
An Extension of the Relational Data Model to
Incorporate Ordered Domains

WILFRED NG

The Hong Kong University of Science and Technology

We extend the relational data model to incorporate partial orderings into data domains, which

we call the ordered relational model. Within the extended model, we define the Partially Ordered

Relational Algebra (the PORA) by allowing the ordering predicate v to be used in formulae of
the selection operator (σ). The PORA expresses exactly the set of all possible relations which

are invariant under order-preserving automorphism of databases. This result characterises the
expressiveness of the PORA and justifies the development of Ordered SQL (OSQL) as a query
language for ordered databases. OSQL provides users with the capability of capturing the seman-

tics of ordered data in many advanced applications, such as those having temporal or incomplete

information. Ordered Functional Dependencies (OFDs) on ordered databases are studied, based
on two possible extensions of domain orderings: (1) pointwise-ordering and (2) lexicographical

ordering. We present a sound and complete axiom system for OFDs in the first case and establish
a set of sound and complete chase rules for OFDs in the second. Our results suggest that the
implication problems for both cases of OFDs are decidable and that the enforcement of OFDs in

ordered relations are practically feasible. In a wider perspective, the proposed model explores an
important area of object-relational databases, since ordered domains can be viewed as a general

kind of data type.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—data

models; H.2.3 [Database Management]: Languages—query languages; H.2.4 [Database Man-
agement]: Systems—relational databases

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Partially ordered domains, ordered relational model, or-
dered relations, pointwise-ordering, lexicographical ordering, mixed ordering, ordered functional

dependencies, implication problem, axiom system, chase rules, order-preserving database automor-

phism, valuation mapping, tableaux, partially ordered relational algebra, ordered SQL, language
expressiveness, non-uniform completeness

Address: Department of Computer Science, The Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong; email: wilfred@cs.ust.hk

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · W. Ng

1. INTRODUCTION

The relational data model has been introduced by Codd [Codd 1970] over the last
two decades, resulting in the development of relational DBMSs. Let us begin by
reviewing the three main advantages offered by this model.

—From the point of view of usability, the model is natural and has a simple in-
terpretation in terms of real world concepts. The essential data structure of the
model is a relation, which can be visualised in a tabular format. Due to this
simplicity, relational databases have gained acceptance from a broad range of
users.

—From the point of view of applicability, the model is flexible and general, and can
be easily adapted to many applications, especially business-oriented ones such as
accounting and payroll processing. Thus, the model has the advantage that it
has gained popularity and credibility in a variety of application areas.

—From the point of view of formalism, the model is elegant enough to support
extensive research and analysis. Since the framework of the model is based on
well-established set-theoretic formalism, it facilitates better theoretical research
in many fundamental issues arising from database query languages and depen-
dency theory, which have had a major impact on DBMS development.

In this paper, we propose an extension of the relational data model, in which
we strive for a balance between maintaining the mentioned desirabilities of the
conventional data model and searching for a new data model to facilitate the better
use of database technology into new application domains. On the one hand, the
extension we propose is as minimal as possible, in the sense that we preserve the
formal basis of the relational model. On the other hand, our extended model is
fundamental enough to unify significant classes of different specialised applications,
and to provide a sound basis for the investigation of new possible applications.

An important notion introduced in our extended model is that, given a data do-
main, apart from the standard domain orderings such as numerical orderings and
alphabetical orderings, a user can also declare new semantic orderings to override
the standard domain orderings. The system orderings may or may not follow the
domain ordering because different DBMSs have their own storage and retrieval
strategy. The choice of ordering at this level depends entirely on the implemen-
tation of the system. Using the three DBMS levels of the conventional model
[ANSI/X3/SPARC 1975; Ullman 1988], we show in Figure 1 the differences be-
tween the various notions of orderings introduced so far. We emphasise that within
the context of the ordered relational model the external level may provide a number
of semantic orderings which corresponds to different database applications or user
groups.

The following example illustrates the use of semantic orderings in three domains.

A Motivating Example of Ordered Domains

Example 1. In Figure 2(a) we have the semantic domain EMP RANK, consisting
of three employee ranks describing a simplified post hierarchy in a company. The
semantics are that two Vice-Presidents of Marketing and Development (VPM and
VPD) are the subordinates of the Chief Executive Officer (CEO). In Figure 2(b) we



An Extension of the Relational Data Model to Incorporate Ordered Domains · 3

semantic orderings EXTERNAL

domain orderings

system orderings

CONCEPTUAL

INTERNAL

Orderings DBMS level

Fig. 1. Orderings at different DBMS levels

have the semantic domain SALARY REVISED DATE consisting of four usual dates
which simply follow the chronological ordering provided by a DBMS. Note that in
this case we use the standard domain ordering for Gregorian time system (day-
month-year). In case of other specialised time systems we may need to consider
lexicographical orderings over a list of user-defined time domains. The idea of
using a list of integer domains to capture the semantics of non-standard time data
has been proposed by Lorentzos [Lorentzos 1992]. Such an approach to handling
time data can be easily adapted in the framework of our ordered relational model.
In Figure 2(c) we have the semantic domain INCOMPLETE which captures the
semantics of different null values in a database. These null values model various
types of incomplete information as follows: the known data value “programmer” is
more informative than the null symbol UNK (data exists but is UNKnown), and
the null symbols UNK and DNE (data Does Not Exist) are more informative than
the null symbol NI (No Information to decide whether it is the case of UNK or
DNE).

Programmer

UNK DNE

NI

CEO

VPM VPD

of Marketing) of Development)

1-Jan-1996

1-Jan-1990

15-Sep-1994

1-Sep-1995

SALARY_REVISED_DATE

(b)

EMP_RANK

(a) 

INCOMPLETE

(c)

(Vice-President (Vice-President

(Chief Executive Officer)

more informative datamore recently updated salarieshigher post ranks

Fig. 2. Using ordered domains to capture the semantics in various information

We note that object-oriented methodology has the benefit of using the notion of
partial ordering to form class hierarchies [Rumbaugh 1988]. For example, the “kinds



4 · W. Ng

of” relationship, which represents the fact that one object class (super class) is a
generalisation of another class (subclass), is clearly a kind of partial ordering. The
“part of” relationship, which represents the fact that one object class (component
class) is an aggregation of another class (assembly class), also satisfies the criteria of
partial ordering. In this context, we use partial ordering to capture the semantics of
the association between data elements in a given domain, which are different from
the class relationships used in modelling objects association in the following two
perspectives. First, we do not consider object features, such as an object identity
and associated operations, and therefore we still assume atomic domains. Second,
the class relationships in the object-oriented approach are commonly used to indi-
cate various kinds of semantic connection between classes [Blaha and Premerlani
1998]. However, we are more concerned with the reasoning of ordering informa-
tion properties with respect to an application, such as “higher position in a post
hierarchy” or “more informative data” as shown in Figure 2.

The Scope of Our Investigation

Specifically, we study the effects on the following three components of the conven-
tional model of incorporating partial orderings, which are based on set-theoretic
formalism:

Structural. We impose a partial ordering on all the data domains of attributes;
by this we mean that a partial ordering is an integral part of an ordered domain1.
There follows an induced lexicographical ordering on tuples as the relation schema
is assumed to be linearly ordered. This serves as a minimal extended model which
incorporates orderings.

Operational. We extend the relational algebra to the Partially Ordered Relational
Algebra (which we call the PORA) by allowing the use of the ordering predicate, v,
in the language. The formalism of the PORA provides the basis to extend SQL to
Ordered SQL (OSQL), which is a query language for ordered databases. As a simple
illustration of the usefulness of the PORA, consider the semantic domain given in
Figure 2(a), which consists of three post names where ’VPM’ v ’CEO’ and ’VPD’ v
’CEO’. Suppose we would like to find the names of all the subordinates of the CEO.
This query can be formulated in the PORA as πNAME(σPOSTv′CEO′(STAFF)),
where STAFF is a relation over {NAME, POST}. We note that such semantics
cannot easily be captured without imposing an order on the underlying domain.

Constraints. We consider Ordered Functional Dependencies (which we call OFDs)
which are generalised forms of Functional Dependencies (FDs) [Ullman 1988; Atzeni
and De Antonellis 1993)]. OFDs can capture a monotonicity property between two
sets of values projected onto some attributes in a relation. We find that monotonic-
ity properties arise naturally in many applications, especially in those that consist
of temporal data. Two simple examples are that an OFD can capture the constraint
that the salary of an employee increases every year, and that in a bank account the
chronological ordering of dates increases as does the numerical ordering of cheque
numbers.

1In linguistic custom we shall often say “let X be a partially ordered set,” when what we really
mean “let X be the domain of a partial order” and the precise meaning is an ordered pair 〈X,v〉.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 5

Related Research Work

There is strong evidence in recent research that ordering is inherent to the under-
lying structure of data in many database applications [Buneman et al. 1991; Maier
and Vance 1993; Read 1995; Libkin 1996; Raymond 1996; Wijsen 1998]. For in-
stance, Raymond [Raymond 1996] illustrates the potential of using partial orderings
with many application examples such as textual and software information. Read
[Read 1995] shows that multi-resolution domains have very strong connections with
the notion of approximation such as incompleteness or impreciseness of data. A
multi-resolution set is defined as a partially ordered set that has a unique mini-
mal element and some maximal elements, and in addition, there is an associated
truth function mapping each element onto Boolean values in order to determine its
resolution level. Buneman [Buneman et al. 1991] and his colleagues [Jung et al.
1991; Libkin 1996] have extensively studied various kinds of orderings on powerdo-
mains considered to be useful in incomplete information. There has also been a fair
amount of research to extend the relational data model to include lists or sequences
as data types [Ginsburg and Tanaka 1986; Guting et al. 1989; Seshadri et al. 1996].
A list can arrange objects in some pre-defined order and thus a non-repeating list
of real world objects can be regarded as a linearly ordered domain.

Ginsburg [Ginsburg and Hull 1983] introduced the term order dependencies and
examined the issue of the extension of functional dependencies to incorporate in-
formation involving partial order. The central notion of order dependencies is
similar to that of our definition of ordered functional dependencies arising from
pointwise-orderings (POFDs), except that the involved domain orderings in order
dependencies are classified into total order, empty order and general partial-order.
They also exhibit a sound and complete set of inference rules for order dependencies
but the implication problem is shown to be co-NP complete [Garey and Johnson
1979]. Compared with order dependencies, POFDs do not take into account such
refinement on an ordered domain. However, the implication problem for POFDs
is found to be linear. Importantly, we investigate the new notion of OFDs arising
from lexicographical orderings (LOFDs), and further clarify the issues arising from
the semantics of POFDs, LOFDs and other variant forms of OFDs in the context
of ordered relations.

The rest of the paper is organised as follows. In Section 2 we clarify the notion
of order and formally extend the relational data model to include partial orderings
into the structure of the model. In Section 3 we investigate the expressive power of
the PORA and show that it is complete, in the sense that it satisfies a generalised
form of Paredaens’ and Bancilhon’s Theorem. We describe OSQL and demonstrate
its capabilities of capturing semantics in three advanced applications. In Section
4 we extend the notion of FDs in the context of ordered databases, and study
their implication problems by using the axiom system approach and the chase rule
approach. In Section 5 we conclude our work with some final remarks and discuss
future work resulting from the ordered relational model.

2. THE ORDERED RELATIONAL MODEL

In this section we clarify the notions of order [Halmos 1974; Gratzer 1978], formally
define the ordered relational model, and compare the features of ordered relations



6 · W. Ng

with conventional relations.

2.1 Extensions of Partial Orderings

Let S and T be sets, then | S | denotes the cardinality of S, S ⊆ T denotes set
inclusion, S ⊂ T denotes proper set inclusion and P(S) denotes the finite powerset
of S. We denote the k term Cartesian product S×S · · ·×S by Sk, and the singleton
{A} simply by A when no ambiguity arises. We assume the usual definition of a
partial ordering v on the set S: a binary relation on S satisfying the conditions of
reflexivity, anti-symmetry and transitivity [Gratzer 1978]. In the special cases when
v is a linear ordering, we denote it by ≤. At the other extreme, when each element
is only comparable with itself, S is completely unordered, i.e., v is just the equality
predicate =. We denote that x and y are incomparable by x ‖ y, and that x v y
but x 6= y by x < y. Note that for any elements x and y in S, if x 6= y, then exactly
one of the following holds: x v y, y v x, or x ‖ y. This implies that x ‖ y if and
only if x 6v y and y 6v x.

A partially ordered set (or simply an ordered set) is a structure 〈S,v〉. It consists
of a set S which is partially ordered by the relation v. In particular, the structure
〈S,≤〉 is called a linearly ordered set and the structure 〈S, =〉 is called an unordered
set. From now on the term ordered will mean partially ordered, unless stated
explicitly otherwise. Furthermore, when two ordered sets 〈T,vT 〉 and 〈S,vS〉,
where T ⊆ S, satisfy a1 vT a2 if and only if a1 vS a2 for all a1, a2 ∈ T , we call T
a subordering of S. In this case we may write 〈T,vT 〉 as 〈T,vS〉.

We now define pointwise-ordering and lexicographical ordering, which are two
important kinds of domain orderings on the Cartesian product of ordered sets.

Definition 1. (Pointwise-Ordering and Lexicographical Ordering) Let t1, t2 ∈ S.
A pointwise-ordering on S, denoted by vp

S , is defined as follows: t1 vp
S t2, if, for

all 1 ≤ i ≤ n, t1[i] vDi
t2[i]. A lexicographical ordering on S, denoted by vl

S , is
defined as follows: t1 vl

S t2, if either (1) there exists k with 1 ≤ k ≤ n such that
t1[k] <Dk

t2[k], and for all 1 ≤ i < k, t1[i] = t2[i], or (2) for all 1 ≤ i ≤ n, t1[i] =
t2[i].

A pointwise-ordering occurs naturally in incomplete information. The standard
way of dealing with incomplete information is by using the so-called null values
which are commonly interpreted as “value at present UNKnown” [Codd 1986].
Other interpretations of null values are DNE and NI [Zaniolo 1984], whose re-
lationship has been discussed in Example 1. For a simple illustration of using
pointwise-ordering in an incomplete relation we just assume that a domain of con-
stants, denoted as Dom, contains a distinguished symbol UNK, and define a partial
ordering in Dom as follows, for all x, y ∈ Dom, x v y if x = y or x = UNK. Then
we can extend v to be a pointwise-ordering in a relation r over {A,B} as follows,
for all t1, t2 ∈ r , t1 vp t2 if t1[A] v t2[A] and t1[B] v t2[B]. This extension
naturally captures the meaning of t1 being less informative than t2, or alterna-
tively t2 being more informative than t1. We emphasise that in this approach the
“informativeness” between tuples is being compared rather than comparing data
values, and thus the correct interpretation of two UNK symbols should be “equally
informative”. Actually, the relationship between incompleteness and orderings is
commonly used to study issues concerning incomplete information [Zaniolo 1984;



An Extension of the Relational Data Model to Incorporate Ordered Domains · 7

Libkin 1996; Levene and Loizou 1997].
We can construct the lexicographical ordering on alphabets, which we commonly

call a dictionary ordering or an alphabetical ordering, since it resembles the ordering
of words in a dictionary. The ordering of the domain DATE, called chronological
ordering, can be viewed as the lexicographical ordering of the domains Y EAR,
MONTH and DAY , if (1) the domain MONTH has the ordering as {Jan ≤
Feb ≤ · · · ≤ Dec} and (2) the Cartesian product of the domains is taken in the
following order: Y EAR×MONTH ×DAY .

2.2 Orderings in Databases

Ordering is a fundamental property of almost all primitive data types and is in-
herent to the underlying structure of data in many database applications [Maier
and Vance 1993; Read 1995; Libkin 1996; Raymond 1996; Ng and Levene 1997b].
However, all relational database systems support only the following three kinds of
standard domain orderings considered to be essential in practical utilisation: (1)
the alphabetical ordering over the domain of strings, (2) the numerical ordering over
the domain of numbers, and (3) the chronological ordering over the domain of dates
[Date 1990]. The limited support of domain orderings results in a loss of the se-
mantics of data. We call ordering semantics in the context of a specific application
semantic ordering and incorporate this notion into the relational data model. The
relationship between various notions of ordering has been shown in Figure 1.

We let D be a countably infinite set of constant values and vD be an ordering on
D. For the sake of simplicity in presenting our results, we assume that all attributes
share the same ordered domain, though in practice it may need more than one
ordering imposed over D. Note that our results obtained in the subsequent sections
can be generalised in a straightforward manner to the situation where several partial
orderings are defined on D, thus in this sense our assumption is no loss in generality.

We now give the definition of ordered databases.

Definition 2. (Attributes and Ordered Domains) We assume a countably infinite
linearly ordered set of attribute names, 〈U,≤U 〉2. For all attributes A ∈ U, the
domain of A is 〈D,vD〉. We call vD the domain ordering of D.

Definition 3. (Relation Schema and Database Schema) A relation schema
(or simply a schema) R, is a subset of U consisting of a finite set of attributes
{A1,. . .,Am} for some m ≥ 1. A database schema is a finite set R = {R1, . . . , Rn}
of relation schemas, for some n ≥ 1.

Definition 4. (Tuple and Tuple Projection) Let X = {A1, . . . , Am} be a finite
subset of U . A tuple t over X is a member of Dm. We let t[Ai] denote the
ith coordinate of t. The projection of a tuple t onto a set of attributes Y =
{Ai1 , . . . , Aik

}, where 1 ≤ i1 < · · · < ik ≤ m, is the tuple t[Y ] = 〈t[Ai1 ], . . . , t[Aik
]〉.

Definition 5. (Ordered Relation and Ordered Database) An ordered relation (or
simply a relation) r defined over a schema R is a finite set of tuples over R. An
ordered database (or simply a database) over R = {R1, . . . , Rn} is a finite set d =

2We should assume an ordering between attributes since the order of attributes in a relation
schema affects the order of tuples in an ordered relation.



8 · W. Ng

{r1, . . . , rn} such that each ri is a relation over Ri. We call r and d an unordered
relation and an unordered database, respectively, if the underlying domain 〈D,vD〉
is unordered, i.e., it is 〈D, =〉. Similarly, we call r and d a linearly ordered relation
and a linearly ordered database, respectively, if the underlying domain is linearly
ordered.

We can view a conventional database as a special case of ordered databases
with unordered domains. Two important properties of conventional relations are
preserved in ordered relations as follows: all domain elements are atomic and no
duplicate tuples are allowed. However, it is important to note that there are two
essential differences between ordered and conventional relations: first, in an ordered
relation tuples are ordered according to the extension of the domain ordering but
in a conventional relation tuples are unordered, and second, the attributes in the
schema of an ordered relation are assumed to be linearly ordered.

3. ORDERED RELATIONAL ALGEBRA AND ORDERED SQL

In this section we extend the relational algebra to the Partially Ordered Relational
Algebra (the PORA) by allowing the ordering predicate, v, to be used in the for-
mulae of the selection operator (σ). We apply Paredaens and Bancilhon’s Theorem
to examine the expressiveness of the PORA, and show that the PORA expresses
exactly the set of all possible relations which are invariant under order-preserving
automorphism of databases. The extension is consistent with the two important
extreme cases of unordered and linearly ordered domains. We also investigate the
three hierarchies of: (1) computable queries, (2) query languages and (3) partially
ordered domains, and show that there is a one-to-one correspondence between them.

The PORA provides the formal basis to develop OSQL, which is an extension of
SQL for the ordered relational model. Queries in OSQL are formulated in essentially
the same way as in standard SQL. Let us first demonstrate this mode of querying
with the following example showing how OSQL simplifies the specification of certain
queries.

Example 2.

(1) Obtain the months having the three lowest amount of rainfall according to
a rainfall record.
(Q1) SELECT MONTH, RAINFALL FROM RAIN RECORD TABLE
WITHIN RAINFALL ORDER WHERE TUPLE(1..3).

(2) Obtain the names of all staff who are more senior than the Vice-President
of Development (VPD).
(Q2) SELECT NAME FROM STAFF
WHERE POST > ’VPD’ WITHIN RANK ORDER.

The meaning of the above statements is quite easy to understand and the syntax
is similar to standard SQL. The tuple level set (1..3) of the built-in predicate TUPLE
in the query (Q1) means that the first to third tuples of the RAIN RECORD TABLE,
which are sorted according to the order of RAINFALL amount, are returned as
output. The keyword WITHIN in the query (Q2) specifies that the compari-
son POST > ’VPD’, which is interpreted according to the semantic ordering of
RANK ORDER.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 9

Throughout this section we let id be the identity mapping on any set. We use
the term active domain, adom(d), to represent the set containing those values
that appear in a database instance d. Thus, 〈adom(d),v〉 is a subordering of the
underlying domain of d (recall the meaning of subordering discussed in Section 2.1).

Definition 6. (Active Domain) The active domain of a relation r over R, denoted
as adom(r), is defined by adom(r) = {v | ∃A ∈ R, ∃t ∈ r such that t[A] = v}.
The active domain of a database instance d = {r1, . . . , rn} over R is defined by
adom(d) =

⋃n
i=1 adom(ri).

3.1 Query Language: the PORA

The PORA is essentially the classical relational algebra with the ordering predicate
added to deal with ordered domains. This language consists of a collection of six
operators, each of which maps a set of relations to a relation.

Definition 7. (Partially Ordered Relational Algebra) The PORA is a collection
of the following six operators: union (∪), Cartesian product (×), difference (−),
projection (πX), where X ⊆ U is a finite set of attributes, renaming (ρX→Y ), where
X → Y is a bijective function from a finite set of attributes X ⊆ U to a finite set of
attributes Y ⊆ U , and lastly extended selection (σF ), where the selection formula
F is restricted to be one of the forms: A = B, A 6= B, A v B or A 6v B, where
A ∈ U , and either B ∈ U or B is a constant.

The six operators given in Definition 7 are the standard ones (see [Atzeni and
De Antonellis 1993)] for their formal definitions and semantics), and the meaning
of σ over the formula A v B is also as expected, i.e., given a relation r, σAvB(r) =
{t ∈ r | t[A] v t[B]}. In order to avoid mismatching in domain orderings, we
choose to interpret the union compatibility as follows: the union is applicable only
to two relations with the same schema, and the orderings of the domains of the
corresponding attributes are the same. (Recall that domain ordering is assumed to
be an integral part of a domain in Definition 2.)

Definition 8. (PORA Expressions and their Equivalences) A PORA expression
is a well-formed expression using PORA operators whose operands are relation
schemas. EPORA is the set of all PORA expressions. The answer e(d) to an ex-
pression e ∈ EPORA with respect to a database d over R is obtained by substituting
the relation ri for every occurrence of Ri in e, for each i, and computing the result
by invoking the operators present in e. The answer is undefined if some operand
R of an expression is not in R. Two sets of expressions E1 and E2 are equivalent,
E1 ≡ E2, if for every e1 ∈ E1 there is some e2 ∈ E2 such that e1(d) = e2(d) for all
d ∈ DB(R), and vice versa.

We observe that σ=, σ 6= and σ 6v are not primitive3, since for any relation r they
can be simulated as follows, σA=B(r) ≡ σAvB(σBvA(r)), σA 6=B(r) ≡ r− σA=B(r),
and σA 6vB(r) ≡ r − σAvB(r). In the extreme case of an unordered domain σv
becomes σ=, i.e., for any relation r, σAvB(r) ≡ σA=B(r). Therefore, our definition
of the PORA is consistent with the standard relational algebra used in [Paredaens

3It is also interesting to note that σ‖ is not primitive and can be simulated by σA‖B(r) ≡
σA 6vB(σB 6vA(r)).



10 · W. Ng

1978]. Let UORA = {ρ,−,×,∪, π, σ=, σ 6=} be the unordered relational algebra
and LORA = {ρ,−,×,∪, π, σ≤, σ 6≤} be the linearly ordered relational algebra for
a given linear ordering of D. We formalise our observations as follows:

Proposition 1. Let 〈D,vD〉 be the underlying domain. Then

(1) EPORA ≡ EUORA if 〈D,vD〉 is unordered, and
(2) EPORA ≡ ELORA if 〈D,vD〉 is linearly ordered.

Note that those relations which can be generated by EPORA involve only rela-
tions in d and contain values solely in adom(d). We denote by ead(d) the PORA
expression that generates adom(d). The following proposition will be repeatedly
used in many formal proofs in Sections 3.2 and 3.3.

Proposition 2. Let ead(d) =
⋃

i,j πAj (ri), ∀Aj ∈ Ri where Ri ∈ R, and ∀ri ∈
d. Then adom(d) = ead(d).

The possible information of d is the countably infinite set of all relations that can
be derived from the adom(d).

Definition 9. (Possible Information) The possible information of d, denoted by
Poss(d), is defined by Poss(d) =

⋃∞
i=0P(adom(d)i).

3.2 Expressiveness of the PORA

We first discuss the concept of order-preserving database automorphism and then
examine the expressive power of the PORA by Paredaens’ and Bancilhon’s Theorem
[Paredaens 1978; Bancilhon 1978]. The notion of automorphism [Atzeni and De
Antonellis 1993)] is generalised to the context of ordered databases.

Definition 10. (Ordering Automorphism) Let 〈S,v〉 be an ordered set. The func-
tion f : S −→ S is an ordering automorphism, if f is bijective and satisfies the
condition that a1 v a2 if and only if f(a1) v f(a2). If the set {a ∈ S | f(a) 6= a} is
finite, then we call f a finite ordering automorphism. We denote the set of all finite
ordering automorphisms of an ordered set 〈S,v〉 by Aut(S,v), or simply Aut(S).

We now define an order-preserving automorphism of a database. Informally, this
is a permutation of the values in the active domain of a database instance that does
not alter the database and also preserves the ordering of the active domain.

Definition 11. (Order-Preserving Database Automorphism) Let h be an ordering
automorphism of 〈adom(d),v〉. Then h is extended to tuples t, relations r and
databases d as follows: h(t) = 〈h(a1), . . . , h(am)〉 where t = 〈a1, . . . , am〉, h(r)
= {h(t1), . . . , h(tk)} where r = {t1, . . . , tk}, and h(d) = {h(r1), . . . , h(rn)} where
d = {r1, . . . , rn}. We call h an order-preserving database automorphism, if its
extension to d satisfies the condition that h(ri) = ri for 1 ≤ i ≤ n. We simply write
this condition as h(d) = d if no ambiguity arises. The set of all order-preserving
database automorphisms of database d is denoted by Aut(v, d), or simply Aut(d)
when v is clear from the context.

It follows from Definition 11 that, for all partial orderings v, id ∈ Aut(v, d)
⊆ Aut(=, d). It also follows that Aut(v, d) = Aut(=, d) ∩ Aut(adom(d),v). The
following example should help to clarify the meaning of Aut(d).



An Extension of the Relational Data Model to Incorporate Ordered Domains · 11

Example 3. Let d contain just a single relation having 4 tuples, r = {〈x, z〉, 〈y, z〉,
〈x,w〉, 〈y, w〉}, and let 〈adom(d),v〉 = 〈{w, x, y, z}, {x v y, x v z, x v w}〉. We
define functions: h1 by h1(x) = y, h1(y) = x, h1(z) = z and h1(w) = w; h2

by h2(x) = x, h2(y) = z, h2(z) = y and h2(w) = w; and h3 by h3(x) = x,
h3(y) = y, h3(z) = w and h3(w) = z. Then h1 6∈ Aut(d) because, although
it preserves the database instance, it does not preserve the ordering; and h2 6∈
Aut(d) because, although it preserves the ordering, it does not preserve the database
instance; however, h3 ∈ Aut(d) because it preserves both the ordering and the
database instance.

We now present our result of the generalisation of Paredaens’ and Bancilhon’s
Theorem. The underlying principle in our approach is to view an ordered database
as an unordered database together with a binary relation s representing 〈adom(d),v
〉. An ordered relation r derived from d is regarded as an unordered relation r ×
s. We assume from now on that (1) adom(r) ⊆ adom(d) (we note that this is
equivalent to assuming r ∈ Poss(d)), and (2) no constant is allowed to be used
in selection formulas. We need the following technical lemmas to establish our
main theorem. The proofs of the next two lemmas follow from the definition of
order-preserving automorphism.

Lemma 1. Let d = {r1, . . . , rn} be a database over {R1, . . . , Rn} and S be a
schema having two attributes, s be the unordered relation over S given by s =
{〈a, b〉 | a v b and a, b ∈ adom(d)}, and let d′ = {r1, . . . , rn, s} be considered as an
unordered database over {R1, . . . , Rn, S}. Then Aut(=, d′) = Aut(v, d).

For a relation r, we define Aut(r) = Aut({r, adom(d)}), where adom(d) is re-
garded as a unary relation and d is understood from context.

Lemma 2. Let r be a relation over R and r′ = r×s be considered as an unordered
relation over RS, where s is defined as in Lemma 1. Then Aut(=, r′) = Aut(v, r).

Defining d′ and r′ as in the above two lemmas, the following result may be proved
using induction on the number of relational operators together with some algebraic
manipulation.

Lemma 3. Let d be a database over R and r a relation over R. Then e′(d′) = r′

for some e′ ∈ EUORA if and only if e(d) = r for some e ∈ EPORA.

Using our notation, we can state Paredaens’ and Bancilhon’s Theorem as follows:

Lemma 4. Let d be an unordered database. Then e(d) = r for some e ∈ EUORA

if and only if Aut(=, d) ⊆ Aut(=, r).

We now show that this can be generalised to ordered databases.

Theorem 1. Let d be an ordered database over R and r an ordered relation over
R. Then e(d) = r for some e ∈ EPORA if and only if Aut(v, d) ⊆ Aut(v, r).

Proof. By Lemma 1, Aut(v, d) = Aut(=, d′) and by Lemma 2, Aut(v, r) =
Aut(=, r′). So Aut(v, d) ⊆ Aut(v, r) if and only if Aut(=, d′) ⊆ Aut(=, r′). By
Lemma 4, Aut(=, d′) ⊆ Aut(=, r′) if and only if e′(d′) = r′ for some e′ ∈ EUORA.
The result then follows by Lemma 3 that Aut(v, d) ⊆ Aut(v, r) if and only if
e(d) = r for some e ∈ EPORA.



12 · W. Ng

We note that Theorem 1 can be straightforwardly extended to data domains
having any specified binary predicate, but in this case σ= may be primitive. Our
result can also be easily generalised to the case of C 6= ∅, where C is the set of
constants involved in queries, by replacing Aut(d) in Theorem 1 by the so-called C-
fixed Aut(d) (see Section 2.3 in [Atzeni and De Antonellis 1993)]), which is defined
as {h ∈ Aut(d) | h is an identity on C}.

The following corollary is an interesting result that follows from Theorem 1.
Informally, in the case of linearly ordered domains, the LORA expresses exactly
the countably infinite set of all possible relations generated by the active domain
of a given database. This follows immediately from the fact that, for any linear
ordering ≤, Aut(d) = {id}.

Corollary 1. Let d be a linearly ordered database. Then, for all r ∈ Poss(d),
e(d) = r for some e ∈ ELORA.

For any database d, it follows from the above discussion that the PORA applied
to d has no more expressive power than the UORA applied to d ∪ {s}, where
s is the partial order relation on adom(d) as defined in Lemma 1. However, in
most cases it is much more economical and efficient to compare domain elements
computationally than storing and using the relation s (e.g., for a numerical or
lexicographical ordering). Even for a partial order with no apparent computational
structure (e.g., a post rank hierarchy), it is more economical to store the Hasse
diagram [Gratzer 1978] rather than its transitive closure.

3.3 Hierarchy of Computable Queries with Ordered Domains

We now investigate the relationship between computable queries, ordered domains
and partially ordered relational algebras. We first define a hierarchy for each of
them and then show that there exists a one-to-one correspondence between them.

We will use index subscripts to denote different orderings over D, i.e., Di =
〈D,vi〉 where i is a positive integer. Similarly, we also write Aut(Di) and PORAi.
The semantics of “more ordered” domains can be defined in terms of ordering
automorphisms of the subsets of domains.

Definition 12. (More Ordered Domain) A domain D2 is said to be more ordered
than another domain D1, denoted by D1 ¹ D2, if, for all T ⊆ D, Aut(T,v2) ⊆
Aut(T,v1).

The informal reason for allowing T ⊆ D in the above definition is that we take into
account the fact that an active domain of a database can be defined on any subset of
D. As a consequence of the definition, Aut(d) is not affected by the automorphisms
induced from outside the active domain. The following simple example illustrates
this point.

Example 4. In Figure 3 we use Hasse diagrams to represent ordered domains. It is
easy to see that, for all T ⊆ D = {a, b, c}, Aut(T,v3) ⊆ Aut(T,v2) ⊆ Aut(T,v1)
and thus the relationship D1 ¹ D2 ¹ D3 can be captured by Definition 12 in a
natural manner.

Now we consider the expressiveness of the PORA for different orderings. Let the
set of relations generated from the information contained in a given database d,



An Extension of the Relational Data Model to Incorporate Ordered Domains · 13

a

b c

a
a

b

c

D D D

b c

1 2 3

Fig. 3. Hasse diagrams of ordered domains

denoted by Gen(vi, d), be defined as {r | r = e(d) for some e ∈ EPORAi
}.

Definition 13. (More Powerful Relational Algebra) A relational algebra PORA2

is more powerful than another PORA1, denoted by PORA1 ¹ PORA2, if, for all
databases d, Gen(v1, d) ⊆ Gen(v2, d).

If PORA2 is a more powerful language than PORA1, then we can retrieve more
relations from a given database instance using PORA2. We still need to extend the
notion of computable query to ordered databases, but we take a different approach
from [Chandra and Harel 1980]. The motivation for our definition is to include
those queries which are meaningful with respect to the ordered domain concerned.
The criterion for being meaningful over an ordered database d is that the query
must be invariant under all order-preserving database automorphisms over d.

Let χ =
⋃∞

i=0 P(Di) and DB(R) be the countably infinite set of all databases
defined over a database schema R. (Recall that D is assumed to be a common
domain.)

Definition 14. (Meaningful Computable Query) A meaningful computable query
with respect to a given domain Di, denoted by δ, is a partial recursive function
from DB(R) to χ such that for all d ∈ DB(R),

(1) if δ(d) is defined, then δ(d) ∈ Poss(d), and

(2) for all h ∈ Aut(vi, d), h(δ(d)) = δ(d).

We denote the set of all meaningful computable queries by Qi.

Note that our definition of a meaningful computable query is the same as the
conventional one if we restrict ourselves to unordered domains. Now we state two
technical lemmas and then present our main theorem. The first lemma follows
using Theorem 1 and Lemma 2. It can be regarded as a generalisation of Lemma
2 to databases. The second lemma is useful when we compare different ordered
databases. Basically it allows us to consider ordering automorphisms on the un-
derlying domain instead of automorphisms on databases.

Lemma 5. Let d = {r1, . . . , rn} be a database over {R1, . . . , Rn}, s be the un-
ordered relation over S, where s is defined as in Lemma 1, and let r = r1×· · ·×rn×s,
considered as an unordered relation over R1 · · ·RnS. Then Aut(v, d) = Aut(=, r).

Lemma 6. D1 ¹ D2 if and only if Aut(v2, d) ⊆ Aut(v1, d) for all databases d
over R.



14 · W. Ng

Proof.
IF: Consider any h ∈ Aut(T,v2) with T ⊆ D. Let X = {a ∈ T | a 6= h(a)} and,
since h is a finite automorphism, suppose X = {a1, . . . , ak}. Define a database d
over R as follows, for all r ∈ d, r consists of exactly k tuples {t1, . . . , tk}, where ti =
〈ai,. . . , ai〉 for 1 ≤ i ≤ k. Obviously, we have that h ∈ Aut(v2, d). By hypothesis,
this implies h ∈ Aut(v1, d) and thus h ∈ Aut(T,v1).

ONLY IF: This follows easily by using the fact that Aut(vi, d) = Aut(=, d) ∩Aut
(T,vi) for any database d, where T = adom(d).

We now present our main result stating the association between domains, queries
and languages. This allows us to establish hierarchies for these entities.

Theorem 2.

(1) D1 ¹ D2 if and only if Q1 ⊆ Q2,
(2) D1 ¹ D2 if and only if PORA1 ¹ PORA2.

Proof.
(1) IF: Assume D1 6¹ D2. By Lemma 6, this implies that there exists a database
d′ such that h2 6∈ Aut(v1, d

′) for some h2 ∈ Aut(v2, d
′). Let d′ = {r′1, . . . , r′n}. We

now construct a query that is in Q1 but not in Q2. We substitute d′ for d and r′

for r in Lemma 5. Thus, for all h ∈ Aut(v1, d
′), we have h(r′) = r′. On the other

hand, h2(r′) 6= r′ since h2 6∈ Aut(v1, d
′). We define a query δ as follows: δ(d) = r′

when d = d′ and δ(d) is equal to the empty set otherwise. By part (2) of Definition
14, δ ∈ Q1 but δ 6∈ Q2.

ONLY IF: Let δ ∈ Q1 and d ∈ DB(R). From Definition 14, δ(d) ∈ Poss(d) and,
for all h ∈ Aut(v1, d), h(δ(d)) = δ(h(d)). By the assumption D1 ¹ D2 and Lemma
6, Aut(v2, d) ⊆ Aut(v1, d). Therefore, for all h ∈ Aut(v2, d), h(δ(d)) = δ(d) and
thus δ ∈ Q2.

(2) IF: Assume D1 6¹ D2. By Lemma 6, there exists a database d′ = {r1, . . . , rn}
such that Aut(v2, d

′) 6⊆ Aut(v1, d
′). It suffices to exhibit a database d and a

relation r such that r ∈ Gen(v1, d) but r 6∈ Gen(v2, d). We let d = d′ and
r = r1 × · · · × rn × s and s = {〈a, b〉 | a v1 b and a, b ∈ adom(d′)}. Clearly, s
can be derived from d by some e ∈ PORA1 and thus r ∈ Gen(v1, d). It remains
to show r 6∈ Gen(v2, d). Suppose r ∈ Gen(v2, d). By Theorem 1, Aut(v2, d

′) ⊆
Aut(v2, r), so Aut(v2, d

′) ⊆ Aut(=, r). By Lemma 5, it follows that Aut(v2, d
′)

⊆ Aut(v1, d
′), which leads to a contradiction.

ONLY IF: Let r ∈ Gen(v1, d). We need to show that r ∈ Gen(v2, d). By
Theorem 1, Aut(v1, d) ⊆ Aut(v1, r). Thus Aut(adom(d),v2) ∩ Aut(v1, d) ⊆
Aut(adom(d),v2) ∩Aut(v1, r). Moreover, we have Aut(v1, d) = Aut(adom(d),v1)
∩ Aut(=, d) and Aut(v1, r) = Aut(adom(d),v1) ∩ Aut(=, r). So it follows
that Aut(adom(d),v2) ∩ Aut(adom(d),v1) ∩ Aut(=, d) ⊆ Aut(adom(d),v2) ∩
Aut(adom(d),v1) ∩ Aut(=, r). By the assumption ofD1 ¹D2 and by Definition 12,
we have Aut(adom(d),v2) ⊆ Aut(adom(d),v1). It follows that Aut(adom(d),v2)
∩ Aut(=, d) ⊆ Aut(adom(d),v2) ∩ Aut(=, r). Hence, we have Aut(v2, d) ⊆
Aut(v2, r). By Theorem 1 again, we have r ∈ Gen(v2, d).

The following corollary states that there is a correspondence between the set of



An Extension of the Relational Data Model to Incorporate Ordered Domains · 15

meaningful computable queries and the partially ordered relational algebra. Infor-
mally, the relational algebra PORAi non-uniformly expresses the set of queries Qi,
i.e., the expression e ∈ EPORAi

depends on the database instance as well as the
query δ ∈ Qi. Therefore, in this sense we can say that the language PORAi is
non-uniformly complete.

Corollary 2. Q1 ⊆ Q2 if and only if PORA1 ¹ PORA2.

We present the diagram in Figure 4, which summarises the relationship between
the hierarchies of (1) meaningful computable queries, (2) partially ordered domains,
and (3) partially ordered relational algebras. The implications of this result are
that if the underlying data domains of an ordered database have more inherent
structure, then a wider scope of queries is possible. In other words, the ordered
relational model can provide more expressive query languages than those of the
conventional one, and in this sense we can say that more meaningful queries are
possible with respect to an ordered relational database. We also remark that the
main results in Theorems 1 and 2 can be extended to the situation where several
partial ordering relations are defined on D. However, under this circumstance we
need to generalise the notion of an order-preserving database automorphism as
follows: let Ωi = {v1, . . . ,vni

} be a given set of orderings on D, where ni is a
positive integer, then Aut(Ωi, d) is defined as Aut(v1, d) ∩ · · · ∩Aut(vni , d).

Queries Q= ⊆ · · · ⊆ Qi ⊆ · · · ⊆ Q≤

l l l

Domains 〈D, =〉 ¹ · · · ¹ 〈D,vi〉 ¹ · · · ¹ 〈D,≤〉

l l l

Algebras PORA= ¹ · · · ¹ PORAi ¹ · · · ¹ PORA≤

Fig. 4. A correspondence between hierarchies of queries, domains and languages

3.4 Query Language: OSQL

Ordered SQL (OSQL) is an extension of SQL for the ordered relational model.
There are three main features in OSQL. First, we implement a new built-in predi-
cate called TUPLE which uses a tuple level set as the parameter. A tuple level set
is basically the collection of different levels of an internal hierarchy of a relation.
Second, the WHERE clause is extended to implement the ordering predicate in the
PORA and thus it allows us to compare attributes according to semantic orderings.
Finally, the ORDER BY clause is also extended as follows: the tuples in an output
relation generated by an OSQL expression can be ordered according to semantic
orderings, in addition to the usual system orderings.

We now discuss the underlying idea of the extension of an internal hierarchy,
which can be viewed as a generalisation of the position of a tuple in a linearly
ordered relation. We denote by part(r) a partition of a relation r, which is a set
of pairwise disjoint non-empty subsets of r such that

⋃
T∈part(r) T = r, and call an



16 · W. Ng

element T ∈ part(r) a tuple level of r. An internal hierarchy of r is essentially a
linearly ordered partition induced by vl

r.

Definition 15. (Internal Hierarchy of a Relation) An internal hierarchy of a re-
lation r is a linearly ordered set 〈part(r),≤〉, such that

(1) ∀T ∈ part(r), ∀t1, t2 ∈ T , either t1 = t2 or t1 ‖ t2 (i.e., T is unordered).
(2) ∀Ti, Tj ∈ part(r), Ti < Tj ⇒ ∀t1 ∈ Ti,∀t2 ∈ Tj , t2 6vl

r t1.
(3) ∀Ti, Tj ∈ part(r), Ti < Tj ⇒ ∃t1 ∈ Ti,∃t2 ∈ Tj such that t1 <l

r t2.

A tuple u ∈ s is said to be minimal, where s ⊆ r, if, for any t ∈ s, t vl
r u implies

that t = u. We remark that s may have more than one minimal tuple. In one
special case of linearly ordered relations, s has a unique minimal tuple. In another
special case of an unordered relation, all tuples in s are minimal.

Example 5. Consider a unary relation r = {a, b, c, d, e} (5 tuples), where a vr c,
b vr c, c vr e and d vr e . We now show two possible internal hierarchies part(r)
= {T1, T2, T3} given in Figure 5, in which a tuple is represented by a node.

T1

T2

T3

T1

T2

T3
e

c d

a b

e

c d

ba

(a) (b)

Fig. 5. Two possible internal hierarchies for a relation r

The following lemma shows that by successively collecting the sets of minimal
tuples in the subsets of a relation, we can construct an internal hierarchy as il-
lustrated in Figure 5(b). We remark that this method of constructing an internal
hierarchy is essentially a matter of convention and is one of the simplest choices.
Later, in Lemma 9 we will further show that our choice has the desirability that
each level can be obtained by PORA expressions. It is interesting to note that the
internal hierarchy constructed by collecting sets of maximal tuples also gives rise to
the same number of tuple levels as with the method used in Lemma 7 (i.e. Figure
5(a) is generated); in this case we then need to generalise the parameter ri in order
to handle the disconnected components arising from Algorithm 1. We also observe
that, in general, the total number of tuple levels in an internal hierarchy of relation
r is greater than or equal to the number of nodes in the longest chain of the Hasse
Diagram corresponding to r.

Lemma 7. Every relation contains an internal hierarchy.

Proof. We let r be a given relation and use the following algorithm to generate
a partition.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 17

Algorithm 1.

1. begin
2. r0 = r and T0 = ∅;
3. do until ri−1 = ∅
4. Ti is the set of minimal tuples of ri = ri−1 − Ti−1;
5. return Result = {T1, . . . , Tl};
6. end.

It is trivial that Algorithm 1 will terminate for a finite relation r. Let the last
tuple level generated by the algorithm be Tl and {T1 < T2 < · · · < Tl} be a
collection of subsets obtained by the above algorithm, where the linear ordering on
this partition is according to the order of generation of Ti in the steps 3 and 4. It
is easy to see that it is a partition of r and that for all t1, t2 ∈ Ti, if t1 and t2 are
distinct, then we have t1 ‖ t2, since they are both the minimal tuples of ri. Thus,
it satisfies part (1) in Definition 15. Assume to the contrary that ∃t1 ∈ Ti,∃t2 ∈ Tj

such that t2 vl
r t1 and Ti < Tj . Then it follows that t2 = t1, since t1 is a minimal

tuple and is less than t2. However, this is impossible because Ti and Tj are disjoint.
Hence part (2) is also satisfied. Finally, part (3) can be established by noting that
Ti is the set of all minimal elements of some superset of Tj . It follows that for any
element t2 ∈ Tj , there is an element t1 ∈ Ti such that t1 <l

r t2.

The next lemma is immediately followed by the definition of Algorithm 1.

Lemma 8. The internal hierarchy generated by Algorithm 1 is unique.

Proof. This can be easily established by using induction on Ti and the fact that
Ti is the unique set of all minimal tuples of ri.

The following lemma shows that the tuple levels of the internal hierarchy gener-
ated by Algorithm 1 can be expressed by the PORA for a relation r. We use the
notation σX<̃Y to represent the PORA expression that compares the projections
of a tuple onto X and Y according to the lexicographical ordering.

Lemma 9. Any tuple level of the internal hierarchy generated by Algorithm 1 can
be expressed by the PORA.

Proof. Let σX<̃Y (r) be a shorthand notation to represent the PORA expression
σA1<B1(r)∪(σA1=B1(σA2<B2(r)))∪· · ·∪(σA1=B1 · · · (σAn−1=Bn−1(σAn<Bn(r))) · · ·),
where X = 〈A1, . . . , An〉 and Y = 〈B1, . . . , Bn〉. We can generate Ti, where
1 ≤ i ≤ n, recursively as follows.

i = 1: T1 = s ∪ (r − w), where
s = ρR1→R(πR1(σR1<̃R2

(r × r)))− ρR2→R(πR2(σR1<̃R2
(r × r))), and

w = ρR1→R(πR1(σR1<̃R2
(r × r))) ∪ ρR2→R(πR2(σR1<̃R2

(r × r))).

i > 1: Ti = s ∪ (ri − w), where ri = (· · · ((r − T1)− T2) · · · − Ti−1),
s = ρR1→R(πR1(σR1<̃R2

(ri × ri)))− ρR2→R(πR2(σR1<̃R2
(ri × ri))), and

w = ρR1→R(πR1(σR1<̃R2
(ri × ri))) ∪ ρR2→R(πR2(σR1<̃R2

(ri × ri))).

Lemmas 7, 8 and 9 have practical significance as they indicate that a unique
internal hierarchy can be generated by collecting the minimal tuples of a relation
(or its subset) and, in addition, using the PORA we can express a tuple level of



18 · W. Ng

such a hierarchy for a given relation. The concept of a tuple level is very natural
and easy to understand. In the special case of linearly ordered relations, Ti is the
singleton containing the ith tuple. Thus, our choice of the SELECT statement in
OSQL to include the TUPLE predicate can be justified by the formalism of an
internal hierarchy.

We now describe the extensions of Ordered SQL (OSQL) to the Data Manipu-
lation Language (DML) and the Data Definition Language (DDL): the SELECT
statement of the DML and the CREATE statement of the DDL; the full reference
of the syntax of OSQL in Backus-Naur Form (BNF) can be consulted in Appendix
A.

1. The DML of OSQL

SELECT 〈 lists of attributes 〉
FROM 〈 lists of ordered relations 〉
WHERE {〈 comparison expressions 〉 | TUPLE 〈 sets of tuple levels 〉}
ORDER BY 〈 lists of attributes 〉

An attribute list above is a list of attributes similar to the usual one, such as
using the symbol “∗” to represent the projection on all attributes, when used after
the SELECT keyword. However, an attribute can be associated with a semantic
ordering by using the syntax attribute name WITHIN order name in the comparison
expression or in the ORDER BY clause. The purpose of declaring a WITHIN clause
is to override the system ordering with the semantic ordering specified by a domain
order name. When the WITHIN clause is missing, then the system ordering will
be assumed and in this case OSQL is just equivalent to conventional SQL.

The TUPLE predicate, an optional condition following the WHERE keyword,
is used with the parameter tuple levels. Tuple levels are represented as a set of
positive numbers, with the usual numerical ordering, which can be written in some
short forms (see Appendix A2). As a set of tuples in a linearly ordered relation
r = {t1, . . . , tn} is isomorphic to a set of linearly ordered tuples, we interpret each
number i in a tuple level set as an index to the position of the (only) tuple ti,
where i = 1, . . . , n and t1 < · · · < tn. An interesting situation to consider is when
the output of a relation is partially ordered as a tree, having levels {l1, . . . , lm}. In
such a case we choose to interpret each number j in a tuple level set as an index
to a corresponding tree level lj , where j = 1, . . . , m and l1 < · · · < lm. Hence,
using the predicate TUPLE(j) we can retrieve (all) the tuples in a specified level
lj . We remark that by choosing the optional keyword DESC the tuple order can be
reversed and thus the usual TUPLE(LAST − j) is equivalent to TUPLE(j + 1)
in the reversed case.

Example 6. We use the post hierarchy of an organisation as shown in Figure 6 to
clarify the semantics of the TUPLE predicate. We can see from this figure that if a
user specifies the first tuple level by TUPLE(1) following the WHERE keywords, the
system returns ’VPD’ and ’VPM’. If a user specifies TUPLE(LAST ) or TUPLE(2)
instead, the system just returns ’CEO’. Note that without the TUPLE predicate
in the WHERE clause the system simply returns all the post names.

A comparison expression following the WHERE keyword has the usual compara-



An Extension of the Relational Data Model to Incorporate Ordered Domains · 19

CEO

VPM VPD

(Chief Executive Officer)

of Marketing) of Development)

Level 1

Level 2

(Vice-President (Vice-President

Fig. 6. Relationship between post ranks in an organisation

tors <,>, <=, >= whose meaning is extended to include semantic comparison as
we have mentioned earlier. (Recall also that incomparsion can be simulated by
these comparators.) A typical form of a semantic comparison expression is

〈 attribute 〉 〈 comparator 〉 〈 attribute 〉 WITHIN 〈 semantic order 〉.
Without the optional WITHIN clause, the comparison is just the conventional one
and is based on the relevant system ordering.

Example 7. Let us examine the following OSQL statements:

(Q3) SELECT POST, AGE FROM STAFF.
(Q4) SELECT AGE, POST FROM STAFF.
(Q5) SELECT POST, AGE FROM STAFF

ORDER BY (POST WITHIN RANK ORDER).

Note that when the ORDER BY clause is not used in an OSQL expression,
the ordering of tuples in an output relation then depends on two factors: first,
on the ordering of domains of individual attributes, and second, on the order of
the attributes in an attribute list. The attribute list of the query (Q3) is (POST,
AGE), and thus tuples in the output answer are ordered by POST first and only
then by AGE (see Figure 7(a)). Therefore the ordering of tuples is, in general,
different to that of query (Q4), whose list is specified as (AGE, POST), since the
output of (Q4) is ordered by AGE first, and then by POST (see Figure 7(b)). It
will also be different from that of (Q5) which uses the ORDER BY clause with the
attribute (POST WITHIN RANK ORDER) (see Figure 7(c)), where the semantic
ordering of POST is given by RANK ORDER as shown in Figure 6. Note also that
’VPD’ and ’VPM’ are incomparable according to RANK ORDER and thus they
are alphabetically ordered in the output result.

POST AGE

CEO 48

VPD 48
VPM 47

AGE POST

47 VPM

48 CEO
48 VPD

POST AGE

VPD 48

VPM 47
CEO 48

(a) (b) (c)

Fig. 7. An employee relation STAFF with different orderings



20 · W. Ng

2. The DDL of OSQL

CREATE DOMAIN ORDER 〈 domain order names 〉 〈 data types 〉
AS 〈 ordering specifications 〉.
The statement declares a semantic ordering by specifying its domain order name
and data type. Following the AS keywords is a specification of the ordering of a
semantic domain. The basic syntax of the ordering-specification is: ( 〈 data-pair 〉,
〈 data-pair 〉, . . .) where data-pair is of the form, data-item B < data-item A, if and
only if data-item A is greater than data-item B in the semantic domain.

Example 8. The definition of the semantic ordering on the domain shown in Fig-
ure 2(a) can be written as follows:

(Q6) CREATE DOMAIN ORDER RANK ORDER CHAR(3)
AS (’VPM’<’CEO’, ’VPD’<’CEO’).

For a large and complex semantic ordering, this syntax may be tedious. Thus
OSQL provides two useful short forms to make the task of specifying semantic
orderings easier. First, we allow the use of set notation, {}, to represent a set of
data items with common predecessor (or successor). For instance, the statement
(Q6) can be rewritten as follows:

(Q7) CREATE DOMAIN ORDER RANK ORDER CHAR(3)
AS ({’VPD’,’VPM’}<’CEO’).

Second, we allow the use of the keyword OTHER for those data items not men-
tioned explicitly, with two options OTHER SYO and OTHER UNO, meaning that
those data values not mentioned are treated as SYstem Ordered or UNOrdered.
Note that by default we assume other data items are unordered unless there is an
explicit declaration that orders these items.

We now introduce another CREATE statement used for declaring a tuple order
on a set of tuples, which is an extension of the corresponding list of domain orders.

CREATE TUPLE ORDER 〈 tuple order names 〉 〈 lists of data types 〉
AS 〈 lists of domain order names 〉.

The first part of the statement is similar to the CREATE DOMAIN ORDER
statement except that it needs to specify a list of data types and a list of domain
order names in defining a tuple order. Note that a tuple order is a lexicographical
ordering on the Cartesian product of the existing domains. This statement affords
us the ability to create a semantic ordering on tuples, based on established semantic
orderings. When a tuple order is stated after a relation name in the FROM clause,
the TUPLE predicate then returns the tuples of the specified levels for the relation,
according to the tuple order. This should not be confused with the usage of the
ORDER BY clause, which is only used to control the ordering of an output relation
for a query.

Example 9. Let us first define a tuple order, which is formed by the semantic
ordering RANK ORDER, as shown in (Q6), and the system ordering SYO, for the
relation STAFF in Figure 7, as follows.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 21

(Q8) CREATE TUPLE ORDER STAFF ORDER (CHAR(3), NUM(3)) AS
(RANK ORDER, SYO).

We compare the following OSQL statements, which refer to the post hierarchy
in Figure 7, in order to illustrate one usage of a tuple order:

(Q9) SELECT POST, AGE FROM STAFF
WHERE TUPLE(1).

(Q10) SELECT POST, AGE FROM STAFF WITHIN STAFF ORDER
WHERE TUPLE(1).

The statement (Q9) returns only 〈′CEO′, 48〉 according to the usual system order-
ing on tuples, whereas the statement (Q10) returns 〈′V PD′, 48〉 and 〈′V PM ′, 47〉
according to the semantic ordering specified by STAFF ORDER on the relation
STAFF.

There is still another important usage of a tuple order in a comparison expression
following the WHERE keyword. It allows more than one attribute to be used on
the two sides of a comparator and then compares the attributes according to the
semantic ordering specified by a given tuple order. We will illustrate the use of this
powerful feature when discussing the use of OSQL in temporal information (see
Example 10 in Section 3.5).

3.5 Using OSQL in Advanced Applications

We now show by the following running example how OSQL can be applied to solve
various problems that arise in relational DBMSs involving the applications hav-
ing tree-structured information [Biskup 1990], temporal information [Tansel et al.
1993], and incomplete information [Codd 1986] under the unifying framework of
the ordered relational model.

Example 10. Let us consider the relation EMP DETAIL shown in Figure 8. The
semantics of the attributes are self-explanatory or will be further clarified whenever
necessary.

NAME POST SALARY PRE WORK MONTH YEAR

Ethan VPM 42K UNK Dec 1994
Mark CEO 40K NI Sep 1990
Mark CEO 48K NI Sep 1996

Nadav VPD 45K Programmer Jan 1995

Fig. 8. An employee relation EMP DETAIL

—Tree-structured Information:
Suppose that we have the domain order RANK ORDER being declared by the
statement (Q6) (or equivalently (Q7)) to describe the hierarchy of the employees
in EMP DETAIL. We can formulate the query for finding the employee informa-
tion, ordered by the post ranks, as follows:
(Q11) SELECT ∗ FROM EMP DETAIL

ORDER BY (POST WITHIN RANK ORDER).



22 · W. Ng

We can also formulate a more complex query for finding the name of the common
bosses of Nadav and Ethan as follows:
(Q12) SELECT E1.NAME FROM EMP DETAIL E1, EMP DETAIL E2

WHERE (E1.POST > E2.POST WITHIN RANK ORDER)
AND (E2.NAME = ’Ethan’ OR E2.NAME = ’Nadav’).

We remark that the keyword WITHIN specifies that the comparison expression
E1.POST > E2.POST is interpreted according to RANK ORDER.

—Temporal Information:
We assume that MONTH and YEAR are time attributes whose values are times-
tamps of the tuples in the relation EMP DETAIL (for simplicity in presentation,
we assume that the timestamping denotes valid time [Tansel et al. 1993]). We
need the tuple order YEAR MONTH to capture the semantics of the time or-
der of year-month, which is defined by the following two statements ((Q13) and
(Q14)):
(Q13) CREATE DOMAIN ORDER MONTH ORDER CHAR(3) AS

(′Jan′ < ′Feb′, ′Feb′ < ′Mar′, ′Mar′ < ′Apr′, ′Apr′ < ′May′, ′May′ <
′Jun′, ′Jun′ < ′Jul′, ′Jul′ < ′Aug′, ′Aug′ < ′Sep′, ′Sep′ < ′Oct′, ′Oct′ <
′Nov′, ′Nov′ < ′Dec′).

(Q14) CREATE TUPLE ORDER YEAR MONTH
(NUM(4), CHAR(3)) AS (SYO, MONTH ORDER).

For instance, we can see that Mark had a salary of 40K in Sep-1990 and his salary
increased in Sep-1996. Note that we do not record Mark’s salary if there had
been no change since the month it was last updated. We can use the keyword
LAST as a parameter in the TUPLE predicate to find the last time the tuple
was updated, since the tuple order YEAR MONTH for the projection over the
attribute list (YEAR, MONTH) is a linear ordering. With the following query,
we show how to find Mark’s salary in Dec-1993 as follows:
(Q15) SELECT YEAR, MONTH, SALARY FROM EMP DETAIL

WHERE NAME = ’Mark’ AND TUPLE(LAST)
AND ((YEAR, MONTH) <= (1993, ’Dec’) WITHIN YEAR MONTH).

—Incomplete Information:
Suppose we have the domain order INCOMPLETE as in Figure 2(c) to cap-
ture the semantics of different null values, which is defined for the attribute
PRE WORK, meaning the PREvious WORKing experience of an employee, as
follows:
(Q16) CREATE DOMAIN ORDER INCOMPLETE CHAR(10) AS

(’NI’<’DNE’,’NI’<’UNK’< OTHER).
We can now formulate the query which finds the NAME and PRE WORK of
those employees whose previous work is more informative than NI, as follows:
(Q17) SELECT NAME, PRE WORK FROM EMP DETAIL

WHERE (PRE WORK > ’NI’ WITHIN INCOMPLETE).

The OSQL statements in (Q13) to (Q17) reveal the potential of using OSQL
to support the above-mentioned three advanced applications under the unifying
framework of the ordered relation model. We emphasise that our design of OSQL
adheres to the principle of upward compatibility, in the sense that the syntax of
OSQL is equivalent to that of standard SQL when those OSQL facilities related to



An Extension of the Relational Data Model to Incorporate Ordered Domains · 23

semantic orderings are not used in formulating expressions. The overall change to
OSQL is kept at a minimal level and thus the current users will be able to adapt
the language in a short time. We summarise the advantages of OSQL and compare
them against the features of conventional SQL in the table given in Figure 9.

Conventional SQL OSQL

No semantic comparison is possible in the

WHERE clause. Comparison is limited
to only a few kinds of standard system

orderings provided by a DBMS.

Semantic comparison is allowed to be writ-

ten as a conditional expression in the
WHERE clause in a statement. It is easy

to compare attributes according to the se-

mantic orderings defined by users.

No simple and general way of obtaining
the nth tuple in a relation, where n is a

natural number.

The nth tuple can be conveniently retrieved
by the built-in TUPLE predicate, based on

the formal notion of an internal hierarchy.

The ORDER BY clause uses only system

orderings.

The ORDER BY clause can use system or-

derings or semantic orderings.

Only pointwise-ordering can be defined
when comparison involves more than one

attribute. This is achieved by using the

logical connective AND between simple
comparison expressions in the WHERE

clause.

By using the CREATE TUPLE ORDER
statement we could first define a lexico-

graphical ordering on a set of tuples and

then use it as a conditional expression
to compare attribute lists in the WHERE

clause.

Fig. 9. Comparison between conventional SQL and OSQL

4. FUNCTIONAL DEPENDENCIES FOR THE ORDERED RELATIONAL MODEL

In this section we formalise the notions of FDs being satisfied in ordered relations
and call them OFDs. OFDs are classified according to whether we use pointwise-
orderings (POFDs) or lexicographical orderings (LOFDs) in their definitions. We
show that the axiom system comprising the inference rules for POFDs, which is a
superset of Armstrong’s axiom system for FDs, is sound and complete. We extend
the chase rules for the case of LOFDs and the notion of tableaux for LOFDs, and
show that the chase is sound and complete for LOFDs.

Throughout this section we refer to a sequence of attributes as a shorthand for
a sequence of distinct attributes and use the common notation for both sequences
and sets when no ambiguity arises. We denote the fact that two sequences have
the same elements by X ∼ Y . The difference between two sequences of attributes,
denoted as X − Y , is defined by the sequence resulting from removing all the
common attributes in X and Y from X while maintaining the original order of
the remaining attributes in X. We also denote by XY the concatenation of two
sequences X and Y , if X and Y are disjoint, otherwise XY is defined by X(Y −X).

4.1 Ordered Functional Dependencies (OFDs)

Bearing in mind that the implication problem is an important issue arising in
developing the theory of data dependencies, we first formalise the notions of logical
implication and an axiom system.



24 · W. Ng

Definition 16. (Logical Implication and Axiom System) A set of data dependen-
cies F logically implies a data dependency f over R, written F |= f , whenever for
all relations r over R, if, for all f ′ ∈ F, r |= f ′ holds, then r |= f also holds. An
axiom system A for F is a set of inference rules (or simply rules) that can be used
to derive data dependencies from F over R. We say that f is derivable from F by
A, if there is a finite sequence of data dependencies over R, whose last element is
f , and where each data dependency in the sequence is either in F or follows from a
finite number of previous data dependencies in the sequence by one of the inference
rules. We denote by F ` f the fact that f is derivable from F by a specified axiom
system.

Definition 16 will be used in different contexts of OFDs: when discussing POFDs
in Section 4.2, we will use F |= f to mean that a set of POFDs F logically implies
a POFD f , and when discussing LOFDs in Section 4.3, we will also use F |= f to
mean that a set of LOFDs F logically implies an LOFD f .

We assume that readers have knowledge of Armstrong’s axiom system for FDs
[Armstrong 1974; Ullman 1988], which provides a set of inference rules that can
infer new FDs from given ones. It is well-known that Armstrong’s axiom system
is sound and complete for FDs being satisfied in conventional relations. The se-
mantics of FDs in the context of ordered databases is straightforward, that is, an
FD in conventional relational databases can be viewed as a special case of an OFD
when a database is unordered. Armstrong’s system can be directly carried over
to ordered relations, since we assume that the equality predicate still applies to
ordered domains.

The semantics of an OFD with two or more attributes on either the left or right
hand side is defined according to pointwise-orderings and lexicographical orderings
on the Cartesian product of the underlying domains of the attributes in the OFD,
which gives rise to POFDs and LOFDs, whose short forms are written as POFDs
(X ↪→ Y ) and LOFDs (X ; Y ), respectively.

To illustrate the usage of OFDs, we show in Figure 10 a relation called SALARY
RECORD over the set of attributes {NAME, POST, YEARS, SALARY}. The
semantics of SALARY RECORD are: an employee with a NAME and a given
POST, who has been working in a company for some YEARS, has the present
SALARY.

NAME POST YEARS SALARY

Mark Senior Programmer 15 35K
Nadav Junior Programmer 7 25K

Ethan Junior Programmer 6 22K

Fig. 10. An employee relation SALARY RECORD

We assume that there is a semantic ordering in POST as represented by the
following domain {’Junior Programmer’ < ’Senior Programmer’}. The relation
SALARY RECORD given in Figure 10 then satisfies the POFD, {POST, YEARS}
↪→ SALARY, which states that the SALARY of an employee is greater than that
of other employees with junior titles and less experience in the company, and the



An Extension of the Relational Data Model to Incorporate Ordered Domains · 25

LOFD, {POST, YEARS}; SALARY, which states that SALARY of an employee
is greater than that of other employees with junior titles, or with the same title
but less experience in the company. Note that the semantics of the POFD and the
LOFD mentioned above are different. For instance, in the first case, an employee
has a higher salary only if he or she has both a senior post and more experience
than another, whereas in the second case, he or she has to have a more senior
post than another. If Mark leaves his post, Ethan replaces him and his record is
updated to 〈Ethan, SeniorProgrammer, 6, 26K〉 (i.e., updating the third tuple),
then this updating violates neither the POFD nor the LOFD. However, if his record
is updated to 〈Ethan, SeniorProgrammer, 6, 24K〉, then it violates the LOFD,
since Ethan now has a more senior title but a lower salary than Nadav. But the
POFD still holds in this updating, since Nadav still has more experience than
Ethan. The appropriateness of the choice of the POFD or the LOFD in this case
depends entirely on the semantics of the promotion policy adopted by the company.

We observe that the notions of POFDs and LOFDs are incomparable. A relation
satisfying the POFD X ↪→ Y may not necessarily satisfy the LOFD X ; Y and
conversely, a relation satisfying the LOFD X ; Y may not necessarily satisfy the
POFD X ↪→ Y . The following example helps to illustrate this point.

Example 11. Consider the relations r1 and r2 over R = {A,B, C} shown in Figure
11. It is trivial that in (a) r1 |= A ; BC but r1 6|= A ↪→ BC. On the other hand,
in (b) r2 |= AB ↪→ C but r2 6|= AB ; C.

r1 =

A B C

1 3 6
2 4 5

r2 =

A B C

1 4 6
2 3 5

(a) (b)

Fig. 11. Relations r1 and r2 showing that POFDs and LOFDs are incomparable.

4.2 OFDs Arising from Pointwise-Orderings

We give the definition of a POFD as follows:

Definition 17. (Ordered Functional Dependency Arising from Pointwise-
Orderings) An ordered functional dependency arising from pointwise-orderings (or
simply a POFD) over a relation schema R, is a statement of the form X ↪→ Y ,
where X, Y ⊆ R are sequences of attributes. A POFD, X ↪→ Y , is satisfied in a
relation r over R, denoted by r |= X ↪→ Y , if, for all t1, t2 ∈ r, t1[X] vp

X t2[X]
implies that t1[Y ] vp

Y t2[Y ]. The POFD X ↪→ Y is said to be standard if X 6= ∅.
Hereinafter we will assume that all POFDs are standard. We next give a set of

inference rules for POFDs, and show that Armstrong’s axiom system carries over
to ordered relations with respect to POFDs.

Definition 18. (Inference Rules for POFDs) Let X, Y, Z, W be subsets of R, and
F be a set of POFDs over R. The inference rules for POFDs are defined as follows:

(POFD1) Reflexivity: if Y ⊆ X, then F ` X ↪→ Y .
(POFD2) Augmentation: if F ` X ↪→ Y and Z ⊆ R, then F ` XZ ↪→ Y Z.



26 · W. Ng

(POFD3) Transitivity: if F ` X ↪→ Y and F ` Y ↪→ Z, then F ` X ↪→ Z.
(POFD4) Permutation: if F ` X ↪→ Y , W ∼ X and Z ∼ Y , then F ` W ↪→ Z.

We remark that POFD4 is needed because we are dealing with sequences of
attributes rather than the usual sets of attributes in FDs. The following lemma
can be readily proved by induction on the number of steps in the inference of
X ↪→ Y from a set of POFDs.

Lemma 10. Let F be a set of POFDs, f = X ↪→ Y be a POFD and f∗ = X → Y
be an FD corresponding to f . We define F ∗ = {f∗ | f ∈ F }. Then f∗ is derivable
from F ∗ using Armstrong’s axiom if and only if F ` f .

The above lemma is useful because it suggests that we can apply existing algo-
rithms for FDs to determine whether a POFD f can be inferred from a given set
of POFDs using the inference rules from POFD1 to POFD4. For example, Beeri
and Bernstein’s algorithm [Beeri and Bernstein 1979] can be used to compute the
closure of a set of attributes with respect to a set of POFDs. We now state the
theorem that the axiom system in Definition 18 is sound and complete for POFDs,
holding in ordered relations. The underlying idea in this proof is standard and
similar to Theorem 7.1 in [Ullman 1988]. We also need to assume the unique name
axiom (c.f. Section 9.3 in [Atzeni and De Antonellis 1993)]) and that each domain
has at least two distinct and comparable elements, say, 0 < 1.

Theorem 3. The axiom system comprising POFD1 to POFD4 is sound and
complete for POFDs.

Proof. We define the notion of the closure of a set of attributes X+ in the con-
text of POFDs, which is given by X+ = {A | F ` X ↪→ A}. It is straightforward to
show that the inference rules from POFD1 to POFD4 are sound. The completeness
can be proved by exhibiting a counter-example relation to show that if F 6` X ↪→ Y ,
then F 6|= X ↪→ Y .

4.3 OFDs Arising from Lexicographical Orderings

We give the definition of an LOFD as follows:

Definition 19. (Ordered Functional Dependency Arising from Lexicographical Or-
derings) An ordered functional dependency arising from lexicographical orderings (or
simply an LOFD) over a relation schema R, is a statement of the form X ; Y ,
X, Y ⊆ R are sequences of attributes. An LOFD, X ; Y , is satisfied in a relation
r over R, denoted by r |= X ; Y , if, for all t1, t2 ∈ r, t1[X] vl

X t2[X] implies that
t1[Y ] vl

Y t2[Y ].

Similar to POFDs, we assume that all LOFDs are standard.
The chase is a fundamental theorem proving tool in relational database theory.

The main uses of the chase have been to test implications of data dependencies
[Maier et al. 1979] and to test the consistency of a relational database with respect
to a set of data dependencies [Grahne 1984; Levene and Loizou 1996]. We now
extend the classical chase defined over conventional relations with respect to FDs
[Maier et al. 1979; Atzeni and De Antonellis 1993)] to ordered relations with respect
to LOFDs. The extended chase will be used as a sound and complete inference tool



An Extension of the Relational Data Model to Incorporate Ordered Domains · 27

for LOFDs in Theorem 4. We need the notion of linear extension, and the equate
and swap operations to manipulate values in ordered domains before presenting
our chase rules. A linear extension of a partial ordering vD is defined as a linear
ordering ≤D satisfying the condition that, for all a, b ∈ D, if a vD b, then a ≤D b.
It is clear that if vD is a linear ordering, then its linear extension is unique and
just equal to itself. We now assume in the following definition that there is a fixed
linear extension being imposed on the involved domain.

Definition 20. (Equate and Swap Operations) We denote min(a, b) and max(a, b)
the minimum and the maximum of the values a and b in a domain according to
the linear extension of the domain ordering. For any two distinct tuples t1, t2 ∈ r
over R and some A ∈ R, the equate of t1 and t2 on A, denoted as equate(t1[A],
t2[A]), is defined by replacing both t1[A] and t2[A] by min(t1[A], t2[A]); the swap
of t1 and t2 on A, denoted as swap(t1[A], t2[A]), is defined by replacing t1[A] by
min(t1[A], t2[A]) and t2[A] by max(t1[A], t2[A]), respectively.

Note that in the above definition the imposed linear extension guarantees that the
equate and swap operations are applicable to all elements in a given ordered domain.
From now on, we assume the usual numerical ordering for integers unless explicitly
stated otherwise. We demonstrate how to use the equate and swap operations with
the following example:

Example 12. Consider a relation r shown in Figure 12(a), which consists of two
tuples t1 = 〈2〉 and t2 = 〈1〉, respectively. We apply the equate operation of t1 and t2
on A, resulting in the relation shown in Figure 12(b). We apply the swap operation
of t1 and t2 on A, resulting in the relation shown in Figure 12(c). Note that, in this
example, if the data elements 1 and 2 are incomparable but their imposed linear
extension is 1 ≤ 2, the equate and swap operations are still applicable, leading to
the same result.

A

t1 2
t2 1

A

t1 1
t2 1

A

t1 1
t2 2

(a) r = {t1, t2} (b) equate(t1[A], t2[A]) (c) swap(t1[A], t2[A])

Fig. 12. An example of using the equate and swap operations

We now give the chase rules, which are applied to two tuples in a relation with
respect to a set of LOFDs.

Definition 21. (Chase Rules for LOFDs) Let t1 and t2 be two tuples in r such
that t1[X] vl

X t2[X] but t1[Y ] 6vl
Y t2[Y ], A be the first attribute in X such that

t1[A] 6= t2[A], if such an attribute exists, and B be the first attribute in Y such
that t1[B] 6= t2[B], then the chase rules for the LOFD X ; Y , are defined by the
following two rules:

Equate rule: if t1[X] = t2[X] but t1[B] 6= t2[B], or if t1[A] 6‖ t2[A] but t1[B] ‖ t2[B],
then equate(t1[B], t2[B]);

Swap rule: if t1[A] < t2[A] but t2[B] < t1[B], then swap(t1[B], t2[B]), or if t2[A] <
t1[A] but t1[B] < t2[B], then swap(t1[A], t2[A]).



28 · W. Ng

The said chase rules cater for all the possible cases when there are two tuples in
a relation violating X ; Y . The equate rule is needed in Definition 21 because the
two scenarios of violation stated in this rule require equating elements, rather than
swapping elements, in order to fix the inconsistency. In applying the chase rules we
also need a fixed ordering on the tuples t1 and t2. If we choose different orderings
on t1 and t2 in different applications of the rules, then the chase procedure may
result in a non-terminating process. We further clarify this point by the following
example:

Example 13. Let F = {A ; B,C ; B} and the tuples tp = 〈1, 4, 6〉 and tq =
〈2, 3, 5〉 as shown in Figure 13(a). First we let t1 = tp and t2 = tq, then apply the
swap rule with respect to A ; B, obtaining the result shown in Figure 13(b). Now
we let t1 = tq and t2 = tp (i.e., reverse the ordering of tp and tq), then apply the
swap rule with respect to C ; B, obtaining the result as shown in Figure 13(c),
which is the beginning relation that we have shown in Figure 13(a).

A B C

tp (as t1) 1 4 6
tq (as t2) 2 3 5

A B C

tp (as t2) 1 3 6
tq (as t1) 2 4 5

A B C

tp 1 4 6
tq 2 3 5

(a) before the chase (b) chase for A ; B on (a) (c) chase for C ; B on (b)

Fig. 13. An example showing that the chase procedure never terminates

Fortunately, this undesirable property can be removed if we impose a fixed linear
ordering on r and assign t1 to be the smaller tuple and t2 to be the larger tuple with
respect to this ordering. We will show in Lemma 11 that under such a condition
the chase procedure always terminates. Therefore, in Example 13, if we assume
that the ordering of tp and tq is fixed as given in Figure 13(a) throughout the chase
procedure, then the process terminates. It can be checked that the final relation is
obtained as shown in Figure 14.

A B C

tp (as t1) 1 3 5
tq (as t2) 2 4 6

Fig. 14. The chase procedure terminates in Example 13 with a fixed ordering

Let r = {t1, . . . , tn} be a relation over R and F be a set of LOFDs with | R |= m.
We now give the pseudo-code of an algorithm designated CHASE(r,F), which
applies the chase rules given in Definition 21 to R as long as possible and returns
the resulting relation r over R, also denoted as CHASE(r,F).

Algorithm 2. (CHASE(r,F))

1. begin
2. Result := r = 〈t1, . . . , tn〉 ;
3. Tmp:= ∅;



An Extension of the Relational Data Model to Incorporate Ordered Domains · 29

4. while Tmp 6= Result do
5. Tmp := Result;
6. if ∃X ; Y ∈ F, ∃ tp, tq ∈ Result such that

tp[X] vl
X tq[X] but tp[Y ] 6vl

Y tq[Y ] then
7. Apply the appropriate chase rule to Result with

t1 = tmin(p,q) and t2 = tmax(p,q);
8. end while
9. return Result;
10. end.

Lemma 11. CHASE(r,F) in Algorithm 2 terminates and satisfies F.

Proof. Let Pj with 1 ≤ j ≤ m be the sequence 〈a1j , . . . , anj〉, where aij = ti[Aj ]
(i.e., πAj

(Result) = {a1j , . . . , anj}), amin
j be the minimum value in Pj accord-

ing to the linear extension of the domain ordering, and Pmin
j be the sequence

〈amin
j , . . . , amin

j 〉 (a sequence of n identical values). Suppose that an application of
a chase rule changes Pj to P ′j = 〈a′1j , . . . , a

′
nj〉. Since the chase rules neither change

the value amin
j nor introduce any new values into the variable Result, Pmin

j is un-
changed throughout the process of the chase. In order to prove that CHASE(r,F)
terminates, it suffices to show that Pmin

j ≤l P ′j <l Pj . There are two cases to
consider.

In the first case the change to Pj is due to an application of the equate rule.
Then by Algorithm 2 we have apj 6= aqj . It follows that a′pj = min(apj , aqj),
a′qj = min(apj , aqj) and a′ij = aij for i 6∈ {p, q}. Thus, P ′j <l Pj .

In the second case the change to Pj is due to an application of the swap rule.
Without loss of generality, we assume p < q. Then by Algorithm 2 aqj < apj . It
follows that a′pj = min(apj , aqj), a′qj = max(apj , aqj) and a′ij = aij for i 6∈ {p, q}.
Thus, P ′j <l Pj .

It is also trivial that in both cases Pmin
j ≤l P ′j , since the minimum of any two

values in Pj is greater than or equal to the minimum of all values in Pj .
Due to the above consideration, it follows that CHASE(r,F) satisfies F, other-

wise we can apply one of the chase rules given in Definition 21 to CHASE(r,F),
thus leading to a contradiction, since CHASE(r,F) has not yet terminated.

Lemma 12. CHASE(r,F) in Algorithm 2 can be computed in time polynomial in
the sizes of r and F.

Proof. By Definition 21, we observe that lines 6 to 7 in Algorithm 2 can be
executed at most O(m) times for an LOFD in F, where m is the number of distinct
symbols in r. Thus, there is at most O(m) application of chase rules to r. So each
execution of the while loop beginning in line 4 and ending at line 8 can be computed
in polynomial time in the sizes of r and F.

Example 14. Let F = {A ; B,B ; C} and a relation r consist of three tuples
t1 = 〈3, 3, 2〉, t2 = 〈2, 2, 1〉 and t3 = 〈3, 1, 3〉, as shown in Figure 15(a). First, we
carry out the chase rules to eliminate the violation of A ; B as follows, apply
the chase rule swap(t2[B], t3[B]) since t2[A] < t3[A] but t3[B] < t2[B], and then
apply the chase rule equate(t1[B], t3[B]) since t1[A] = t3[A] but t1[B] 6= t3[B]. We
obtain the intermediate result as shown in Figure 15(b), which satisfies A ; B.



30 · W. Ng

Second, we carry out the chase rules to eliminate the violation of B ; C as follows,
apply the chase rule equate(t1[C], t3[C]) since t1[B] = t3[B] but t1[C] 6= t3[C].
The chase procedure now terminates and the final result CHASE(r,F) is given in
Figure 15(c), which satisfies F. Note that without the equate rule we are not able to
continue the chase to reach the consistent relation in Figure 15(c), since the swap
rule cannot remove the inconsistency arising from t1 and t3 in Figure 15(b).

A B C

t1 3 3 2

t2 2 2 1
t3 3 1 3

A B C

t1 3 2 2

t2 2 1 1
t3 3 2 3

A B C

t1 3 2 2

t2 2 1 1
t3 3 2 2

(a) r prior to the chase (b) chase for A ; B on (a) (c) chase for B ; C on (b)

Fig. 15. An example of obtaining CHASE(r,F)

We note that the result of the chase is not necessarily unique. For instance, in
the above example we can apply equate(t1[B], t3[B]) first to eliminate the violation
of A ; B, resulting in at least two ‘1’s under the column of attribute B, and
leading to a final result different from that given in Figure 15(c). Although the
final result of the chase may not be unique, we still can apply it in tackling the
implication problem of LOFDs. This point is illustrated by the results shown in
the next theorem and Theorem 5.

Theorem 4. Let r be a relation over R and F be a set of LOFDs over R. Then
r |= F if and only if r = CHASE(r,F).

Proof.
IF: Assume to the contrary that r 6|= F. So there exists an LOFD, X ; Y ∈ F
such that r 6|= X ; Y . It follows that there must be two rows, t1, t2 ∈ r, such that
t1[X] vl

X t2[X] but t1[Y ] 6vl
Y t2[Y ]. Thus, the chase rule for X ; Y can be applied

to r, resulting in a different relation. This leads to a contradiction, since we have
r 6= CHASE(r,F).

ONLY IF: It follows from Definition 21 that a chase rule for F can be carried out
only if r violates some LOFD in F.

Lemma 11 and Theorem 4 are fundamental because they allow the chase proce-
dure to be employed to test the satisfaction of r with respect to a set of F in a finite
number of steps; many similar results for different kinds of data dependencies such
as FDs, INDs (INclusion Dependencies) and JDs (Join Dependencies) can be found
in [Maier et al. 1979], [Johnson and Klug 1984] and [Mannila and Raiha 1988].

4.4 A Proof Procedure for LOFDs

In order to provide a proof procedure for LOFDs, we now define the notion of
ordered variables. Such variables afford us the ability to infer orderings between
attribute values and to establish a set of templates for relations, which are essentially
the same concept as the tableaux used in [Maier et al. 1979], [Atzeni and De
Antonellis 1993)], and [Levene and Loizou 1997].



An Extension of the Relational Data Model to Incorporate Ordered Domains · 31

Definition 22. (Ordered Variables and Variable Domain) The variable domain
of a relation schema R with | R |= m, denoted by vdom(R), is the finite set
{l1, . . . , lm, h1, . . . , hm, w1, . . . , wm}. The variables li, hi and wi, where 1 ≤ i ≤ m,
are called low ordered variables, high ordered variables and incomparable ordered
variables, respectively. We call them collectively ordered variables, whose ordering
is given by li < hi.

We now construct a set of relations defined over variable domains with respect
to a given LOFD, which basically enumerate all the possible cases for two tuples
violating the LOFD.

Definition 23. (Template Relations for an LOFD) Let f be the LOFD X ; Y
over R with | X |= n and | R |= m. We use two shorthand symbols ui and vi to
represent one of the following four cases: (1) ui = li and vi = li, (2) ui = li and
vi = hi, (3) ui = hi and vi = li, or (4) ui = li and vi = wi. A template relation
(or simply a template) with respect to f , denoted as rf , is a relation consisting of
two tuples, t1 and t2, whose underlying domain is vdom(R), such that it is equal to
either T0 or Tk as shown in Figure 16, where Pre(X) = 〈x1, . . . , xk〉 for 1 ≤ k ≤ n.

T0 =

X R−X

t1 l1 · · · ln un+1 · · ·um

t2 l1 · · · ln vn+1 · · · vm

Tk =

x1 · · ·xk−1 xk R− Pre(X)

t1 l1 · · · lk−1 lk uk+1 · · ·um

t2 l1 · · · lk−1 hk vk+1 · · · vm

Fig. 16. Template relations for an LOFD

We remark that in Definition 23 the symbols ui and vi represent four possible
combinations choosing from li, hi and wi. Therefore, it is easy to verify that
there are 4m−n templates defined by T0 and 4m−k templates defined by Tk for
each k. Altogether, there are 4m−n + (4m−n + · · · + 4m−1) = 4m−n+ 4m−4m−n

4−1 =
22m+22m−2n+1

3 templates. Note that there are some redundant templates in both T0

and Tk, if we take into account the fact that there are two possible orderings for t1
and t2. However, this does not affect the order of the upper bound of the number
of templates, which is shown to be O(4m).

We apply the chase rules to a template relation using the ordering defined on a
variable domain vdom(R). The following proposition gives the result corresponding
to Theorem 4.

Proposition 3. Let rf be a template relation over R and F be a set of LOFDs
over R. Then rf |= F if and only if rf = CHASE(rf ,F).

A template relation can be viewed as a relation instance consisting of two tuples
by mapping ordered variables to values in D.

Definition 24. (Valuation Mapping) Let R = {A1, . . . , Am} and vdom(R) = {l1,
. . . , lm, h1, . . . , hm, w1, . . . , wm}. A valuation mapping ρ is a mapping from
vdom(R) to D such that ρ(li) < ρ(hi) and ρ(li) ‖ ρ(wi) for all 1 ≤ i ≤ m. We
extend ρ to a tuple t by ρ(t) = 〈ρ(t[A1]), . . . , ρ(t[Am])〉. We also extend ρ to a
template relation rf by ρ(rf ) = {ρ(t1), ρ(t2)}.



32 · W. Ng

The next proposition states that if there is a valuation mapping relating a tem-
plate relation to a relation having two tuples, then they satisfy the same set of
LOFDs.

Proposition 4. Let ρ(rf ) = r, where r is a relation over R having two tuples.
Then rf |= X ; Y if and only if r |= X ; Y .

Proof. The result immediately follows Definition 24, since the ordering of data
values in the ith column of r corresponds to the ordering of the ordered variables
li, hi and wi for all 1 ≤ i ≤| R |.

The following example shows how to apply a valuation mapping to a template
relation.

Example 15. Consider the template relation rf over {A,B, C, D} with respect
to the LOFD f , A ; BCD, which is shown in Figure 17(a) in which we assume
that a ‖ b. We define the valuation mapping ρ by ρ(l1) = 1, ρ(l2) = 2, ρ(h2) = 3,
ρ(l3) = 4, ρ(h3) = 5, ρ(l4) = a and ρ(w4) = b. (The mapping of other ordered
variables is immaterial.) We then have ρ(rf ) shown in Figure 17(b). Note that in
this example rf is one of the templates defined by T0 in Definition 23.

rf =

A B C D

l1 l2 h3 l4
l1 h2 l3 w4

ρ(rf ) =

A B C D

1 2 5 a

1 3 4 b

(a) (b)

Fig. 17. An example showing the application of a valuation mapping

We now extend the notion of tableaux for an LOFD f to be a set of templates.
The tableaux in our case is different from that for FDs, which just requires a single
template for FDs (c.f. Theorem 4.2 in [Atzeni and De Antonellis 1993)]). We define
tableaux Tf to be the set of all template relations given in Definition 23.

Definition 25. (Satisfaction and a Valuation Mapping of Tableaux) The chase of
Tf with respect to a set of LOFDs F, denoted as CHASE(Tf ,F), is defined by
CHASE(Tf ,F) = {CHASE(rf ,F) | rf ∈ Tf}. CHASE(Tf ,F) satisfies X ; Y ,
denoted by CHASE(Tf ,F)|= X ; Y , if, for all rf ∈ Tf , CHASE(rf ,F) |= X ; Y .
Furthermore, CHASE(Tf ,F) satisfies F, denoted by CHASE(Tf ,F) |= F, if, for all
X ; Y ∈ F, CHASE(Tf ,F) |= X ; Y . A valuation mapping of Tf is a valuation
mapping of some rf in Tf .

The following theorem shows that the chase rules can be viewed as a sound and
complete inference procedure for LOFDs.

Theorem 5. Let F be a set of LOFDs over R and f be a LOFD X ; Y . Then
CHASE(Tf ,F) |= f if and only if F |= f .

Proof.
IF: Assume CHASE(Tf ,F) 6|= f . By Definition 25, there exists rf ∈ Tf such
that CHASE(rf ,F) 6|= f but CHASE(rf ,F) |= F. Note that CHASE(rf ,F) is a



An Extension of the Relational Data Model to Incorporate Ordered Domains · 33

template which can be viewed as a relation instance. Therefore, we have a valu-
ation mapping ρ to generate a relation ρ(CHASE(rf ,F)) and by Proposition 4,
ρ(CHASE(rf ,F)) |= F but ρ(CHASE(rf ,F)) 6|= f . This leads to a contradiction.

ONLY IF: We let w1, w2 be any two tuples in a relation r such that w1 vl
X w2. We

claim w1 vl
Y w2. Let sf ∈ Tf be the template relation such that ρ(t1) = w1 and

ρ(t2) = w2. We can always find such a template sf because Tf exhausts all possi-
bilities of two tuples which satisfy the condition w1 vl

X w2. Thus, we have ρ(sf ) =
{w1, w2} and ρ(sf ) |= F. By Proposition 4, we have sf |= F. It follows by Proposi-
tion 3 that sf = CHASE(sf ,F). Since we have assumed that CHASE(Tf ,F) |= f ,
we have CHASE(sf ,F) |= f . Thus, ρ(CHASE(Tf ,F))= ρ(sf ) = {w1, w2}, which
implies that w1 vl

Y w2 as required.

The following corollary is an immediate result of Theorem 5.

Corollary 3. Let F be a set of LOFDs over R. The chase procedure is a
decidable, sound and complete inference algorithm for LOFDs.

The above corollary shows that the chase rules, together with tableaux, can be
used to provide a systematic way to solve the implication problem for LOFDs.

4.5 OFDs Arising from Mixed Orderings

Pointwise-orderings and lexicographical orderings are two basic extensions of do-
main orderings, which have been used in defining POFDs and LOFDs in previous
sections. We now further investigate other variant forms of OFDs arising from
two possible combinations of pointwise-orderings and lexicographical orderings in
a given OFD: (1) pointwise-orderings on the left hand side and lexicographical or-
derings on the right hand side, which give rise to PLOFDs, and (2) lexicographical
orderings on the left hand side and pointwise-orderings on the right hand side,
which give rise to LPOFDs. Using similar notations in Definitions 17 and 19, we
give the formal semantics of PLOFDs and LPOFDs as follows:

Definition 26. (Ordered Functional Dependencies Arising from Combination of
Pointwise-Orderings and Lexicographical Orderings) A PLOFD, denoted by X ↪→;
Y , is satisfied in a relation r over R if, for all t1, t2 ∈ r, t1[X] vp

X t2[X] implies
that t1[Y ] vl

Y t2[Y ]. An LPOFD, denoted by X ;↪→ Y , is satisfied in a relation
r over R if, for all t1, t2 ∈ r, t1[X] vl

X t2[X] implies that t1[Y ] vp
Y t2[Y ]. We call

LPOFDs and PLOFDs collectively mixed OFDs.

The satisfaction of mixed OFDs is related to that of POFDs and LOFDs in a
simple and interesting way. The results are presented in Lemma 13. Note that the
converse of parts (2) and (3) in this Lemma does not hold in a relation r.

Lemma 13. Let r be a relation. The following statements are true.

(1) r |= X ;↪→ Y , if and only if, r |= X ; A for all A ∈ Y .
(2) If r |= X ;↪→ Y , then r |= X ↪→ Y and r |= X ; Y .
(3) If r |= X ; Y or r |= X ↪→ Y , then r |= X ↪→; Y .

Proof. Part (1) can be established by noting that the union and decomposition
rules are sound for LPOFDs. Parts (2) and (3) follow from Definition 26 and the
fact that, vp

X implies that vl
X and vp

Y implies that vl
Y .



34 · W. Ng

It follows from part (1) of Lemma 13 that we are able to reduce the implica-
tion problem for LPOFDs into the implication problem for a corresponding set of
LOFDs, each of which has only one attribute on the right hand side. Thus we are
able to apply the proof procedure established in Section 4.4 to the set of LOFDs.
The implication problem for PLOFDs can also be solved using the chase approach,
similar to the case of LOFDs. We first give the corresponding chase rules adapted
to the context of PLOFDs, which use similar notations as Definition 21.

Definition 27. (Chase Rules for PLOFDs) Let t1 and t2 be two tuples in r such
that t1[X] vp

X t2[X] but t1[Y ] 6vl
Y t2[Y ], and the attributes A and B are defined

as in Definition 21, then the chase rules for the PLOFD X ↪→; Y , are defined by
the following two rules:

Equate rule: if t1[X] = t2[X] but t1[B] 6= t2[B], or if t1[X] 6‖ t2[X] but t1[B] ‖ t2[B],
then equate(t1[B], t2[B]);

Swap rule: if t1[X] <p t2[X] but t2[B] < t1[B], then swap(t1[B], t2[B]), or if
t2[X] <p t1[X] but t1[B] < t2[B], then swap(t1[A], t2[A]).

Next, we need only two templates to cater for the general cases that violate a
given PLOFD, X ↪→; Y . Using same notations as in Definition 23, we give the
two templates of T0 and T1 as follows:

T0 =

X R−X

t1 l1 · · · ln un+1 · · ·um

t2 l1 · · · ln vn+1 · · · vm

T1 =

X R−X

t1 l1 · · · ln un+1 · · ·um

t2 h1 · · ·hn vn+1 · · · vm

Fig. 18. Template relations for a PLOFD

Clearly, there are 4m−n templates in T0 and T1, where | R |= m and | X |= n,
and the order of the upper bound of the number of templates in this case is also
O(4m) using a similar argument to that in Section 4.4.

The following proposition summarises the relationship between the satisfaction
of FDs and that of various forms of OFDs in a relation r. Note that the converse
of this proposition does not hold in a relation r. This interesting relationship paves
the way for studying normalisation of ordered databases when taking mixed OFDs
into consideration.

Proposition 5. Let r be a relation. If r |= XσY , then r |= X → Y , where
σ ∈ {↪→,;,;↪→, ↪→;}.

From Proposition 5, it follows that the set of relations which satisfy a set of (any
category of) OFDs F is a subset of the relations which satisfy the corresponding
set of FDs F ∗, where F ∗ is defined as {X → Y | XσY ∈ F}. We now let SAT (f)
be the set of relations that satisfy a data dependency f , and f1 = X → Y , f2 =
X ↪→ Y , f3 = X ; Y , f4 = X ;↪→ Y , and f5 = X ↪→; Y . From parts (2)
and (3) of Lemma 13, it follows that SAT (f4) ⊆ (SAT (f2) ∩ SAT (f3)) and that
(SAT (f2) ∪ SAT (f3)) ⊆ SAT (f5) . A comparison of the satisfaction of different
categories of OFDs introduced so far in ordered relations can be represented by the
diagram given in Figure 19 (the scale here is irrelevant). We remark that if X and



An Extension of the Relational Data Model to Incorporate Ordered Domains · 35

Y are unary, then in general we have SAT (f2) = SAT (f3) = SAT (f4) = SAT (f5),
but still we do not always have SAT (f1) = SAT (fi) for i ∈ {2, 3, 4, 5}.

SAT(f  )4

5SAT(f  )

SAT(f  )3

PLOFD

LPOFD

SAT(f  )2
POFD LOFD

SAT(f  )1FD

Fig. 19. Satisfaction of FDs and different categories of OFDs in ordered relations

5. CONCLUDING REMARKS

In this paper we have presented the ordered relational model and studied its impacts
on the following three fundamental components of the conventional relational data
model: data structures, query languages and data dependencies.

With respect to its data structures, the relational data model is extended to
incorporate partial orderings into data domains. Hence, it provides the flexibility to
manipulate tuples in an ordered database according to the semantics of underlying
domains. With respect to its query languages, we have extended the relational
algebra to the PORA by allowing the use of the ordering predicate, v, in the
language, whose expressive power has been formally stated in Theorem 1. Based
on the features of the PORA, we have extended SQL to OSQL, which combines
the capabilities of SQL with the power of semantic orderings as illustrated by
the running example in Section 3.5. With respect to its data dependencies, we
have formally defined OFDs, and have studied their semantics according to two
categories of orderings: lexicographical orderings and pointwise-orderings. In the
case of pointwise-orderings, we have presented a sound and complete axiom system
for OFDs in Theorem 3. In the case of lexicographical orderings, we have presented
a set of novel chase rules to OFDs in Definition 21, which are used to tackle the
implication problem of OFDs as shown in Theorem 5. We have also discussed two
other variant forms of OFDs arising from mixed orderings, and presented in Figure
19 the interesting relationship between the satisfaction of conventional FDs and
different categories of OFDs in ordered relations.

The ordered relational model is a minimal extension of the relational data model.
However, we have shown throughout the paper that partial orderings in data do-
mains have an important part to play in modelling data. Our work is best evaluated
in the context of the three successful factors of the relational model that we men-
tioned at the beginning.



36 · W. Ng

(1) From the point of view of usability, the ordered relational model is as natural
and simple as the conventional relational model. Ordered domains are easily
understood by non-specialist users due to the fact that partial orderings are
essential properties with respect to the structure of many types of data or-
ganisation in the real world. The ordered database model we have defined is
easily compatible with the syntax and semantics of the conventional relational
database model.

(2) From the point of view of applicability, the ordered relational model has been
demonstrated to have the capabilities of capturing semantics in a wide spec-
trum of advanced applications such as tree-structured, temporal or incomplete
information. It is also the only data model known to us that combines all the
above application capabilities under a single unified model.

(3) From the point of view of formalism, the ordered relational model is elegant
enough to support theoretical research in the areas of functional dependencies,
the expressiveness of the PORA and the generic properties of queries over
ordered databases. We can also build upon the rich mathematical research
into the notion of order to investigate many important issues such as query
completeness and axiomatisation of data dependencies.

There is still a wide range of research issues that can be carried out on the imple-
mentational aspects of the ordered relational model. For instance, one important
issue is to integrate the facilitates of semantic orderings into the kernel of DBMSs
at the physical level of a DBMS. We can consider a data structure called an Or-
dered B-tree (c.f. [Lynn 1982]), which may serve as a basis to implement ordered
relations. Roughly speaking, an Ordered B-tree stores data, for example tuple iden-
tifiers, in its leaf pages, and a multi-level index is provided in each subtree to access
data. In order to find a tuple identifier, the system is designed so that a scan can
be performed from the root of the tree until a leaf page is encountered. Another
important issue that we have not discussed is updating ordered domains. This can
be investigated in terms of the algorithms and formal semantics of updating ordered
domains, ordered databases and data dependencies. In particular, it is important
to consider how to enforce data dependencies to ensure that updates do not cause
inconsistencies of data with respect to a set of OFDs. We also believe the scope of
the application of an internal hierarchy has not been fully developed. For example,
in a parallel object-relational database environment, if a data stream is ordered
according to semantic orderings then it helps to improve dynamic reconfiguration
of query execution plans, as suggested by the empirical results in [Ng 1999]. It
thus seems promising to study the possible benefits that can be obtained for query
optimisation when a data stream is partitioned into an internal hierarchy in such
an environment.

ACKNOWLEDGMENTS

The author would like to thank Mark Levene, Trevor Fenner, Nigel Martin, Ken
Moody, Yoshifumi Masunaga, and anonymous referees for their constructive com-
ments at different stages of this paper.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 37

APPENDIX A: A Grammar of OSQL

Conventions:

—Key words are indicated by uppercase italicised characters.

—Non-terminal symbols are enclosed with “〈〉”.
—Alternatives are separated by “|”. If only one of the symbols is to be chosen out of several

alternatives, then we enclose them with “{ }”. In order not to cause confusion, we use “{{”
and “}}” to represent the textual braces “{” and “}” used in OSQL expressions.

—Optional clauses are enclosed with “[ ]”.

—“()” are just terminal symbols.

—Default keywords are underlined.

—A positive number begins with #.

—. . . at the end if a subclause indicates that it may be repeated.

A1. Data Definition Language

(1) CREATE DOMAIN ORDER 〈 domain-order-name 〉 〈 data-type 〉 AS

〈 ordering-specification 〉
〈 ordering-specification 〉 ::= ( 〈 data-pair 〉 [, 〈 data-pair 〉 . . . ] )
〈 data-pair 〉 ::= [ data-item | {{ data-item,. . .}}] < [ data-item | {{ data-item,. . .}}]

(2) CREATE TUPLE ORDER 〈 tuple-order-name 〉 ON 〈 data-type-list 〉 AS 〈 order-name-list
〉
〈 order-name-list 〉 ::= ( 〈 order-name 〉 [, 〈 order-name 〉 . . . ] )
〈 order-name 〉 ::= { domain-order-name | SYO } [ { ASC | DESC } ]

〈 data-type-list 〉 ::= ( 〈 data-type 〉 [, 〈 data-type 〉 . . . ] )

(3) CREATE TABLE 〈 table-name 〉 〈 〈 column-specification 〉 [, 〈 column-specification 〉 ]. . . 〉
〈 column specification 〉 ::= ( attribute-name 〈 data-type 〉 )

〈 data-type 〉 ::= { CHAR(#n) | NUM(#n) | DATE }

A2. Data Manipulation Language

(1) SELECT 〈 attribute-list 〉
FROM 〈 ordered-relation-list 〉
[ WHERE { 〈 comparison-expression 〉 | TUPLE 〈 tuple-level-set 〉 } ]

[ ORDER BY 〈 attribute-list 〉 ]
〈 attribute-list 〉 ::= 〈 attribute 〉 [, 〈 attribute 〉 ]. . .

〈 attribute 〉 ::= { attribute-name | attribute-name WITHIN 〈 order-name 〉 | ∗ }
〈 tuple-level-set 〉 ::= ( { #n [, #n]) | LAST | #n1 . . #n2 } )
〈 ordered-relation-list 〉 ::= 〈 relation 〉 [, 〈 relation 〉 ]. . .

〈 relation 〉 ::= { relation-name | relation-name WITHIN 〈 tuple-order-name 〉 [ { ASC |
DESC } ] }
〈 comparison-expression 〉 ::= 〈 simple-comparison 〉 [ { AND | OR } 〈 simple-comparison 〉
]. . .

〈 simple-comparison 〉 ::= 〈 { attribute-list | value-list } 〉 〈 comparator 〉
〈 { attribute-list | value-list } 〉 [WITHIN { 〈 domain-order-name 〉 | 〈 tuple-order-name 〉 } ]

〈 comparator 〉 ::= { <|>|>=|<=|<> }
〈 value-list 〉 ::= ( value [, value]. . . )

(2) DELETE FROM 〈 table-name 〉
[ WHERE { 〈 comparison-expression 〉 | TUPLE 〈 tuple-level-set 〉 } ]

REFERENCES

Abiteboul, S. and Ginsburg, S. 1986. Tuple Sequences and Lexicographical Indexes. Journal of

the Association for Computing Machinery, 33, 3, 409-422.

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

ANSI/X3/SPARC 1975. Study Group on Database Management Systems, Interim Report. FDT
Bulletin of ACM SIGFIDET, 7.



38 · W. Ng

Armstrong, W.W. 1974. Dependency Structures of Data Base Relationships. In Proceedings of

the IFIP Congress, Stockholm, 580-583.

Atzeni, P. and De Antonellis, V. 1993. Relational Database Theory. Benjamin/Cummings Pub-
lishing Company.

Bancilhon, F. 1978. On the Completeness of Query Languages for Relational Databases. In
LNCS 64: Mathematical Foundations of Computer Science, Springer-Verlag, 112-124.

Beeri, C. and Bernstein, P.A. 1979. Computational Problems Related to the Design of Normal
Form Relational Schemas. ACM Transactions on Database Systems, 4, 1, 30-59.

Biskup, J. 1990. An Extension of SQL for Querying Graph Relations. Computing Language,

15, 2, 65-82.

Blaha, M. and Premerlani, W. 1998. Object-Oriented Modeling and Design for Database Ap-

plications. Prentice Hall Publishing Company.

Buneman, P., Jung, A., and Ohori, A. 1991. Using Powerdomains to Generalise Relational
Databases. Theoretical Computer Science, 9, 1, 23-55.

Chandra, A.K. and Harel, D. 1980. Computable Queries for Relational Databases. Journal of

Computer System Science, 21, 2, 156-178.

Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM, 13, 6, 377-387.

Codd, E.F. 1979. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems, 4, 4, 397-434.

Codd, E.F. 1986. Missing Information (Applicable and Inapplicable) in Relational Databases.

ACM SIGMOD Record, 15, 4, 53-78.

Date, C.J. 1990. Relational Database Writings 1985-1989. Addison-Wesley.

Date, C.J. 1997. A Guide to the SQL Standard., 4th ed., Addison-Wesley.

Garey, M.R. and Johnson, D.S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York.

Ginsburg, S. and Hull, R. 1983. Order Dependency in the Relational Model. Theoretical Com-

puter Science, 26, 1-2, 149-195.

Ginsburg, S. and Tanaka, K. 1986. Computation Tuple Sequences and Object Histories. ACM

Transactions on Database Systems, 11, 2, 186-212.

Ginsburg, S. and Hull, R. 1986. Sort Sets in the Relational Model. Journal of the Association

for Computing Machinery, 33, 3, 465-488.

Grahne, G. 1984. Dependency Satisfaction in Databases with Incomplete Information. In Pro-

ceedings of the 10th VLDB International Conference, 37-45.

Gratzer, G. 1978. General Lattice Theory. NewYork: Academic Press.

Guting, R.H., Zicari, R., and Choy, D.M. 1989. An Algebra for Structured Office Documents.

ACM Transactions on Office Information Systems, 7, 4, 123-157.

Halmos, P. 1974. Naive Set Theory, Springer-Verlag, New York.

Honeyman, P. 1982. Testing Satisfaction of Functional Dependencies. Journal of the ACM, 29,

3, 668-677.

Jung, A., Libkin, L., and Puhlmann, H. 1991. Decomposition of Domains. In LNCS 598:
Proceedings of the Conference on Mathematical Foundations of Programming Semantics,

Springer-Verlag, 235-258.

Johnson, D.S. and Klug, A. 1984. Testing Containment of Conjunctive Queries under Functional

and Inclusion Dependencies. Journal of Computer and System Sciences, 28, 1, 167-189.

Levene, M. and Loizou, G. 1996. Maintaining Consistency of Imprecise Relations. The Computer

Journal, 39, 2, 114-123.

Levene, M. and Loizou, G. 1997. Null Inclusion Dependencies in Relational Databases. Infor-

mation and Computation, 136, 2, 67-108.

Libkin, L. 1996. Aspects of Partial Information in Databases. Ph.D. Thesis, University of
Pennsylvania, United States.

Lorentzos, N.A. 1992. DBMS Support for Time and Totally Ordered Compound Data Types.
Information Systems, 17, 5, 347-358.



An Extension of the Relational Data Model to Incorporate Ordered Domains · 39

Lynn, N. 1982. Implementation of Ordered Relations in a Data Base System. Master Thesis,

University of California, United States.

Maier, D., Mendelzon, A.O., and Sagiv, Y. 1979. Testing Implication of Data Dependencies.
ACM Transactions on Database Systems, 4, 4, 455-469.

Maier, D. and Vance, B. 1993. A Call to Order. In Proceedings of the Twelfth ACM Symposium

on Principles of Databases Systems, 1-16.

Mannila, H. and Raiha, K-J. 1988. Generating Armstrong Databases for Sets of Functional and
Inclusion Dependencies. Research Report A-1988-7, University of Tampere, Finland.

Ng, W. K. 1999. Dynamic Optimization of Query Execution Plans. Ph.D. Thesis, University

of California, Los Angeles, United States.

Ng, W. and Levene, M. 1997a. An Extension of OSQL to Support Ordered Domains in Re-
lational Databases. In IEEE Proceedings of the International Database Engineering and
Applications Symposium, 358-367.

Ng, W. and Levene, M. 1997b. The Development of Ordered SQL Packages for Modelling
Advanced Applications. In LNCS 1308: Proceedings of 8th International Conference of
Database and Expert Systems Application, Springer-Verlag, 529-538.

Ng, W. 1999a. Lexicographical Ordered Functional Dependencies and Their Application to
Temporal Relations. In IEEE Proceedings of the International Database Engineering and
Applications Symposium, 279-287.

Ng, W. 1999b. Ordered Functional Dependencies in Relational Databases. Information Systems,

24, 7, 535-554.

Paredaens, J. 1978. On the Expressive Power of the Relational Algebra. Information Processing
Letters, 7, 2, 107-111.

Raymond, D. 1996. Partial Order Databases. Ph.D. Thesis, University of Waterloo, Canada.

Rumbaugh, J. 1988. Relational Database Design using an Object-Oriented Methodology. Com-

munications of the ACM, 31, 4, 417-427.

Read, R. 1995. Towards Multiresolution Data Retrieval via the Sandbag. Ph.D. Thesis, Univer-
sity of Texas at Austin, United States.

Seshadri, P., Livny, M., and Ramakrishnan, R. 1996. The Design and Implementation of a

Sequence Database System. Proceedings of the 22nd VLDB Conference, 99-110.

Tansel, A. et al. (editors) 1993. Temporal Databases: Theory, Design and Implementation. The

Benjamin/Cummings Publishing Company.

Ullman, J.D. 1988. Principles of Database and Knowledge-Base Systems, Vol. I, Rockville,

MD., Computer Science Press.

Wijsen, J. 1998. Reasoning about Qualitative Trends in Databases. Information Systems, 23,

7, 469-493.

Zaniolo, C. 1984. Database Relations with Null Values. Journal of Computer and System Sci-
ence, 28, 1, 142-166.


