
Probabilistic Convex Hull Queries
over Uncertain Data

Da Yan, Zhou Zhao, Wilfred Ng, and Steven Liu

Abstract—The convex hull of a set of two-dimensional points, P , is the minimal convex polygon that contains all the points in P .

Convex hull is important in many applications such as GIS, statistical analysis and data mining. Due to the ubiquity of data uncertainty

such as location uncertainty in real-world applications, we study the concept of convex hull over uncertain data in 2D space. We

propose the Probabilistic Convex Hull (PCH) query and demonstrate its applications, such as Flickr landscape photo extraction and

activity region visualization, where location uncertainty is incurred by GPS devices or sensors. To tackle the problem of possible world

explosion, we develop an OðN3Þ algorithm based on geometric properties, whereN is the data size. We further improve this algorithm

with spatial indices and effective pruning techniques, which prune the majority of data instances. To achieve better time complexity, we

propose another OðN2 logNÞ algorithm, by maintaining a probability oracle in the form of a circular array with nice properties. Finally, to

support applications that require fast response, we develop a Gibbs-sampling-based approximation algorithm which efficiently finds the

PCH with high accuracy. Extensive experiments are conducted to verify the efficiency of our algorithms for answering PCH queries.

Index Terms—Convex hull, uncertain data, Gibbs sampling

Ç

1 INTRODUCTION

CONVEX hull is a geometric concept that is fundamental
to a wide spectrum of applications, including pattern

recognition [2], cluster analysis [3] and linear optimization
[4]. In 2D plane, the convex hull of a set of points, P , is the
minimal convex polygon that contains all the points in P .
Fig. 1a illustrates the concept of convex hull, where solid
points are those on the convex hull and hollow ones are not.
In this work, we focus on objects with 2D location uncer-
tainty, which are common in geo-spatial applications [8].

Convex hull in 2D space. Let n be the number of points in
set P . We consider the non-degenerated case with n > 1.
Referring to Fig. 1a again, if we order the points on the con-
vex hull clockwise, then each point pi has a successor
succðpiÞ ¼ pj, or equivalently, each point pj has a predeces-
sor predðpjÞ ¼ pi. Notably, even though p0 is on segment
pipj, it is not a point on the convex hull as it does not decide
the polygon shape.

A lot of algorithms have been proposed for convex hull
computation, such as Andrew’s Monotone Chain algorithm
[6], which finds the convex hull of a set of 2D points in
Oðn lognÞ time. Existing algorithms assume that data points
are certain. However, data collected in real applications
may be imprecise due to environment factors, device limita-
tions and privacy issues. This is especially true for those
real-life applications involving 2D location uncertainty. For

example, in an RFID indoor positioning and tracking sys-
tem, RFID readers are deployed at fixed indoor positions
[29]. If a person walks close to a reader, he/she will be
detected by the reader and the system decides that the per-
son is at the location near the reader. However, since the
detection range of RFID readers changes continuously with
environment factors, the person may also be detected by
another reader a little bit farther away, causing location
uncertainty. Another example is animal tracking [15], where
sensors are deployed in the wild, and animals are implanted
with microchips indicating their identities. An animal may
be detected by several nearby sensors at different locations
within some time period, causing location uncertainty.

Probabilistic convex hull (PCH). In this paper, we propose
the concept of probabilistic convex hull over a set of objects
that are specified by uncertain 2D coordinates, and design
efficient algorithms for PCH evaluation. We now illustrate
the concept of PCH using a set of six uncertain objects
A–F shown in Fig. 2a, where each object has several loca-
tion instances that represent its possible position. For
example, object A may occur at location a1, a2 or a3. Each
uncertain object has a certain probability to be on the con-
vex hull. For example, Figs. 2b and 2c illustrate two possi-
ble worlds of the uncertain object dataset presented in
Fig. 2a. In the first possible world, object A is not on the
convex hull and object D is on the convex hull; while in
the second possible world, object A is on the convex hull
and object D is not.

We study how to compute the probability that an object o

is on the convex hull, denoted as PrCHðoÞ. Given a user-
specified probability threshold a, we also study how to find

all the objects with PrCHðoÞ � a, which compose the PCH.
Motivations. As a fundamental geometric operation, com-

puting convex hull in the presence of data uncertainty is an
important research problem in its own right. While this
problem is not well explored yet, many other fundamental

� D. Yan, Z. Zhao, and W. Ng are with the Department of Computer Science
and Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.
E-mail: {yanda, zhaozhou, wilfred}@cse.ust.hk.

� S. Liu is with the Department of Computer Science, Stony Brook Univer-
sity. E-mail: kiliu@cs.stonybrook.edu.

Manuscript received 6 Nov. 2013; revised 10 July 2014; accepted 11 July 2014.
Date of publication 16 July 2014; date of current version 28 Jan. 2015.
Recommended for acceptance by D. Olteanu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2340408

852 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015

1041-4347� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



geometric operations have already been studied over uncer-
tain data, such as range queries [9], nearest neighbor (NN)
queries [8], [9], group nearest neighbor queries [10], reverse
nearest neighbor queries [11], skyline queries [1], [14], Voro-
noi diagram [12] and clustering [31].

Besides, PCH query is especially useful for spatial appli-
cations involving 2D location uncertainty, since it finds
objects that are very likely to be on the boundary of an
object set. By posing PCH queries over objects satisfying
different constraints, we are able to visualize the spatial
relationship between different sets of objects. We have
developed a system for PCH visualization in the applica-
tion of animal tracking [15], where animals on PCHs are
highlighted so that the boundary of a region that a species
spans becomes apparent.

Fig. 3 shows two PCH results displayed by the animal
tracking system [15], for the animal tracking data of two
species, Pacific bluefin tuna and Northern elephant seal,
collected from GTOPP.1 The locations of a tuna (or respec-
tively, a seal) are marked green (or respectively, blue) if

PrCHðoÞ ¼ 0, and they are marked pink (or respectively, yel-

low) if PrCHðoÞ > 0. As Fig. 3 shows, the habitats of both spe-
cies exhibit a high spatial correlation. This observation helps

zoologists to explore the potential relationships between the
two species, such as the predator-prey relationship.

In the above example, the PCH nicely characterizes the
boundary of animal habitats. As a comparison, we also
show the minimum bounding rectangle (MBR) of all locations
of the tuna species (and respectively, the seal species) in
Fig. 3. Apparently, MBR covers a much larger region than
the actual habitats, and is not sufficiently descriptive on the
habitat shape. Moreover, even without data uncertainty,
there are at most four points on the MBR boundary in most
cases, one on each edge of the MBR (see Fig. 1b). When data
uncertainty exists, the MBR is even less expressive as the
few points on the MBR boundary are not even 100 percent
certain. In our Flickr photo filtering application, MBR finds
at most four photos in most case, and some of them may not
be about natural landscapes.

Also note that the simple method of (1) finding the cen-
troid of the instances for each object, and then (2) computing
the convex hull of the centroids, cannot serve the same pur-
pose as PCH queries. We now show a counterexample
using the object set presented in Fig. 4a: no matter where
the location of D is (i.e. at d1, d2 or d3), it is always on the
convex hull; however, as shown in Fig. 4b, the instance cen-
troid of object D is not on the convex hull. Thus, probability
plays an important role in expressing the boundary of an
uncertain object set.

In addition to visualizing the spatial distribution of an
object set selected by non-spatial constraints, PCH queries
can also be employed to find useful non-spatial information
from an object set selected by spatial constraints. An exam-
ple of such an application is Flickr photo filtering, which we
describe next.

Flickr photo filtering. Suppose that one wants to collect
some photos about the landscape of Hong Kong from the
web. Searching by non-spatial constraints like keywords is
not very effective. For example, keywords “Hong Kong”
may end up returning photos about stylish shopping malls,
while expanding the search by “landscape” may have a poor

Fig. 2. Uncertain object DB & two possible worlds.

Fig. 1. Convex hull and MBR in 2D plane.

Fig. 3. Visualization of the habitats of two species.

Fig. 4. Problem with centroid-based method.

1. http://gtopp.org

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 853



recall, as many relevant photos are tagged by other words
like “hiking”.

We observe that natural landscapes are mostly found in
the outskirt of Hong Kong, and successfully find many
landscape photos using an PCH query over the geo-tagged
photos crawled from Flicker.2 Specifically, we use Flickr
API to obtain the collection of geo-tagged photos in Hong
Kong, using a circular query window with Victoria Peak as
the center and a 25 km radius.

Flickr users usually tag a collection of photos they take in
a trip with the same set of keywords. Moreover, the loca-
tions geo-tagged by these photos exhibit spatial locality.
Therefore, we regard each tag as an uncertain object, and
regard its corresponding geo-tagged photos as its instances.
Our proposed algorithm computes all those objects o with

PrCHðoÞ > 0 in seconds. Table 1 illustrates some obtained

objects in the result. For example, the first tag has PrCHðoÞ ¼
100% and all its corresponding photos are about mountain

trails for hiking; while the last tag has PrCHðoÞ ¼ 23:3% and
most of its corresponding photos are about the landscapes
in an island called Lantau.

Contributions. We summarize our contributions as
follows:

� We propose and formally define the concept of proba-
bilistic convex hull over a set of uncertain objects.

� A polynomial-time algorithm is proposed to com-
pute PCH over an uncertain database of size N ,

whose time complexity is OðN3Þ. The algorithm is
able to tackle the problem of “possible world
explosion”, and its efficiency is further boosted by
our effective pruning techniques.

� A batch-evaluation technique is developed that
improves the time complexity to OðN2 logNÞ.

� To support fast response, we develop an approxima-
tion algorithm based on Gibbs sampling, which effi-
ciently finds the PCH with reasonable accuracy.

Organization. The rest of the paper is organized as fol-
lows: we review the related work in Section 2. Our uncer-
tain data model and the concept of PCH are formally
defined in Section 3. In Section 4, we present our baseline
(BL) algorithm for computing PCH. Then, several effective
pruning techniques are introduced in Section 5. Our batch-
evaluation technique is described in Section 6, and the

Gibbs sampling method is presented in Section 7. Finally,
we report the experimental results on efficiency in Section 8,
and conclude our paper in Section 9.

2 RELATED WORK

2.1 Queries over Uncertain Data

Recent research proposes to consider uncertainty as a “first-
class citizen” in a DBMS. Various probabilistic DBMSs have
already been developed to support the storage and query-
ing of these uncertain data, including MystiQ [18], Trio [19],
ORION [20], MayBMS [21]. Two models are popular in rep-
resenting uncertain data: tuple-level uncertainty model
where each database tuple has an occurrence probability,
and attribute-level uncertainty model where the value of
each data object is specified by a probability distribution.
The data model considered in this paper conforms to the
attribute-level model, where each data object o has a set of
possible instance values s 2 o, each with occurrence proba-
bility pðsÞ.

One of the most fundamental types of queries over
uncertain data are spatial queries, since location uncer-
tainty is common in real world applications. Consider, for
example, the data collected by GPS devices and sensors,
where measurement errors are inevitable. Existing spatial
queries that are studied in the context of uncertain data
include range queries [9], nearest neighbor queries [8], [9],
group nearest neighbor queries [10], reverse nearest neigh-
bor queries [11], skyline queries [1], [14], Voronoi diagram
[12] and clustering [31]. Like in this paper, the data model
of uncertain objects adopted by those works are also
defined in euclidean space (often 2D space), and the query
semantics are also defined following the possible world
semantics. The work most related to this paper is [13],
which proposes to find the most likely convex hull (MLCH).
However, the most likely possible world is sometimes not
robust [23], in the sense that its occurrence probability can
still be very small as there are many possible worlds. Our
definition of PCH is more robust, since we require that
each object in the result has a reasonable amount of proba-
bility to be on the convex hull.

Another important branch of queries over uncertain data
are top-k queries. Different semantics are proposed based
on the possible world model, such as U-Topk [22], PT-k [23],
U-popk [25] and PRF [24], where the interplay between
high score and high occurrence probability is defined differ-
ently. Interestingly, U-Topk returns the most probable top-k
tuples that belong to a valid possible world, which is similar
to the idea of defining MLCH. In contrast, PT-k returns all
tuples whose probability values of being in the top-k
answers in possible worlds are above a threshold. The idea
of imposing a probability threshold is also adopted in our
definition of PCH.

2.2 The R-Tree Index

Since our algorithms use the R-tree as a spatial index, we
briefly review the concept of R-tree [27].

Fig. 5 shows a 2D point set P ¼ fp1; p2; . . . ; p12g indexed
by an R-tree assuming a capacity of three entries per node.
Points that are close in space (e.g., p1; p2; p3) are clustered in
the same leaf node (N3). Nodes are then recursively

TABLE 1
Flickr Photo Tags on the Convex Hull

Prob. on Keywords in Tag

Convex Hull

100% alone, hiking, stairs
55% disney
45% butterfly, insect
42.7% flower, park
39.7% outlyingislands, weatherbug, sea, fishmen
34.6% bike
25% beach, sunrise
23.3% lantauisland, hiking, fruit

2. http://www.flickr.com

854 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



grouped together with the same principle until the top level,
which consists of a single root. An intermediate index entry
contains the minimum bounding rectangle of its child node,
together with a pointer to the node. A leaf entry stores the
coordinates of a data point.

3 PROBLEM DEFINITION

In this section, we present our uncertain data model and
formally define the concept of PCH based on the possible
world semantics.

Uncertain data model. We adopt the multi-instance data
model to represent the uncertain objects, which is also used
in previous studies such as [1]. We assume that a database
is composed of a set of uncertain objects O ¼ fo1;
o2; . . . ; ong, and each object oi is represented by a set of mi

instances, which we denote as oi ¼ fsð1Þi ; s
ð2Þ
i ; . . . ; s

ðmiÞ
i g.

Since we only consider 2D objects, each instance is repre-
sented by 2D coordinates ðx; yÞ.

Each object instance si 2 oi is associated with an occur-
rence probability pðsiÞ. To keep our presentation simple, we
assume that (1) the uncertain objects are independent of
each other, and that (2) for each uncertain object, its instan-

ces are mutually exclusive and
Pmi

‘¼1 pðsð‘Þi Þ ¼ 1.

The multi-instance data model is a popular representa-
tion of real-world objects with uncertain attribute values.
For example, in the animal tracking application, an animal
may be detected by different sensors at different locations.
This is because the detection range of a sensor is sensitive to
environmental factors such as changes in temperature and
humidity. In this case, the animal is an object oi whose loca-

tion attribute is depicted by the locations s
ð1Þ
i ; s

ð2Þ
i ; . . . ; s

ðmiÞ
i

of the sensors that detect the animal. If we follow the idea of
probabilistic databases, and regard each object instance as a
tuple, a dataset that conforms to the multi-instance data
model is actually a block-independent-disjoint (BID) data-
base [26]. For those applications where the attribute values
are modeled by a continuous probability density function
(pdf), our model is still applicable: we can draw a certain
number of samples (as instances) for each object according
to the pdf to approximate the true distribution. These sam-

ples have the same occurrence probability pðsiÞ ¼ 1
mi
.

From now on, we assume that for any two different
objects oi and oj, there do not exist two instances si 2 oi and
sj 2 oj referring to exactly the same location. This is because
convex hull is defined over points with different coordinates.
However, this may not hold in real world applications. For

example, different geo-tagged photos on Flickr may have the
same GPS coordinates. In this case, we perturb the location
of each instance by a very small random noise, which is cho-
sen independently for each instance from the same noise dis-
tribution such as Gaussian. Perturbation is a common
technique in computational geometry to handle degenera-
cies [6], and it is unlikely to have two instances with the
same location after the pertubation. On the other hand, since
the noise is very small, its impact on the application seman-
tics is negligible.

Query semantics. We denote by PrCHðoÞ the probability
that object o occurs on the convex hull, and define the PCH
query as follows:

Definition 1. Given a set of objects O, the probabilistic convex
hull query with probability threshold a returns the set of

objects PCHaðOÞ ¼ fo 2 OjPrCHðoÞ � ag.
PCH is a natural extension of traditional convex hull to

the context of uncertain data: when O is deterministic,

PrCHðoÞ is either 0 or 1, and thus PCHaðOÞ contains exactly
those objects on the convex hull of O for arbitrary a 2 ð0; 1�.

One might have the concern that PCH does not capture
the geometric shape of convex hulls. However, the problem
of finding all possible convex hulls, even without the corre-
sponding probabilities, is #P-hard. To circumvent this high
complexity, the work [13] opts to find the most likely convex
hull. The problem with this approach is that, the MLCH has
very small occurrence probability and many objects with

large PrCHðoÞ may not appear in the MLCH. In contrast,
PCH computes, for each uncertain object, the probability
that the object is part of the convex hull, which gives rise to a
more robust result. Our definition of PCH shares a similar
spirit with the previouswork in probabilistic skyline [1], [14].

4 BASELINE ALGORITHM

In this section, we consider how to compute PrCHðoÞ for an
object o 2 O. A na€ıve approach is by evaluating

PrCHðoÞ ¼
X
pw

PrCHðo j pwÞ � pðpwÞ;

where pw is a possible world of O with occurrence probabil-

ity pðpwÞ, and PrCHðo j pwÞ is the probability that o is on the

convex hull in pw. Note that PrCHðo j pwÞ is either 0 or 1.
However, this na€ıve approach is intractable, since there

are
Qn

i¼1 mi possible worlds. We develop a polynomial-
time algorithm to compute PCH, based on a simple obser-
vation about 2D convex hull illustrated by Fig. 1a: each
point pi on the convex hull has a unique successor pj
clockwise, and any other point p0 is either on segment pipj
or in the half plane bounded by line pipj that makes
ffpipjp0 clockwise.

We now describe an OðN3Þ-time algorithm that com-
putes the PCH in 2D euclidean space, whereN ¼Pn

i¼1 mi.

4.1 Baseline Algorithm

To compute the PCH, we compute PrCHðoÞ for all o 2 O,
which consists of three levels to be described next. We will
describe pruning rules that avoid unnecessary probability
computation in Section 5.

Fig. 5. R-Tree Illustration.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 855



Level 1: oi-level. Let us denote by PrCHðsiÞ the (condi-
tional) probability that instance si 2 oi appears on the
convex hull, under the condition that oi occurs as si. By
the law of total probability, we obtain the following
expression:

PrCHðoiÞ ¼
X
si2oi

PrCHðsiÞ � pðsiÞ $ 1

mi

X
si2oi

PrCHðsiÞ; (1)

where the expression after “$ ” refers to the following spe-
cial case: for any object, all its instances carry the same
occurrence probability. For each equation hereafter, we will
show the expression for the special case, right after the
expression for the general case that uses instance probabili-
ties pðsÞ given by the data.

Equation (1) decomposes the computation of PrCHðoiÞ
into the computation of PrCHðsiÞ for all instances si 2 oi,
which we describe next.

Level 2: si-level. We now consider how to compute

PrCHðsiÞ. Let us denote by PrCHðsi ! sjÞ the (conditional)
probability that sj 2 oj occurs as the successor of si 2 oi
clockwise on the convex hull, under the condition that oi
occurs as si and oj occurs as sj. Since the events
fsi ! sj j sj 2 oj; oj 2 O� foigg form a collectively exhaustive
and mutually exclusive partition of the event {oi occurs as si
^ si is on the convex hull}, we obtain

PrCHðsiÞ ¼ Prðsi ! sj j oi ¼ siÞ
¼

X
sj2oj;oj2O�foig

PrCHðsi ! sjÞ � pðsjÞ (2)

$ !
X

sj2oj;oj2O�foig

1

mj
PrCHðsi ! sjÞ: (3)

Equation (2) decomposes the computation of PrCHðsiÞ
into the computation of PrCHðsi ! sjÞ for all sj 2 oj, for all
oj 2 O� foig.

We describe how to compute PrCHðsi ! sjÞ next.
Level 3: sj-level. Fig. 6 illustrates how to compute

PrCHðsi ! sjÞ. Here, si refers to instance a3 of object oi ¼ A,
and sj refers to instance f3 of object oj ¼ F .

For a3 ! f3 to be true, it is obvious that objects B, C, D

and E cannot occur above line a3f3. Specifically, D can only
occur as d4 but not the other three instances, while there is
no requirement for B, C and E, since all their instances are

below line a3f3. Therefore, assume that for any object, all its

instances are equally likely to occur, we have PrCHða3 !
f3Þ ¼ 1� 1� 1

4� 1 ¼ 0:25.

We now formalize the above discussion and present the
equation for computing PrCHðsi ! sjÞ in OðNÞ time. We
first introduce the ccw indicator that decides the validity of
an instance given si ! sj.

Definition 2. Given three points p1 ¼ ðx1; y1Þ, p2 ¼ ðx2; y2Þ and
p3 ¼ ðx3; y3Þ, the ccw indicator of p1, p2 and p3 is defined as
ccwðp1; p2; p3Þ ¼ ðx2 � x1Þ � ðy3 � y1Þ � ðx3 � x1Þ� ðy2 � y1Þ.
The ccw indicator has the following property [6]:

Theorem 1. Given three points p1, p2 and p3, they are in
counter-clockwise order if ccwðp1; p2; p3Þ > 0, in clockwise
order if ccwðp1; p2; p3Þ < 0, and on the same line if ccwðp1;
p2; p3Þ ¼ 0.

Fig. 7a illustrates the underlying idea of Theorem 1,
where line p1p2 divides the whole space into two half-
planes. For a point p3 in the upper half-plane, ccwðp1;
p2; p3Þ > 0; for a point p03 in the lower half-plane, ccwðp1;
p2; p

0
3Þ < 0; for a point p003 on line p1p2, ccwðp1; p2; p003Þ ¼ 0.

We also extend the concept of ccw indicator to deal with
the MBR of a set of points, which is used for R-tree [27]
node pruning.

Definition 3. Given two points p1 ¼ ðx1; y1Þ and p2 ¼ ðx2; y2Þ,
and an MBR M with four vertices a, b, c and d, the ccw indi-
cator of p1, p2 andM is defined as follows:

� ccwðp1; p2;MÞ ¼ 1, if ccwðp1; p2; vÞ > 0 for all
v 2 fa; b; c; dg.

� ccwðp1; p2;MÞ ¼ �1, if ccwðp1; p2; vÞ < 0 for all
v 2 fa; b; c; dg.

� Otherwise, ccwðp1; p2;MÞ ¼ 0.

Fig. 7b illustrates the idea of Definition 3: for an MBR
M ¼ tu abcd which is totally contained in the upper half-
plane, ccwðp1; p2;MÞ ¼ 1 > 0; for an MBR M ¼ tu a0b0c0d0
which is totally contained in the lower half-plane,
ccwðp1; p2;MÞ ¼ �1 < 0; for an MBR M ¼ tu a00b00c00d00 which
intersects with line p1p2, ccwðp1; p2;MÞ ¼ 0.

Now, we are ready to present the computation of

PrCHðsi ! sjÞ. Fig. 8a shows all the three possible cases for

an object o 2 O� foi; oj; okgwhen computing PrCHðsi ! sjÞ,
where we temporarily ignore the possibility that some
object instance lies on line sisj.

Let us define the following set:

Vðsi!sjÞðoÞ ¼ fs 2 o j ccwðsi; sj; sÞ < 0g; (4)

and accordingly, Vðsi!sjÞðoÞ ¼ fs 2 o j ccwðsi; sj; sÞ > 0g. We
omit the subscript si ! sj and use lighter notations V ðoÞ
and V ðoÞwhen si and sj are clear from the context.

Fig. 6. Illustration of Computing PrCHðsi ! sjÞ.

Fig. 7. Illustration of CCW Indicator.

856 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



Intuitively, V ðoÞ is the set of instances s 2 o below line

sisj in Fig. 8a, and V ðoÞ is the set of instances s 2 o above
the line.

We now analyze the three cases in Fig. 8a as follows:

� If there exists an object ot 2 O� foi; ojg, such that

8st 2 ot; st 2 V ðotÞ, then PrCHðsi ! sjÞ ¼ 0 since no
matter which instance of ot occurs, si ! sj is impos-
sible as ffstsisj forms a concave angle already. We
define this case as V ðotÞ-empty.

� If or 2 O� foi; ojg satisfies 8sr 2 or; sr 2 V ðorÞ, then
no matter which instance of or occurs, it does not
contradict with the event si ! sj. We define this case
as V ðorÞ-full.

� If os 2 O� foi; ojg satisfies V ðosÞ 6¼ ; ^ V ðosÞ 6¼ ;,
then in order to make si ! sj hold, os can only occur
as an instance in V ðosÞ. We define this case as
V ðosÞ-valid.

Now, let us take into consideration the special cases
when there exists some instance s 2 o on line sisj. Fig. 8b
illustrates such cases: instance sr is on segment sisj, and its
occurrence does not contradict si ! sj; on the other hand,
instance st occurs on line sisj, but outside of segment sisj,
and its occurrence disqualifies si from being on the convex
hull. Let us define the predicate onSegp1p2ðp3Þ to indicate

whether p3 is on segment p1p2. Then, we extend the defini-
tion of V ðoÞ in Equation (4) to include the special cases
as follows:

V ðoÞ ¼ f s 2 o j ccwðsi; sj; sÞ < 0 _ onSegsisjðsÞg: (5)

Finally, under the condition that si and sj occur, we can
see that si ! sj occurs iff 8o 2 O� foi; ojg, o occurs as an

instance in V ðoÞ. As a result, we compute PrCHðsi ! sjÞ by
the following formula:

PrCHðsi ! sjÞ ¼
Y

ot2O�foi;ojg
Prðst 2 V ðotÞÞ

¼
Y

ot2O�foi;ojg

X
st2V ðotÞ

pðstÞ
0@ 1A (6)

$
Y

ot2O�foi;ojg

jV ðotÞj
mt

: (7)

According to Equation (6), PrCHðsi ! sjÞ can be com-
puted in OðNÞ time. Specifically, for each object ot with mt

instances, V ðotÞ can be obtained by checking each instance

of ot using Equation (5). Each checking takes Oð1Þ time since
both ccwð:Þ and onSegð:Þ operations in Equation (5) take con-
stant time. Therefore, in Equation (6), the summation in the
parentheses takes OðmtÞ time (note that pðstÞ is given in the
data). As a result, Equation (6) requires computing the sum-
mation for each object which takes

P
t OðmtÞ ¼ OðPt mtÞ ¼

OðNÞ time, while computing the product of the summations
of the OðnÞ objects only requires OðnÞ multiplication opera-
tions. Totally, the cost is OðNÞ þOðnÞ ¼ OðNÞ.

Complexity analysis. According to Equation (1), comput-
ing PrCHðoiÞ requires computing PrCHðsiÞ for mi times. By

Equation (2), computing PrCHðsiÞ requires computing

PrCHðsi ! sjÞ for N times. Finally, by Equation (6), comput-

ing each PrCHðsi ! sjÞ takes OðNÞ time. Thus, it takes

Oðmi �N2Þ time to compute each PrCHðoiÞ. Since the com-

putation of PCHaðOÞ requires computing PrCHðoiÞ for at
most all objects oi 2 O, the time complexity isPn

i¼1 Oðmi �N2Þ ¼ OðN3Þ.

5 FOUR-CORNER PRUNING AND BOUNDING

In this section, we first present our spatial indices on the
data. Then, we present our four-corner pruning techniques
that prune objects and instances with zero probability to
occur on the convex hull. The techniques can be employed
to prune the majority of the search space. Finally, we pro-
pose our four-corner upper bounding technique to derive the
upper bounds of PrCHðsiÞ and PrCHðoiÞ, which is effective
in search space pruning when computing PCHaðOÞ.

5.1 Spatial Indices

We first build main-memory spatial indices on the data-
set, to support efficient spatial operations used in our
algorithms. Besides R-tree, we also use aggregate R-tree
(aR-tree) [7], which we describe next. An aR-tree is an
R-tree extended with a specific aggregate function (e.g.
MAX, SUM, COUNT). Each node N of an aR-tree main-
tains the aggregated value computed over all the data
indexed under N .

To support efficient PCH evaluation, we build the fol-
lowing spatial indices on the data:

� Object R-tree TO. Let us denote the MBR of all the
instances s 2 o as o:M. The global object R-tree TO is
bulk-loaded over o:M for all o 2 O.

� Instance aR-tree aRo. For each object o 2 O, we bulk-
load an aggregate R-tree aRo on all the instances
s 2 o, where the aggregate function on node N isP

s2N pðsÞ.
When the instances of any object are equally likely to

occur, we use COUNT as the aggregate function of aRo

instead. We choose aR-trees to index object instances, since

the computation of PrCHðsi ! sjÞ in Equation (6) (or (7))
requires the value of

P
st2V ðotÞ pðstÞ (or jV ðotÞj), and there-

fore, if we know that all instances in node N belong to
V ðotÞ, we can use the aggregate value without accessing the
children ofN .

We now discuss how to compute PrCHðsi ! sjÞ effi-
ciently using our spatial indices. The algorithm is composed
of three steps:

Fig. 8. Different cases of PrCHðsi ! sjÞ computation.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 857



1) Traverse TO to obtain a candidate object set C con-
taining all objects ot 2 O� foi; ojg such that
V ðotÞ-valid holds. If we ever find an object ot such

that V ðotÞ-empty holds, we set PrCHðsi ! sjÞ ¼ 0

directly and terminate.
2) For each ot 2 C, traverse aRot to computeP

st2V ðotÞ pðstÞ (or jV ðotÞj).
3) Compute PrCHðsi ! sjÞ using the following formula:

PrCHðsi ! sjÞ ¼
Y
ot2C

X
st2V ðotÞ

pðstÞ
0@ 1A (8)

$
Y
ot2C

jV ðotÞj
mt

: (9)

Equations (8) and (9) are derived from Equations (6) and
(7). Specifically, Step 1 guarantees that for any object
ot 2 O� foi; ojg, V ðotÞ-empty does not hold. If V ðotÞ-full
holds, we have

P
st2V ðotÞ pðstÞ ¼ 1 (and jV ðotÞjmt

¼ 1) and thus,

the term can be omitted in the product evaluation in Equa-
tions (6) and (7). Otherwise, V ðotÞ-valid holds and ot 2 C,
which is counted in Equations (8) and (9).

5.2 Four-Corner Pruning

We now present our four-corner pruning techniques that
are used to prune objects and instances with zero proba-
bility to occur on the convex hull. The effectiveness of
the pruning techniques are established by the following
two observations:

� If PrCHðolÞ ¼ 0 ðl ¼ i; jÞ, then PrCHðsi ! sjÞ ¼ 0 for
any sl 2 ol;

� If PrCHðslÞ ¼ 0 ðl ¼ i; jÞ, then PrCHðsi ! sjÞ ¼ 0.
This is because, if either si or sj is not on the convex hull,

then si ! sj is impossible. As a result, if we defineeO ¼ fo 2 O j PrCHðoÞ > 0g and eo ¼ fs 2 o j PrCHðsÞ > 0g,
then Equation (1) can be reformulated as

PrCHðoiÞ ¼
X
si2eoi Pr

CHðsiÞ � pðsiÞ $ 1

mi

X
si2eoi Pr

CHðsiÞ; (10)

and Equations (2) and (3) can be reformulated as

PrCHðsiÞ ¼
X

sj2eoj;oj2eO�foigPr
CHðsi ! sjÞ � pðsjÞ (11)

$
X

sj2eoj;oj2eO�foig
1

mj
PrCHðsi ! sjÞ: (12)

In a nutshell, we only need to consider the objects and
instances with non-zero probability to occur on the convex
hull when computing PrCHðoiÞ and PrCHðsiÞ. Moreover,

those objects o with PrCHðoÞ ¼ 0 does not belong to
PCHaðOÞ for any a > 0, and can thus be safely ignored
when computing PCHaðOÞ.

Four-corner pruning rules. Given a rectangle with lower-
left corner ðx1; y1Þ and upper-right corner ðx2; y2Þ, we define
four regions determined by its four corners as follows:

� Region I ¼ fp 2 R2 j p:x 	 x1 ^ p:y � y2g;
� Region II ¼ fp 2 R2 j p:x � x2 ^ p:y � y2g;
� Region III ¼ fp 2 R2 j p:x 	 x1 ^ p:y 	 y1g;
� Region IV ¼ fp 2 R2 j p:x � x2 ^ p:y 	 y1g.
We allow the degenerated case where the rectangle

becomes a point. Figs. 9a (and Fig. 9b) illustrates the idea of
object-level (and instance-level) four-corner pruning. In Fig. 9a
the MBR of object E (denoted E:M) is shown along with the
four regions determined by it. It is clear that A:M, F:M,
B:M and C:M are totally contained in Regions I, II, III and
IV, respectively, and thus any point within the region of
E:M cannot be on the convex hull. This implies that

PrCHðEÞ ¼ 0. Similar reasoning for the instance case shown

in Fig. 9b leads to the conclusion that PrCHðd4Þ ¼ 0.
These observations are formalized by Theorem 2 below:

Theorem 2. Given an object o (or respectively, an instance
s 2 o), if for each of the four regions determined by o:M (or
respectively, s), there exists an object o0 6¼ o such that o0:M is

totally contained in the region, then PrCHðoÞ ¼ 0 (or respec-

tively, PrCHðsÞ ¼ 0).

Proof. Given an object o, itsMBR o:M determines four regions
as shown in Fig. 10. Suppose that there exist four objects o1,
o2, o3 and o4, such that o1:M, o2:M, o3:M and o4:M are
totally contained in Regions I, II, III and IV, respectively.
Then, in any possible world pw, s1, s2, s3 and s4 are totally
contained in Regions I, II, III and IV, respectively.

We now prove that the convex hull in pw is a polygon
that contains o:M, so that any instance s 2 o is not on the
convex hull. Due to the arbitrariness of pw, we would

have PrCHðoÞ ¼ 0.
Let us define O0 ¼ fo1; o2; o3; o4; og. Since O0 
 O, the

convex hull of O0 in pw is a polygon that is contained in
the polygon defined by the convex hull of O in pw. There-
fore, it is sufficient to prove that the polygon defined by
the convex hull of O0 in pw contains o:M.

Fig. 9. Object/Instance-level four-corner pruning.

Fig. 10. Proof of Theorem 2.

858 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



We now prove that the convex hull of O0 in pw, i.e.
polygon s1s2s3s4 in Fig. 10, contains o:M, i.e., rectangle
abcd in Fig. 10. Without loss of generality, we only need
to prove that polygon edge s1s2 is above o:M, or equiva-
lently, above rectangle edge ab. This holds because both
s1:y and s2:y are at least y2, which accomplishes the proof.

The case of instance-level four-corner pruning can be
similarly proved. tu
Our four-corner pruning operation is based on four

range queries on the object R-tree TO. We call such range
queries as the containment queries, which return whether
there exists an object whose MBR is totally contained in the
query region. As long as one of the four containment queries
gives a negative answer (“no contained object”), we return a
negative answer (“cannot prune”) immediately without
evaluating the remaining queries.

In our implementation, four-corner pruning is designed as
a preprocessing step executed only once for each dataset O,
the algorithm of which is shown in Algorithm 1. Our experi-
ments show that Algorithm 1 is able to prune the majority of
the objects and instances.

Algorithm 1. Preprocessing by Four-Corner Pruning

1: for each object o 2 O do

2: o:pruned FourCornerPrune ðoÞ
3: if o:pruned ¼ FALSE then
4: for each instance s 2 o do

5: s:pruned FourCornerPrune ðsÞ

5.3 Four-Corner Upper Bounding

For those non-pruned objects o (or instances s), we can still

bound PrCHðoÞ (or PrCHðsÞ) by using the four-corner tech-
nique. Let us first consider how to compute the upper

bound of PrCHðsÞ for instance s 2 o. Given the four regions
defined by an instance s 2 o, we assume that (1) for each
t 2 fI, II, III, IVg, there exists an object ot with nt of its mt

instances in Region t, that (2) oI, oII, oIII and oIV are different
from each other, and that (3) none of them is o. Then,
instance s is not on the convex hull as long as ot is contained
in Region t (we denote this fact by ot 2 Region t) for all
t 2 fI, II, III, IVg. Therefore, we have:

PrCHðsÞ ¼ 1� PrCHðsÞ
	 1�

Y
t2fI;II;III;IVg

Prðot 2 Region tÞ (13)

¼ 1�
Y

t2fI;II;III;IVg

X
st2Region t

pðstÞ
 !

(14)

$ 1� nI

mI
� nII

mII
� nIII

mIII
� nIV

mIV
: (15)

Equations (14) and (15) give the upper bound of PrCHðsÞ,
which we denote by UBCHðsÞ. In order to make UBCHðsÞ
tight, for each Region t 2 fI, II, III, IVg, we choose objects ot
to maximize

P
st2Region t pðstÞ (or nt=mt). We do not choose

an object that has been chosen before.

Once UBCHðsiÞ is computed for all si 2 oi, according

to Equation (1), we compute the upper bound ofPrCHðoiÞ as:

UBCHðoiÞ ¼
X
si2oi

UBCHðsiÞ � pðsiÞ $ 1

mi

X
si2oi

UBCHðsiÞ: (16)

We call the process of computing UBCHðoÞ for all o 2 eO
using Equation (16) as four-corner upper bounding, which is
also implemented as a preprocessing step, executed imme-
diately after four-corner pruning (cf. Algorithm 1).

Baseline algorithm for computing PCHaðOÞ. After four-cor-
ner pruning & upper bounding are performed, for each non-

pruned object oi 2 eOwith UBCHðoiÞ � a, we use Algorithm 2

to compute PrCHðoiÞ and check whether oi 2 PCHaðOÞ. In
Algorithm 2, we compute PrCHðoiÞ by accumulating the

results of PrCHðsiÞ for all si 2 eoi in Line 4, which is accord-

ing to Equation (10). We also use UBCHðoiÞ and UBCHðsiÞ to
prune oi in Lines 6–7 whenever PrCHðoiÞ < a holds.

Algorithm 2. Evaluation of PrCHðoiÞ for Object oi 2 eO
1: PrCHðoiÞ  0, bound UBCHðoiÞ
2: for each non-pruned instance si 2 eoi do
3: Compute PrCHðsiÞ using Equations (8) and (11)

4: PrCHðoiÞ  PrCHðoiÞ þ pðsiÞ � PrCHðsiÞ
5: bound bound� pðsiÞ � UBCHðsiÞ
6: if boundþ PrCHðoiÞ < a then

7: return oi 62 PCHaðOÞ
8: Add hoi;PrCHðoiÞi to PCHaðOÞ

6 BATCH EVALUATION TECHNIQUE

In Section 4, we introduced our baseline algorithm that com-
putes PrCHðsiÞ by computing PrCHðsi ! sjÞ for OðNÞ times,
each time requiring OðNÞ time. In this section, we show

how to compute PrCHðsiÞ in totally OðNÞ time rather than

OðN2Þ, which implies that the amortized cost of computing

PrCHðsi ! sjÞ is Oð1Þ.
Assume hereafter that si is fixed. Suppose that we have

an oracle Asi that returns PrCHðsi ! sjÞ in Oð1Þ time given

sj, then according to Equations (2) and (3), we can obtain

PrCHðsiÞ in OðNÞ time. We now consider how to construct
and maintain the oracle.

Oracle construction. Given si, its oracle is actually a circu-
lar array (CA) Asi which contains all the instances s 2 o for

all the objects o 2 O� foig. All the OðNÞ instance elements s
are radially ordered such that line sis rotates clockwise
around si. As an example, Fig. 11 illustrates the element
ordering in circular array Ad3 . Note that Ad3 does not con-

tain the instances of objectD.
The key to the construction of Asi is to radially sort the

instance elements clockwise. To achieve this, we
divide the whole 2D space into two half-planes using line
y ¼ si:y. The instance elements of Asi are divided into two

sets: those in the upper half-plane Hu and those in the
lower half-plane H‘. Referring to Fig. 11 again, the

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 859



instance elements of Ad3 are divided into two sets fa2;
a1; f1; f2g and ff3; e2; c1; c2; e1; b2; b3; b1; a3g. In each half
plane, we define a strict total order among the instance
elements of Asi :

Definition 4. 8sr; st 2 Hu (or H‘), sr � st iff ccwðsr; si; stÞ >
0 _ onSegsistðsrÞ.
Definition 4 actually defines the clockwise radial order

for all the instance elements in each half-plane. For example,
in Fig. 11, a1 is before f1 clockwise in Hu because
ccwða1; d3; f1Þ > 0.

After the instance elements in both half-planes are radi-
ally sorted, they are concatenated to form Asi . Thus, the
time complexity of constructing Asi is OðN logNÞ. In

Fig. 11, we mark the ID of each instance in array Ad3 besides

that instance.
Active domain V ðotÞ. To compute PrCHðsi ! sjÞ for all sj,

we iterate sj from Asi ½0� to Asi ½jAsi j � 1�. We denote by ptsj
the ID of the current sj in Asi .

Given si and sj ¼ Asi ½ptsj �, for any object ot 2 O� foi; ojg,
its instance st is in Vsi!sjðotÞ iff ccwðsi; sj; stÞ < 0_
onSegsisjðstÞ. Let us iterate Asi from ptsj clockwise until

reaching the last instance slast ¼ Asi ½ptlast� with ccwðsi;
sj; slastÞ < 0 _ onSegsisjðslastÞ. Then, st 2 V ðotÞ iff st is within

the range wiping from sisj clockwise to sislast. For example,
in Fig. 11, when sj ¼ f1, we have slast ¼ b1 and ptlast ¼ 11.

Initialization of ptlast. Initially, ptsj ¼ 0 and we find the
corresponding ptlast using binary search over Asi ½0; . . . ;
jAsi j � 1�. Specifically, in each iteration, we find the two

clockwise consecutive elements sm1
and sm2

in the middle,

and check ccw1 ¼ ccwðsi; sj; sm1
Þ and ccw2 ¼ ccwðsi; sj; sm2

Þ
as follows: (1) if both values are negative, we rule out the
elements before sm2

; (2) if both values are non-negative, we

rule out the elements after sm1
; and (3) otherwise, we set

slast ¼ sm1
. Therefore, it takes Oðlog NÞ time to find ptlast.

If slast is not found, we know that no instance is within

V ðotÞ (even for Asi ½1�). In this case, PrCHðsi ! sjÞ ¼ 0 and

we set ptlast ¼ 0.
In later computation, as ptsj moves clockwise, ptlast also

moves clockwise and we need no more binary search.
Product. Let us temporarily assume that jV ðotÞj > 0 for

all ot 2 O� foi; ojg. If we define

P ¼
Y
t6¼i

X
st2V ðotÞ

pðstÞ
0@ 1A $

Y
t6¼i

jV ðotÞj
mt

; (17)

then according to Equations (6) and (7), we have

PrCHðsi ! sjÞ ¼ P
. X

sj2V ðojÞ
pðsjÞ $ P

. jV ðojÞj
mj

: (18)

In other words, we can obtain PrCHðsi ! sjÞ in Oð1Þ time
if P is always available. However, in reality, an object ot may
exists such that V ðotÞ-empty holds. In this case, by Equa-
tion (17) we have P ¼ 0 and Equation (18) is no longer valid.
We circumvent this problem by maintaining all objects with
V ðotÞ ¼ ; in a set S0, and redefine P as the product ofP

st2V ðotÞ pðstÞ for those objects that are not V ðotÞ-empty:

P ¼
Y

ot2O�foig:jV ðotÞj> 0

X
st2V ðotÞ

pðstÞ
0@ 1A (19)

$
Y

ot2O�foig:jV ðotÞj> 0

jV ðotÞj
mt

; (20)

Main algorithm. To compute PrCHðsi ! sjÞ for the next sj,
we move ptsj clockwise by setting ptsj  ðptsjþ 1Þmod jAsi j.
In this case, the old sj exits the active domain.

After the new sj ¼ Asi ½ptsj � is updated, we need to set the
corresponding ptlast properly. We achieve this by moving the
old ptlast clockwise one position at a time. Let ptnext ¼ ðptlast þ
1Þmod jAsi j and snext ¼ Asi ½ptnext�, then we stop moving ptlast
if ccwðsi; sj; snextÞ < 0 _ onSegsjsnextðsiÞ. Whenever we

update ptlast, the new slast enters the active domain.
Obtaining probability. Suppose S0 and P are up-to-date,

we obtain PrCHðsi ! sjÞ as follows. Case (1): if jS0j > 1,

PrCHðsi ! sjÞ ¼ 0 since there exists an object ot 6¼ oj such
that V ðotÞ-empty holds. Case (2): if S0 ¼ fojg,
PrCHðsi ! sjÞ ¼ P which involves all objects other than oj

and oi. Case (3): if S0 ¼ fotg but ot 6¼ oj, Pr
CHðsi ! sjÞ ¼ 0

since V ðotÞ-empty holds. Case (4): if S0 ¼ ;, compute

PrCHðsi ! sjÞ using Equation (18).
Active domain maintenance. We now present how to main-

tain S0 and P up-to-date. Specifically, we maintain an array
V such that V ½t� ¼Pst2V ðotÞ pðstÞ. We initialize V by scan-

ning through Asi starting from ptsj ¼ 0.

When an instance sj exits the active domain, we update
V ½oj�  V ½oj� � pðsjÞ. (1) if V ½oj� ¼ 0, we add oj to S0 and set
P P=pðsjÞ to rule out the old factor

P
sj0 2V ðojÞ pðsj0 Þ ¼ pðsjÞ

from P. (2) otherwise, we first rule out the old factor of oj by
setting P P=ðV ½oj� þ pðsjÞÞ, and then incorporate the new
factor by setting P P � V ½oj�.

When an instance st enters the active domain, we update
V ½ot�  V ½ot� þ pðstÞ. (1) if ot 2 S0, we remove ot from S0

and set P P � pðstÞ. (2) otherwise, we first rule out the old
factor of ot by setting P P=ðV ½ot� � pðstÞÞ, and then incor-
porate the new factor by setting P P � V ½ot�.

Complexity analysis. We organize S0 as a balanced binary
search tree. As a result, each enter (or exit) operation takes
at most OðlogNÞ time. Since ptsj (or ptlast) moves for at most

N times, there are at most N exit (or enter) operations, and
thus OðN logNÞ time in total. For each value of ptsj , we

Fig. 11. Oracle Ad3 .

860 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



obtain the probability PrCHðsi ! sjÞ once which takes Oð1Þ
time (in Case (4) we compute P=V ½oj�), and OðNÞ time in
total. Finally, constructing Asi takes OðN log NÞ time.

Therefore, we can compute PrCHðsiÞ in totally OðN log NÞ
time using Equations (2) and (3), and thus PCHaðOÞ in

OðN2 log NÞ time. Note that we only need to construct
oracles for non-pruned instances.

7 GIBBS SAMPLING METHOD

Different applications have different requirements on the
performance of PCH computation. For Flickr photo filtering,
the quality of the photos is more important than the
response time. On the other hand, for animal tracking, short
response time is critical since the readings are collected con-
tinuously, and the PCH should be kept up to date. To sup-
port fast response, we propose to estimate PrCHðoÞ for all
objects o 2 O using Gibbs sampling [16], which usually
takes only several minutes.

Gibbs sampling. Gibbs sampling is a Markov chain Monte
Carlo (MCMC) algorithm for obtaining a sequence of ran-
dom samples from a multivariate probability distribution
pðo1; o2; . . . ; onÞ. The samples can be used to approximate
the joint distribution. Suppose that we aim to obtain k sam-
ples. Gibbs sampling works as follows, where we denote by

o
ðiÞ
j the value of variable oj in the ith sample.

1) We randomly determine the initial values for all var-
iables: Oð0Þ ¼ foð0Þ1 ; o

ð0Þ
2 ; . . . ; oð0Þn g;

2) The ith sample is obtained by sampling o
ðiÞ
j from

the conditional distribution pðoðiÞj joði�1Þ1 ; . . . ; o
ði�1Þ
j�1 ;

o
ði�1Þ
jþ1 ; . . . ; oði�1Þn Þ for j ¼ imodn, and set o

ðiÞ
‘ ¼ o

ði�1Þ
‘

for all ‘ 6¼ j. This is repeated until k samples are
obtained.

Our algorithm. In our data model, each variable oi is now
an uncertain object associated with a probability mass func-
tion (pmf): Prfoi ¼ sig ¼ pðsiÞ. Furthermore, since objects
are independent of each other, the conditional distribution

pðoðiÞj joði�1Þ1 ; . . . ; o
ði�1Þ
j�1 ; o

ði�1Þ
jþ1 ; . . . ; oði�1Þn Þ ¼ pðoðiÞj Þ.

As a result, we obtain a simple Gibbs sampler as follows.
The ith sample is obtained by sampling the instance of oj
using its pmf for j ¼ imodn, while the instances of the other
objects remain unchanged.

To estimate PrCHðoÞ for all objects o 2 O, we maintain a
counter cntðoÞ for each object o. Whenever we obtain a new

sample OðiÞ, we compute its convex hull and increase the
counters of all the objects on the convex hull by one. When

k samples are obtained, we estimate PrCHðoÞ as cntðoÞ=k.
However, it is not efficient to compute the convex hull of

each sample from scratch. Since a new sampleOðiÞ is obtained
from the previous sample Oði�1Þ, by deleting point o

ði�1Þ
j and

inserting point o
ðiÞ
j for j ¼ imodn, we propose to dynamically

maintain the convex hull. We adopt the R-tree based
approach proposed in [17] for convex hull maintenance.3

Accuracy estimation.While cntðoÞ=k is an unbiased estima-

tor of PrCHðoÞ, the accuracy depends on the variance of the
estimation. Clearly, the larger the number of samples k is,
the smaller the variance. One method of variance estimation
is described in [28], which applies the theory of time series.
However, the method requires computing an estimate of
lag-k autocovariance, which is not only expensive to com-
pute, but also requires storing previously sampled dataset
instances. We adopt a much faster convergence check as fol-
lows. We sample 10 non-pruned objects o and compute their

exact value of PrCHðoÞ. This takes just several seconds. Then,
during Gibbs sampling, we periodically (every 1 M sam-
ples) check the median of the 10 estimation errors of

PrCHðoÞ for those samples. Sampling terminates once the
estimated average error is smaller than a user-specified
error threshold t.

8 EXPERIMENTS

In this section, we evaluate the performance of our algo-
rithms for computing PCHaðOÞ using synthetic data sets.

For those applications where the data sets O do not
change frequently, such as Flickr photo filtering, it is desir-

able to pre-compute PrCHðoÞ for all non-pruned objects
o 2 O, so that PCHaðOÞ can be efficiently obtained for arbi-
trary a later on. This problem is equivalent to setting a as
the infinitesimal positive number ", since PCH"ðOÞ ¼ fo 2
O j PrCHðoÞ � "g ¼ fo 2 O j PrCHðoÞ > 0g. A similar prob-
lem was already studied in the context of skyline [14].

Since we find that the performance of our algorithms is
insensitive to instance weights, in all our experiments, we
simply assume that for any object, all its instances have
equal occurrence probability. All our programs were writ-
ten in JAVA, and run on a computer with a 2.13 GHz Intel
CPU and 2 GB memory.

Data generator. To test the scalability of our algorithms,
we designed a data generator with parameters ðn;m; cÞ,
similar to the one used in [1]:

1) For each of the n objects oi 2 O to generate, we first
uniformly pick a center cðoiÞ in an area of
½0; 1� � ½0; 1�.

2) Then, a rectangular region RðoiÞ centered at cðoiÞ is
generated where the instances of oi appear. The
length of each edge of RðoiÞ is generated from the
Guassian distribution with m ¼ c=2 and s ¼ c=8, and
if the generated length falls out of ½0; c�, we repeat its
generation until it falls in ½0; c�.

3) Finally, we generate mi instances uniformly in RðoÞ,
wheremi is picked uniformly from f1; 2; . . . ;mg.

The expected number of instances for each object is m=2,
and the expected size N ¼Pn

i¼1 mi of the generated data is
nm=2. The parameters ðn;m; cÞ of our data generator are
summarized as follows: (1) n specifies the number of uncer-
tain objects, (2) m specifies the average number of instances
per object, and (3) c specifies how scattered the instances of
an object are over the space.

To eliminate the bias of each generated data set, we gen-
erate 10 data sets for each parameter configuration ðn;m; cÞ
in our experiments, and all the results are reported based
on the average of the 10 runs.

3. We remark that Algorithm 3 in [17] is not correct unless the “if”
branch in Line 11 is expanded with an “else” branch: else
minVdistui ¼ 0.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 861



8.1 Performance of Exact Algorithms

From now on, we call Algorithm 2 the Baseline algorithm,
whose time complexity is Oðmi �N2Þ. By replacing Line 3 of

Algorithm 2 with “Compute PrCHðsiÞ using the batch evalu-
ation technique”, we obtain our algorithm that computes

PrCHðoiÞ in Oðmi �N logNÞ time, which we call the Circular
Array algorithm.

Measures. For each data configuration ðn;m; c;aÞ, we
evaluate the following measures.

1) Preprocessing time for R-tree (aR-tree) bulk-loading
and four-corner pruning and upper bounding.

2) Runtime of both BL and CA for evaluating PCH"ðOÞ.
3) Percentage of objects pruned.
4) Percentage of instances pruned over the instances of

all the non-pruned objects.
5) The runtime ratio of BL to CA.
Effect of n on scalability. In this set of experiments, we

fix ðm; c;aÞ ¼ ð20; 0:2; "Þ and study the scalability of BL
and CA as n increases, the results of which is shown in
Fig. 12. Fig. 12a shows the preprocessing time for R-tree
(aR-tree) bulk-loading and four-corner pruning & upper
bounding, and Fig. 12b shows the runtime of BL and CA
for evaluating PCH"ðOÞ. From these figures we can see
that the preprocessing time is negligible compared with
the time of evaluating PCH"ðOÞ, which verifies the effi-
ciency of our four-corner pruning & upper bounding
techniques.

From Fig. 12b, we see that BL is much faster than CA
despite the fact that CA has lower time complexity. This is
because our setting ðm; cÞ ¼ ð20; 0:2Þ is favorable to R-tree
pruning. Specifically, c is small and thus the instances of an
object tends to cluster together. Furthermore, as m is small,
the chance of generating a biased sample is small. Therefore,
object MBRs are small and R-tree pruning is very effective
in this case. On the other hand, when CA processes a non-
pruned instance, it requires a pass over each object instance
in the circular array no matter whether it is pruned or not.
Therefore, CA does not fully utilize the pruning power of
our R-tree index.

Figs. 12c shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 88-97 percent objects and 70-85 percent instances
are pruned. Both object-level and instance-level pruning
ratios increase as n increases, since more objects provide
more chances for four-corner pruning.

Figs. 12d shows the runtime ratio of BL to CA, which
decreases as n increases. This indicates that the advan-
tage of BL over CA is more prominent for large n. This
is because more objects provide more chance for four-
corner pruning.

Effect of m on scalability. In this set of experiments, we fix

ðn; c;aÞ ¼ ð103; 0:2; "Þ and study the scalability of BL and
CA as m increases, the results of which is shown in Fig. 13.
Since the values of m are much larger now, the runtime is
no longer favorable to BL. As Fig. 13b shows, the runtime of
BL is now longer than that of CA, and the better time com-
plexity of CA becomes visible. In fact, as Fig. 13d shows, the
runtime ratio of BL to CA increases as m increases, which
indicates that the advantage of CA over BL is more promi-
nent for largem.

Figs. 12c shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 63-70 percent objects and 47-51 percent instances
are pruned. Both object-level and instance-level pruning
ratios decrease as m increases, since more instances per
object imply larger object MBRs, which in turn imply less
chance for four-corner pruning.

Effect of c on scalability. In this set of experiments, we

fix ðn;m;aÞ ¼ ð104; 40; "Þ and study the scalability of BL
and CA as c increases, the results of which is shown in
Fig. 14. Since the values of c are much larger now, the
runtime is no longer favorable to BL. As Fig. 14b shows,
the runtime of BL is now much longer than that of CA,
and the better time complexity of CA becomes quite
prominent. In fact, CA does not change too much as c
increases, but BL changes sharply. This becomes clearer
in Fig. 14d, where the runtime ratio of BL to CA
increases quickly as C increases. This indicates that the
advantage of CA over BL is prominent for large c.

Fig. 12. Experimental results with varying n.

Fig. 13. Experimental results with varyingm.

862 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



Figs. 14c shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 58-85 percent objects and 70-85 percent instances
are pruned. Interestingly, while the object-level pruning
ratio decreases as c increases due to larger object MBRs, the
instance-level one increases. This is because, for larger c, an
instance of a non-pruned object has more chance to fall in
the central region of the data space, which increases the
chance of its pruning. This positive effect outweighs the
negative one caused by larger object MBRs.

The data sets in our experiments are already reasonably
large. In particular, the largest dataset in the first set of
experiments has expected size nm=2 ¼ 100 k� 20=2 ¼ 1 M.
From the figures, we can see that evaluating PCH"ðOÞ on
large data sets may take hours. However, these cases
involve quite large m and c that are rare in real life applica-
tions, and in our Flickr photo filtering example, PCH"ðOÞ is
computed in less than two seconds. Exact evaluation is
acceptable if the data do not change frequently, such as in
the Flickr photo filtering application.

Effect of a on performance. We also studied the effect of the

threshold parameter a, by fixing ðn;m; cÞ ¼ ð104; 20; 0:2Þ
and varying a. Fig. 15a shows the runtime of BL and CA for
evaluating PCHaðOÞ, and Fig. 15b shows the number of
objects in the result. Both measures decrease superlinearly
as a increases, which demonstrates that there are more low-
probability objects than high-probability ones. Besides, the
runtime shown in Fig. 15a is relatively short, which shows
the effectiveness of our four-corner upper bounding technique
and the practicality of CI for reasonably large threshold val-
ues. In fact, we find that most non-pruned objects have very

small occurrence probabilities (in the order of 10�10 or even
10�20). Besides, Fig. 15a also shows that BL and CA have
similar performance for reasonably large threshold values.

8.2 Performance of the Gibbs Sampling Algorithm

We now study the performance of our Gibbs sampling algo-
rithms. We set a ¼ " in all the subsequent experiments. We
consider two stop conditions for Gibbs sampling. The first
one fixes the number of samples to k, and the second one

adopts the error estimation approach described at the end
of Section 7 using the error threshold t ¼ 5%.

We define the following metrics to evaluate the accuracy

of Gibbs sampling. Let dPrCHðoÞ be the value of PrCHðoÞ esti-
mated by our Gibbs sampling method, the relative error is

given by �� dPrCHðoÞ � PrCHðoÞ�� = max
�
PrCHðoÞ; d�: (21)

Note that if PrCHðoÞ � d, Equation (21) is exactly the rela-
tive error in traditional sense. Our definition of relative
error reduces the influence of objects with very small

PrCHðoÞ in error evaluation. For example, consider an object

o with PrCHðoÞ ¼ 10�10, and suppose that it happens to

appear on the convex hull in one sample of totally k ¼ 107

samples. Then, the traditional relative error is ð10�7�
10�10Þ=10�10 � 103 which is quite large. However, this is
due to the small sample problem (e.g. only one occurrence)

and an object with PrCHðoÞ as small as 10�10 is usually not
interesting. By using Equation (21) and setting d ¼ 0:1%, the

error contribution of that object is mitigated as ð10�7�
10�10Þ=10�3 � 10�4. This definition of relative error is
widely used in existing work such as [30].

In all the experiments, we set d ¼ 0:1% (i.e., we are only

interested in objects o with PrCHðoÞ � 0:1%), and the
reported relative error is averaged over all non-pruned
objects. We do not incorporate pruned objects since

PrCHðoÞ ¼ 0 anyway, and thus, no such sample will be
obtained. For those objects that have 100 percent accuracy,
incorporating them into the averaged relative error will sig-
nificantly decrease the error value.

Clearly, the relative error decreases as more samples
are considered. To show the trend of error decrement
with the number of samples, we generate a dataset with

ðm; c; kÞ ¼ ð20; 0:2; 104Þ and compute the average relative
error after every 1 M samples are obtained. Fig. 16
presents the results, where we can see that the relative
error decreases quickly as the number of samples

Fig. 15. Experimental results with varying a.

Fig. 14. Experimental results with varying c.

Fig. 16. Number of samples vesus relative error.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 863



increases and it is already below 5 percent when 19 M
samples are obtained.

Next, we compare the performance of our sampling
approach that maintains the convex hull incrementally,
with the na€ıve approach that computes the convex hull of
each sample from scratch. Specifically, we generate data
sets with m ¼ 20 and c ¼ 0:2, and vary n from 103 to 104. In
this set of experiments, we fix the number of samples to
20 M, and 10 data sets are generated for each setting of
ðn;m; cÞ. Fig. 17 shows the runtime of both algorithms,
which are averaged over the 10 data sets generated. As the
figure shows, our algorithm that dynamically maintains the
convex hull is consistently 2 to 3 orders of magnitude faster
than the na€ıve approach. In the rest of this section, we only
consider the algorithm that dynamically maintains the con-
vex hull when referring to our Gibbs sampling algorithm.

We now evaluate the effectiveness of different definitions
of convex hull over uncertain data, i.e. PCH defined by us
and MLCH defined in [13] (cf. Section 3). To achieve this
goal, we first generate an uncertain dataset with ðn;m; cÞ ¼
ð104; 20; 0:2Þ, and sample a deterministic object set from it as
the ground truth. We also compute the PCH and MLCH of
this data set, and then compute the precision, recall and F-
measure of them over the ground truth (i.e., objects on the
PCH or MLCH versus objects on the convex hull of the
ground truth data), which are shown in Figs. 18a, 18b, 18c),
respectively. For PCH, we consider PCHaðOÞ for different
values of a computed from both our exact algorithm and
our Gibbs sampling algorithm. On the other hand, MLCH
has no concept of a and is thus a constant in the figures. As
we can see from Fig. 18a, PCH generally has a better preci-
sion than MLCH. Moreover, as Fig. 18b shows, PCH
achieves a recall much higher than 80 percent for a < 0:15,
more than twice that of MLCH. We remark that a high recall
is critical in real life applications as more objects of interest
are covered by the result. Fig. 18c shows that PCH achieves
a much higher F-measure than MLCH when a < 0:25,
which further verifies that PCH is more effective than
MLCH in terms of both precision and recall.

We also studied the scalability of our Gibbs sampling
algorithm with parameters n, m and c, where we fix the
number of samples k to 20 M. We put the experiments in
our online appendix4 due to the space limitation. Our
results show that the algorithm is up to tens of times faster
than the exact algorithm, and it achieves small relative

error for all objects o with non-negligible PrCHðoÞ (e.g.

PrCHðoÞ > 0:1%). Also, when the number of samples is
fixed, the relative error does not change much with varying
m and c, while the error increases almost linearly with n.

9 CONCLUSION

In this paper, we studied the concept of convex hull over
uncertain data, and proposed the probabilistic convex hull
query. We presented a baseline algorithm with OðN3Þ
time complexity to answer the query, and developed the
four-corner pruning & upper bounding techniques that prune
the majority of the search space. We further improved the

time complexity to OðN2 logNÞ using a batch evaluation
technique. Experiments show that the baseline algorithm is
favorable when n is large and m and c are small, while the
batch evaluation technique is more efficient when m and c
becomes large. Finally, we presented our Gibbs sampling
algorithm which dynamically maintains the convex hull,
and demonstrated that it achieves small relative error for all

objects o with non-negligible PrCHðoÞ (i.e. PrCHðoÞ > 0:1%).
The algorithm is able to answer PCH queries of various set-
tings in just a couple of minutes, which is a reasonable
enough response time to supportmany real-life applications.

ACKNOWLEDGMENTS

This research is supported in part by GRF grant HKUST
617610.

REFERENCES

[1] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on
uncertain data,” in Proc. 33rd Int. Conf. Very Large Data Bases, 2007,
pp. 15–26.

[2] S. G. Akl and G. T. Toussaint, “Efficient convex hull algorithms for
pattern recognition applications,” in Proc. Int. Joint Conf. Pattern
Recognit., 1978, pp. 483–487.

[3] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clus-
tering in spatial databases: The algorithm GDBSCAN and its
applications,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 169–194,
Jun. 1998.

Fig. 17. Comparison of Gibbs sampling algorithms.

Fig. 18. Accuracy of PCH and MLCH.

4. http://www.cse.ust.hk/~wilfred/Gibbs/gibbs_appendix.pdf

864 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 3, MARCH 2015



[4] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith, “The onion technique: Indexing for linear optimi-
zation queries,” in Proc. SIGMOD Int. Conf. Manage. Data, 2000,
pp. 391–402.

[5] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline oper-
ator,” in Proc. 17th Int. Conf. Data Eng., 2001, pp. 421–430.

[6] F. P. Preparata and M. I. Shamos, Computational geometry: An intro-
duction. New York, NY, USA: Springer-Verlag, 1985.

[7] I. Lazaridis and S. Mehrotra, “Progressive approximate aggregate
queries with a multi-resolution tree structure,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2001, pp. 401–412.

[8] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying impre-
cise data in moving object environments,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 9, pp. 1112–1127, Sep. 2004.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating prob-
abilistic queries over imprecise data,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2003, pp. 551–562.

[10] X. Lian and L. Chen, “Probabilistic group nearest neighbor
queries in uncertain databases,” IEEE Trans. Knowl. Data Eng.,
vol. 20, no. 6, pp. 809–824, Jun. 2008.

[11] X. Lian and L. Chen, “Efficient processing of probabilistic reverse
nearest neighbor queries over uncertain data,” VLDB J., vol. 18,
no. 3, pp. 787–808, 2009.

[12] R. Cheng, X. Xie, M. L. Yiu, J. Chen, and L. Sun, “UV-Diagram: A
Voronoi diagram for uncertain data,” in Proc. 26th Int. Conf. Data
Eng., 2010, pp. 796–807.

[13] S. Suri, K. Verbeek, and H. Y{ld{z, “On the most likely convex hull
of uncertain points,” in Proc. 21st Annu. Eur. Symp., 2013, pp. 791–
802.

[14] M. Atallah and Y. Qi, “Computing all skyline probabilities for
uncertain data,” in Proc. 28th ACM SIGMOD-SIGACT-SIGART
Symp. Principles Database Syst., 2009, pp. 279–287.

[15] Z. Zhao, D. Yan, and W. Ng, “A probabilistic convex hull query
tool for animal tracking,” in Proc. 15th Int. Conf. Extending Database
Technol., 2012, pp. 570–573.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[17] B. Yao, F. Li, and P. Kumar, “Reverse furthest neighbors in spatial
databases,” in Proc. 25th Int. Conf. Data Eng., 2009, pp. 664–675.

[18] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” VLDB J., vol. 16, no. 4, pp. 523–544, 2007.

[19] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar,
T. Sugihara, and J. Widom, “Trio: A system for data, uncertainty,
and lineage,” in Proc. 32nd Int. Conf. Very Large Data Bases, 2006,
pp. 1151–1154.

[20] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabi-
listic queries over imprecise data,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2003, pp. 551–562.

[21] L. Antova, C. Koch, and D. Olteanu, “From complete to incom-
plete information and back,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2007, pp. 713–724.

[22] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query proc-
essing in uncertain databases,” in Proc. 25th Int. Conf. Data Eng.,
2007, pp. 896–905.

[23] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncer-
tain data: A probabilistic threshold approach,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2008, pp. 673–686.

[24] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking
in probabilistic databases,” VLDB J., vol. 20, no. 2, pp. 249–275,
2009.

[25] D. Yan and W. Ng, “Robust ranking of uncertain data,” in Proc.
16th Int. Conf. Database Syst. Adv. Appl., 2011, pp. 254–268.

[26] D. Suciu, D. Olteanu, C. R�e, and C. Koch, Probabilistic Databases
(Synthesis Lectures on Data Management). San Rafael, CA, USA:
Morgan & Claypool Publishers, 2011.

[27] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984,
pp. 47–57.

[28] B. Walsh, “Markov chain Monte Carlo and Gibbs Sampling,” Lec-
ture Notes for EEB 581, 2004.

[29] D. Yan, Z. Zhao, and W. Ng, “Leveraging read rates of passive
RFID tags for real-time indoor location tracking,” in Proc. 21st
ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 375–384.

[30] X. Xiao, G. Bender, M. Hay, and J. Gehrke, “iReduct: Differential
privacy with reduced relative errors,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2011, pp. 229–240.

[31] W. K. Ngai, B. Kao, C. K. Chun, R. Cheng, M. Chau, and K. Y. Yip,
“Efficient clustering of uncertain data,” in Proc. 6th Int. Conf. Data
Mining, 2006, pp. 436–445.

Da Yan received the BS degree in computer sci-
ence from Fudan University, Shanghai, in 2009,
and the PhD degree in computer science from
the Hong Kong University of Science and Tech-
nology. He is currently a postdoctoral fellow in
the Department of Computer Science and Engi-
neering, the Chinese University of Hong Kong.
His research interests include big data, spatial
data management, uncertain data management,
and data mining.

Zhou Zhao received the BS degree in computer
science from the Hong Kong University of Sci-
ence and Technology (HKUST), in 2010. He is
currently working toward the PhD degree in the
Department of Computer Science and Engineer-
ing, HKUST. His research interests include data
cleansing and data mining.

Wilfred Ng received the MSc (Distinction) and
PhD degrees in computer science from the Uni-
versity of London. Currently, he is an associate
professor of computer science and engineering
at the Hong Kong University of Science and
Technology, where he is a member of the data-
base research group. His research interests
are in the areas of databases, data mining, and
information Systems, which include Web data
management and XML searching. Further
Information can be found at the following URL:

http://www.cs.ust.hk/faculty/wilfred/index.html.

Steven Liu received the BEng degree in com-
puter science from the Hong Kong University of
Science and Technology, in 2012. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science, Stony Brook Univer-
sity. His research interests include wireless
sensor network and computational topology.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 865



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


