chosen for comparison.

4) BOPSM - The APRIBOPSM algorithm is adopted
to mine BOPSM patterns with at least 80 rows
and 6 columns. We set the thresholds gmin and
dmax to be 0.5 average gap and 1 average gap.

5) OPSM - The OPSM patterns are the input of the
GeBOPSM, ROPSM and AOPC mining methods,
and the statistics are listed in the last column.

In Table 3, we present the best results (highlighted
in bold font) in terms of the fraction of patterns for
all significance levels except “ ≤ 7”. It can be verified
that more than 80% of the BOPSM patterns reach the
significance level “ > 7”, while other types are no
more than 70% at the same level. However, for higher
significance levels (“ > 10”, “ > 11”, and “ > 12”), the
fractions of GeBOPSMs, ROPSMs and AOPCs, which

all adopt the similarity relaxation strategy, are larger
than the fractions of both BOPSMs and OPSMs.

Among GeBOPSM, ROPSM and AOPC, the SP-
time of (AOPC, 8, 0.6) and (ROPSM, COL, 0.7) are
the shortest. However, for all significant levels higher
than “ > 7”, the fractions of the patterns mined
under these two settings are always smaller than the
fractions of the patterns mined under the settings of
(GeBOPSM, COL, 0.7) and (ROPSM, ROW, 0.6). Re-
ferring to (GeBOPSM, COL, 0.7) and (ROPSM, COL,
0.7), which use the same pattern growing strategy
and similarity threshold, the SP-time cost for finding
a GeBOPSM pattern is longer than the SP-time cost
for finding an ROPSM pattern. However, the quality
of the mined GeBOPSMs is apparently better than
that of the ROPSMs. For example, the fraction of
GeBOPSMs is 10% higher than that of the ROPSMs
at the significance levels “ > 11” and “ > 12”. The
advantage is even more obvious when the absolute
number of patterns are checked. When (GeBOPSM,
COL, 0.7) is compared to the best ROPSM result, i.e.,
(ROPSM, ROW, 0.6), the quality of GeBOPSMs is still
slightly better than that of ROPSMs, but the time for
mining a GeBOPSM is only half of that for mining an
ROPSM.

7 CONCLUSIONS
In this paper, we study the problem of mining relaxed
OPSM patterns in order to discover significant biolog-
ical associations in gene expression data.

We propose the BOPSM model that captures the
biological fact that some correlated genes follow a
consensus trend identified as a bucket order. The
model requires that the rows in a BOPSM support a
backbone bucket order. The structure of the backbone
bucket order can be monitored by the intra-bucket
difference and inter-bucket gap thresholds. We also
develop a BOPSM mining method called APRIBOPSM,
which makes use of an Apriori-based framework
and adopts a novel BucketPrefixTree structure to mine
BOPSM patterns. Experiments on both synthetic and
real datasets confirm that, the BOPSM model facili-
tates much better the discovery of quality but noisy
OPSM patterns than the strict OPSM model. Our
mining method is also significantly more efficient than
OPC-Tree.

We propose the GeBOPSM model, which allows
that bucket orders are similar enough to the backbone
bucket order in an OPSM pattern. The GeBOPSM
model generalizes all the existing relaxed OPSM mod-
els. We also develop the GeBOPSM mining method
SEEDGROWTH and propose two different pattern
growing strategies, i.e., column-centric or row-centric,
to grow seed BOPSMs into GeBOPSM patterns. Ex-
perimental studies show that the GeBOPSM model
outperforms all the current relaxed OPSM models,
and importantly, it leads to the discovery of more
quality patterns in terms of both fraction and number.
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TABLE 3
Comparison of GeBOPSM, ROPSM, AOPC, BOPSM, and OPSM

(GeBOPSM,COL,0.7) (ROPSM,ROW,0.6) (ROPSM,COL,0.7) (AOPC,8,0.6) BOPSM OPSM
Pattern number 459 134 252 294 81 747

TR-time 329.56 sec 209.64 sec 51.78 sec 55.66 sec − −
SP-Time 0.72 sec 1.56 sec 0.21 sec 0.19 sec − −

the number (fraction) of patterns that reach each significance level
> 12 270(58.8%) 70(52.2%) 123(48.8%) 79(26.9%) 8(9.9%) 51(6.8%)
> 11 292(63.6%) 82(61.2%) 135(53.6%) 113(38.4%) 17(21.0%) 153(20.5%)
> 10 293(63.8%) 85(63.4%) 140(55.6%) 127(43.2%) 30(37.0%) 250(33.5%)
> 9 299(65.1%) 87(64.9%) 146(57.9%) 149(50.7%) 44(54.3%) 344(46.1%)
> 8 305(66.5%) 89(66.4%) 153(60.7%) 160(54.4%) 54(66.7%) 416(55.7%)
> 7 312(68.0%) 93(69.4%) 160(63.5%) 169(57.5%) 66(81.5%) 467(62.5%)
≤ 7 147(32.0%) 41(30.6%) 92(36.5%) 125(42.5%) 15(18.5%) 280(37.5%)
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[16] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, and et al. A
systematic comparison and evaluation of biclustering methods
for gene expression data. Bioinformatics, 22(9):1122–1129, 2006.

[17] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. An-
ders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher.
Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell, 9(12):3273–3297, December 1998.

[18] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In EDBT ’96,
pages 3–17, 1996.

[19] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically
significant biclusters in gene expression data. Bioinformatics,
18:136–144, 2002.

[20] M. Zhang, W. Wang, and J. Liu. Mining approximate order
preserving clusters in the presence of noise. In ICDE ’08, pages
160–168, 2008.

Qiong Fang received her BSc and MPhil
degrees in computer science from Huazhong
University of Science and Technology
(HUST). She is currently a PhD candidate
in the Department of Computer Science and
Engineering at the Hong Kong University
of Sicence and Technology (HKUST). Her
research interests are in the areas of data
mining and bioinformatics.

Wilfred Ng received his MSc (Distinction)
and PhD in Computer Science from the
University of London. Currently he is an
Associate Professor of Computer Science
and Engineering at the Hong Kong Univer-
sity of Science and Technology (HKUST),
where he is a member of the database
research group. His research interests are
in the areas of databases, data mining
and information Systems, which include
Web data management and XML search-

ing. Further Information can be found at the following URL:
http://www.cs.ust.hk/faculty/wilfred/index.html.

Jianlin Feng received his BSc, MSc, and
PhD degrees in computer science from
Huazhong University of Science and Tech-
nology. Currently he is a full professor in the
School of Software at Sun Yat-Sen University
(SYSU). His research interests are in the
areas of data mining and database systems.

Yuliang Li is currently an undergraduate stu-
dent in the Department of Computer Sicence
and Engineering at the Hong Kong University
of Science and Technology (HKUST). His
research interests are in the areas of data
mining and bioinformatics.


