Probabilistic Convex Hull Queries over Uncertain Data

Da Yan, Zhou Zhao, Wilfred Ng, and Steven Liu

Abstract

The convex hull of a set of two-dimensional points, P, is the minimal convex polygon that contains all the points in P. Convex hull is important in many applications such as GIS, statistical analysis and data mining. Due to the ubiquity of data uncertainty such as location uncertainty in real-world applications, we study the concept of convex hull over uncertain data in 2D space. We propose the Probabilistic Convex Hull (PCH) query and demonstrate its applications, such as Flickr landscape photo extraction and activity region visualization, where location uncertainty is incurred by GPS devices or sensors. To tackle the problem of possible world explosion, we develop an $O\left(N^{3}\right)$ algorithm based on geometric properties, where N is the data size. We further improve this algorithm with spatial indices and effective pruning techniques, which prune the majority of data instances. To achieve better time complexity, we propose another $O\left(N^{2} \log N\right)$ algorithm, by maintaining a probability oracle in the form of a circular array with nice properties. Finally, to support applications that require fast response, we develop a Gibbs-sampling-based approximation algorithm which efficiently finds the PCH with high accuracy. Extensive experiments are conducted to verify the efficiency of our algorithms for answering PCH queries.

Index Terms-Convex hull, uncertain data, Gibbs sampling

1 Introduction

CONVEX hull is a geometric concept that is fundamental to a wide spectrum of applications, including pattern recognition [2], cluster analysis [3] and linear optimization [4]. In 2D plane, the convex hull of a set of points, P, is the minimal convex polygon that contains all the points in P. Fig. 1a illustrates the concept of convex hull, where solid points are those on the convex hull and hollow ones are not. In this work, we focus on objects with 2D location uncertainty, which are common in geo-spatial applications [8].

Convex hull in 2D space. Let n be the number of points in set P. We consider the non-degenerated case with $n>1$. Referring to Fig. 1a again, if we order the points on the convex hull clockwise, then each point p_{i} has a successor $\operatorname{succ}\left(p_{i}\right)=p_{j}$, or equivalently, each point p_{j} has a predecessor $\operatorname{pred}\left(p_{j}\right)=p_{i}$. Notably, even though p^{\prime} is on segment $p_{i} p_{j}$, it is not a point on the convex hull as it does not decide the polygon shape.

A lot of algorithms have been proposed for convex hull computation, such as Andrew's Monotone Chain algorithm [6], which finds the convex hull of a set of 2D points in $O(n \log n)$ time. Existing algorithms assume that data points are certain. However, data collected in real applications may be imprecise due to environment factors, device limitations and privacy issues. This is especially true for those real-life applications involving 2D location uncertainty. For

- D. Yan, Z. Zhao, and W. Ng are with the Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
E-mail: \{yanda, zhaozhou, wilfred\}@cse.ust.hk.
- S. Liu is with the Department of Computer Science, Stony Brook University. E-mail: kiliu@cs.stonybrook.edu.
Manuscript received 6 Nov. 2013; revised 10 July 2014; accepted 11 July 2014. Date of publication 16 July 2014; date of current version 28 Jan. 2015.
Recommended for acceptance by D. Olteanu.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2340408
example, in an RFID indoor positioning and tracking system, RFID readers are deployed at fixed indoor positions [29]. If a person walks close to a reader, he/she will be detected by the reader and the system decides that the person is at the location near the reader. However, since the detection range of RFID readers changes continuously with environment factors, the person may also be detected by another reader a little bit farther away, causing location uncertainty. Another example is animal tracking [15], where sensors are deployed in the wild, and animals are implanted with microchips indicating their identities. An animal may be detected by several nearby sensors at different locations within some time period, causing location uncertainty.

Probabilistic convex hull (PCH). In this paper, we propose the concept of probabilistic convex hull over a set of objects that are specified by uncertain 2D coordinates, and design efficient algorithms for PCH evaluation. We now illustrate the concept of PCH using a set of six uncertain objects $A-F$ shown in Fig. 2a, where each object has several location instances that represent its possible position. For example, object A may occur at location a_{1}, a_{2} or a_{3}. Each uncertain object has a certain probability to be on the convex hull. For example, Figs. $2 b$ and 2c illustrate two possible worlds of the uncertain object dataset presented in Fig. 2a. In the first possible world, object A is not on the convex hull and object D is on the convex hull; while in the second possible world, object A is on the convex hull and object D is not.

We study how to compute the probability that an object o is on the convex hull, denoted as $\operatorname{Pr}^{C H}(o)$. Given a userspecified probability threshold α, we also study how to find all the objects with $\operatorname{Pr}^{C H}(o) \geq \alpha$, which compose the PCH .

Motivations. As a fundamental geometric operation, computing convex hull in the presence of data uncertainty is an important research problem in its own right. While this problem is not well explored yet, many other fundamental

Fig. 1. Convex hull and MBR in 2D plane.

Fig. 2. Uncertain object DB \& two possible worlds.
geometric operations have already been studied over uncertain data, such as range queries [9], nearest neighbor (NN) queries [8], [9], group nearest neighbor queries [10], reverse nearest neighbor queries [11], skyline queries [1], [14], Voronoi diagram [12] and clustering [31].

Besides, PCH query is especially useful for spatial applications involving 2D location uncertainty, since it finds objects that are very likely to be on the boundary of an object set. By posing PCH queries over objects satisfying different constraints, we are able to visualize the spatial relationship between different sets of objects. We have developed a system for PCH visualization in the application of animal tracking [15], where animals on PCHs are highlighted so that the boundary of a region that a species spans becomes apparent.

Fig. 3 shows two PCH results displayed by the animal tracking system [15], for the animal tracking data of two species, Pacific bluefin tuna and Northern elephant seal, collected from GTOPP. ${ }^{1}$ The locations of a tuna (or respectively, a seal) are marked green (or respectively, blue) if $\operatorname{Pr}^{C H}(o)=0$, and they are marked pink (or respectively, yellow) if $\operatorname{Pr}^{C H}(o)>0$. As Fig. 3 shows, the habitats of both species exhibit a high spatial correlation. This observation helps

Fig. 3. Visualization of the habitats of two species.

Fig. 4. Problem with centroid-based method.
zoologists to explore the potential relationships between the two species, such as the predator-prey relationship.

In the above example, the PCH nicely characterizes the boundary of animal habitats. As a comparison, we also show the minimum bounding rectangle (MBR) of all locations of the tuna species (and respectively, the seal species) in Fig. 3. Apparently, MBR covers a much larger region than the actual habitats, and is not sufficiently descriptive on the habitat shape. Moreover, even without data uncertainty, there are at most four points on the MBR boundary in most cases, one on each edge of the MBR (see Fig. 1b). When data uncertainty exists, the MBR is even less expressive as the few points on the MBR boundary are not even 100 percent certain. In our Flickr photo filtering application, MBR finds at most four photos in most case, and some of them may not be about natural landscapes.

Also note that the simple method of (1) finding the centroid of the instances for each object, and then (2) computing the convex hull of the centroids, cannot serve the same purpose as PCH queries. We now show a counterexample using the object set presented in Fig. 4a: no matter where the location of D is (i.e. at d_{1}, d_{2} or d_{3}), it is always on the convex hull; however, as shown in Fig. 4b, the instance centroid of object D is not on the convex hull. Thus, probability plays an important role in expressing the boundary of an uncertain object set.

In addition to visualizing the spatial distribution of an object set selected by non-spatial constraints, PCH queries can also be employed to find useful non-spatial information from an object set selected by spatial constraints. An example of such an application is Flickr photo filtering, which we describe next.

Flickr photo filtering. Suppose that one wants to collect some photos about the landscape of Hong Kong from the web. Searching by non-spatial constraints like keywords is not very effective. For example, keywords "Hong Kong" may end up returning photos about stylish shopping malls, while expanding the search by "landscape" may have a poor

TABLE 1
Flickr Photo Tags on the Convex Hull
Prob. on
Keywords in Tag
Convex Hull

100%	alone, hiking, stairs
55%	disney
45%	butterfly, insect
42.7%	flower, park
39.7%	outlyingislands, weatherbug, sea, fishmen
34.6%	bike
25%	beach, sunrise
23.3%	lantauisland, hiking, fruit

recall, as many relevant photos are tagged by other words like "hiking".

We observe that natural landscapes are mostly found in the outskirt of Hong Kong, and successfully find many landscape photos using an PCH query over the geo-tagged photos crawled from Flicker. ${ }^{2}$ Specifically, we use Flickr API to obtain the collection of geo-tagged photos in Hong Kong, using a circular query window with Victoria Peak as the center and a 25 km radius.

Flickr users usually tag a collection of photos they take in a trip with the same set of keywords. Moreover, the locations geo-tagged by these photos exhibit spatial locality. Therefore, we regard each tag as an uncertain object, and regard its corresponding geo-tagged photos as its instances. Our proposed algorithm computes all those objects o with $\operatorname{Pr}{ }^{C H}(o)>0$ in seconds. Table 1 illustrates some obtained objects in the result. For example, the first tag has $\operatorname{Pr}{ }^{C H}(o)=$ 100% and all its corresponding photos are about mountain trails for hiking; while the last tag has $\operatorname{Pr}^{\mathrm{CH}}(o)=23.3 \%$ and most of its corresponding photos are about the landscapes in an island called Lantau.

Contributions. We summarize our contributions as follows:

- We propose and formally define the concept of probabilistic convex hull over a set of uncertain objects.
- A polynomial-time algorithm is proposed to compute PCH over an uncertain database of size N, whose time complexity is $O\left(N^{3}\right)$. The algorithm is able to tackle the problem of "possible world explosion", and its efficiency is further boosted by our effective pruning techniques.
- A batch-evaluation technique is developed that improves the time complexity to $O\left(N^{2} \log N\right)$.
- To support fast response, we develop an approximation algorithm based on Gibbs sampling, which efficiently finds the PCH with reasonable accuracy.
Organization. The rest of the paper is organized as follows: we review the related work in Section 2. Our uncertain data model and the concept of PCH are formally defined in Section 3. In Section 4, we present our baseline (BL) algorithm for computing PCH. Then, several effective pruning techniques are introduced in Section 5. Our batchevaluation technique is described in Section 6, and the

2. http://www.flickr.com

Gibbs sampling method is presented in Section 7. Finally, we report the experimental results on efficiency in Section 8, and conclude our paper in Section 9.

2 Related Work

2.1 Queries over Uncertain Data

Recent research proposes to consider uncertainty as a "firstclass citizen" in a DBMS. Various probabilistic DBMSs have already been developed to support the storage and querying of these uncertain data, including MystiQ [18], Trio [19], ORION [20], MayBMS [21]. Two models are popular in representing uncertain data: tuple-level uncertainty model where each database tuple has an occurrence probability, and attribute-level uncertainty model where the value of each data object is specified by a probability distribution. The data model considered in this paper conforms to the attribute-level model, where each data object o has a set of possible instance values $s \in o$, each with occurrence probability $p(s)$.

One of the most fundamental types of queries over uncertain data are spatial queries, since location uncertainty is common in real world applications. Consider, for example, the data collected by GPS devices and sensors, where measurement errors are inevitable. Existing spatial queries that are studied in the context of uncertain data include range queries [9], nearest neighbor queries [8], [9], group nearest neighbor queries [10], reverse nearest neighbor queries [11], skyline queries [1], [14], Voronoi diagram [12] and clustering [31]. Like in this paper, the data model of uncertain objects adopted by those works are also defined in euclidean space (often 2D space), and the query semantics are also defined following the possible world semantics. The work most related to this paper is [13], which proposes to find the most likely convex hull (MLCH). However, the most likely possible world is sometimes not robust [23], in the sense that its occurrence probability can still be very small as there are many possible worlds. Our definition of PCH is more robust, since we require that each object in the result has a reasonable amount of probability to be on the convex hull.

Another important branch of queries over uncertain data are top- k queries. Different semantics are proposed based on the possible world model, such as U-Top k [22], PT- k [23], U-popk [25] and PRF [24], where the interplay between high score and high occurrence probability is defined differently. Interestingly, U-Top k returns the most probable top- k tuples that belong to a valid possible world, which is similar to the idea of defining MLCH. In contrast, PT- k returns all tuples whose probability values of being in the top- k answers in possible worlds are above a threshold. The idea of imposing a probability threshold is also adopted in our definition of PCH.

2.2 The R-Tree Index

Since our algorithms use the R-tree as a spatial index, we briefly review the concept of R-tree [27].

Fig. 5 shows a 2D point set $P=\left\{p_{1}, p_{2}, \ldots, p_{12}\right\}$ indexed by an R-tree assuming a capacity of three entries per node. Points that are close in space (e.g., p_{1}, p_{2}, p_{3}) are clustered in the same leaf node $\left(N_{3}\right)$. Nodes are then recursively

Fig. 5. R-Tree Illustration.
grouped together with the same principle until the top level, which consists of a single root. An intermediate index entry contains the minimum bounding rectangle of its child node, together with a pointer to the node. A leaf entry stores the coordinates of a data point.

3 Problem Definition

In this section, we present our uncertain data model and formally define the concept of PCH based on the possible world semantics.

Uncertain data model. We adopt the multi-instance data model to represent the uncertain objects, which is also used in previous studies such as [1]. We assume that a database is composed of a set of uncertain objects $O=\left\{o_{1}\right.$, $\left.o_{2}, \ldots, o_{n}\right\}$, and each object o_{i} is represented by a set of m_{i} instances, which we denote as $o_{i}=\left\{s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{\left(m_{i}\right)}\right\}$. Since we only consider 2D objects, each instance is represented by 2D coordinates (x, y).

Each object instance $s_{i} \in o_{i}$ is associated with an occurrence probability $p\left(s_{i}\right)$. To keep our presentation simple, we assume that (1) the uncertain objects are independent of each other, and that (2) for each uncertain object, its instances are mutually exclusive and $\sum_{\ell=1}^{m_{i}} p\left(s_{i}^{(\ell)}\right)=1$.

The multi-instance data model is a popular representation of real-world objects with uncertain attribute values. For example, in the animal tracking application, an animal may be detected by different sensors at different locations. This is because the detection range of a sensor is sensitive to environmental factors such as changes in temperature and humidity. In this case, the animal is an object o_{i} whose location attribute is depicted by the locations $s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{\left(m_{i}\right)}$ of the sensors that detect the animal. If we follow the idea of probabilistic databases, and regard each object instance as a tuple, a dataset that conforms to the multi-instance data model is actually a block-independent-disjoint (BID) database [26]. For those applications where the attribute values are modeled by a continuous probability density function (pdf), our model is still applicable: we can draw a certain number of samples (as instances) for each object according to the pdf to approximate the true distribution. These samples have the same occurrence probability $p\left(s_{i}\right)=\frac{1}{m_{i}}$.

From now on, we assume that for any two different objects o_{i} and o_{j}, there do not exist two instances $s_{i} \in o_{i}$ and $s_{j} \in o_{j}$ referring to exactly the same location. This is because convex hull is defined over points with different coordinates. However, this may not hold in real world applications. For
example, different geo-tagged photos on Flickr may have the same GPS coordinates. In this case, we perturb the location of each instance by a very small random noise, which is chosen independently for each instance from the same noise distribution such as Gaussian. Perturbation is a common technique in computational geometry to handle degeneracies [6], and it is unlikely to have two instances with the same location after the pertubation. On the other hand, since the noise is very small, its impact on the application semantics is negligible.

Query semantics. We denote by $\operatorname{Pr}^{C H}(o)$ the probability that object o occurs on the convex hull, and define the PCH query as follows:
Definition 1. Given a set of objects O, the probabilistic convex hull query with probability threshold α returns the set of objects $P C H_{\alpha}(O)=\left\{o \in O \mid \operatorname{Pr}^{C H}(o) \geq \alpha\right\}$.
PCH is a natural extension of traditional convex hull to the context of uncertain data: when O is deterministic, $\mathrm{Pr}^{C H}(o)$ is either 0 or 1 , and thus $P C H_{\alpha}(O)$ contains exactly those objects on the convex hull of O for arbitrary $\alpha \in(0,1]$.

One might have the concern that PCH does not capture the geometric shape of convex hulls. However, the problem of finding all possible convex hulls, even without the corresponding probabilities, is \#P-hard. To circumvent this high complexity, the work [13] opts to find the most likely convex hull. The problem with this approach is that, the MLCH has very small occurrence probability and many objects with large $\operatorname{Pr}^{C H}(o)$ may not appear in the MLCH. In contrast, PCH computes, for each uncertain object, the probability that the object is part of the convex hull, which gives rise to a more robust result. Our definition of PCH shares a similar spirit with the previous work in probabilistic skyline [1], [14].

4 Baseline Algorithm

In this section, we consider how to compute $\operatorname{Pr}^{C H}(o)$ for an object $o \in O$. A naïve approach is by evaluating

$$
\mathrm{Pr}^{C H}(o)=\sum_{p w} \mathrm{Pr}^{C H}(o \mid p w) \cdot p(p w),
$$

where $p w$ is a possible world of O with occurrence probability $p(p w)$, and $\operatorname{Pr}^{C H}(o \mid p w)$ is the probability that o is on the convex hull in $p w$. Note that $\operatorname{Pr}^{C H}(o \mid p w)$ is either 0 or 1 .

However, this naïve approach is intractable, since there are $\prod_{i=1}^{n} m_{i}$ possible worlds. We develop a polynomialtime algorithm to compute PCH, based on a simple observation about 2D convex hull illustrated by Fig. 1a: each point p_{i} on the convex hull has a unique successor p_{j} clockwise, and any other point p^{\prime} is either on segment $p_{i} p_{j}$ or in the half plane bounded by line $\overline{p_{i} p_{j}}$ that makes $\angle p_{i} p_{j} p^{\prime}$ clockwise.

We now describe an $O\left(N^{3}\right)$-time algorithm that computes the PCH in 2D euclidean space, where $N=\sum_{i=1}^{n} m_{i}$.

4.1 Baseline Algorithm

To compute the PCH, we compute $\operatorname{Pr}^{C H}(o)$ for all $o \in O$, which consists of three levels to be described next. We will describe pruning rules that avoid unnecessary probability computation in Section 5.

Fig. 6. Illustration of Computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$.
Level 1: o o-level. Let us denote by $\operatorname{Pr}^{C H}\left(s_{i}\right)$ the (conditional) probability that instance $s_{i} \in o_{i}$ appears on the convex hull, under the condition that o_{i} occurs as s_{i}. By the law of total probability, we obtain the following expression:

$$
\begin{equation*}
\operatorname{Pr}^{C H}\left(o_{i}\right)=\sum_{s_{i} \in o_{i}} \operatorname{Pr}^{C H}\left(s_{i}\right) \cdot p\left(s_{i}\right) \stackrel{1}{m_{i}} \sum_{s_{i} \in o_{i}} \operatorname{Pr}^{C H}\left(s_{i}\right), \tag{1}
\end{equation*}
$$

where the expression after "ㅇ" refers to the following special case: for any object, all its instances carry the same occurrence probability. For each equation hereafter, we will show the expression for the special case, right after the expression for the general case that uses instance probabilities $p(s)$ given by the data.

Equation (1) decomposes the computation of $\operatorname{Pr}^{C H}\left(o_{i}\right)$ into the computation of $\operatorname{Pr}{ }^{C H}\left(s_{i}\right)$ for all instances $s_{i} \in o_{i}$, which we describe next.

Level 2: s_{i}-level. We now consider how to compute $\operatorname{Pr}^{C H}\left(s_{i}\right)$. Let us denote by $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ the (conditional) probability that $s_{j} \in o_{j}$ occurs as the successor of $s_{i} \in o_{i}$ clockwise on the convex hull, under the condition that o_{i} occurs as s_{i} and o_{j} occurs as s_{j}. Since the events $\left\{s_{i} \rightarrow s_{j} \mid s_{j} \in o_{j}, o_{j} \in O-\left\{o_{i}\right\}\right\}$ form a collectively exhaustive and mutually exclusive partition of the event $\left\{o_{i}\right.$ occurs as s_{i} $\wedge s_{i}$ is on the convex hull\}, we obtain

$$
\begin{align*}
\operatorname{Pr}^{C H}\left(s_{i}\right) & =\operatorname{Pr}\left(s_{i} \rightarrow s_{j} \mid o_{i}=s_{i}\right) \\
& =\sum_{s_{j} \in o_{j}, o_{j} \in O-\left\{o_{i}\right\}} \operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) \cdot p\left(s_{j}\right) \tag{2}\\
& \ddots \sum_{s_{j} \in o_{j}, o_{j} \in O-\left\{o_{i}\right\}} \frac{1}{m_{j}} \operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) . \tag{3}
\end{align*}
$$

Equation (2) decomposes the computation of $\operatorname{Pr}^{C H}\left(s_{i}\right)$ into the computation of $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ for all $s_{j} \in o_{j}$, for all $o_{j} \in O-\left\{o_{i}\right\}$.

We describe how to compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ next.
Level 3: s_{j}-level. Fig. 6 illustrates how to compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$. Here, s_{i} refers to instance a_{3} of object $o_{i}=A$, and s_{j} refers to instance f_{3} of object $o_{j}=F$.

For $a_{3} \rightarrow f_{3}$ to be true, it is obvious that objects B, C, D and E cannot occur above line $\overline{a_{3} f_{3}}$. Specifically, D can only occur as d_{4} but not the other three instances, while there is no requirement for B, C and E, since all their instances are below line $\overline{a_{3} f_{3}}$. Therefore, assume that for any object, all its

(a)

(b)

Fig. 7. Illustration of CCW Indicator.
instances are equally likely to occur, we have $\operatorname{Pr}^{C H}\left(a_{3} \rightarrow\right.$ f_{3}) $=1 \times 1 \times \frac{1}{4} \times 1=0.25$.

We now formalize the above discussion and present the equation for computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ in $O(N)$ time. We first introduce the ccw indicator that decides the validity of an instance given $s_{i} \rightarrow s_{j}$.

Definition 2. Given three points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right)$ and $p_{3}=\left(x_{3}, y_{3}\right)$, the ccw indicator of p_{1}, p_{2} and p_{3} is defined as $\operatorname{ccw}\left(p_{1}, p_{2}, p_{3}\right)=\left(x_{2}-x_{1}\right) \cdot\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right) \cdot\left(y_{2}-y_{1}\right)$.
The ccw indicator has the following property [6]:
Theorem 1. Given three points p_{1}, p_{2} and p_{3}, they are in counter-clockwise order if $\operatorname{ccw}\left(p_{1}, p_{2}, p_{3}\right)>0$, in clockwise order if $\operatorname{ccw}\left(p_{1}, p_{2}, p_{3}\right)<0$, and on the same line if $\operatorname{ccw}\left(p_{1}\right.$, $\left.p_{2}, p_{3}\right)=0$.
Fig. 7a illustrates the underlying idea of Theorem 1, where line $\overline{p_{1} p_{2}}$ divides the whole space into two halfplanes. For a point p_{3} in the upper half-plane, $\operatorname{ccw}\left(p_{1}\right.$, $\left.p_{2}, p_{3}\right)>0$; for a point p_{3}^{\prime} in the lower half-plane, $\operatorname{ccw}\left(p_{1}\right.$, $\left.p_{2}, p_{3}^{\prime}\right)<0$; for a point $p_{3}^{\prime \prime}$ on line $\overline{p_{1} p_{2}}, c c w\left(p_{1}, p_{2}, p_{3}^{\prime \prime}\right)=0$.

We also extend the concept of ccw indicator to deal with the MBR of a set of points, which is used for R-tree [27] node pruning.

Definition 3. Given two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$, and an MBR M with four vertices a, b, c and d, the ccw indicator of p_{1}, p_{2} and M is defined as follows:

- $\operatorname{ccw}\left(p_{1}, p_{2}, M\right)=1$, if $\operatorname{ccw}\left(p_{1}, p_{2}, v\right)>0$ for all $v \in\{a, b, c, d\}$.
- $\operatorname{ccw}\left(p_{1}, p_{2}, M\right)=-1$, if $\operatorname{ccw}\left(p_{1}, p_{2}, v\right)<0$ for all $v \in\{a, b, c, d\}$.
- Otherwise, $\operatorname{ccw}\left(p_{1}, p_{2}, M\right)=0$.

Fig. 7b illustrates the idea of Definition 3: for an MBR $M=\square a b c d$ which is totally contained in the upper halfplane, $\operatorname{ccw}\left(p_{1}, p_{2}, M\right)=1>0$; for an MBR $M=\square a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ which is totally contained in the lower half-plane, $\operatorname{ccw}\left(p_{1}, p_{2}, M\right)=-1<0$; for an MBR $M=\square a^{\prime \prime} b^{\prime \prime} c^{\prime \prime} d^{\prime \prime}$ which intersects with line $\overline{p_{1} p_{2}}, \operatorname{ccw}\left(p_{1}, p_{2}, M\right)=0$.

Now, we are ready to present the computation of $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$. Fig. 8a shows all the three possible cases for an object $o \in O-\left\{o_{i}, o_{j}, o_{k}\right\}$ when computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$, where we temporarily ignore the possibility that some object instance lies on line $\overline{s_{i} s_{j}}$.

Let us define the following set:

$$
\begin{equation*}
V_{\left(s_{i} \rightarrow s_{j}\right)}(o)=\left\{s \in o \mid \operatorname{ccw}\left(s_{i}, s_{j}, s\right)<0\right\}, \tag{4}
\end{equation*}
$$

and accordingly, $\overline{V_{\left(s_{i} \rightarrow s_{j}\right)}(o)}=\left\{s \in o \mid \operatorname{ccw}\left(s_{i}, s_{j}, s\right)>0\right\}$. We omit the subscript $s_{i} \rightarrow s_{j}$ and use lighter notations $V(o)$ and $\overline{V(o)}$ when s_{i} and s_{j} are clear from the context.

Fig. 8. Different cases of $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ computation.
Intuitively, $V(o)$ is the set of instances $s \in o$ below line $\overline{s_{i} s_{j}}$ in Fig. 8a, and $\overline{V(o)}$ is the set of instances $s \in o$ above the line.

We now analyze the three cases in Fig. 8a as follows:

- If there exists an object $o_{t} \in O-\left\{o_{i}, o_{j}\right\}$, such that $\forall s_{t} \in o_{t}, s_{t} \in \overline{V\left(o_{t}\right)}$, then $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ since no matter which instance of o_{t} occurs, $s_{i} \rightarrow s_{j}$ is impossible as $\angle s_{t} s_{i} s_{j}$ forms a concave angle already. We define this case as $V\left(o_{t}\right)$-empty.
- If $o_{r} \in O-\left\{o_{i}, o_{j}\right\}$ satisfies $\forall s_{r} \in o_{r}, s_{r} \in V\left(o_{r}\right)$, then no matter which instance of o_{r} occurs, it does not contradict with the event $s_{i} \rightarrow s_{j}$. We define this case as $V\left(o_{r}\right)$-full.
- If $o_{s} \in O-\left\{o_{i}, o_{j}\right\}$ satisfies $V\left(o_{s}\right) \neq \emptyset \wedge \overline{V\left(o_{s}\right)} \neq \emptyset$, then in order to make $s_{i} \rightarrow s_{j}$ hold, o_{s} can only occur as an instance in $V\left(o_{s}\right)$. We define this case as $V\left(o_{s}\right)$-valid.
Now, let us take into consideration the special cases when there exists some instance $s \in o$ on line $\overline{s_{i} s_{j}}$. Fig. 8b illustrates such cases: instance s_{r} is on segment $s_{i} s_{j}$, and its occurrence does not contradict $s_{i} \rightarrow s_{j}$; on the other hand, instance s_{t} occurs on line $\overline{s_{i} s_{j}}$, but outside of segment $s_{i} s_{j}$, and its occurrence disqualifies s_{i} from being on the convex hull. Let us define the predicate onSeg $g_{p_{1} p_{2}}\left(p_{3}\right)$ to indicate whether p_{3} is on segment $p_{1} p_{2}$. Then, we extend the definition of $V(o)$ in Equation (4) to include the special cases as follows:

$$
\begin{equation*}
V(o)=\left\{s \in o \mid \operatorname{ccw}\left(s_{i}, s_{j}, s\right)<0 \vee o n S e g_{s_{i} s_{j}}(s)\right\} . \tag{5}
\end{equation*}
$$

Finally, under the condition that s_{i} and s_{j} occur, we can see that $s_{i} \rightarrow s_{j}$ occurs iff $\forall o \in O-\left\{o_{i}, o_{j}\right\}$, o occurs as an instance in $V(o)$. As a result, we compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ by the following formula:

$$
\begin{align*}
\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) & =\prod_{o_{t} \in O-\left\{o_{i}, o_{j}\right\}} \operatorname{Pr}\left(s_{t} \in V\left(o_{t}\right)\right) \\
& =\prod_{o_{t} \in O-\left\{o_{i}, o_{j}\right\}}\left(\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)\right) \tag{6}\\
& \doteq \prod_{o_{t} \in O-\left\{o_{i}, o_{j}\right\}} \frac{\left|V\left(o_{t}\right)\right|}{m_{t}} \tag{7}
\end{align*}
$$

According to Equation (6), $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ can be computed in $O(N)$ time. Specifically, for each object o_{t} with m_{t} instances, $V\left(o_{t}\right)$ can be obtained by checking each instance
of o_{t} using Equation (5). Each checking takes $O(1)$ time since both $\operatorname{ccw}($.$) and onSeg(.) operations in Equation (5) take con-$ stant time. Therefore, in Equation (6), the summation in the parentheses takes $O\left(m_{t}\right)$ time (note that $p\left(s_{t}\right)$ is given in the data). As a result, Equation (6) requires computing the summation for each object which takes $\sum_{t} O\left(m_{t}\right)=O\left(\sum_{t} m_{t}\right)=$ $O(N)$ time, while computing the product of the summations of the $O(n)$ objects only requires $O(n)$ multiplication operations. Totally, the cost is $O(N)+O(n)=O(N)$.

Complexity analysis. According to Equation (1), computing $\operatorname{Pr}^{C H}\left(o_{i}\right)$ requires computing $\operatorname{Pr}^{C H}\left(s_{i}\right)$ for m_{i} times. By Equation (2), computing $\operatorname{Pr}^{C H}\left(s_{i}\right)$ requires computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ for N times. Finally, by Equation (6), computing each $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ takes $O(N)$ time. Thus, it takes $O\left(m_{i} \times N^{2}\right)$ time to compute each $\operatorname{Pr}^{C H}\left(o_{i}\right)$. Since the computation of $\mathrm{PCH}_{\alpha}(O)$ requires computing $\mathrm{Pr}^{C H}\left(o_{i}\right)$ for at most all objects $o_{i} \in O$, the time complexity is $\sum_{i=1}^{n} O\left(m_{i} \cdot N^{2}\right)=O\left(N^{3}\right)$.

5 Four-Corner Pruning and Bounding

In this section, we first present our spatial indices on the data. Then, we present our four-corner pruning techniques that prune objects and instances with zero probability to occur on the convex hull. The techniques can be employed to prune the majority of the search space. Finally, we propose our four-corner upper bounding technique to derive the upper bounds of $\operatorname{Pr}^{C H}\left(s_{i}\right)$ and $\operatorname{Pr}^{C H}\left(o_{i}\right)$, which is effective in search space pruning when computing $\mathrm{PCH}_{\alpha}(O)$.

5.1 Spatial Indices

We first build main-memory spatial indices on the dataset, to support efficient spatial operations used in our algorithms. Besides R-tree, we also use aggregate R-tree (aR-tree) [7], which we describe next. An aR-tree is an R-tree extended with a specific aggregate function (e.g. MAX, SUM, COUNT). Each node \mathcal{N} of an aR-tree maintains the aggregated value computed over all the data indexed under \mathcal{N}.

To support efficient PCH evaluation, we build the following spatial indices on the data:

- Object R-tree T_{O}. Let us denote the MBR of all the instances $s \in o$ as $o . M$. The global object R-tree T_{O} is bulk-loaded over $o . M$ for all $o \in O$.
- Instance aR-tree $a R_{o}$. For each object $o \in O$, we bulkload an aggregate R-tree $a R_{o}$ on all the instances $s \in o$, where the aggregate function on node \mathcal{N} is $\sum_{s \in \mathcal{N}} p(s)$.
When the instances of any object are equally likely to occur, we use COUNT as the aggregate function of $a R_{o}$ instead. We choose aR-trees to index object instances, since the computation of $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ in Equation (6) (or (7)) requires the value of $\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)$ (or $\left|V\left(o_{t}\right)\right|$), and therefore, if we know that all instances in node \mathcal{N} belong to $V\left(o_{t}\right)$, we can use the aggregate value without accessing the children of \mathcal{N}.

We now discuss how to compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ efficiently using our spatial indices. The algorithm is composed of three steps:

Fig. 9. Object/Instance-level four-corner pruning.

1) Traverse T_{O} to obtain a candidate object set C containing all objects $o_{t} \in O-\left\{o_{i}, o_{j}\right\}$ such that $V\left(o_{t}\right)$-valid holds. If we ever find an object o_{t} such that $V\left(o_{t}\right)$-empty holds, we set $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ directly and terminate.
2) For each $o_{t} \in C$, traverse $a R_{o_{t}}$ to compute $\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)$ (or $\left.\left|V\left(o_{t}\right)\right|\right)$.
3) Compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ using the following formula:

$$
\begin{align*}
\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) & =\prod_{o_{t} \in C}\left(\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)\right) \tag{8}\\
& \doteq \prod_{o_{t} \in C} \frac{\left|V\left(o_{t}\right)\right|}{m_{t}} . \tag{9}
\end{align*}
$$

Equations (8) and (9) are derived from Equations (6) and (7). Specifically, Step 1 guarantees that for any object $o_{t} \in O-\left\{o_{i}, o_{j}\right\}, V\left(o_{t}\right)$-empty does not hold. If $V\left(o_{t}\right)$-full holds, we have $\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)=1$ (and $\frac{\left|V\left(o_{t}\right)\right|}{m_{t}}=1$) and thus, the term can be omitted in the product evaluation in Equations (6) and (7). Otherwise, $V\left(o_{t}\right)$-valid holds and $o_{t} \in C$, which is counted in Equations (8) and (9).

5.2 Four-Corner Pruning

We now present our four-corner pruning techniques that are used to prune objects and instances with zero probability to occur on the convex hull. The effectiveness of the pruning techniques are established by the following two observations:

- If $\operatorname{Pr}^{C H}\left(o_{l}\right)=0(l=i, j)$, then $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ for any $s_{l} \in o_{l}$;
- If $\operatorname{Pr}^{C H}\left(s_{l}\right)=0(l=i, j)$, then $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$.

This is because, if either s_{i} or s_{j} is not on the convex hull, then $s_{i} \rightarrow s_{j}$ is impossible. As a result, if we define $\widetilde{O}=\left\{o \in O \mid \operatorname{Pr}^{C H}(o)>0\right\}$ and $\widetilde{o}=\left\{s \in o \mid \operatorname{Pr}^{C H}(s)>0\right\}$, then Equation (1) can be reformulated as

$$
\begin{equation*}
\operatorname{Pr}^{C H}\left(o_{i}\right)=\sum_{s_{i} \in \widetilde{o_{i}}} \operatorname{Pr}^{C H}\left(s_{i}\right) \cdot p\left(s_{i}\right) \stackrel{1}{m_{i}} \sum_{s_{i} \in \widetilde{\rho_{i}}} \operatorname{Pr}^{C H}\left(s_{i}\right), \tag{10}
\end{equation*}
$$

and Equations (2) and (3) can be reformulated as

$$
\begin{equation*}
\operatorname{Pr}^{C H}\left(s_{i}\right)=\sum_{s_{j} \in \widetilde{o}_{j}, o_{j} \in \widetilde{O}-\left\{o_{i}\right\}} \operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) \cdot p\left(s_{j}\right) \tag{11}
\end{equation*}
$$

Fig. 10. Proof of Theorem 2.

$$
\begin{equation*}
\stackrel{s_{s_{j} \in \tilde{o_{j}, o_{j} \in \widetilde{O}-\left\{o_{i}\right\}}}}{ } \frac{1}{m_{j}} \operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right) . \tag{12}
\end{equation*}
$$

In a nutshell, we only need to consider the objects and instances with non-zero probability to occur on the convex hull when computing $\operatorname{Pr}^{C H}\left(o_{i}\right)$ and $\operatorname{Pr}^{C H}\left(s_{i}\right)$. Moreover, those objects o with $\operatorname{Pr}^{C H}(o)=0$ does not belong to $P C H_{\alpha}(O)$ for any $\alpha>0$, and can thus be safely ignored when computing $\mathrm{PCH}_{\alpha}(O)$.

Four-corner pruning rules. Given a rectangle with lowerleft corner $\left(x_{1}, y_{1}\right)$ and upper-right corner $\left(x_{2}, y_{2}\right)$, we define four regions determined by its four corners as follows:

- Region $\mathrm{I}=\left\{p \in \mathbb{R}^{2} \mid p . x \leq x_{1} \wedge p . y \geq y_{2}\right\} ;$
- Region II $=\left\{p \in \mathbb{R}^{2} \mid p . x \geq x_{2} \wedge p . y \geq y_{2}\right\}$;
- Region III $=\left\{p \in \mathbb{R}^{2} \mid p . x \leq x_{1} \wedge p . y \leq y_{1}\right\}$;
- Region IV $=\left\{p \in \mathbb{R}^{2} \mid p . x \geq x_{2} \wedge p . y \leq y_{1}\right\}$.

We allow the degenerated case where the rectangle becomes a point. Figs. 9a (and Fig. 9b) illustrates the idea of object-level (and instance-level) four-corner pruning. In Fig. 9a the MBR of object E (denoted $E . M$) is shown along with the four regions determined by it. It is clear that A.M, F.M, $B . M$ and $C . M$ are totally contained in Regions I, II, III and IV, respectively, and thus any point within the region of $E . M$ cannot be on the convex hull. This implies that $\operatorname{Pr}^{C H}(E)=0$. Similar reasoning for the instance case shown in Fig. 9b leads to the conclusion that $\operatorname{Pr}^{C H}\left(d_{4}\right)=0$.

These observations are formalized by Theorem 2 below:
Theorem 2. Given an object o (or respectively, an instance $s \in o$), if for each of the four regions determined by o.M (or respectively, s), there exists an object $o^{\prime} \neq o$ such that $o^{\prime} . M$ is totally contained in the region, then $\operatorname{Pr}^{C H}(o)=0$ (or respectively, $\left.\operatorname{Pr}^{C H}(s)=0\right)$.

Proof. Given an object o, its MBR $o . M$ determines four regions as shown in Fig. 10. Suppose that there exist four objects o_{1}, o_{2}, o_{3} and o_{4}, such that $o_{1} \cdot M, o_{2} \cdot M, o_{3} \cdot M$ and $o_{4} \cdot M$ are totally contained in Regions I, II, III and IV, respectively. Then, in any possible world $p w, s_{1}, s_{2}, s_{3}$ and s_{4} are totally contained in Regions I, II, III and IV, respectively.

We now prove that the convex hull in $p w$ is a polygon that contains $o . M$, so that any instance $s \in o$ is not on the convex hull. Due to the arbitrariness of $p w$, we would have $\operatorname{Pr}^{C H}(o)=0$.

Let us define $O^{\prime}=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o\right\}$. Since $O^{\prime} \subseteq O$, the convex hull of O^{\prime} in $p w$ is a polygon that is contained in the polygon defined by the convex hull of O in $p w$. Therefore, it is sufficient to prove that the polygon defined by the convex hull of O^{\prime} in $p w$ contains $o . M$.

We now prove that the convex hull of O^{\prime} in $p w$, i.e. polygon $s_{1} s_{2} s_{3} s_{4}$ in Fig. 10, contains o.M, i.e., rectangle abcd in Fig. 10. Without loss of generality, we only need to prove that polygon edge $s_{1} s_{2}$ is above o. M, or equivalently, above rectangle edge $a b$. This holds because both $s_{1} \cdot y$ and $s_{2} \cdot y$ are at least y_{2}, which accomplishes the proof.

The case of instance-level four-corner pruning can be similarly proved.

Our four-corner pruning operation is based on four range queries on the object R -tree T_{O}. We call such range queries as the containment queries, which return whether there exists an object whose MBR is totally contained in the query region. As long as one of the four containment queries gives a negative answer ("no contained object"), we return a negative answer ("cannot prune") immediately without evaluating the remaining queries.

In our implementation, four-corner pruning is designed as a preprocessing step executed only once for each dataset O, the algorithm of which is shown in Algorithm 1. Our experiments show that Algorithm 1 is able to prune the majority of the objects and instances.

```
Algorithm 1. Preprocessing by Four-Corner Pruning
for each object \(o \in O\) do
        o.pruned \(\leftarrow\) FourCornerPrune (o)
        if o.pruned \(=F A L S E\) then
            for each instance \(s \in o\) do
                s.pruned \(\leftarrow\) FourCornerPrune (s)
```


5.3 Four-Corner Upper Bounding

For those non-pruned objects o (or instances s), we can still bound $\operatorname{Pr}^{C H}(o)$ (or $\mathrm{Pr}^{C H}(s)$) by using the four-corner technique. Let us first consider how to compute the upper bound of $\operatorname{Pr}^{C H}(s)$ for instance $s \in o$. Given the four regions defined by an instance $s \in o$, we assume that (1) for each $t \in\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}\}$, there exists an object o_{t} with n_{t} of its m_{t} instances in Region t, that (2) $o_{\mathrm{I}}, o_{\mathrm{II}}, o_{\text {III }}$ and $o_{\text {IV }}$ are different from each other, and that (3) none of them is o. Then, instance s is not on the convex hull as long as o_{t} is contained in Region t (we denote this fact by $o_{t} \in \operatorname{Region} t$) for all $t \in\{$ I, II, III, IV $\}$. Therefore, we have:

$$
\begin{align*}
\operatorname{Pr}^{C H}(s) & =1-\overline{\operatorname{Pr}_{\mathrm{C}}^{C H}(s)} \\
& \leq 1-\prod_{t \in\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}\}} \operatorname{Pr}\left(o_{t} \in \operatorname{Region} t\right) \tag{13}\\
& =1-\prod_{t \in\{\mathrm{I}, \mathrm{II}, \mathrm{II}, \mathrm{IV}\}}\left(\sum_{s_{t} \in \operatorname{Region} t} p\left(s_{t}\right)\right) \tag{14}\\
& \circ 1-\frac{n_{\mathrm{I}}}{m_{\mathrm{I}}} \times \frac{n_{\mathrm{II}}}{m_{\mathrm{II}}} \times \frac{n_{\mathrm{III}}}{m_{\mathrm{III}}} \times \frac{n_{\mathrm{IV}}}{m_{\mathrm{IV}}} . \tag{15}
\end{align*}
$$

Equations (14) and (15) give the upper bound of $\operatorname{Pr}^{C H}(s)$, which we denote by $U B^{C H}(s)$. In order to make $U B^{C H}(s)$ tight, for each Region $t \in\{$ I, II, III, IV $\}$, we choose objects o_{t} to maximize $\sum_{s_{t} \in \operatorname{Region} t} p\left(s_{t}\right)$ (or n_{t} / m_{t}). We do not choose an object that has been chosen before.

Once $U B^{C H}\left(s_{i}\right)$ is computed for all $s_{i} \in o_{i}$, according to Equation (1), we compute the upper bound of $\operatorname{Pr}^{C H}\left(o_{i}\right)$ as:

$$
\begin{equation*}
U B^{C H}\left(o_{i}\right)=\sum_{s_{i} \in o_{i}} U B^{C H}\left(s_{i}\right) \cdot p\left(s_{i}\right) \doteq \frac{1}{m_{i}} \sum_{s_{i} \in o_{i}} U B^{C H}\left(s_{i}\right) . \tag{16}
\end{equation*}
$$

We call the process of computing $U B^{C H}(o)$ for all $o \in \widetilde{O}$ using Equation (16) as four-corner upper bounding, which is also implemented as a preprocessing step, executed immediately after four-corner pruning (cf. Algorithm 1).

Baseline algorithm for computing $\mathrm{PCH}_{\alpha}(O)$. After four-corner pruning \mathcal{E} upper bounding are performed, for each nonpruned object $o_{i} \in \widetilde{O}$ with $U B^{C H}\left(o_{i}\right) \geq \alpha$, we use Algorithm 2 to compute $\operatorname{Pr}^{C H}\left(o_{i}\right)$ and check whether $o_{i} \in P C H_{\alpha}(O)$. In Algorithm 2, we compute $\operatorname{Pr}^{C H}\left(o_{i}\right)$ by accumulating the results of $\operatorname{Pr}^{C H}\left(s_{i}\right)$ for all $s_{i} \in \widetilde{o}_{i}$ in Line 4 , which is according to Equation (10). We also use $U B^{C H}\left(o_{i}\right)$ and $U B^{C H}\left(s_{i}\right)$ to prune o_{i} in Lines 6-7 whenever $\operatorname{Pr}^{C H}\left(o_{i}\right)<\alpha$ holds.

```
Algorithm 2. Evaluation of \(\operatorname{Pr}^{C H}\left(o_{i}\right)\) for Object \(o_{i} \in \widetilde{O}\)
1: \(\operatorname{Pr}^{C H}\left(o_{i}\right) \leftarrow 0\), bound \(\leftarrow U B^{C H}\left(o_{i}\right)\)
: for each non-pruned instance \(s_{i} \in \widetilde{o_{i}}\) do
    Compute \(\operatorname{Pr}^{C H}\left(s_{i}\right)\) using Equations (8) and (11)
        \(\operatorname{Pr}^{C H}\left(o_{i}\right) \leftarrow \operatorname{Pr}^{C H}\left(o_{i}\right)+p\left(s_{i}\right) \cdot \operatorname{Pr}^{C H}\left(s_{i}\right)\)
        bound \(\leftarrow\) bound \(-p\left(s_{i}\right) \cdot U B^{C H}\left(s_{i}\right)\)
        if bound \(+\operatorname{Pr}^{C H}\left(o_{i}\right)<\alpha\) then
        return \(o_{i} \notin P C H_{\alpha}(O)\)
8: Add \(\left\langle o_{i}, \operatorname{Pr}^{C H}\left(o_{i}\right)\right\rangle\) to \(\mathrm{PCH}_{\alpha}(O)\)
```


6 Batch Evaluation Technique

In Section 4, we introduced our baseline algorithm that computes $\operatorname{Pr}^{C H}\left(s_{i}\right)$ by computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ for $O(N)$ times, each time requiring $O(N)$ time. In this section, we show how to compute $\operatorname{Pr}^{C H}\left(s_{i}\right)$ in totally $O(N)$ time rather than $O\left(N^{2}\right)$, which implies that the amortized cost of computing $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ is $O(1)$.

Assume hereafter that s_{i} is fixed. Suppose that we have an oracle $A_{s_{i}}$ that returns $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ in $O(1)$ time given s_{j}, then according to Equations (2) and (3), we can obtain $\operatorname{Pr}^{C H}\left(s_{i}\right)$ in $O(N)$ time. We now consider how to construct and maintain the oracle.

Oracle construction. Given s_{i}, its oracle is actually a circular array (CA) $A_{s_{i}}$ which contains all the instances $s \in o$ for all the objects $o \in O-\left\{o_{i}\right\}$. All the $O(N)$ instance elements s are radially ordered such that line $\overline{s_{i} s}$ rotates clockwise around s_{i}. As an example, Fig. 11 illustrates the element ordering in circular array $A_{d_{3}}$. Note that $A_{d_{3}}$ does not contain the instances of object D.

The key to the construction of $A_{s_{i}}$ is to radially sort the instance elements clockwise. To achieve this, we divide the whole 2D space into two half-planes using line $y=s_{i} . y$. The instance elements of $A_{s_{i}}$ are divided into two sets: those in the upper half-plane H_{u} and those in the lower half-plane H_{ℓ}. Referring to Fig. 11 again, the

Fig. 11. Oracle $A_{d_{3}}$.
instance elements of $A_{d_{3}}$ are divided into two sets $\left\{a_{2}\right.$, $\left.a_{1}, f_{1}, f_{2}\right\}$ and $\left\{f_{3}, e_{2}, c_{1}, c_{2}, e_{1}, b_{2}, b_{3}, b_{1}, a_{3}\right\}$. In each half plane, we define a strict total order among the instance elements of $A_{s_{i}}$:

Definition 4. $\forall s_{r}, s_{t} \in H_{u}$ (or H_{ℓ}), $s_{r} \prec s_{t}$ iff $c c w\left(s_{r}, s_{i}, s_{t}\right)>$ $0 \vee$ onSeg $_{s_{i} s_{t}}\left(s_{r}\right)$.

Definition 4 actually defines the clockwise radial order for all the instance elements in each half-plane. For example, in Fig. 11, a_{1} is before f_{1} clockwise in H_{u} because $\operatorname{ccw}\left(a_{1}, d_{3}, f_{1}\right)>0$.

After the instance elements in both half-planes are radially sorted, they are concatenated to form $A_{s_{i}}$. Thus, the time complexity of constructing $A_{s_{i}}$ is $O(N \log N)$. In Fig. 11, we mark the ID of each instance in array $A_{d_{3}}$ besides that instance.

Active domain $V\left(o_{t}\right)$. To compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ for all s_{j}, we iterate s_{j} from $A_{s_{i}}[0]$ to $A_{s_{i}}\left[\left|A_{s_{i}}\right|-1\right]$. We denote by $p t_{s_{j}}$ the ID of the current s_{j} in $A_{s_{i}}$.

Given s_{i} and $s_{j}=A_{s_{i}}\left[p t_{s_{j}}\right]$, for any object $o_{t} \in O-\left\{o_{i}, o_{j}\right\}$, its instance s_{t} is in $V_{s_{i} \rightarrow s_{j}}\left(o_{t}\right)$ iff $\operatorname{ccw}\left(s_{i}, s_{j}, s_{t}\right)<0 \vee$ onSeg $g_{s_{i} s_{j}}\left(s_{t}\right)$. Let us iterate $A_{s_{i}}$ from $p t_{s_{j}}$ clockwise until reaching the last instance $s_{\text {last }}=A_{s_{i}}\left[p t_{\text {last }}\right]$ with $\operatorname{ccw}\left(s_{i}\right.$, $\left.s_{j}, s_{\text {last }}\right)<0 \vee$ onSeg $g_{s_{i} s_{j}}\left(s_{\text {last }}\right)$. Then, $s_{t} \in V\left(o_{t}\right)$ iff s_{t} is within the range wiping from $s_{i} s_{j}$ clockwise to $s_{i} s_{l a s t}$. For example, in Fig. 11, when $s_{j}=f_{1}$, we have $s_{\text {last }}=b_{1}$ and $p t_{\text {last }}=11$.

Initialization of $p t_{\text {last }}$. Initially, $p t_{s_{j}}=0$ and we find the corresponding $p t_{\text {last }}$ using binary search over $A_{s_{i}}[0, \ldots$, $\left.\left|A_{s_{i}}\right|-1\right]$. Specifically, in each iteration, we find the two clockwise consecutive elements $s_{m_{1}}$ and $s_{m_{2}}$ in the middle, and check $c c w_{1}=\operatorname{ccw}\left(s_{i}, s_{j}, s_{m_{1}}\right)$ and $c c w_{2}=\operatorname{ccw}\left(s_{i}, s_{j}, s_{m_{2}}\right)$ as follows: (1) if both values are negative, we rule out the elements before $s_{m_{2}}$; (2) if both values are non-negative, we rule out the elements after $s_{m_{1}}$; and (3) otherwise, we set $s_{\text {last }}=s_{m_{1}}$. Therefore, it takes $O(\log N)$ time to find $p t_{\text {last }}$.

If $s_{\text {last }}$ is not found, we know that no instance is within $V\left(o_{t}\right)$ (even for $A_{s_{i}}[1]$). In this case, $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ and we set $p t_{\text {last }}=0$.

In later computation, as $p t_{s_{j}}$ moves clockwise, $p t_{\text {last }}$ also moves clockwise and we need no more binary search.

Product. Let us temporarily assume that $\left|V\left(o_{t}\right)\right|>0$ for all $o_{t} \in O-\left\{o_{i}, o_{j}\right\}$. If we define

$$
\begin{equation*}
\mathbb{P}=\prod_{t \neq i}\left(\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)\right) \stackrel{\circ}{=} \prod_{t \neq i} \frac{\left|V\left(o_{t}\right)\right|}{m_{t}} \tag{17}
\end{equation*}
$$

then according to Equations (6) and (7), we have

$$
\begin{equation*}
\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=\mathbb{P} / \sum_{s_{j} \in V\left(o_{j}\right)} p\left(s_{j}\right) \doteq \mathbb{P} / \frac{\left|V\left(o_{j}\right)\right|}{m_{j}} . \tag{18}
\end{equation*}
$$

In other words, we can obtain $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ in $O(1)$ time if \mathbb{P} is always available. However, in reality, an object o_{t} may exists such that $V\left(o_{t}\right)$-empty holds. In this case, by Equation (17) we have $\mathbb{P}=0$ and Equation (18) is no longer valid. We circumvent this problem by maintaining all objects with $V\left(o_{t}\right)=\emptyset$ in a set S_{0}, and redefine \mathbb{P} as the product of $\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)$ for those objects that are not $V\left(o_{t}\right)$-empty:

$$
\begin{align*}
\mathbb{P} & =\prod_{o_{t} \in O-\left\{o_{i}\right\}:\left|V\left(o_{t}\right)\right|>0}\left(\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)\right) \tag{19}\\
& \stackrel{ }{o_{o} \in O-\left\{o_{i}\right\}:\left|V\left(o_{t}\right)\right|>0} \prod_{m_{t}} \frac{\left|V\left(o_{t}\right)\right|}{m_{t}}
\end{align*}
$$

Main algorithm. To compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ for the next s_{j}, we move $p t_{s_{j}}$ clockwise by setting $p t_{s_{j}} \leftarrow\left(p t_{s_{j}}+1\right) \bmod \left|A_{s_{i}}\right|$. In this case, the old s_{j} exits the active domain.

After the new $s_{j}=A_{s_{i}}\left[p t_{s_{j}}\right]$ is updated, we need to set the corresponding $p t_{\text {last }}$ properly. We achieve this by moving the old $p t_{\text {last }}$ clockwise one position at a time. Let $p t_{\text {next }}=\left(p t_{\text {last }}+\right.$ 1) $\bmod \left|A_{s_{i}}\right|$ and $s_{\text {next }}=A_{s_{i}}\left[p t_{\text {next }}\right]$, then we stop moving $p t_{\text {last }}$ if $\operatorname{ccw}\left(s_{i}, s_{j}, s_{\text {next }}\right)<0 \vee$ onSeg $_{s_{j} s_{\text {next }}}\left(s_{i}\right)$. Whenever we update $p t_{\text {last }}$, the new $s_{\text {last }}$ enters the active domain.

Obtaining probability. Suppose S_{0} and \mathbb{P} are up-to-date, we obtain $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ as follows. Case (1): if $\left|S_{0}\right|>1$, $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ since there exists an object $o_{t} \neq o_{j}$ such that $V\left(o_{t}\right)$-empty holds. Case (2): if $S_{0}=\left\{o_{j}\right\}$, $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=\mathbb{P}$ which involves all objects other than o_{j} and o_{i}. Case (3): if $S_{0}=\left\{o_{t}\right\}$ but $o_{t} \neq o_{j}, \operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)=0$ since $V\left(o_{t}\right)$-empty holds. Case (4): if $S_{0}=\emptyset$, compute $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ using Equation (18).

Active domain maintenance. We now present how to maintain S_{0} and \mathbb{P} up-to-date. Specifically, we maintain an array V such that $V[t]=\sum_{s_{t} \in V\left(o_{t}\right)} p\left(s_{t}\right)$. We initialize V by scanning through $A_{s_{i}}$ starting from $p t_{s_{j}}=0$.

When an instance s_{j} exits the active domain, we update $V\left[o_{j}\right] \leftarrow V\left[o_{j}\right]-p\left(s_{j}\right)$. (1) if $V\left[o_{j}\right]=0$, we add o_{j} to S_{0} and set $\mathbb{P} \leftarrow \mathbb{P} / p\left(s_{j}\right)$ to rule out the old factor $\sum_{s_{j^{\prime}} \in V\left(o_{j}\right)} p\left(s_{j^{\prime}}\right)=p\left(s_{j}\right)$ from \mathbb{P}. (2) otherwise, we first rule out the old factor of o_{j} by setting $\mathbb{P} \leftarrow \mathbb{P} /\left(V\left[o_{j}\right]+p\left(s_{j}\right)\right)$, and then incorporate the new factor by setting $\mathbb{P} \leftarrow \mathbb{P} \cdot V\left[o_{j}\right]$.

When an instance s_{t} enters the active domain, we update $V\left[o_{t}\right] \leftarrow V\left[o_{t}\right]+p\left(s_{t}\right)$. (1) if $o_{t} \in S_{0}$, we remove o_{t} from S_{0} and set $\mathbb{P} \leftarrow \mathbb{P} \cdot p\left(s_{t}\right)$. (2) otherwise, we first rule out the old factor of o_{t} by setting $\mathbb{P} \leftarrow \mathbb{P} /\left(V\left[o_{t}\right]-p\left(s_{t}\right)\right)$, and then incorporate the new factor by setting $\mathbb{P} \leftarrow \mathbb{P} \cdot V\left[o_{t}\right]$.

Complexity analysis. We organize S_{0} as a balanced binary search tree. As a result, each enter (or exit) operation takes at most $O(\log N)$ time. Since $p t_{s_{j}}$ (or $p t_{\text {last }}$) moves for at most N times, there are at most N exit (or enter) operations, and thus $O(N \log N)$ time in total. For each value of $p t_{s_{j}}$, we
obtain the probability $\operatorname{Pr}^{C H}\left(s_{i} \rightarrow s_{j}\right)$ once which takes $O(1)$ time (in Case (4) we compute $\mathbb{P} / V\left[o_{j}\right]$), and $O(N)$ time in total. Finally, constructing $A_{s_{i}}$ takes $O(N \log N)$ time. Therefore, we can compute $\operatorname{Pr}^{C H}\left(s_{i}\right)$ in totally $O(N \log N)$ time using Equations (2) and (3), and thus $\mathrm{PCH}_{\alpha}(O)$ in $O\left(N^{2} \log N\right)$ time. Note that we only need to construct oracles for non-pruned instances.

7 Gibbs Sampling Method

Different applications have different requirements on the performance of PCH computation. For Flickr photo filtering, the quality of the photos is more important than the response time. On the other hand, for animal tracking, short response time is critical since the readings are collected continuously, and the PCH should be kept up to date. To support fast response, we propose to estimate $\operatorname{Pr}^{C H}(o)$ for all objects $o \in O$ using Gibbs sampling [16], which usually takes only several minutes.

Gibbs sampling. Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of random samples from a multivariate probability distribution $p\left(o_{1}, o_{2}, \ldots, o_{n}\right)$. The samples can be used to approximate the joint distribution. Suppose that we aim to obtain k samples. Gibbs sampling works as follows, where we denote by $o_{j}^{(i)}$ the value of variable o_{j} in the i th sample.

1) We randomly determine the initial values for all variables: $O^{(0)}=\left\{o_{1}^{(0)}, o_{2}^{(0)}, \ldots, o_{n}^{(0)}\right\}$;
2) The i th sample is obtained by sampling $o_{j}^{(i)}$ from the conditional distribution $p\left(o_{j}^{(i)} \mid o_{1}^{(i-1)}, \ldots, o_{j-1}^{(i-1)}\right.$, $\left.o_{j+1}^{(i-1)}, \ldots, o_{n}^{(i-1)}\right)$ for $j=i \bmod n$, and set $o_{\ell}^{(i)}=o_{\ell}^{(i-1)}$ for all $\ell \neq j$. This is repeated until k samples are obtained.
Our algorithm. In our data model, each variable o_{i} is now an uncertain object associated with a probability mass function (pmf): $\operatorname{Pr}\left\{o_{i}=s_{i}\right\}=p\left(s_{i}\right)$. Furthermore, since objects are independent of each other, the conditional distribution $p\left(o_{j}^{(i)} \mid o_{1}^{(i-1)}, \ldots, o_{j-1}^{(i-1)}, o_{j+1}^{(i-1)}, \ldots, o_{n}^{(i-1)}\right)=p\left(o_{j}^{(i)}\right)$.

As a result, we obtain a simple Gibbs sampler as follows. The i th sample is obtained by sampling the instance of o_{j} using its pmf for $j=i \bmod n$, while the instances of the other objects remain unchanged.

To estimate $\operatorname{Pr}^{C H}(o)$ for all objects $o \in O$, we maintain a counter $\operatorname{cnt}(o)$ for each object o. Whenever we obtain a new sample $O^{(i)}$, we compute its convex hull and increase the counters of all the objects on the convex hull by one. When k samples are obtained, we estimate $\operatorname{Pr}^{C H}(o)$ as $\operatorname{cnt}(o) / k$.

However, it is not efficient to compute the convex hull of each sample from scratch. Since a new sample $O^{(i)}$ is obtained from the previous sample $O^{(i-1)}$, by deleting point $o_{j}^{(i-1)}$ and inserting point $o_{j}^{(i)}$ for $j=i \bmod n$, we propose to dynamically maintain the convex hull. We adopt the R-tree based approach proposed in [17] for convex hull maintenance. ${ }^{3}$
3. We remark that Algorithm 3 in [17] is not correct unless the "if" branch in Line 11 is expanded with an "else" branch: else minVdist $_{u_{i}}=0$.

Accuracy estimation. While $\operatorname{cnt}(o) / k$ is an unbiased estimator of $\operatorname{Pr}^{C H}(o)$, the accuracy depends on the variance of the estimation. Clearly, the larger the number of samples k is, the smaller the variance. One method of variance estimation is described in [28], which applies the theory of time series. However, the method requires computing an estimate of lag- k autocovariance, which is not only expensive to compute, but also requires storing previously sampled dataset instances. We adopt a much faster convergence check as follows. We sample 10 non-pruned objects o and compute their exact value of $\operatorname{Pr}^{C H}(o)$. This takes just several seconds. Then, during Gibbs sampling, we periodically (every 1 M samples) check the median of the 10 estimation errors of $\operatorname{Pr}^{C H}(o)$ for those samples. Sampling terminates once the estimated average error is smaller than a user-specified error threshold τ.

8 EXPERIMENTS

In this section, we evaluate the performance of our algorithms for computing $\mathrm{PCH}_{\alpha}(O)$ using synthetic data sets.

For those applications where the data sets O do not change frequently, such as Flickr photo filtering, it is desirable to pre-compute $\operatorname{Pr}^{C H}(o)$ for all non-pruned objects $o \in O$, so that $P C H_{\alpha}(O)$ can be efficiently obtained for arbitrary α later on. This problem is equivalent to setting α as the infinitesimal positive number ε, since $\mathrm{PCH}_{\varepsilon}(O)=\{o \in$ $\left.O \mid \operatorname{Pr}^{C H}(o) \geq \varepsilon\right\}=\left\{o \in O \mid \operatorname{Pr}^{C H}(o)>0\right\}$. A similar problem was already studied in the context of skyline [14].

Since we find that the performance of our algorithms is insensitive to instance weights, in all our experiments, we simply assume that for any object, all its instances have equal occurrence probability. All our programs were written in JAVA, and run on a computer with a 2.13 GHz Intel CPU and 2 GB memory.

Data generator. To test the scalability of our algorithms, we designed a data generator with parameters (n, m, c), similar to the one used in [1]:

1) For each of the n objects $o_{i} \in O$ to generate, we first uniformly pick a center $c\left(o_{i}\right)$ in an area of $[0,1] \times[0,1]$.
2) Then, a rectangular region $R\left(o_{i}\right)$ centered at $c\left(o_{i}\right)$ is generated where the instances of o_{i} appear. The length of each edge of $R\left(o_{i}\right)$ is generated from the Guassian distribution with $\mu=c / 2$ and $\sigma=c / 8$, and if the generated length falls out of $[0, c]$, we repeat its generation until it falls in $[0, c]$.
3) Finally, we generate m_{i} instances uniformly in $R(o)$, where m_{i} is picked uniformly from $\{1,2, \ldots, m\}$.
The expected number of instances for each object is $m / 2$, and the expected size $N=\sum_{i=1}^{n} m_{i}$ of the generated data is $n m / 2$. The parameters (n, m, c) of our data generator are summarized as follows: (1) n specifies the number of uncertain objects, (2) m specifies the average number of instances per object, and (3) c specifies how scattered the instances of an object are over the space.

To eliminate the bias of each generated data set, we generate 10 data sets for each parameter configuration (n, m, c) in our experiments, and all the results are reported based on the average of the 10 runs.

Fig. 12. Experimental results with varying n.

8.1 Performance of Exact Algorithms

From now on, we call Algorithm 2 the Baseline algorithm, whose time complexity is $O\left(m_{i} \cdot N^{2}\right)$. By replacing Line 3 of Algorithm 2 with "Compute $\mathrm{Pr}^{C H}\left(s_{i}\right)$ using the batch evaluation technique", we obtain our algorithm that computes $\operatorname{Pr}^{C H}\left(o_{i}\right)$ in $O\left(m_{i} \cdot N \log N\right)$ time, which we call the Circular Array algorithm.

Measures. For each data configuration (n, m, c, α), we evaluate the following measures.

1) Preprocessing time for R-tree (aR-tree) bulk-loading and four-corner pruning and upper bounding.
2) Runtime of both $\mathcal{B L}$ and $\mathcal{C A}$ for evaluating $\mathrm{PCH}_{\varepsilon}(O)$.
3) Percentage of objects pruned.
4) Percentage of instances pruned over the instances of all the non-pruned objects.
5) The runtime ratio of $\mathcal{B L}$ to $\mathcal{C A}$.

Effect of n on scalability. In this set of experiments, we fix $(m, c, \alpha)=(20,0.2, \varepsilon)$ and study the scalability of $\mathcal{B L}$ and $\mathcal{C A}$ as n increases, the results of which is shown in Fig. 12. Fig. 12a shows the preprocessing time for R-tree (aR-tree) bulk-loading and four-corner pruning \& upper bounding, and Fig. 12b shows the runtime of $\mathcal{B L}$ and $\mathcal{C A}$ for evaluating $\mathrm{PCH}_{\varepsilon}(O)$. From these figures we can see that the preprocessing time is negligible compared with the time of evaluating $\mathrm{PCH}_{\varepsilon}(O)$, which verifies the efficiency of our four-corner pruning \& upper bounding techniques.

From Fig. 12b, we see that $\mathcal{B L}$ is much faster than $\mathcal{C A}$ despite the fact that $\mathcal{C A}$ has lower time complexity. This is because our setting $(m, c)=(20,0.2)$ is favorable to R-tree pruning. Specifically, c is small and thus the instances of an object tends to cluster together. Furthermore, as m is small, the chance of generating a biased sample is small. Therefore, object MBRs are small and R-tree pruning is very effective in this case. On the other hand, when $\mathcal{C A}$ processes a nonpruned instance, it requires a pass over each object instance in the circular array no matter whether it is pruned or not. Therefore, $\mathcal{C A}$ does not fully utilize the pruning power of our R-tree index.

Figs. 12c shows the pruning effectiveness of our objectlevel \mathcal{E} instance-level four-corner pruning techniques, where usually 88-97 percent objects and 70-85 percent instances are pruned. Both object-level and instance-level pruning ratios increase as n increases, since more objects provide more chances for four-corner pruning.

Figs. 12d shows the runtime ratio of $\mathcal{B L}$ to $\mathcal{C A}$, which decreases as n increases. This indicates that the advantage of $\mathcal{B L}$ over $\mathcal{C A}$ is more prominent for large n. This is because more objects provide more chance for fourcorner pruning.

Effect of m on scalability. In this set of experiments, we fix $(n, c, \alpha)=\left(10^{3}, 0.2, \varepsilon\right)$ and study the scalability of $\mathcal{B L}$ and $\mathcal{C A}$ as m increases, the results of which is shown in Fig. 13. Since the values of m are much larger now, the runtime is no longer favorable to $\mathcal{B L}$. As Fig. 13b shows, the runtime of $\mathcal{B L}$ is now longer than that of $\mathcal{C A}$, and the better time complexity of $\mathcal{C A}$ becomes visible. In fact, as Fig. 13d shows, the runtime ratio of $\mathcal{B L}$ to $\mathcal{C A}$ increases as m increases, which indicates that the advantage of $\mathcal{C A}$ over $\mathcal{B L}$ is more prominent for large m.

Figs. 12c shows the pruning effectiveness of our objectlevel \mathcal{E} instance-level four-corner pruning techniques, where usually 63-70 percent objects and 47-51 percent instances are pruned. Both object-level and instance-level pruning ratios decrease as m increases, since more instances per object imply larger object MBRs, which in turn imply less chance for four-corner pruning.

Effect of c on scalability. In this set of experiments, we fix $(n, m, \alpha)=\left(10^{4}, 40, \varepsilon\right)$ and study the scalability of $\mathcal{B L}$ and $\mathcal{C A}$ as c increases, the results of which is shown in Fig. 14. Since the values of c are much larger now, the runtime is no longer favorable to $\mathcal{B L}$. As Fig. 14b shows, the runtime of $\mathcal{B L}$ is now much longer than that of $\mathcal{C A}$, and the better time complexity of $\mathcal{C A}$ becomes quite prominent. In fact, $C A$ does not change too much as c increases, but $B L$ changes sharply. This becomes clearer in Fig. 14 d , where the runtime ratio of $\mathcal{B L}$ to $\mathcal{C A}$ increases quickly as C increases. This indicates that the advantage of $\mathcal{C A}$ over $\mathcal{B L}$ is prominent for large c.

Fig. 13. Experimental results with varying m.

Fig. 14. Experimental results with varying c.
Figs. 14c shows the pruning effectiveness of our objectlevel \mathcal{E} instance-level four-corner pruning techniques, where usually $58-85$ percent objects and $70-85$ percent instances are pruned. Interestingly, while the object-level pruning ratio decreases as c increases due to larger object MBRs, the instance-level one increases. This is because, for larger c, an instance of a non-pruned object has more chance to fall in the central region of the data space, which increases the chance of its pruning. This positive effect outweighs the negative one caused by larger object MBRs.

The data sets in our experiments are already reasonably large. In particular, the largest dataset in the first set of experiments has expected size $n m / 2=100 k \times 20 / 2=1 \mathrm{M}$. From the figures, we can see that evaluating $\mathrm{PCH}_{\varepsilon}(O)$ on large data sets may take hours. However, these cases involve quite large m and c that are rare in real life applications, and in our Flickr photo filtering example, $\mathrm{PCH}_{\varepsilon}(O)$ is computed in less than two seconds. Exact evaluation is acceptable if the data do not change frequently, such as in the Flickr photo filtering application.

Effect of α on performance. We also studied the effect of the threshold parameter α, by fixing (n, m, c) $=\left(10^{4}, 20,0.2\right)$ and varying α. Fig. 15a shows the runtime of $\mathcal{B L}$ and $\mathcal{C A}$ for evaluating $\mathrm{PCH}_{\alpha}(O)$, and Fig. 15b shows the number of objects in the result. Both measures decrease superlinearly as α increases, which demonstrates that there are more lowprobability objects than high-probability ones. Besides, the runtime shown in Fig. 15a is relatively short, which shows the effectiveness of our four-corner upper bounding technique and the practicality of $\mathcal{C I}$ for reasonably large threshold values. In fact, we find that most non-pruned objects have very small occurrence probabilities (in the order of 10^{-10} or even 10^{-20}). Besides, Fig. 15a also shows that $\mathcal{B L}$ and $\mathcal{C A}$ have similar performance for reasonably large threshold values.

8.2 Performance of the Gibbs Sampling Algorithm

We now study the performance of our Gibbs sampling algorithms. We set $\alpha=\varepsilon$ in all the subsequent experiments. We consider two stop conditions for Gibbs sampling. The first one fixes the number of samples to k, and the second one

(c) Pruning Percentage

(d) $\mathcal{B L}$ v.s. $\mathcal{C} \mathcal{A}$
adopts the error estimation approach described at the end of Section 7 using the error threshold $\tau=5 \%$.

We define the following metrics to evaluate the accuracy of Gibbs sampling. Let $\operatorname{Pr}^{\widehat{C H}(o)}$ be the value of $\operatorname{Pr}^{C H}(o)$ estimated by our Gibbs sampling method, the relative error is given by

$$
\begin{equation*}
\left|\mathrm{Pr}^{\widehat{C H}(o)}-\mathrm{Pr}^{C H}(o)\right| / \max \left\{\mathrm{Pr}^{C H}(o), \delta\right\} . \tag{21}
\end{equation*}
$$

Note that if $\mathrm{Pr}^{C H}(o) \geq \delta$, Equation (21) is exactly the relative error in traditional sense. Our definition of relative error reduces the influence of objects with very small $\mathrm{Pr}^{C H}(o)$ in error evaluation. For example, consider an object o with $\operatorname{Pr}^{C H}(o)=10^{-10}$, and suppose that it happens to appear on the convex hull in one sample of totally $k=10^{7}$ samples. Then, the traditional relative error is $\left(10^{-7}-\right.$ $\left.10^{-10}\right) / 10^{-10} \approx 10^{3}$ which is quite large. However, this is due to the small sample problem (e.g. only one occurrence) and an object with $\operatorname{Pr}^{C H}(o)$ as small as 10^{-10} is usually not interesting. By using Equation (21) and setting $\delta=0.1 \%$, the error contribution of that object is mitigated as $\left(10^{-7}-\right.$ $\left.10^{-10}\right) / 10^{-3} \approx 10^{-4}$. This definition of relative error is widely used in existing work such as [30].

In all the experiments, we set $\delta=0.1 \%$ (i.e., we are only interested in objects o with $\operatorname{Pr}^{C H}(o) \geq 0.1 \%$), and the reported relative error is averaged over all non-pruned objects. We do not incorporate pruned objects since $\operatorname{Pr}^{C H}(o)=0$ anyway, and thus, no such sample will be obtained. For those objects that have 100 percent accuracy, incorporating them into the averaged relative error will significantly decrease the error value.

Clearly, the relative error decreases as more samples are considered. To show the trend of error decrement with the number of samples, we generate a dataset with ($m, c, k)=\left(20,0.2,10^{4}\right)$ and compute the average relative error after every 1 M samples are obtained. Fig. 16 presents the results, where we can see that the relative error decreases quickly as the number of samples

$$
\left.\begin{array}{rl}
& 0.2 \\
& 0.18 \\
0 & 0.16 \\
0 & 0.14 \\
0 & 0.12
\end{array}\right)
$$

Fig. 16. Number of samples vesus relative error.

Fig. 17. Comparison of Gibbs sampling algorithms.
increases and it is already below 5 percent when 19 M samples are obtained.

Next, we compare the performance of our sampling approach that maintains the convex hull incrementally, with the naïve approach that computes the convex hull of each sample from scratch. Specifically, we generate data sets with $m=20$ and $c=0.2$, and vary n from 10^{3} to 10^{4}. In this set of experiments, we fix the number of samples to 20 M , and 10 data sets are generated for each setting of (n, m, c). Fig. 17 shows the runtime of both algorithms, which are averaged over the 10 data sets generated. As the figure shows, our algorithm that dynamically maintains the convex hull is consistently 2 to 3 orders of magnitude faster than the naïve approach. In the rest of this section, we only consider the algorithm that dynamically maintains the convex hull when referring to our Gibbs sampling algorithm.

We now evaluate the effectiveness of different definitions of convex hull over uncertain data, i.e. PCH defined by us and MLCH defined in [13] (cf. Section 3). To achieve this goal, we first generate an uncertain dataset with $(n, m, c)=$ $\left(10^{4}, 20,0.2\right)$, and sample a deterministic object set from it as the ground truth. We also compute the PCH and MLCH of this data set, and then compute the precision, recall and Fmeasure of them over the ground truth (i.e., objects on the PCH or MLCH versus objects on the convex hull of the ground truth data), which are shown in Figs. 18a, 18b, 18c), respectively. For PCH , we consider $\mathrm{PCH}_{\alpha}(O)$ for different values of α computed from both our exact algorithm and our Gibbs sampling algorithm. On the other hand, MLCH has no concept of α and is thus a constant in the figures. As we can see from Fig. 18a, PCH generally has a better precision than MLCH. Moreover, as Fig. 18b shows, PCH achieves a recall much higher than 80 percent for $\alpha<0.15$, more than twice that of MLCH. We remark that a high recall is critical in real life applications as more objects of interest are covered by the result. Fig. 18c shows that PCH achieves a much higher F-measure than MLCH when $\alpha<0.25$, which further verifies that PCH is more effective than MLCH in terms of both precision and recall.

We also studied the scalability of our Gibbs sampling algorithm with parameters n, m and c, where we fix the number of samples k to 20 M . We put the experiments in our online appendix ${ }^{4}$ due to the space limitation. Our results show that the algorithm is up to tens of times faster than the exact algorithm, and it achieves small relative error for all objects o with non-negligible $\operatorname{Pr}^{C H}(o)$ (e.g. $\left.\operatorname{Pr}^{C H}(o)>0.1 \%\right)$. Also, when the number of samples is fixed, the relative error does not change much with varying m and c, while the error increases almost linearly with n.
4. http://www.cse.ust.hk/~wilfred/Gibbs/gibbs_appendix.pdf

(b) Recall

(c) F-Measure

Fig. 18. Accuracy of PCH and MLCH.

9 Conclusion

In this paper, we studied the concept of convex hull over uncertain data, and proposed the probabilistic convex hull query. We presented a baseline algorithm with $O\left(N^{3}\right)$ time complexity to answer the query, and developed the four-corner pruning \mathcal{E} upper bounding techniques that prune the majority of the search space. We further improved the time complexity to $O\left(N^{2} \log N\right)$ using a batch evaluation technique. Experiments show that the baseline algorithm is favorable when n is large and m and c are small, while the batch evaluation technique is more efficient when m and c becomes large. Finally, we presented our Gibbs sampling algorithm which dynamically maintains the convex hull, and demonstrated that it achieves small relative error for all objects o with non-negligible $\operatorname{Pr}^{C H}(o)$ (i.e. $\operatorname{Pr}^{C H}(o)>0.1 \%$). The algorithm is able to answer PCH queries of various settings in just a couple of minutes, which is a reasonable enough response time to support many real-life applications.

Acknowledgments

This research is supported in part by GRF grant HKUST 617610.

References

[1] J. Pei, B. Jiang, X. Lin, and Y. Yuan, "Probabilistic skylines on uncertain data," in Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 15-26.
[2] S. G. Akl and G. T. Toussaint, "Efficient convex hull algorithms for pattern recognition applications," in Proc. Int. Joint Conf. Pattern Recognit., 1978, pp. 483-487.
[3] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, "Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications," Data Min. Knowl. Discov., vol. 2, no. 2, pp. 169-194, Jun. 1998.
[4] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith, "The onion technique: Indexing for linear optimization queries," in Proc. SIGMOD Int. Conf. Manage. Data, 2000, pp. 391-402.
[5] S. Borzsony, D. Kossmann, and K. Stocker, "The skyline operator," in Proc. 17th Int. Conf. Data Eng., 2001, pp. 421-430.
[6] F. P. Preparata and M. I. Shamos, Computational geometry: An introduction. New York, NY, USA: Springer-Verlag, 1985.
[7] I. Lazaridis and S. Mehrotra, "Progressive approximate aggregate queries with a multi-resolution tree structure," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2001, pp. 401-412.
[8] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, "Querying imprecise data in moving object environments," IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1112-1127, Sep. 2004.
[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, "Evaluating probabilistic queries over imprecise data," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2003, pp. 551-562.
[10] X. Lian and L. Chen, "Probabilistic group nearest neighbor queries in uncertain databases," IEEE Trans. Knowl. Data Eng., vol. 20, no. 6, pp. 809-824, Jun. 2008.
[11] X. Lian and L. Chen, "Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data," VLDB J., vol. 18, no. 3, pp. 787-808, 2009.
[12] R. Cheng, X. Xie, M. L. Yiu, J. Chen, and L. Sun, "UV-Diagram: A Voronoi diagram for uncertain data," in Proc. 26th Int. Conf. Data Eng., 2010, pp. 796-807.
[13] S. Suri, K. Verbeek, and H. Y $\imath l d z z$, "On the most likely convex hull of uncertain points," in Proc. 21st Annu. Eur. Symp., 2013, pp. 791802.
[14] M. Atallah and Y. Qi, "Computing all skyline probabilities for uncertain data," in Proc. 28th ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Syst., 2009, pp. 279-287.
[15] Z. Zhao, D. Yan, and W. Ng, "A probabilistic convex hull query tool for animal tracking," in Proc. 15th Int. Conf. Extending Database Technol., 2012, pp. 570-573.
[16] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: Springer, 2006.
[17] B. Yao, F. Li, and P. Kumar, "Reverse furthest neighbors in spatial databases," in Proc. 25th Int. Conf. Data Eng., 2009, pp. 664-675.
[18] N. Dalvi and D. Suciu, "Efficient query evaluation on probabilistic databases," VLDB J., vol. 16, no. 4, pp. 523-544, 2007.
[19] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom, "Trio: A system for data, uncertainty, and lineage," in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 1151-1154.
[20] R. Cheng, D. Kalashnikov, and S. Prabhakar, "Evaluating probabilistic queries over imprecise data," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2003, pp. 551-562.
[21] L. Antova, C. Koch, and D. Olteanu, "From complete to incomplete information and back," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007, pp. 713-724.
[22] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, "Top- k query processing in uncertain databases," in Proc. 25th Int. Conf. Data Eng., 2007, pp. 896-905.
[23] M. Hua, J. Pei, W. Zhang, and X. Lin, "Ranking queries on uncertain data: A probabilistic threshold approach," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 673-686.
[24] J. Li, B. Saha, and A. Deshpande, "A unified approach to ranking in probabilistic databases," VLDB J., vol. 20, no. 2, pp. 249-275, 2009.
[25] D. Yan and W. Ng, "Robust ranking of uncertain data," in Proc. 16th Int. Conf. Database Syst. Adv. Appl., 2011, pp. 254-268.
[26] D. Suciu, D. Olteanu, C. Ré, and C. Koch, Probabilistic Databases (Synthesis Lectures on Data Management). San Rafael, CA, USA: Morgan \& Claypool Publishers, 2011.
[27] A. Guttman, "R-trees: A dynamic index structure for spatial searching," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47-57.
[28] B. Walsh, "Markov chain Monte Carlo and Gibbs Sampling," Lecture Notes for EEB 581, 2004.
[29] D. Yan, Z. Zhao, and W. Ng, "Leveraging read rates of passive RFID tags for real-time indoor location tracking," in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 375-384.
[30] X. Xiao, G. Bender, M. Hay, and J. Gehrke, "iReduct: Differential privacy with reduced relative errors," in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 229-240.
[31] W. K. Ngai, B. Kao, C. K. Chun, R. Cheng, M. Chau, and K. Y. Yip, "Efficient clustering of uncertain data," in Proc. 6th Int. Conf. Data Mining, 2006, pp. 436-445.

Da Yan received the BS degree in computer science from Fudan University, Shanghai, in 2009, and the PhD degree in computer science from the Hong Kong University of Science and Technology. He is currently a postdoctoral fellow in the Department of Computer Science and Engineering, the Chinese University of Hong Kong. His research interests include big data, spatial data management, uncertain data management, and data mining.

Zhou Zhao received the BS degree in computer science from the Hong Kong University of Science and Technology (HKUST), in 2010. He is currently working toward the PhD degree in the Department of Computer Science and Engineering, HKUST. His research interests include data cleansing and data mining.

Wilfred Ng received the MSc (Distinction) and PhD degrees in computer science from the University of London. Currently, he is an associate professor of computer science and engineering at the Hong Kong University of Science and Technology, where he is a member of the database research group. His research interests are in the areas of databases, data mining, and information Systems, which include Web data management and XML searching. Further Information can be found at the following URL: http://www.cs.ust.hk/faculty/wilfred/index.html.

Steven Liu received the BEng degree in computer science from the Hong Kong University of Science and Technology, in 2012. He is currently working toward the PhD degree in the Department of Computer Science, Stony Brook University. His research interests include wireless sensor network and computational topology.
\triangleright For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

