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We study mining correlations from quantitative databases and show that this is a more effective
approach than mining associations to discover useful patterns. We propose the novel notion
of Quantitative Correlated Pattern (QCP), which is founded on two formal concepts, mutual
information and all-confidence. We first devise a normalization on mutual information and apply
it to the problem of QCP mining to capture the dependency between the attributes. We further
adopt all-confidence as a quality measure to ensure, at a finer granularity, the dependency between
the attributes with specific quantitative intervals. We also propose an effective supervised method
that combines the consecutive intervals of the quantitative attributes based on mutual information,
such that the interval combining is guided by the dependency between the attributes. We develop
an algorithm, QCoMine, to mine QCPs efficiently by utilizing normalized mutual information and
all-confidence to perform bi-level pruning. We also identify the redundancy existing in the set of

QCPs and propose effective techniques to eliminate the redundancy. Our extensive experiments
on both real and synthetic datasets verify the efficiency of QCoMine and the quality of the
QCPs. The experimental results also justify the effectiveness of our proposed techniques for
redundancy elimination. To further demonstrate the usefulness and the quality of QCPs, we study
an application of QCPs to classification. We demonstrate that the classifier built on the QCPs
achieves higher classification accuracy than the state-of-the-art classifiers built on association
rules.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms: Algorithms

Additional Key Words and Phrases: Quantitative Databases, Correlated Patterns, Information-
Theoretic Approach, Mutual Information

1. INTRODUCTION

Mining correlations [Brin et al. 1997; Motwani et al. 2001; Ma and Hellerstein 2001;
Lee et al. 2003; Kim et al. 2004; Xiong et al. 2006; Xiong et al. 2006; Zhang and
Feigenbaum 2006] is recognized as an important data mining task for its many
advantages over mining association rules [Agrawal et al. 1993a]. Instead of discov-
ering co-occurrence patterns in data as does association rule mining, correlation
mining identifies the underlying dependency from the database. More importantly,

Authors’ address: Department of Computer Science and Engineering, HKUST, Clear Water Bay,
Kowloon, Hong Kong. Emails: {keyiping,csjames,wilfred}@cse.ust.hk
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0362-5915/2008/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, April 2008, Pages 1–44.



2 · Y. Ke et al.

correlation mining does not rely on the support measure to quantify the interest-
ingness of the patterns; thus, correlated patterns are not restricted to frequently
co-occurring attributes. As a result, those infrequent but significant patterns that
are too expensive to be obtained by association rule mining can also be discovered.
This property of correlation is very useful for the discovery of rarely occurring
(non-commonsense) but important incidents, such as diseases, network intrusions,
earthquakes and so on, and their possible causes.

Existing research on correlation mining is primarily conducted on boolean
databases [Brin et al. 1997; Ma and Hellerstein 2001; Motwani et al. 2001; Lee et al.
2003; Kim et al. 2004; Xiong et al. 2006; Xiong et al. 2006; Zhang and Feigenbaum
2006]. However, most attributes in real-life databases are not restricted to taking
only boolean values. Instead, these attributes can be quantitative, which are nu-
meric values (e.g., an employee’s salary), and categorical, which are enumerations
(e.g., different education levels). We refer to databases that consist of quantita-
tive and/or categorical attributes as quantitative databases. A boolean database
is in fact a special quantitative database that only has categorical attributes with
boolean values. Thus, mining quantitative databases is a more general problem in
its own right but a harder problem than mining boolean databases from the tech-
nical perspective. On the one hand, the stronger expressive power of quantitative
attributes over boolean attributes allows us to obtain much richer knowledge than
from boolean databases. On the other hand, the expressiveness of quantitative
attributes aggravates the complexity of mining quantitative databases due to the
large domain size of the attributes.

It may appear that we can apply existing boolean correlation mining algorithms
to mine the quantitative correlated patterns, by first discretizing the quantitative
attributes and then mapping each discretized interval to a boolean variable. How-
ever, this approach has a number of drawbacks. First, discretization has a dramatic
impact on the quality of the resultant patterns. To interpret a resultant pattern,
each boolean attribute in the pattern should be mapped back to a quantitative
attribute with a discretized interval. Once the discretization is done, the intervals
of a quantitative attribute that appear in the final pattern are fixed, regardless
of whatever other attributes may appear in the same pattern. Second, this ap-
proach ignores the dependency between attributes, since a quantitative attribute is
discretized and mapped to many boolean attributes. As a result, the dependency
between attributes is lost in resultant patterns. Third, the discretization may gen-
erate too many intervals, which severely degrades the mining efficiency, since each
interval is regarded as an attribute when the boolean correlation mining algorithm
is applied. As a result, this approach does not scale well for datasets with a large
number of attributes.

There are two combinatorial explosion problems inherent to mining quantitative
databases. One is that mining quantitative databases suffers from the combinatorial
explosion of the attribute sets, which is similar to mining boolean databases. Given
a pattern containing n attributes, the number of its non-empty subsets is (2n −
1). Thus, the search space of the mining operation can become extremely large.
Another more severe combinatorial explosion problem is due to the interval sets
arising from different combinations of the values in the large domains of quantitative
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attributes. These two combinatorial explosions result in the high complexity of
mining quantitative databases and can severely degrade the mining efficiency.

There have been a number of studies on mining association rules from quantita-
tive databases [Srikant and Agrawal 1996; Wang et al. 1998; Fukuda et al. 2001;
Aumann and Lindell 2003; Zhang et al. 2004; Ruckert et al. 2004; Chen and Liu
2005; Ke et al. 2006a]. However, as mentioned above, the complexity of mining
quantitative association rules is very high due to the combinatorial explosion of fre-
quent patterns, from which association rules are derived. We believe that mining
correlated patterns is a more feasible approach to mining quantitative databases,
because correlation imposes a stricter definition on the patterns and thus we are
able to obtain greater pruning on the search space to reduce the mining complex-
ity. Compared with mining quantitative association rules that may involve a great
amount of commonsense and redundant patterns, our approach returns a smaller
but more specific set of correlated patterns, which further facilitates advanced anal-
ysis.

In this paper, we propose to mine correlations from quantitative databases us-
ing an information-theoretic approach. Table I shows an employee database as a
running example used throughout this paper. We first illustrate by Example 1 why
our approach is desirable.

Example 1. The database given in Table I is a relation, remp, whose schema
consists of six attributes: age, education, gender, marital status, salary and
service years. The quantitative attributes are age, salary and service years,
while other attributes are categorical. The values of each attribute in the original
employee relation, r, are now mapped into a set of consecutive integers as given in
remp. The last column records the support value, supp, of a transaction T in remp,
meaning that the occurrence probability, p, of those tuples corresponding to T in
r.

Table I. An Employee Database, remp

age education gender marital status salary service years supp(T ) or p(T )

3 2 1 1 1 4 0.25

5 1 1 1 2 3 0.19

2 2 1 1 2 3 0.11

1 2 1 2 2 1 0.09

2 1 1 1 1 1 0.09

3 1 1 1 2 3 0.09

4 2 1 1 2 1 0.08

5 3 2 1 4 3 0.06

3 3 2 1 4 2 0.03

1 2 2 2 3 2 0.01

Consider the contingency table [Pearson 1904] in Table II that shows the probabil-
ities of the values of the attributes gender and marital status. For quantitative
association rule mining, the pattern {gender = 1, marital status = 1} is a fre-
quent pattern due to its high support of 0.81. However, if we investigate the under-
lying dependency of gender and marital status, we find that the two attributes
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Table II. The Contingency Table of Two Attributes, gender and marital status
h

h
h

h
h

h
h

h
h

h
h

h

gender

marital status
1 2 Total

1 0.81 0.09 0.9

2 0.09 0.01 0.1

Total 0.9 0.1 1

are totally independent of each other. This can be verified by checking the indepen-
dency condition that for every possible value of vgender and vmarital status, the equa-
tion p(vgender, vmarital status) = (p(vgender) · p(vmarital status)) holds. For instance,
p(gender = 1, marital status = 1) = p(gender = 1) · p(marital status = 1) =
0.9× 0.9 = 0.81. �

The above example shows that the support measure used by association rule
mining is not effective in capturing the true underlying dependency relationship
between the attributes. This motivates us to devise a new quality measure of
patterns as well as an efficient algorithm to discover the patterns in quantitative
databases.

1.1 Contributions

We propose the novel notion of Quantitative Correlated Pattern (QCP) based
on two dependency measures: a newly proposed Normalized Mutual Information
(NMI) founded on information theory [Shannon 1948], and a generalized notion
of all-confidence, which was originally developed for boolean correlated patterns
[Omiecinski 2003; Ma and Hellerstein 2001]. Based on these two dependency mea-
sures, we are able to achieve bi-level quality control in mining QCPs. First, we
employ NMI to specify a required minimum degree of dependency among all at-
tributes in a pattern. Second, we use all-confidence to enforce correlation at a finer
granularity on the specific intervals of the quantitative attributes.

Next, we develop an efficient algorithm, QCoMine, for mining QCPs. Our algo-
rithm consists of three key components: the supervised interval combining method,
the attribute-level pruning by NMI and the interval-level pruning by all-confidence.

In mining quantitative databases, the large domain of a quantitative attribute is
first mapped into a number of small intervals. During the mining process, consec-
utive intervals are combined to gain sufficient support values as well as to produce
meaningful intervals [Srikant and Agrawal 1996; Wang et al. 1998]. We develop a
supervised interval combining method specifically for mining correlations so that the
combined intervals also capture the dependency between the attributes, thereby en-
suring the quality of the mined correlations. Our interval combining method utilizes
mutual information to guide the interval combining of one attribute with respect
to another attribute. We model the interval combining problem as an optimization
problem and devise a fast greedy algorithm as a solution.

After processing the intervals of attributes, QCoMine mines the set of QCPs by
performing effective bi-level pruning. At the attribute level, we define an NMI graph
based on the NMI values of the attributes and incorporate the NMI graph into our
mining process. By following the NMI graph, we are able to prune an overwhelming
number of uncorrelated patterns that are generated from those attributes with
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low mutual dependency. At the interval level, all-confidence is applied to further
prune the uncorrelated intervals of the highly dependent attributes. Using the
downward closure and cross-support properties [Omiecinski 2003; Xiong et al. 2006],
the pruning by all-confidence quickly reduces a large search space to a small one.

We further examine the set of QCPs returned from QCoMine and find that
redundancy exists at both the attribute level and the interval level of the patterns.
To remove the redundancy, we first define the set of all-confidence-closed QCPs,
which is a lossless representation of the set of QCPs. Then, we employ the property
of all-confidence-closed QCPs to perform effective pruning in mining the set of all-
confidence-closed QCPs. At the interval level, we define redundant QCPs based on
the proximity of the intervals of QCPs to the combined intervals obtained by our
supervised interval combining method. As a result, our approach is able to return
a concise and non-redundant set of QCPs.

Finally, our extensive experiments show that the supervised interval combining
method and the bi-level pruning by NMI and all-confidence are essential to the
efficient mining of quantitative databases. The experimental results verify that the
supervised interval combining method not only produces meaningful intervals but
also serves as an effective tool that avoids the generation of trivial patterns. By
examining the QCPs, we also verify the effectiveness of using NMI and all-confidence
in pruning uncorrelated patterns. In addition, we show that our techniques for
eliminating the redundant QCPs are effective and efficient, since the set of non-
redundant QCPs obtained is up to 20 times smaller than the original set of QCPs,
while the incorporation of the elimination of redundancy does not degrade the
mining efficiency at all.

We further examine the feasibility of our approach to mining correlated patterns
compared with mining frequent patterns from quantitative databases [Srikant and
Agrawal 1996]. We find that frequent patterns are mostly patterns with either very
low all-confidence (i.e., the patterns are almost uncorrelated) or trivial intervals
(i.e., the patterns are just common knowledge), while the majority of the patterns
obtained by QCoMine are rare but highly correlated. When mining quantitative
frequent patterns becomes infeasible even under very restrictive settings, such as
with very large minimum support thresholds, QCoMine still achieves impressive
performance.

We further study the quality and usefulness of QCPs in the context of classifica-
tion. Existing work [Hu et al. 1999; Li et al. 2001; Yin and Han 2003] has studied the
use of association rules to predict the class labels of unlabeled data. The classifiers
built on association rules are called associative classifiers. Associative classifiers are
shown to achieve higher classification accuracy than the traditional classifier C4.5
[Quinlan 1993]. In our work, we generate a set of association rules from QCPs and
then feed them into an associative classifier. Our experimental results show that
the classification accuracy obtained using QCPs is significantly higher than that
of three state-of-the-art associative classifiers. The results verify that QCPs can
indeed capture the underlying dependency of attributes embedded in the database.

The contributions of this paper are summarized as follows.

—We propose a novel notion of QCP and a new bi-level quality control, both at
the coarser attribute level and at the finer interval level, that assures the quality
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of the discovered correlated patterns.

—We design an effective supervised interval combining method that is specifically
for mining correlations from quantitative databases.

—We develop a bi-level pruning technique, which consists of the attribute-level
pruning by NMI and the interval-level pruning by all-confidence. The bi-level
pruning is applied to devise an efficient algorithm, QCoMine, for mining QCPs.

—We propose effective and efficient techniques that eliminate the redundancy at
the attribute and interval levels of the QCPs.

—We conduct extensive experiments that examine the impacts of the fundamental
components in QCoMine and verify the effectiveness and the efficiency of our
approach for mining quantitative databases. We also study an application of
QCPs for the problem of classification.

1.2 Organization

We present preliminaries in Section 2. We define NMI in Section 3, based on which
QCPs are formally defined in Section 4. We present a supervised interval combining
method for quantitative attributes in Section 5 and the algorithm for QCP mining,
QCoMine, in Section 6. We develop the redundancy removal techniques for QCPs
in Section 7. Then, we analyze the performance study in Section 8. Finally, we
discuss related work in Section 9 and conclude our paper in Section 10.

2. PRELIMINARIES

Let I = {x1, x2, . . . , xm} be a set of distinct attributes or random variables1 . We
use Q and C to denote the set of quantitative attributes and the set of categorical
attributes, respectively. Let dom(xj) be the domain of an attribute xj , for 1 ≤
j ≤ m. An item, denoted as x[lx, ux], is an attribute x associated with an interval
[lx, ux], where x ∈ I and lx, ux ∈ dom(x). We have lx = ux, if x ∈ C, and lx ≤ ux,
if x ∈ Q.

A quantitative pattern (or simply called a pattern) is a nonempty set of items
having distinct attributes. Given a pattern X , we define its attribute set as attr(X)
= {x | x[lx, ux] ∈ X} and its interval set as interval(X) = {[lx, ux] | x[lx, ux] ∈ X}.
A pattern X is called a k-pattern if |attr(X)| = k. Similarly, we define the k-
attribute set and the k-interval set, where k is the cardinality of the respective set.
Given two patterns, X and Y , we say that X is a sub-pattern of Y (or Y is a super-
pattern of X), denoted as X ⊆ Y (or Y ⊇ X), if ∀x[lx, ux] ∈ X ⇒ x[lx, ux] ∈ Y .
For brevity, we write the pattern {x[lx, ux], y[ly, uy]} as x[lx, ux]y[ly, uy].

Given two intervals, [l, u] and [l′, u′], we say that [l′, u′] is a sub-interval of [l, u]
(or [l, u] is a super-interval of [l′, u′]), denoted as [l′, u′] ⊑ [l, u] (or [l, u] ⊒ [l′, u′]),
if l ≤ l′ ≤ u′ ≤ u.

We assume a lexicographic order on the set of attributes, I. Thus, the items and
the interval set of a pattern are ordered according to the order of the attribute set
of the pattern.

A transaction T is a vector 〈v1, v2, . . . , vm〉, where vj ∈ dom(xj), for 1 ≤ j ≤ m.
We say that T supports a pattern X if ∀j ∈ {1, . . . , m}, xj ∈ attr(X)⇒ lj ≤ vj ≤

1We use the terms attribute and random variable interchangeably in subsequent discussions.
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uj . A quantitative database D is a set of transactions. The frequency of a pattern
X in D, denoted as freq(X), is the number of transactions in D that support X .
The support of X , denoted as supp(X), is the probability that a transaction T in

D supports X , and it is defined as supp(X) =
freq(X)

|D|
.

Example 2. Consider the employee database given in Table I. We have I =
{age, education, gender, marital status, salary, service years}, Q = {age,
salary, service years}, and C = I \ Q. An example item is age[3, 4] and an
example 2-pattern is X = age[3, 4]education[2, 2] with the attribute set {age,
education} and the interval set {[3, 4], [2, 2]}. Each row in Table I represents
a transaction together with its support value in the last column. Since only the
first and the seventh transactions support the pattern X , the support value of X

is given by adding the support values of these two transactions, i.e., supp(X) =
0.25 + 0.08 = 0.33. �

3. NORMALIZED MUTUAL INFORMATION

In this section, we first review the concepts of entropy and mutual information and
investigate their properties. Then, we propose a normalization of mutual infor-
mation in order to make it applicable in the context of mining correlations from
quantitative databases.

3.1 Entropy and Mutual Information

Entropy and Mutual Information (MI) are two central concepts in information the-
ory [Shannon 1948]. Entropy measures the uncertainty of a random variable, while
MI describes how much information one random variable tells about another one.

We first define entropy and MI. Table III lists the notation used throughout this
paper. Note that p(vx) is equivalent to supp(x[vx, vx]), while p(vx, vy) is equiva-
lent to supp(x[vx, vx]y[vy, vy]). Thus, these terms are used interchangeably in the
subsequent discussions.

Table III. Notations
Notation Description

x, y, . . . random variables (or attributes)

vx, vy , . . . attribute values in their respective domains

x[lx, ux], y[ly, uy], . . . items corresponding to attributes

X, Y , . . . quantitative patterns (i.e. a set of items)

p(vx) the probability of (x = vx)

p(vx, vy) the joint probability of (x = vx) and (y = vy)

p(vy |vx) the conditional probability of (y = vy) given that (x = vx)

Definition 1. (Entropy) The entropy of a random variable x, denoted as
H(x), is defined as:

H(x) = −
∑

vx∈dom(x)

p(vx) · log p(vx).
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The conditional entropy of a random variable y given another variable x, denoted
as H(y|x), is defined as:

H(y|x) = −
∑

vx∈dom(x)

∑

vy∈dom(y)

p(vx, vy) · log p(vy|vx).

The joint entropy of two random variables x and y, denoted as H(x, y), is defined
as:

H(x, y) = −
∑

vx∈dom(x)

∑

vy∈dom(y)

p(vx, vy) · log p(vx, vy).

Definition 2. (Mutual Information) The Mutual Information (MI) of two
random variables x and y, denoted as I(x; y), is defined as:

I(x; y) =
∑

vx∈dom(x)

∑

vy∈dom(y)

p(vx, vy) · log
p(vx, vy)

p(vx) · p(vy)
.

We now present some properties of MI that are used to develop a normalization
on MI. The detailed proof of the following properties can be consulted from [Cover
and Thomas 1991].

Property 1. I(x; y) = H(x)−H(x|y) = H(y)−H(y|x).

Property 1 gives an important interpretation of MI in terms of entropy. Intu-
itively, the information that y tells us about x is the reduction in the uncertainty
of x given the knowledge of y, and similarly for the information that x tells about
y. The greater the value of I(x; y), the more information x and y tell about each
other.

Property 2. I(x; y) = I(y; x).

Property 2 suggests that MI is symmetric, which means the amount of informa-
tion x tells about y is the same as that y tells about x.

Property 3. I(x; x) = H(x).

Property 3 states that the MI of x with itself is the entropy of x. Thus, the
entropy of a variable is also called the self-information of the variable.

Property 4. I(x; y) ≥ 0.

Property 4 gives the lower bound for MI. When I(x; y) = 0, we have p(vx, vy) =
p(vx)p(vy) for every possible value of vx and vy, which means that x and y are
independent. Informally, this means that x and y tell us nothing about each other.

Property 5. I(x; y) ≤ H(x) and I(x; y) ≤ H(y).

Property 5 gives the upper bound for MI, which is the minimum of H(x) and
H(y).

Property 6. I(x; y) = H(x) + H(y)−H(x, y).
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3.2 Normalized Mutual Information

Although MI serves as a good measure to quantify how closely two attributes are
related to each other, the MI values of the attributes do not conform to a unified
scale. As shown by Properties 4 and 5, the MI value of two attributes varies between
0 and the minimum of their entropy. Since the entropy of different attributes often
varies a lot, different pairs of attributes also have different ranges of MI values,
which is not desirable as a dependency measure. In order to make MI values
mutually comparable in our mining problem, we need a unified scale for measuring
MI among a global set of attributes I. We thus propose the concept of normalized
MI.

Definition 3. (Normalized Mutual Information) The Normalized Mu-

tual Information (NMI) of two random variables x and y, denoted as Ĩ(x; y), is
defined as:

Ĩ(x; y) =
I(x; y)

MAX {I(x; x), I(y; y)}
.

When both I(x; x) and I(y; y) are zero, we define Ĩ(x; y) = 0.

The underlying idea of Definition 3 is to normalize the MI of x and y by the
maximum MI of x (or y) and any other attribute in I, which is either I(x; x) = H(x)
or I(y; y) = H(y) as shown by Properties 3 and 5. As a result, we eliminate
the localness of an attribute pair and use NMI as a global measure of attribute
dependency. Properties 7 to 9 present some important properties of NMI.

Property 7. Ĩ(x; y) = Ĩ(y; x).

Proof. This property follows directly from Property 2.

Property 7 shows that NMI is also symmetric, which preserves the nice feature
of MI.

Property 8. 0 ≤ Ĩ(x; y) ≤ 1.

Proof. Since I(x; x) ≥ 0, I(y; y) ≥ 0 and I(x; y) ≥ 0, we have Ĩ(x; y) ≥ 0. By
Property 5, I(x; y) ≤ MIN {H(x), H(y)} ≤ MAX {H(x), H(y)}. By Property 3, it

follows that I(x; y) ≤ MAX {I(x; x), I(y; y)}. So Ĩ(x; y) ≤ 1.

This property ensures that the value of NMI falls within the unit range [0, 1].

Property 9. Ĩ(x; y) = MIN {H(x)−H(x|y)
H(x) ,

H(y)−H(y|x)
H(y) }.

Proof. By Properties 1 and 3, we have

Ĩ(x; y) = MIN {
I(x; y)

I(x; x)
,
I(x; y)

I(y; y)
} = MIN {

H(x)−H(x|y)

H(x)
,
H(y)−H(y|x)

H(y)
}.
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Property 9 formalizes the semantics of NMI, which is the minimum fraction
of reduction in the uncertainty of one attribute given the knowledge of another
attribute.

Apart from the above stated properties, NMI serves as a natural measure of cor-
relation for the following reasons. First, NMI is a formal concept for measuring
dependency between attributes. Second, NMI gives an intuitive meaning for quan-
tifying the degree of dependency: NMI takes a value of 0 to indicate independence
and the value of NMI increases within the unit range [0, 1] when the dependency
of attributes increases. Third, a threshold µ for NMI can be employed to indicate
the required minimum fraction of reduction in the uncertainty of an attribute given
the knowledge of another attribute.

Example 3. Given the employee database in Table I, by Definition 2, we have

I(age; marital status)

=
∑

vage∈{1,2,3,4,5}

∑

vmarital status∈{1,2}

p(vage, vmarital status) · log
p(vage, vmarital status)

p(vage)p(vmarital status)

= 0.47.

This shows that the knowledge of age (or marital status) causes a reduction
of 0.47 in the uncertainty of marital status (or age). However, it is difficult to
tell how much a reduction of 0.47 is. However, using NMI, we obtain

Ĩ(age; marital status)

=
I(age; marital status)

MAX {H(age), H(marital status)}

=
I(age; marital status)

H(age)

=
0.47

2.12

= 0.22.

Thus, there is a reduction of at least 22% of the uncertainty of age and
marital status.

Similarly, we obtain I(education; gender) = 0.40 and Ĩ(education; gender) =
0.30.

Note that we have I(age; marital status) > I(education; gender) but Ĩ(age;

marital status) < Ĩ(education; gender). The larger MI value of age and
marital status is mainly because the entropy of age is larger than that of
education (i.e., H(age) = 2.12 > H(education) = 1.32), which results in a larger
absolute amount of reduction in the uncertainty rather than a relative amount.
This illustrates the benefit of NMI, which is able to reflect the attribute depen-
dency better than MI does. �
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In addition to the above definition of NMI, we can also define the normalization
as follows:

— I(x;y)
MIN{I(x;x),I(y;y)} : this expression measures the maximum fraction of reduction

in the uncertainty of one attribute given the knowledge of another attribute.

— 2I(x;y)
I(x;x)+I(y;y) : this expression measures the average fraction of reduction in the

uncertainty of one attribute given the knowledge of another attribute.

The above two alternatives also possess Properties 7 and 8, i.e., they are sym-
metric and their values fall within [0, 1]. However, they are weaker than the one
defined in Definition 3 as a measure of the quality of a correlated pattern.

4. QUANTITATIVE CORRELATED PATTERNS

In this section, we present the concept of Quantitative Correlated Pattern (QCP),
which employs bi-level quality control on the correlated patterns to be mined. First,
NMI is applied as a dependency measure at the attribute level to identify highly
correlated attributes. Then, all-confidence is applied at the interval level to ensure
the correlation of the attributes with specific intervals. In the previous section, we
have discussed NMI. Now, we present the concept of all-confidence generalized for
quantitative patterns and define the notion of QCP, which is the core concept in
our work.

4.1 All-Confidence for Quantitative Patterns

There have been a number of proposals [Brin et al. 1997; Omiecinski 2003; Ma
and Hellerstein 2001; Tan et al. 2002; Xiong et al. 2006] for measuring correlation
relationships. In recent years, all-confidence has emerged as a commonly adopted
correlation measure. It has been shown in many studies [Omiecinski 2003; Ma
and Hellerstein 2001; Lee et al. 2003; Kim et al. 2004; Xiong et al. 2006] that
all-confidence reflects correlative relationships among attributes more accurately
than do other measures. The all-confidence of a boolean pattern is defined as the
minimum confidence of all the association rules that can be derived from the pattern.
We generalize all-confidence for a quantitative pattern as follows.

Definition 4. (All-Confidence of a Quantitative Pattern) The all-
confidence of a quantitative pattern X, denoted as allconf (X), is defined as:

allconf (X) =
supp(X)

MAX {supp(x[lx, ux]) | x[lx, ux] ∈ X}
.

A pattern that has all-confidence of no less than a given minimum all-confidence
threshold, ς, indicates a high correlation among all the items in the pattern. This
is because all association rules derived from the pattern have confidence of no less
than ς, as implied by Definition 4. Note that an association rule is only a one-way
implication from the set of items on the left-hand side of the rule to that on the
right-hand side.
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Example 4. Given the employee database in Table I and the pattern X =
gender[1, 1]salary[2, 2], we have

allconf (X)

=
supp(gender[1, 1]salary[2, 2])

MAX {supp(gender[1, 1]), supp(salary[2, 2])}

=
0.19 + 0.11 + 0.09 + 0.09 + 0.08

MAX {0.25 + 0.19 + 0.11 + 0.09 + 0.09 + 0.09 + 0.08, 0.19 + 0.11 + 0.09 + 0.09 + 0.08}

= 0.62.

Similarly, we can compute the all-confidence of the pattern Y = gender[1, 1]
marital status[1, 1] to be allconf (Y ) = 0.9, which indicates a higher correlation
among its items than that among the items of X . �

All-confidence has two desirable properties for the efficient mining of correlated
patterns from boolean databases. These two properties can be directly adapted as
effective pruning tools for mining quantitative patterns, since the sub-pattern in a
quantitative database is defined in the same way as that in a boolean database.

The first property is called the downward closure property [Omiecinski 2003],
which is formally stated as follows.

Property 10. (Downward Closure Property of All-Confidence) Given
two patterns, X and Y , if X ⊆ Y , then allconf (X) ≥ allconf (Y ).

By Property 10, we are able to perform the following pruning: if a pattern X

has an all-confidence value less than ς, then we can prune all its super-patterns.
The second property is called the cross-support property [Xiong et al. 2006], which

is stated as follows.

Property 11. (Cross-Support Property of All-Confidence) Given a

pattern X, if there exist two items, x[lx, ux], y[ly, uy] ∈ X such that supp(x[lx,ux])
supp(y[ly ,uy]) <

ς, then allconf (X) < ς.

By Property 11, if the support ratio between any two items in a pattern X is less
than ς, we can prune the pattern X without computing its all-confidence value.

Although all-confidence is a good measure of correlation among boolean at-
tributes, it is still inadequate for reflecting the correlation among quantitative at-
tributes. This is because all-confidence is a measure applied at a fine granularity
to the intervals of the attributes. However, quantitative attributes often consist
of a large number of intervals; thus, we may obtain patterns that have high all-
confidence simply as a result of co-occurrence. We will illustrate this limitation
further in Example 5. On the other hand, although NMI is a good measure of de-
pendency among attributes, it does not capture the specific relationships between
the attribute values, since it aggregates all the information among the attribute
values into a single NMI value. As a result, the patterns measured only by NMI are
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not specific enough to provide detailed knowledge to the end user. In order to iden-
tify correlations at different levels, we integrate both measures into the definition
of quantitative correlated patterns, as will be detailed in the following subsection.

4.2 Quantitative Correlated Patterns

Realizing that the definition of a correlated pattern [Brin et al. 1997] is a set of
attributes that are dependent on each other and that MI is a well-established concept
in information theory [Shannon 1948] to capture the dependency among attributes,
we formally incorporate the concept of MI into the definition of QCP.

Definition 5. (Quantitative Correlated Pattern) Given a minimum in-
formation threshold, µ (0 ≤ µ ≤ 1) and a minimum all-confidence threshold, ς

(0 ≤ ς ≤ 1), a pattern X is called a Quantitative Correlated Pattern (QCP) if and
only if the following two conditions are satisfied:

(1 ) ∀x, y ∈ attr(X), Ĩ(x; y) ≥ µ;

(2 ) allconf (X) ≥ ς.

The essence of the above definition is that we first ensure that every attribute
in a QCP carries a great amount of information about every other attribute in the
pattern. Then, all-confidence is further used to guarantee that the intervals of the
attributes are also highly correlated. Therefore, bi-level quality control is imposed
on the QCPs.

The following example helps illustrate further the concept of QCP, as well as the
necessity of imposing the bi-level quality control for the QCPs.

Example 5. We refer to the employee database in Table I. Let µ = 0.3 and ς =
0.6. The pattern X = gender[1, 1]salary[2, 2] is a QCP, since Ĩ(gender; salary) =
0.34 ≥ µ, and allconf (X) = 0.62 ≥ ς as shown in Example 4.

The pattern Y = gender[1, 1]marital status[1, 1] is not a QCP because Ĩ(gender;
marital status) = 0 < µ, even though allconf (Y ) = 0.9 ≥ ς. As shown in Ex-
ample 1, the attributes gender and marital status are actually independent of
each other. The reason for the high all-confidence of Y is simply because both
p(gender[1, 1]) and p(marital status[1, 1]) are very high (both of them are 0.9
as shown in Table II), which results in a high co-occurrence of the two items
gender[1, 1] and marital status[1, 1]. Obviously, patterns such as Y are of lit-
tle significance, since they do not accurately reveal the correlations between the
items in the patterns. This explains the necessity of the concept of NMI in the
definition of QCP. �

We now define the QCP mining problem that we tackle in this paper.

Problem Description. Given a quantitative database D, a minimum information
threshold µ, and a minimum all-confidence threshold ς, the QCP mining problem
is to find all QCPs from D.

5. A SUPERVISED INTERVAL COMBINING METHOD

In this section, we present a supervised interval combining method for quantitative
attributes, which is an essential technique to produce meaningful intervals for QCPs,
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as well as to ensure the efficient mining of QCPs.

A very important step in mining quantitative databases is the process of pro-
ducing meaningful intervals of the attributes. To deal with continuous values, the
quantitative database is first discretized so that the domain of each quantitative
attribute is mapped into a set of base intervals. The base intervals are indivisible
during the mining process. We discretize the domain of each quantitative attribute
into a relatively large number of base intervals so that the information loss is small.
Consecutive base intervals may be combined into larger intervals to gain sufficient
support, while a combined interval itself can have a more significant meaning than
its composite base intervals. However, the challenge is how to avoid producing the
combined intervals that are too trivial. For example, age[0, 2] refers to infants and
is more representative than age[0, 0], age[1, 1] or age[2, 2]; however, age[0, 100] is
simply trivial.

The traditional method of controlling the size of a combined interval using a
maximum support threshold [Srikant and Agrawal 1996] is not applicable to the
QCP mining problem. This is because QCPs can be both rare patterns (having low
support) and popular patterns (having high support) and thus they have a wide
range of support values. Other more sophisticated interval combining methods,
such as [Wang et al. 1998], have also been proposed but are specifically designed
for mining quantitative association rules.

In mining QCPs, it would be advantageous to consider the dependency between
the attributes when combining their intervals to reflect specific meanings. For ex-
ample, combining the intervals of the attribute age with respect to marital status

(as people are married after a certain age) should be different from that with re-
spect to gender (as both males and females scatter over all ages). However, most of
the existing interval combining methods produce a set of intervals for an attribute
without considering the relationship of the attribute with other attributes. As a re-
sult, no matter what attributes appear in the same pattern, the intervals produced
for a specific attribute are the same. To address this problem, we propose a novel
interval combining method, in which the intervals of an attribute are combined with
respect to other attributes in a supervised process.

Since interval combining is performed locally between a pair of attributes, we
use MI to guide the process to produce meaningful combined intervals, instead of
NMI, which is defined to be a global measure for all attributes. We now model the
interval combining problem as a supervised optimization problem with MI as the
objective function.

Given two attributes x and y, where x is quantitative and y is either categorical
or quantitative, we aim to obtain the optimal combined intervals of x with respect
to y. If y is also quantitative, we obtain the combined intervals of y with respect to
x as well. Let I ′(x; y), H ′(x), H ′(y) and H ′(x, y) be the respective parameters after
combining the intervals of x (and y). The objective function, φ, of the optimization
problem is defined as follows:
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φ(x, y) = I ′(x; y)− I(x; y)

= (H ′(x) + H ′(y)−H ′(x, y)) By Property 6

−(H(x) + H(y)−H(x, y))

= (H ′(x) −H(x)) + (H ′(y)−H(y))− (H ′(x, y)−H(x, y)). (1)

Note that if y is categorical, H(y) remains unchanged, because the intervals of y

are not combined.

Since H(x), H(y) and H(x, y) always decrease when the intervals of x (and y) are
combined, φ can be either positive or negative, depending on the relative decreasing
rate of H(x), H(y) and H(x, y). Thus, the optimization problem is to maximize
the function φ. Obviously, an exhaustive algorithm is unrealistic, since it requires
O(2nx+ny) computations of MI values to find the optimal solution, where nx and
ny are the numbers of the base intervals of x and y. We propose a greedy algorithm
as a solution to this optimization problem based on the following property of the
objective function φ.

Let S be the set of intervals of x and y produced at a certain interval combining
step, and φS(x, y) be the corresponding value of φ(x, y). Let T be the set of intervals
of x and y obtained by further combining some intervals in S, and φT (x, y) be the
corresponding value of φ(x, y). Since T can be derived from S, we use φS→T (x, y)
to denote the value of φ(x, y) of obtaining T from S. We present the additive
property of φ as follows.

Property 12. (Additive Property) φT (x, y) = φS(x, y) + φS→T (x, y).

Proof. We use the subscripts S and T to denote the corresponding values of
MI.

φS(x, y) + φS→T (x, y) = (IS(x; y)− I(x; y)) + (IT (x; y)− IS(x; y))

= IT (x; y)− I(x; y)

= φT (x, y).

Property 12 shows that the order of combining the intervals does not affect the
value of φ as long as the final set of combined intervals is the same. Moreover,
it also shows that, we can obtain the value of φ by summing up the intermediate
values of φ, instead of recomputing it from scratch at each combining step.

Based on Property 12, we propose an efficient algorithm that greedily combines
two consecutive intervals of a given attribute at each time. The idea of the greedy
algorithm is described as follows.

At each time, we consider combining two consecutive intervals of x (or y, if
y ∈ Q). Without loss of generality, we assume that the two intervals to be combined
are ixj

and ixj+1
, of x, where ixj

and ixj+1
can be either a base interval or a

combined interval. Let φ[ixj
,ixj+1

](x, y) denote the value of φ(x, y) when ixj
and

ixj+1
are combined with respect to y. Using Equation (1) and Definition 1, we

obtain φ[ixj
,ixj+1

](x, y) as follows:
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φ[ixj
,ixj+1

](x, y)

= (H ′(x) −H(x)) + (H ′(y)−H(y))− (H ′(x, y)−H(x, y))

=
(
− (p(ixj

) + p(ixj+1
)) log(p(ixj

) + p(ixj+1
))

+ (p(ixj
) log p(ixj

) + p(ixj+1
) log p(ixj+1

))
)

+ 0

−
(
−

∑

iy

(p(ixj
, iy) + p(ixj+1

, iy)) log(p(ixj
, iy) + p(ixj+1

, iy))

+
∑

iy

p(ixj
, iy) log p(ixj

, iy) +
∑

iy

p(ixj+1
, iy) log p(ixj+1

, iy)
)
.

Our algorithm, GreedyCombine, is presented as Algorithm 1. The main idea
(Steps 21-25) is to pick up at each time the maximum φ[ixj

,ixj+1
](x, y) among

all pairs of consecutive intervals, ixj
and ixj+1

, and combine corresponding ixj

and ixj+1
into ixj′

. Then, φ[ixj−1
,ixj

](x, y) and φ[ixj+1
,ixj+2

](x, y) are replaced by

φ[ixj−1
,ix

j′
](x, y) and φ[ix

j′
,ixj+2

](x, y). If y is quantitative (Steps 4-19), we also take

into account the values of φ for combining the consecutive intervals of y. At each
time, we also pick up the maximum φ[iyk

,iyk+1
](x, y) among all pairs of consecutive

intervals, iyk
and iyk+1

of y (Step 9) and determine the intervals of which attribute
to be combined by comparing the two maximum values of φ of x and y (Steps 11
and 16).

For each quantitative attribute, we maintain a heap to achieve the efficient re-
trieval of maximum value of φ. Take the attribute x for example. We can retrieve
the maximum φ[ixj

,ixj+1
](x, y) by implementing a priority queue using a heap Qx

(Step 2), while φ[ixj−1
,ixj

](x, y) and φ[ixj+1
,ixj+2

](x, y) can be accessed by keeping

their pointers in the heap entry of φ[ixj
,ixj+1

](x, y). The update of their positions

in Qx by a heapify operation takes O(log nx) time (Steps 13 and 18). If y is quanti-
tative, the update of the values of φ in Qy when combining two intervals of x takes
ny heapify operations (Step 13). However, we can simply perform build-heap to
rebuild Qy which takes only O(ny) time. Moreover, both nx and ny decrease when
more intervals are combined. In the worst case, when all intervals of both x and y

are combined into a single interval, the entire combining process takes nx heapify
operations for Qx and ny for Qy, ny build-heap operations for Qx and nx for Qy.
Thus, the total complexity in the worst case is O(nx log nx + ny log ny + nx · ny).

To avoid a combined interval becoming trivial, we set a terminating condition,
φx
min , to be the mean of all φ[ixj

,ixj+1
](x, y) in the heap Qx (Step 3). This initial

value of φx
min is chosen so that those pairs of consecutive intervals with relatively

high φ values are given a chance to be combined. When intervals are combined,
the heap Qx is updated (Steps 13 and 18) and some φ[ixj

,ixj+1
](x, y) may become

less than φx
min . As a result, the corresponding ixj

and ixj+1
will not be combined.

In the same way, we also set a terminating parameter, φ
y
min , for the attribute

y if y is quantitative. The GreedyCombine terminates when the intervals of both
attributes cannot be combined any more with respect to their respective φmin .
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Algorithm 1 GreedyCombine(x, y)

Input: The base intervals of two attributes x and y.
Output: The set of combined intervals of x and y.

1. for each pair of consecutive intervals ixj
and ixj+1

of x do

2. Insert φ[ixj
,ixj+1

](x, y) into a heap, Qx;

3. φx
min ← MEAN {φ[ixj

,ixj+1
](x, y) ∈ Qx};

4. if (y ∈ Q)
5. for each pair of consecutive intervals iyk

and iyk+1
of y do

6. Insert φ[iyk
,iyk+1

](x, y) into a heap, Qy;

7. φ
y
min ← MEAN {φ[iyk

,iyk+1
](x, y) ∈ Qy};

8. Extract maximum φ[ixj
,ixj+1

](x, y) from Qx;

9. Extract maximum φ[iyk
,iyk+1

](x, y) from Qy;

10. if (φ[ixj
,ixj+1

](x, y) ≥ φx
min)

11. if (φ[ixj
,ixj+1

](x, y) ≥ φ[iyk
,iyk+1

](x, y) or φ[iyk
,iyk+1

](x, y) < φ
y
min)

12. Combine ixj
and ixj+1

into ixj′
;

13. Update Qx and Qy;
14. Goto Step 8;
15. if (φ[iyk

,iyk+1
](x, y) ≥ φ

y
min)

16. if (φ[iyk
,iyk+1

](x, y) > φ[ixj
,ixj+1

](x, y) or φ[ixj
,ixj+1

](x, y) < φx
min)

17. Combine iyk
and iyk+1

into iyk′ ;
18. Update Qy and Qx;
19. Goto Step 8;
20. else \\ y is categorical
21. Extract maximum φ[ixj

,ixj+1
](x, y) from Qx;

22. if (φ[ixj
,ixj+1

](x, y) ≥ φx
min)

23. Combine ixj
and ixj+1

into ixj′
;

24. Update Qx;
25. Goto Step 21;

Example 6. Consider the employee database in Table I, where each label of
quantitative attributes corresponds to one base interval. Using GreedyCombine,
the combined intervals of age with respect to marital status are [1, 1] and [2, 5].
This is reasonable, since all the transactions with marital status = 2 have a value
of 1 for age. In other transactions with marital status = 1, the values of age fall
within the interval [2, 5]. This result is consistent with the fact that people over a
certain age, say 35, are usually married.

However, if we compute the combined intervals of age with respect to gender,
the results are [1, 2], [3, 4] and [5, 5], which are totally different from those of age
with respect to marital status. Fewer base intervals of age are combined with
respect to gender, since in the transactions with the same gender values, the age

values scatter over the whole domain of age. This result demonstrates the fact that
there are young, middle-aged and old employees who are either male or female. �
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6. MINING QUANTITATIVE CORRELATED PATTERNS

In this section, we present our algorithm of mining QCPs. Our algorithm utilizes
bi-level pruning, which significantly reduces the search space of the QCP mining
problem. We first describe the pruning at each level and then present the overall
algorithm.

6.1 Attribute-Level Pruning

The first condition of the QCP definition (recall Definition 5) requires that, in order
to generate a QCP in the mining process, the NMI of every pair of attributes in
the pattern must be at least µ. This condition enables us to perform pruning at
the attribute level of the QCP mining problem. By introducing the concept of NMI
graphs, we show how the pruning is performed.

Definition 6. (Normalized Mutual Information Graph) A Normalized
Mutual Information graph (NMI graph) is an undirected graph, G = (V, E), where

V = I is the set of nodes and E = {(xi, xj) | xi 6= xj and Ĩ(xi; xj) ≥ µ} is the set
of edges.

Note that E is well defined in Definition 6, since Ĩ(xi; xj) is symmetric by Prop-
erty 7. We now establish a necessary condition that the attribute set of a QCP
forms a clique [Cormen et al. 2001] in the NMI graph. The following condition
reveals the strong inter-dependence between all attributes in a QCP.

Lemma 1. (Necessary Condition) If X is a QCP, then attr(X) forms a
clique in G.

Proof. This follows directly from Definitions 5 and 6.

Lemma 1 implies that we can generate the attribute sets of all QCPs by enumer-
ating the cliques in the NMI graph. Note that mining QCPs without pruning at
the attribute level is equivalent to enumerating all cliques in a complete graph; that
is, an NMI graph with µ = 0. Thus, the search space is now significantly reduced
from enumerating all cliques in the complete graph to enumerating all cliques in a
much sparser NMI graph. The significance of this pruning at the attribute level is
fully uncovered if we realize the fact that an edge in the NMI graph can generate an
enormous number of patterns, which is equal to the size of the Cartesian product
of the set of intervals of two incident nodes (i.e., attributes) of the edge. We further
illustrate this point in Section 6.2.

The complexity of enumerating all cliques in a graph is exponential. However,
we show that clique enumeration can be seamlessly incorporated into the mining
process. Our mining algorithm adopts a prefix tree structure, called the attribute
prefix tree, denoted as Tattr , which is constructed as follows.

First, a root node is created at Level 0 of Tattr . Then, at Level 1, we create a
node for each attribute in I as a child of the root, where each child node is labeled
as the attribute and the order of the children follows that of the attributes in I.
Tattr is then constructed in a depth-first manner as follows. For each node u at
Level k (k ≥ 1) and for each right sibling v of u, if (u, v) is an edge in G, we create
a child node for u with the same attribute label as that of v. Then, we continue
the construction in the same way with u’s children at Level (k + 1).
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Lemma 2. Let 〈u1, . . . , uk〉 be a path from a node u1 at Level 1 to a node uk at
Level k of Tattr . Then, the set of nodes, {u1, . . . , uk}, forms a k-clique in G.

Proof. We prove the lemma by induction on the length of the path, k.
(Basis.) When k = 1 and k = 2, it is trivial that {u1} is a 1-clique and {u1, u2}

forms a 2-clique since (u1, u2) is an edge in G.
(Induction.) Assume that the lemma holds for 2 ≤ j ≤ k. Consider a path

Pk+1 = 〈u1, . . . , uk−1, uk, uk+1〉. Thus, uk must have a right sibling uk+1 in
Tattr and the edge (uk, uk+1) exists in G. By the inductive hypothesis, let Pk =
〈u1, . . . , uk−1, uk〉 and P ′

k = 〈u1, . . . , uk−1, uk+1〉 be two paths in Tattr , and the sets
of nodes on Pk and P ′

k form two k-cliques. It follows that ∀u ∈ {u1, . . . , uk−1} and
∀v ∈ {u1, . . . , uk−1, uk, uk+1}, the edge (u, v) exists in G. The result thus follows,
since the edge (uk, uk+1) also exists, giving a (k+1)-clique, {u1, . . . , uk−1, uk, uk+1},
which is the same set of nodes on the path Pk+1.

The prefix tree is shown to be a very efficient data structure for mining both
frequent and correlated patterns, while Lemma 2 suggests that the clique enumer-
ation comes almost free with the construction of Tattr . The only extra processing
incurred is a trivial test of whether (u, v) is an edge in G. More importantly, clique
enumeration often terminates earlier by all-confidence pruning, which is detailed in
Section 6.2.

Example 7. Given the employee database in Table I. We compute the NMI
graph, G, as shown in Figure 1, at µ = 0.3. There are only five edges in G,
each of which is identified as a strong dependency between two attributes. Other
edges that cannot constitute a QCP do not exist in G. This ensures that the
uncorrelated patterns, such as gender[1, 1]marital status[1, 1] in Example 5, will
not be generated, since there is no edge between gender and marital status in
G.

To find the cliques in G, we construct an attribute prefix tree Tattr as shown in
Figure 2. It can be easily verified that each k-path in Tattr represents a k-clique in
G. �

We now discuss a straightforward and objective way of setting the minimum
information threshold µ. As shown in Equation (2), we set µ to be the sum of
the mean, denoted as MEAN, and the standard deviation, denoted as STD, of all
NMI values (the NMI values of Ĩ(x; x) are excluded), so that G retains edges that
reveal high mutual dependency between their incident nodes. We also remark that,
similar to the choice of thresholds for other measures, such as the minimum support
threshold in the frequent pattern mining problem [Agrawal et al. 1993a], the choice
of µ can also be determined by domain experts to indicate how correlated the
attributes in a pattern should be.

µ = MEAN {Ĩ(x; y) | x 6= y}+ STD{Ĩ(x; y) | x 6= y}. (2)
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6.2 Interval-Level Pruning

Although NMI can effectively eliminate the patterns that are generated from un-
correlated attributes, patterns with low all-confidence may still be generated from
correlated attributes. This is because a node in the attribute prefix tree Tattr ac-
tually represents a set of patterns that has the same attribute set but different
interval sets. Thus, we also need pruning at the interval level. For this purpose, we
make use of the downward closure property [Omiecinski 2003] and the cross-support
property [Xiong et al. 2006] of all-confidence to perform the pruning.

6.2.1 Pruning by the Downward Closure Property of All-Confidence.

According to the downward closure property of all-confidence as stated in Property
10, we can prune a pattern X and all its super-patterns if allconf (X) < ς.

Since the intervals of an attribute are combined in a supervised way, the same
attribute may have different sets of combined intervals with respect to different
attributes. When we join two k-patterns to produce a (k + 1)-pattern, the in-
tervals of the prefixing (k − 1) attributes in the two k-patterns may overlap.
In this case, a straightforward way is to compute the intersection of the prefix-
ing (k − 1) intervals of the two k-patterns to give the intervals for the (k + 1)-
pattern. For example, given two patterns age[30, 40]marital status[1, 1] and
age[25, 35]salary[2000, 3000], we intersect the intervals of age to obtain a new
pattern age[30, 35]marital status[1, 1]salary[2000, 3000].

However, producing a (k + 1)-pattern by intersecting the intervals of k-patterns
violates the downward closure property of all-confidence. The reason for the viola-
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tion is that shrinking the intervals in the (k+1)-pattern may cause a great decrease
in the support value of a single item so that the all-confidence of the (k+1)-pattern
may become larger than that of its composite k-patterns. The following example
helps illustrate this problem.

Example 8. Given the employee database in Table I and two 2-patterns X =
education[3, 3]service years[2, 3] and Y = gender[2, 2]service years[1, 2], we
can compute

allconf (X) =
supp(X)

supp(service years[2, 3])
=

0.09

0.49
= 0.18

and

allconf (Y ) =
supp(Y )

supp(service years[1, 2])
=

0.04

0.3
= 0.13.

However, when we generate the 3-pattern, Z = education[3, 3]gender[2, 2]service
years[2, 2], from X and Y by intersecting the intervals of service years, we find
that

allconf (Z) =
supp(Z)

supp(gender[2, 2])
=

0.03

0.1
= 0.3,

which is larger than both allconf (X) and allconf (Y ). This violates the downward
closure property of all-confidence, since the generated pattern has a larger all-
confidence value than its composite patterns. The main cause of the violation is
that, after the intersection, the maximum support of the single item in the pattern
decreases from 0.49 in X and 0.3 in Y to 0.1 in Z. �

The violation of the downward closure property of all-confidence when intersect-
ing the intervals causes two problems in the mining process. First, using the prefix
tree structure introduced in Section 6.1, we are not able to obtain the all-confidence
value of the pattern generated by the interval intersection, since the support values
of the patterns with the intersected interval are not kept at the upper level of the
prefix tree. Second, we cannot discard a pattern X if its all-confidence is less than
ς, since after the intersection, X may produce some pattern with an all-confidence
value larger than ς. This can be easily shown with Example 8 by setting ς = 0.2,
in which we have allconf (X) = 0.18 < 0.2, but we cannot prune X . Otherwise, we
will miss the pattern Z.

Pruning by the downward closure property is well known to be the key to the effi-
ciency of most frequent pattern and correlated pattern mining algorithms [Agrawal
et al. 1993a; Omiecinski 2003]. Therefore, the mining efficiency will be severely
degraded if the downward closure property of all-confidence cannot be applied in
our problem.

Fortunately, we find that the violation of the downward closure property of all-
confidence can be resolved by enumerating all sub-intervals of a combined interval
before we start to generate a pattern. Hereafter, we use ix to denote an interval of
x (i.e., ix = [lx, ux]). For clarity, we also use x[ix] to denote an item x[lx, ux].

Recall that a node at Level k of Tattr represents a k-attribute set. We start from
Level 2 of Tattr to generate 2-patterns. Let {x, y} be the attribute set represented
by a node at Level 2, and Sx and Sy be the sets of combined intervals of x and
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y with respect to each other. Similar to mining quantitative frequent patterns
[Srikant and Agrawal 1996], we need to consider all pairs of sub-intervals of x and y

as each of them represents a pattern. For each interval set {i′x, i′y}, where i′x ⊑ ix,
i′y ⊑ iy, ix ∈ Sx and iy ∈ Sy, we generate a QCP, X = x[i′x]y[i′y], if allconf (X) ≥ ς.

The above computation is performed on the Cartesian product of two sets of
sub-intervals of x and y. The size of the Cartesian product can be large, since an

interval ix = [l, l + n] has n(n+1)
2 sub-intervals. However, our supervised interval

combining method effectively clusters the base intervals of an attribute into small
groups, which drastically reduces the size of the Cartesian product.

Since the intersection of two overlapping intervals is just a common sub-interval
of the two intervals, we ensure that all QCPs will be generated by enumerating all
pairs of sub-intervals. Moreover, since all the possible sub-interval combinations
are considered in 2-patterns, which are the basis for generating k-patterns (k > 2),
the downward closure property of all-confidence is preserved and can be applied to
performing the pruning. The sub-intervals are not intersected and are regarded as
indivisible intervals in the mining process.

The set of k-patterns generated at a node at Level k (k ≥ 2) of Tattr often share a
large number of common sub-intervals in their prefixing (k−1)-interval sets. Thus,
we also use a prefix tree T u

interval , called the interval prefix tree, to keep the interval
sets of all the patterns generated by a node u in Tattr . The interval prefix tree not
only avoids storing the duplicate sub-intervals in memory, but it also significantly
speeds up the join of two k-patterns to produce a (k + 1)-pattern.

6.2.2 Pruning by the Cross-Support Property of All-Confidence.

According to the cross-support property of all-confidence as stated in Property 11,
we can prune a pattern X , if it contains two items whose support ratio is less than
ς.

We first apply this property to the generation of 2-patterns. When enumerating
all the sub-intervals of x and y, for a sub-interval i′x of a combined interval ix
of x, we can prune the sub-interval i′y of y, if supp(y[i′y]) < ς · supp(x[i′x]) or

supp(y[i′y]) >
supp(x[i′x])

ς
. In these two cases, the pattern x[i′x]y[i′y] is guaranteed to

have all-confidence of less than ς according to the cross-support property. Thus, it
is not a QCP and can be pruned.

We further apply the property to the generation of k-patterns for k > 2. We
keep the maximum support value of the single items for each pattern. Given two
k-patterns to be joined into a (k + 1)-pattern, if the ratio of the support value of
one pattern to the maximum support value kept for another pattern is less than ς,
we do not need to perform the join operation, since the all-confidence value of the
joined pattern is guaranteed to be less than ς by the cross-support property.

6.3 QCoMine Algorithm

We now present our main algorithm, QCoMine, in Algorithm 2. We first construct
the NMI graph G (Step 1). Then, we combine the base intervals of each quantitative
attribute with respect to another attribute, as long as the two attributes form
an edge in G (Steps 2-3). The attribute prefix tree, Tattr , is then constructed
to perform the attribute-level pruning. After creating the root and Level 1 of
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Tattr (Steps 4-5), Steps 6-15 construct Level 2 of Tattr and produce all 2-QCPs.
Step 12 performs pruning at the interval level by the cross-support property of
all-confidence, while the pruning by the downward closure property is performed
throughout the mining process.

Steps 16-17 invoke RecurMine, as shown in Procedure 1, to generate all k-QCPs
(k > 2) recursively in a depth-first manner. Note that at Step 6 of RecurMine
when two k-patterns are joined, all the prefixing (k − 1) intervals should be the
same in the two patterns, which means that no interval intersection is performed;
in addition, the last intervals of two k-patterns should form the interval set of a
corresponding 2-pattern. This ensures that the last interval is a sub-interval of one
attribute with respect to another. Step 8 of RecurMine performs the pruning by
the cross-support property of all-confidence for k-pattern generation (k > 2).

Algorithm 2 QCoMine(D, µ, ς)

Input: A quantitative database D, a minimum information threshold µ, and a
minimum all-confidence threshold ς.
Output: The set of QCPs.

1. Construct the NMI graph, G;
2. for each (x, y) in G, where x ∈ Q, do

3. GreedyCombine(x, y);
4. Create the root node, root, of Tattr ;
5. Create a node for each attribute in I as a child of root;
6. for each child node u of root do

7. for each right sibling v of u do

8. if ((u, v) in G)
9. Create w as a child of u and assign to w an attribute label the same as

that of v in Tattr ;
10. Let {x, y} be the attribute set represented by w;
11. for each sub-interval pair, ix and iy, of x and y do

12. if (ς · supp(x[ix]) ≤ supp(y[iy]) ≤ supp(x[ix])
ς

)

13. if (allconf (X = x[ix]y[iy]) ≥ ς)
14. Output X as a QCP;
15. Insert X ’s interval set {ix, iy} into T w

interval ;
16. for each child node w of u do

17. RecurMine(w, Tattr , G, 2);

To compute the all-confidence of a pattern, we adopt diffset [Zaki and Gouda
2003] to obtain the support value of the pattern, while we use an extra field to keep
the maximum support value of the items in a pattern (Denoted as maxsupp(X) for
a pattern X in Step 8 of Procedure 1). The use of diffset, together with the depth-
first strategy, effectively controls the memory consumed in the mining process as
evidenced by our experiments discussed in Section 8.

Example 9. (Example 7 continued) Let µ = 0.3 and ς = 0.6. The corresponding
Tattr constructed by QCoMine is shown in Figure 2. The node gender at Level 2 of
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Procedure 1 RecurMine(u, Tattr , G, k)

1. for each right sibling v of u do

2. if ((u, v) in G)
3. Create w as a child of u and assign to w an attribute label the same as

that of v in Tattr ;
4. Let {x1, . . . , xk+1} be the attribute set represented by w;
5. Let {iu1

, . . . , iuk−1
, iuk
} and {iv1

, . . . , ivk−1
, ivk
} be any two interval sets

in T u
interval and T v

interval ;
6. if (iuj

= ivj
, for 1 ≤ j ≤ k − 1, and {iuk

, ivk
} is an interval set of the

attribute set {xk, xk+1})
7. Let X = x1[iu1

] · · ·xk−1[iuk−1
]xk[iuk

]
and Y = x1[iu1

] · · ·xk−1[iuk−1
]xk+1[ivk

];

8. if ( supp(X)
maxsupp(Y ) ≥ ς and supp(Y )

maxsupp(X) ≥ ς)

9. Let Z = x1[iu1
] · · ·xk−1[iuk−1

]xk[iuk
]xk+1[ivk

];
10. if (allconf (Z) ≥ ς)
11. Output Z as a QCP;
12. Insert {iu1

, . . . , iuk−1
, iuk

, ivk
} into T w

interval ;
13. Delete T u

interval ;
14. for each child node w of u do

15. RecurMine(w, Tattr , G, k + 1);

Tattr represents the 2-attribute set {education, gender}. Since both education

and gender are categorical, all the sub-interval pairs of this attribute set are the
six combinations of three values of education and two values of gender. Among
the six corresponding 2-patterns, the pruning by the cross-support property of all-
confidence discards four patterns. Among the remaining two patterns, only the
pattern education[3, 3]gender[2, 2] has all-confidence of 0.9, which is greater than
ς.

The node salary at Level 2 of Tattr , which is the child of the node education,
represents the 2-attribute set {education, salary}. The combined intervals of
salary with respect to education are [1, 1], [2, 3], [4, 4], which have the following
five sub-intervals: [1, 1], [2, 2], [2, 3], [3, 3], [4, 4]. Combined with the three values of
education, there are altogether fifteen sub-interval pairs formed for education and
salary, among which eight corresponding patterns are pruned by the cross-support
property, and only one corresponding pattern, education[3, 3]salary[4, 4], satisfies
the all-confidence condition.

The node salary at Level 3 is generated by the RecurMine procedure, which joins
the two 2-patterns education[3, 3] gender[2, 2] and education[3, 3]salary[4, 4]
to produce a 3-pattern education[3, 3]gender[2, 2]salary[4, 4], which has an all-
confidence value of 0.9. �

7. REDUNDANCY ELIMINATION

Previous studies have already recognized that redundant information exists at the
interval level of quantitative association rules [Srikant and Agrawal 1996; Aumann
and Lindell 2003] and at the attribute level of boolean correlated patterns [Kim
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et al. 2004]. In this section, we analyze redundant knowledge at both the attribute
level and the interval level of QCPs and then propose effective techniques to remove
the redundancy.

7.1 Redundancy Elimination at the Attribute Level

Let P be a set of QCPs. Redundancy exists within P , if some QCP in P has
similar or the same all-confidence value as that of its super-pattern. For example,
given a pattern X = education[2, 2]salary[2000, 2500] and its super-pattern Y =
education[2, 2]marital status[1, 1]salary[2000, 2500], if allconf (X) = allconf (Y ),
then X is redundant because Y already conveys the information that X carries.
Since X and Y have different attribute sets, we define the pattern X as a redundant
QCP at the attribute level as follows.

Definition 7. (Redundant QCP at the Attribute Level) X ∈ P is re-
dundant if there exists some Y ∈ P such that, X ⊂ Y and allconf (X) = allconf (Y ).

According to Definition 7, we further define the concept of all-confidence-closed
QCP to formalize non-redundant QCPs.

Definition 8. (All-Confidence-Closed QCP) A pattern X ∈ P is called
an all-confidence-closed QCP if there does not exist any Y ∈ P such that Y ⊃ X

and allconf (Y ) = allconf (X).

In subsequent discussions, we simply say that a pattern X is all-confidence-closed
if X is an all-confidence-closed QCP.

Now, we investigate some properties of all-confidence-closed QCPs and develop
an efficient algorithm that computes the set of all-confidence-closed QCPs.

We first define an ordering, denoted as ≺, among the attribute sets. Let u and v

be two nodes in Tattr and X and Y be the two attribute sets represented by u and
v, respectively. We define ≺ as the prefix order on the attribute prefix tree Tattr

as follows. X ≺ Y (or equivalently Y ≻ X) if and only if u is visited before v in a
pre-order traversal of Tattr .

Property 13. Given a QCP X, if there exists an all-confidence-closed QCP
Y , such that Y ≺ X, Y ⊃ X and allconf (Y ) = allconf (X), then X is not all-
confidence-closed, and ∀Z, where Z ⊃ X and Z ≻ X, Z is not all-confidence-closed.

Proof. By Definition 8, X is not all-confidence-closed due to the existence of
Y . Since Y ⊃ X , we have supp(Y ) ≤ supp(X) and maxsupp(Y ) ≥ maxsupp(X).
By Definition 4, we have allconf (Y ) ≤ allconf (X). Since allconf (Y ) = allconf (X),
we have supp(Y ) = supp(X) and maxsupp(Y ) = maxsupp(X).

Assume to the contrary that Z is all-confidence-closed. Let x[lx, ux] be the item
in X such that the attribute x is lexicographically ordered before all other attributes
in X . Since Y ≺ X and Y ⊃ X , there exists an item y[ly, uy] ∈ (Y \X) such that y is
lexicographically ordered before x. Thus, ∀Z ⊃ X and Z ≻ X , y is not an attribute
in Z. Moreover, since supp(Y ) = supp(X), y[ly, uy] must be supported by every
transaction that supports X , which implies supp(Z) = supp(Z ∪ {y[ly, uy]}). Since
Z ⊃ X , we have maxsupp(X)≤maxsupp(Z). Since y[ly, uy] ∈ Y and maxsupp(Y )=
maxsupp(X), we have supp(y[ly, uy]) ≤ maxsupp(X) ≤ maxsupp(Z). Therefore,
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maxsupp(Z ∪ {y[ly, uy]}) = MAX {maxsupp(Z ), supp(y[ly , uy ])} = maxsupp(Z). It
follows that allconf (Z) = allconf (Z ∪ {y[ly, uy]}), which is a contradiction to the
assumption that Z is all-confidence-closed.

Property 13 is important, since it can be employed to perform effective pruning
of the search space in mining all-confidence-closed QCPs. When we explore Tattr in
the mining process, if we find any pattern X having a super-pattern that has been
discovered as an all-confidence-closed QCP and has the same all-confidence value
as that of X , we can immediately stop generating longer patterns from X , i.e., we
ignore all descendants of X in Tattr .

We now describe a revised algorithm of QCoMine that makes use of Property 13
to mine all-confidence-closed QCPs.

RecurMine Closed, as presented in Procedure 2, is a procedure that replaces
RecurMine (Procedure 1) to mine the set of all-confidence-closed QCPs. As shown
in Step 10, when producing a new QCP Z, we first invoke ClosedCheck to check
whether Z has a super-pattern that has been discovered as an all-confidence-closed
QCP and has the same all-confidence value as that of Z. If ClosedCheck (Z) returns
true, then Z is not all-confidence-closed and neither are all of its descendants in
Tattr according to Property 13. In this case, Z is not to be produced. Otherwise,
if Z has all-confidence no less than ς, then Z is either all-confidence-closed or is
to be kept as an intermediate pattern to produce Z’s super-patterns that are all-
confidence-closed. In addition, if we find that X has the same all-confidence value
as that of Z, we mark X as a redundant QCP according to Definition 7, such that
X will not be outputted when the recursive call of RecurMine Closed returns to X .

The efficient processing of ClosedCheck can be achieved using a hash table, which
stores all discovered all-confidence-closed QCPs. There are two keys to the hash
table. One is the support of an all-confidence-closed QCP. Another is the value
of maxsupp of the QCP. If Z has a super-pattern Y in the hash table with the
same all-confidence value, Y and Z must have the same value of maxsupp. To
avoid collisions as much as possible, the hash function described in [Zaki and Hsiao
2002], which is based on the sum of the transaction IDs, can also be applied.

Given the set of all-confidence-closed QCPs, we are able to recover the whole set
of QCPs based on the closure condition. Therefore, the set of all-confidence-closed
QCPs is a lossless representation of the set of QCPs.

7.2 Redundancy Elimination at the Interval Level

In addition to the redundancy that exists among the QCPs with different attribute
sets, redundancy also exists in QCPs that share the same attribute set. Due to
the sub-interval enumeration as discussed in Section 6.2, it is possible that some
QCPs of the same attribute set but different interval sets convey similar knowledge.
As a simple example, given two patterns X = education[2, 2]salary[2000, 2500]
and Y = education[2, 2]salary[2000, 2600], X is redundant with respect to Y ,
since it does not provide any new knowledge in the presence of Y . The underlying
reason that we define X as a redundant pattern rather than Y is as follows. Both
X and Y are generated based on a combined interval produced by the supervised
interval combining process. The combined intervals of each attribute represent
a meaningful partitioning of the domain of the attribute with respect to another
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Procedure 2 RecurMine Closed(u, Tattr , G, k)

1. for each right sibling v of u do

2. if ((u, v) in G)
3. Create w as a child of u and assign to w an attribute label the same as

that of v in Tattr ;
4. Let {x1, . . . , xk+1} be the attribute set represented by w;
5. Let {iu1

, . . . , iuk−1
, iuk
} and {iv1

, . . . , ivk−1
, ivk
} be any two interval sets

in T u
interval and T v

interval ;
6. if (iuj

= ivj
for 1 ≤ j ≤ k − 1, and {iuk

, ivk
} is an interval set of the

attribute set {xk, xk+1})
7. Let X = x1[iu1

] . . . xk−1[iuk−1
]xk[iuk

]
and Y = x1[iu1

] . . . xk−1[iuk−1
]xk+1[ivk

];

8. if ( supp(X)
maxsupp(Y ) ≥ ς and supp(Y )

maxsupp(X) ≥ ς)

9. Let Z = x1[iu1
] . . . xk−1[iuk−1

]xk[iuk
]xk+1[ivk

];
10. if ((ClosedCheck (Z) = false) and (allconf (Z) ≥ ς))
11. Insert {iu1

, . . . , iuk−1
, iuk

, ivk
} into T w

interval ;
12. if (allconf (X) = allconf (Z))
13. Mark X as redundant;
14. Delete T u

interval ;
15. for each child node w of u do

16. RecurMine Closed(w, Tattr , G, k + 1);

attribute. Therefore, since the sub-interval of the attribute salary in Y is larger
than that in X (i.e., the sub-interval of salary in Y is closer to the combined
interval from which the sub-interval is derived), Y is more desirable than X . We
now formalize the definition of redundancy at the interval level as follows.

Definition 9. (Redundant QCP at the Interval Level) X ∈ P is re-
dundant if there exists some Y ∈ P such that, Y 6= X, attr(Y ) = attr(X) and
∀ix ∈ interval(X), ix ⊑ i′x, where i′x ∈ interval(Y ) is the interval of the attribute x

in Y .

The redundancy removal at the interval level can be efficiently performed by
checking the intervals of the patterns when we output the QCPs. After removing
the redundant QCPs at the interval level, we obtain a more concise set of QCPs
having more meaningful intervals.

8. PERFORMANCE EVALUATION

We first evaluate the performance of our approach of mining correlations from
quantitative databases on both real and synthetic datasets. Then we study an
application of QCPs to the problem of classification on a number of real datasets.
We conduct all experiments on an AMD Opteron 248 with 8GB RAM, running
Linux 64-bit.
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8.1 Performance on Real Datasets

We use three real datasets from the commonly used UCI machine learning reposi-
tory [Asuncion and Newman 2007]. Table IV lists the name, the number of trans-
actions, the number of attributes, and the maximum number of base intervals after
the discretization, of each dataset. The number of quantitative attributes of each
dataset is given in the parentheses. The detailed information of these datasets can
be found in [Asuncion and Newman 2007]. These datasets possess some represen-
tative characteristics as follows: image consists of a moderate number of attributes
and transactions; spambase has a large number of quantitative attributes; and cov-
type is the largest real dataset in the UCI repository and it has a large number of
attributes.

Table IV. Dataset Description
Dataset Transactions Attributes (Quantitative) Maximum Base Intervals

image 2,310 20(19) 377

spambase 4,601 58(57) 761

covtype 581,012 55(10) 700

8.1.1 Performance of QCoMine

We first evaluate the performance of our algorithm QCoMine, which mines the
set of all QCPs for a given dataset. The efficiency of QCoMine and the quality
of our QCPs are based on three major components that constitute the algorithm
QCoMine: the supervised interval combining method, the attribute-level pruning
by NMI, and the interval-level pruning by all-confidence. Since there is no existing
work that studies mining correlations from quantitative databases, we study the
impact of these three components on the performance of our approach.

Our study is based on the three variants of our algorithm as follows:

(a) QCoMine, which applies the interval combining method and sets µ according
to Equation (2);

(b) QCoMine-0, which applies the interval combining method and sets µ as 0;

(c) QCoMine-1, which does not apply the interval combining method and sets µ

according to Equation (2). Since the interval combining method is not applied,
the sub-interval enumeration is based on the whole domain of an attribute
instead of the set of combined intervals.

We vary the value of all-confidence from ς = 60% to ς = 100%.

8.1.1.1 Effect of Supervised Interval Combining

When the interval combining method is not applied, we are only able to obtain
the results at ς = 100%, as shown by QCoMine-1 in Figures 3(a) to 3(f), while
QCoMine-1 runs out of memory in all other cases. QCoMine-1 is inefficient because
when we allow the interval of an attribute to become too trivial, the patterns easily
gain all-confidence greater than ς by co-occurrence in the database. The number
of patterns obtained by QCoMine-1 is many orders of magnitude larger than that
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Fig. 3. Running Time and Memory Consumption of QCoMine on Real Datasets

obtained by QCoMine and the difference increases rapidly for smaller ς (the memory
is used up by QCoMine-1 for smaller ς as a result).

We then examine whether our interval combining method can effectively avoid
generating trivial intervals. For this purpose, we define the span of an interval,

[l, u], of an attribute as the fraction, u−l
n

, where n is the number of base intervals
of the attribute. For example, if age has 100 base intervals, the span of the interval
[20, 80] is 60%.

Figures 4(a) to 4(c) report the cumulative probability distribution of the maxi-
mum span of the intervals in the patterns obtained by QCoMine-1 and QCoMine
at ς = 100%, where we also show the results for QCoMine at ς = 60% for reference.
The figures show that all patterns returned by QCoMine consist of intervals with
small spans. For all datasets, all the patterns returned by QCoMine consist of
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Fig. 4. Cumulative Probability Distribution of Interval Span in QCPs on Real Datasets

intervals with a maximal span of less than 2% at ς = 100%. On the contrary, for
the patterns returned by QCoMine-1, about 40% for image, 60% for spambase and
80% for covtype consist of intervals with very large spans. Particularly for spambase
and covtype, the large span is tantamount to the entire domain of the attributes
and simply trivial. Obviously, those patterns are returned as high all-confidence
patterns simply due to the co-occurrence of the items in the datasets, since items
with a large interval span also have a large support value.

From the above-mentioned results, we confirm that our supervised interval com-
bining method is effective in defining more meaningful intervals and thus it avoids
an overwhelming number of trivial patterns being mined, which is essential for
efficient usage of memory and CPU resources.

8.1.1.2 Effect of Normalized Mutual Information

The benefit of utilizing NMI as a pruning tool is clearly revealed by the perfor-
mance difference between QCoMine and QCoMine-0 shown in Figure 3. QCoMine
is over an order of magnitude faster and consumes significantly less memory than
QCoMine-0 for both image and spambase, while QCoMine-0 runs out of memory
for ς ≤ 90% for covtype.

The number of patterns returned by QCoMine-0 is many orders of magnitude
(up to four orders for image and three orders for spambase) more than that by
QCoMine. This also explains why QCoMine-0 runs out of memory for covtype.

We examine the patterns obtained and find that the extra patterns returned by
QCoMine-0 are shown to consist of attributes with large interval spans. Note that
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QCoMine-0 also adopts our interval combining method; however, we emphasize
that the result does not mean that the interval combining method is not effective.
We investigate the attributes in the datasets and find that, if an attribute x has
no or little correlation with another attribute y, our interval combining method
may return some rather trivial combined intervals for x with respect to y. Such
uncorrelated patterns are successfully pruned by the use of NMI in QCoMine and
thus not returned by QCoMine. For example, we find that 60% of the extra patterns
returned by QCoMine-0 for image consist of intervals with a span over 90% (i.e.,
almost the entire domain), while 80% of the extra patterns consist of intervals with
a span over 50%.

To sum up, the results demonstrate the effectiveness of NMI both as a measure
for correlation and as a tool for pruning unpromising search spaces.

8.1.1.3 Effect of All-Confidence

The effect of all-confidence is shown by the number of QCPs obtained by QCoMine.
As shown in Figures 5(a) to 5(c), the number of QCPs decreases considerably when
ς increases from 60% to 100%. (Figure 5 also shows the results of QCoMine-c and
QCoMine-r, which are discussed in the following subsection when we evaluate the
performance of redundancy elimination.)

However, the running time of QCoMine does not increase with the increase in
the number of QCPs. Figure 3 shows that the running time of QCoMine is very
stable for different values of ς. This is because over 95% of the time is spent
on the following three processes: the reading of the dataset from the disk, the
interval combining, and the generation of the 2-patterns. These three processes are
inevitable in the overall mining process. Therefore, the stabilization in the running
time for different values of ς in fact reflects the pruning power of all-confidence,
since QCoMine only spends a small amount of the time generating the QCPs when
the pruning starts.

8.1.2 Performance of Redundancy Elimination

We now evaluate the effectiveness of our approach in eliminating the redundancy
within the set of QCPs obtained by QCoMine. In this experiment, we denote
QCoMine-c as the algorithm for mining the all-confidence-closed QCPs, which con-
ducts redundancy elimination at the attribute level. Then, we extend QCoMine-c
to remove the redundancy at the interval level and denote the corresponding algo-
rithm as QCoMine-r.

Figures 5(a) to 5(c) report the number of patterns obtained at different values of ς

by QCoMine, QCoMine-c and QCoMine-r, on the three datasets. The results show
that a significant number of patterns are redundant for spambase and covtype. The
number of non-redundant QCPs (represented by QCoMine-r) is about 5-6 times
and up to 20 times less than the whole set of QCPs (represented by QCoMine) for
spambase and covtype, respectively. The QCPs from image have less redundancy
and we record a reduction of 1.5 times in the number of patterns.

It is interesting to see that the three datasets contain very different degrees of
redundancy at the attribute level and at the interval level. Figure 5(a) shows that
more redundant patterns from image are at the attribute level, while the majority
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Fig. 5. Number of Patterns on Real Datasets

of the redundant patterns from covtype exist at the interval level as shown in Figure
5(c). This behavior of the datasets can be explained by the span distributions of
the intervals of their patterns, which are reported in Figures 4(a) to 4(c). For the
image dataset, as shown in Figure 4(a), the span of the intervals for all patterns is
small for all values of ς; thus, the number of patterns due to redundant intervals
is also small. On the contrary, for the covtype dataset, as shown in Figure 4(c),
there are some patterns with large interval span when ς is small; consequently, more
patterns are redundant at the interval level.

We also find that the number of redundant patterns at the attribute level for
covtype is very small, i.e., almost all QCPs are all-confidence-closed. This can be
explained by the large size of the covtype dataset and the definition of all-confidence-
closed QCPs. Definition 8 implies that if a QCP X is not all-confidence-closed, then
there must exist a super-pattern of X such that every transaction supporting X

must also support the super-pattern of X . It is easy to see that this condition
becomes difficult to satisfy when the number of transactions in the dataset is large.

The spambase dataset is not a large dataset and the span of the intervals of
its patterns is larger than that from image but smaller than that from covtype.
Therefore, we can see from Figure 5 that there is a more even distribution of
redundant patterns at the attribute and interval levels. Note that the spambase
dataset has a much larger number of QCPs than the other datasets. This is mainly
because spambase has a larger number of quantitative attributes, which results in
a more serious combinatorial explosion at the interval level.

Overall, the results of this experiment demonstrate the effectiveness of our bi-
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level redundancy removal approach; that is, the redundancy is guaranteed to be
removed at one level or another or both.

The running time and memory consumption of both QCoMine-c and QCoMine-r
are almost the same as those of QCoMine shown in Figure 3. The difference in
the running time is small, since the processes of reading the data from the disk
and combining the intervals dominate. The memory consumption is also about the
same, because an extra hashtable is used but fewer patterns are processed, which
compensate for each other. Thus, we do not present the figures of the detailed
results.

8.1.3 Quantitative Correlated Patterns vs. Quantitative Frequent Patterns

To further justify the feasibility of our approach for mining quantitative databases,
we demonstrate the high complexity of mining Quantitative Frequent Patterns
(QFPs) in this section.

We implement the algorithm proposed by [Srikant and Agrawal 1996] using the
same prefix tree structure and the diffset [Zaki and Gouda 2003] as used in QCoMine
and denote this algorithm as MFP in this experiment. We test five settings of
minimum support threshold, σ = 0.1%, 1%, 10%, 20%, 30%, for MFP. Since MFP
uses a maximum support threshold, σm, to control the span of a combined interval,
we set σm = 1.1σ, which means that the support of a combined interval is at most
1.1 times of the minimum support threshold.

Figure 6(a) presents the cumulative probability distribution of all-confidence over
the patterns obtained by MFP from image. When σ is small (≤ 10%), around 90%
of the patterns have very low all-confidence values of less than 10% (i.e., they are
uncorrelated patterns). When σ = 20%, there are still 60% of the patterns having
all-confidence of only 20%. Although half of the patterns have all-confidence greater
than 90% when σ = 30%, these patterns are mostly composed of attributes with
trivial intervals, which are unlikely to be considered as useful knowledge.

On the contrary, the support distribution of the patterns obtained by QCoMine,
as presented in Figure 6(b), shows that most of the QCPs do not have high support
(i.e., they are not commonsense patterns). In fact, many of the QCPs are rare
patterns that are hidden and not easy to be discovered, but they are significant
patterns as the items in these patterns are highly correlated. Mining such patterns
using MFP requires a small σ, while MFP with a small σ may return a large number
of uncorrelated patterns.

We also show the running time and memory consumption of MFP at each σ (as
indicated by the upper x-axis) and QCoMine at each ς (as indicated by the lower
x-axis) in Figures 6(c) and 6(d). Although QCoMine and MFP are incomparable
in terms of running time and memory consumption due to different parameters of
σ and ς, the figures do indicate that mining QCPs is much more stable in the use
of resources than mining QFPs.

We do not present the results of MFP for spambase and covtype, because MFP
runs out of memory for all values of σ, even when σm is set to be almost the same
as σ. At the point that the memory is exhausted, MFP already returns millions of
patterns that occupy over 20GB of disk space (for each σ). The massive number
of generated patterns not only results in high memory consumption, but also gives
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Fig. 6. Quantitative Correlated Patterns vs. Quantitative Frequent Patterns for image

rise to difficulties in further analysis of the patterns. On the contrary, QCoMine
obtains impressive results for both spambase and covtype as shown in Figures 3(c)
to 3(f), which confirms the effectiveness and the efficiency of mining QCPs over
mining QFPs.

We emphasize that the high memory consumption of MFP is not due to our
implementation, since MFP and QCoMine adopt the same depth-first strategy using
the same data structure. In fact, the efficiency of QCoMine is primarily due to
the supervised interval combining method and the bi-level pruning technique, as
evidenced by the poor performance of QCoMine-0 and QCoMine-1 in Section 8.1.

8.2 Performance on Synthetic Datasets

We use the synthetic datasets that are generated by the IBM Quest Synthetic Data
Generator for Classification [IBM Quest ]. There are six quantitative attributes:
salary, commission, age, hvalue, hyears, and loan. In addition, there are six
categorical attributes: elevel, car, zipcode, F1, F2, and F3, where F1, F2, and F3

correspond to Functions 1-3 described in [Agrawal et al. 1993b]. We generate five
datasets of sizes from 200K to 1,000K transactions for carrying out a scalability
test on QCoMine.

8.2.1 Effectiveness of the Supervised Interval Combining Method
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We first justify the meaningfulness of the intervals produced by the supervised
interval combining method. Here, we only present the combined intervals on the
dataset with 800K transactions, since the results for other datasets are similar.
There are several generative rules between the attributes in the synthetic generator
as follows.

(1) (salary ≥ 75K) ⇒ (commission = 0); otherwise, the values of commission
are uniformly distributed from 10K to 75K.

Our result shows that none of the base intervals of commission are combined
with respect to salary. However, this result perfectly conforms to the gen-
erative rule of commission shown above. The special commission value “0”
should form a single interval [0, 0] because “0” is generated according to a spe-
cific range of salary. Other base intervals of commission are not combined
since other values of commission are uniformly distributed regardless of the
values of salary and hence they are uncorrelated.

On the other hand, one of the combined intervals of salary with respect to
commission is [75K, 150K] and all other base intervals of salary are not com-
bined, where 150K is the maximum value of salary. The combined intervals
are meaningful, since the interval [75K, 150K] exactly reflects the above gen-
erative rule, while other base intervals of salary do not have any effect on the
values of commission.

(2) The values of hvalue are uniformly distributed from 50000k to 150000k, where
k ∈ {1, . . . , 10} are the values of zipcode.

The set of cutting points of the combined intervals of hvalue with respect
to zipcode are {50K, 100K, 150K, . . . , 1500K}, which is coincident with the
generative rule of hvalue. Essentially, the values of hvalue are uniformly dis-
tributed within a set of overlapping intervals, i.e., {[50K, 150K], [100K, 300K],
. . . , [500K, 1500K]}, which further depends on the values of zipcode. Thus, the
combined intervals of hvalue produced by our supervised interval combining
method match the generative rule precisely.

(3) (age < 40) ∨ (age ≥ 60)⇒ (F1 = 1), otherwise, F1 = 0.

The set of combined intervals of age with respect to F1 is {[20, 39], [40, 59],
[60, 80]}. This result once again shows that our supervised interval combining
method perfectly captures the underlying dependency of the attributes.

8.2.2 Scalability of QCoMine

We vary the number of transactions in the synthetic datasets to test the scalability
of QCoMine. We fix ς = 60% for all datasets. The results are shown in Figure 7. As
shown in Figures 7(a) and 7(b), QCoMine is very efficient for all dataset sizes and
the performance degrades only slightly when the number of transactions increases
from 200K to 1,000K. For all dataset sizes tested, QCoMine takes less than eight
seconds to complete the entire mining process, while the memory consumption
remains very stable at around 7MB.

The results of this experiment also reveal a very important finding on the use
of NMI as a pruning tool and a measure of dependency between the attributes.
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Fig. 7. Running Time, Memory Consumption and Number of Patterns of QCoMine on Synthetic
Datasets

Figure 7(c) shows that using NMI (cf. the QCoMine line) obtains almost the same
set of QCPs as without using NMI (cf. the QCoMine-0 line). This implies that
the patterns pruned by NMI in QCoMine are indeed uncorrelated patterns, since
they also have low all-confidence; thus, the effectiveness of NMI as a dependency
measure is clearly demonstrated. However, Figures 7(a) and 7(b) show that both
the running time and memory consumption of QCoMine-0 are over an order of
magnitude greater than those of QCoMine; thus, the pruning power of NMI is
also clearly demonstrated. The results also show the great effect of the interval
combining on controlling the running time and the number of patterns produced,
as shown in Figures 7(a) and 7(c).

8.2.3 Examples of QCPs Obtained

After getting rid of the redundancy in the QCPs, we obtain the following two QCPs
for all the synthetic datasets:

—salary[75K, 150K]commission[0, 0]: allconf = 1

—age[40, 59]F1[0, 0]: allconf = 1

These two QCPs exactly demonstrate the first and the third generative rules
in the generator in Section 8.2.1. Therefore, the result verifies that the concept
of QCP is able to capture correctly the dependency between the attributes in the
database. Note that the QCPs fail to capture the second generative rule because
there are many combined intervals for the two attributes hvalue and zipcode

resulting from their generative rule. This results in relatively low all-confidence for
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most of the patterns containing these two attributes. We remark that the above
two patterns cannot be obtained by mining QFPs. This is because the interval
combining method in MFP is not able to produce these meaningful intervals and
the support measure is not effective in capturing the underlying dependency of the
attributes.

8.3 Application of QCPs for Classification

According to the semantics of the all-confidence measure, we know that QCPs
essentially represent a set of association rules that have confidence of no less than
the predefined threshold. Different from the conventional association rules, these
association rules have attributes that are pairwise-correlated as defined by NMI.
Therefore, QCPs can be applied to wherever association rules can be applied. In
this paper, we study an application of QCPs for the problem of classification, which
is a well-recognized application of association rules, as well as an objective method
for evaluating the quality of association rules [Mutter et al. 2004].

An association rule that can be used to predict the class label of the unlabeled
data has the class attribute on the right-hand side. Such an association rule is
called a class association rule. The classifier built on the class association rules is
called an associative classifier [Hu et al. 1999; Li et al. 2001; Yin and Han 2003].
Associative classifiers first mine a set of class association rules from the training
data and then use them to predict the class label of the unlabeled data. It has
been shown that associative classifiers achieve higher classification accuracy than
the decision-tree-based approach, C4.5 [Quinlan 1993].

In our experiment, we generate a set of class association rules from the QCPs for
classification. Ten datasets from the UCI repository are tested. We compare the
accuracy of classification using QCPs with that of three state-of-the-art associative
classifiers: CBA [Hu et al. 1999], CMAR [Li et al. 2001], and CPAR [Yin and Han
2003]. In our implementation, instead of building a new classifier, we simply feed
the class association rules generated from QCPs into the CPAR classifier. That is,
we replace the rules generated by CPAR with the rules generated from QCPs. In
this way, we are able to see clearly the effect of QCPs as prediction rules on the
classification accuracy and demonstrate whether the improvement only comes from
the use of QCPs. We denote the classifier built on QCPs as QCP-Classifier in the
experiment.

We use the default settings for each associative classifier as specified in their
papers. For QCoMine, we use ς = 0.2. The relatively low setting of ς is because
the measure of all-confidence treats all attributes equally in a QCP. However, for
the purpose of classification, the class attribute must appear on the right-hand side
of the association rule. Therefore, if we set a high ς in QCoMine, we will not be
able to get enough association rules for the classifier. We set µ to be the smallest
NMI value between the class attribute and all the other attributes so that each
attribute has a chance to be included in a QCP and later in a class association rule
for prediction.

Table V shows the classification accuracy of the four classifiers. The accuracy
on each dataset is the average of the 10-fold cross-validations. Among the ten
datasets, QCP-Classifier achieves the highest accuracy for seven datasets. More-
over, its average accuracy is the highest among the four classifiers. The accuracy
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obtained by QCP-Classifier is significantly higher than that of CBA and CPAR
and is approximately 1% higher than that of CMAR, which is the highest among
all the associative classifiers. The higher accuracy of QCP-Classifier is because the
attributes in a QCP are mutually correlated as measured by NMI. The measure
of all-confidence further enhances the correlation between the class label and the
values of the other attributes. Consequently, the association rules generated from
QCPs utilize those attributes that are closely correlated to the class attribute to
perform the prediction. On the other hand, the association rules generated by the
associative classifiers suffer from the problem of over-fitting the training data. As
a result, the attributes in the rules may not truly decide the value of the class
attribute. Therefore, the results verify the high quality of QCPs in capturing the
dependency between the attributes.

Table V. Classification Accuracy on Ten Real Datasets
Dataset CBA CMAR CPAR QCP-Classifier

australian 84.9 86.1 86.2 86.2

cleve 82.8 82.2 80.5 84.2

crx 84.7 84.9 85.9 86.1

heart 81.9 82.2 82.6 81.9

hepatitis 81.8 80.5 78.7 81.3

horse 82.1 82.6 82.1 84

ionosphere 92.3 91.5 92.6 90.6

iris 94.7 94 94.7 95.3

labor 86.3 89.7 88 90

lymph 77.8 83.1 82.3 85.9

Average 84.93 85.68 85.36 86.55

We also present the average running time and the average number of class as-
sociation rules used in CPAR and QCP-Classifier in Table VI. We only compare
QCP-Classifier with CPAR since it is shown to be the most efficient and use the
least number of rules among the three associative classifiers [Yin and Han 2003].
We find that, although the number of rules used in QCP-Classifier is slightly larger
than that in CPAR, the running time of QCP-Classifier is still over two times
faster than that of CPAR. This shows another benefit of using QCPs: the efficient
generation of QCPs also facilitates its application.

Table VI. Running Time and Number of Rules: CPAR and QCP-Classifier
CPAR QCP-Classifier

Running Time (msec.) 22.9 11

Number of Rules 119 128

We further investigate the two sets of class association rules used in CPAR and
QCP-Classifier. We find that the two sets of rules are quite different. On average,
only less than 10% of the rules are in common. The length of the rules in CPAR
are two times longer than that in QCP-Classifier. This is because the attributes
in a QCP are required to be mutually dependent. As a result, the length of the
association rules generated from QCPs is small, usually less than five. On the other
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hand, the conventional association rules are measured by support and confidence.
Therefore, they tend to have longer length. However, these long rules can easily
over-fit the training data.

Table VII. Example Rules in CPAR and QCP-Classifier
Dataset Rule

australian (1) A5[ff] A10[34, 67] ⇒ Class[-]
(2) A3[15, 28] A4[g] A9[t] A14[50000, 100001] ⇒ Class[+]

cleve (1) Age[29, 53] Max Heart Rate[137, 202] Thal[normal] ⇒ Class[healthy]
(2) Sex[male] Resting Blood Pressure[94, 147] Resting Ecg[normal]
Number of Vessels Colored[0, 1] ⇒ Class[sick]

crx (1) A9[t] A11[34, 67] ⇒ Class[-]
(2) A7[z] A8[14.5, 28.5] A10[f] A13[p] ⇒ Class[+]

heart (1) Resting Blood Pressure[94, 147] Serum Cholestoral[345, 564] ⇒ Class[healthy]
(2) Age[29, 53] Serum Cholestoral[126, 345] Max Heart Rate[71, 137]
Exercise Induced Angina[true] ⇒ Class[sick]

hepatitis (1) Spiders[yes] Varices[yes] ⇒ Class[live]
(2) Anorexia[no] Liver Big[no] Protime[50, 100] Histology[no] ⇒ Class[die]

horse (1) Abdomen[distended small intestine] ⇒ Class[surgical lesion]
(2) Temperature of Extremities[cold] Capillary Refill Time[more than 3 seconds]
Nasogastric Tube[none] Outcome[lived] ⇒ Class[no surgical lesion]

ionosphere (1) Antenna6[-0.33, 0.33] ⇒ Class[good]
(2) Antenna7[-0.6, -0.2] Antenna28[-0.33, 0.33] ⇒ Class[bad]

iris (1) Petal Width[0.9, 1.7] ⇒ Class[iris versicolour]
(2) Petal Length[1, 2.97] ⇒ Class[iris virginica]

labor (1) Cost of Living Adjustment[tc] Contribution to Dental Plan[full] ⇒ Class[good]
(2) Wage Increase in First Year[4.5, 7] Standby Pay[2, 8] ⇒ Class[bad]

lymph (1) Defect in Node[lacunar marginal] Dislocation[no] ⇒ Class[metastases]
(2) Block of Affere[no] By Pass[no] Early Uptake In[yes] Special Forms[vesicles]
⇒ Class[malign lymph]

Table VII lists some examples of class association rules used in CPAR and QCP-
Classifier. Note that the names of the attributes in the australian and crx datasets
are mapped to anonymous labels since the datasets concern credit card applications,
which are confidential. For each dataset, the first rule is used in QCP-Classifier
and the second is used in CPAR. They are used in the two respective classifiers to
predict the class label of the same unlabeled instance. The first rule gives the correct
label while the second gives the wrong one, although the confidence values of these
two rules are close. We then investigate the values of NMI between the pairwise
attributes in the rules. Take the two rules from the lymph dataset for example.
We find that the minimum NMI of the first rule is 0.05 while that of the second
rule is 0.0004. This result reveals the major advantage of QCPs over conventional
association rules: QCPs are able to capture the dependency of attributes while
conventional association rules fail to. As verified by our experimental results, higher
classification accuracy is achieved when the attributes that are highly correlated to
the class attribute are used to perform the prediction.

9. RELATED WORK

The existing research on mining quantitative databases has mainly focused on min-
ing knowledge in the form of association rules. This was first studied by [Piatetsky-
Shapiro 1991] with both sides of the rule restricted to a single attribute with its
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interval. [Srikant and Agrawal 1996] generalized the work by allowing multiple
attributes on both sides of the rule.

We are also aware of mining two variants of association rules in quantitative
databases. The first is the optimized association rules [Fukuda et al. 2001; Brin
et al. 1999; Rastogi and Shim 2002], which contain certain uninstantiated attributes
and the mining problem is to determine values for the uninstantiated attributes such
that one measure (e.g., support, confidence or gain) is maximized and another mea-
sure satisfies a threshold. This type of work focuses on finding the optimal values
of certain given attributes instead of mining correlations among all the attributes
in the database. The second is the association rules that are based on statistics
[Aumann and Lindell 2003; Webb 2001; Zhang et al. 2004], in which the right side
of the rule is a statistical measure (e.g., mean, variance) or some aggregate function
(e.g., min, max) of a quantitative attribute, rather than the interval information of
the attributes.

[Wang et al. 1998] proposed an interestingness-based criterion to merge inter-
vals. Their merging criterion is based on association rules, which means that the
candidate rules should be generated beforehand and the interval combining is then
performed on the rules instead of the attributes. Our objective function, in contrast,
is based on the attribute sets, which are employed to further guide the generation
of QCPs.

In mining correlations from boolean databases, [Brin et al. 1997] generalized
the association rules to correlations and introduced the correlation measures, χ2

and interest. [Motwani et al. 2001] proposed to mine highly correlated 2-patterns
measured by a symmetric similarity between two boolean attributes. [Ma and
Hellerstein 2001] proposed an m-pattern, of which any two subsets are mutually
dependent measured by the conditional probability. [Omiecinski 2003] proposed
two interesting measures, all-confidence and bond, both of which have the downward
closure property. [Xiong et al. 2003; 2006] developed a measure called h-confidence,
which is mathematically equivalent to all-confidence but defined from a different
perspective to capture the degree of affinity in a pattern and to eliminate the cross-
support patterns. Later in [Lee et al. 2003] and [Kim et al. 2004], all-confidence
is shown to be a better measure for correlations than χ2 and interest, since all-
confidence is not influenced by the co-absence of the items in the database, as
are χ2 and interest. Recently, [Xiong et al. 2006] proposed an efficient algorithm,
called TAPER, for mining correlated pairs of items measured by the φ correlation
coefficient. Later, [Zhang and Feigenbaum 2006] adopted the framework of TAPER
and proposed a more efficient algorithm that uses min-hash functions [Cohen 1997;
Motwani et al. 2001] to achieve greater pruning.

We are also aware of different proposals of normalized mutual information in
the literature. For data clustering [Strehl 2002], the normalized mutual informa-

tion of two attributes x and y is defined as 2·I(x;y)
maxA∈{1,...,k}(H(A))+maxB∈{1,...,g}(H(B)) ,

where A represents possible cluster labels and B represents possible category la-
bels. Normalized mutual information is also found in the area of image processing

[Studholme et al. 1999], where it is defined as H(x)+H(y)
H(x, y) . In our recent work [Ke

et al. 2006a], we defined normalized mutual information as I(x;y)
I(x;x) for mining quan-

titative association rules. This definition is asymmetric, since an association rule is
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an implication of the antecedent on the consequent.

Comparison with Our Prior Work. This paper substantially extends our
prior work [Ke et al. 2006b] in several ways. First, this paper re-designs the su-
pervised interval combining method, which now takes into account both input at-
tributes simultaneously. This solves a major pitfall in the prior work [Ke et al.
2006b] that the order of input attributes greatly affects the output combined in-
tervals. Second, this paper discusses the cross-support property of all-confidence
and employs this property as another pruning strategy to improve the efficiency
of mining QCPs further. Third, this paper studies non-redundant QCPs at both
the attribute level and the interval level, which was not considered in the prior
work. Effective and efficient techniques are presented for eliminating the redun-
dancy. Finally, a more comprehensive empirical study is conducted to evaluate the
performance of mining QCPs. In addition to enhancing the previous experimental
evaluation, we conduct a new spectrum of experiments to justify the meaningfulness
of the combined intervals, perform a scalability test on the QCoMine algorithm, as
well as demonstrate the effectiveness and efficiency of redundancy elimination.

10. CONCLUSIONS

In this paper, we proposed the new notion of QCP, which achieves bi-level quality
control of correlations based on NMI and all-confidence. We developed a supervised
interval combining method to combine the intervals according to the dependency
between the attributes. We then devised an efficient algorithm, QCoMine, to mine
QCPs by utilizing NMI and all-confidence to perform bi-level pruning. We also
proposed effective techniques to eliminate the redundancy existing within the set
of QCPs at both attribute and interval levels.

Extensive experiments were conducted to examine various aspects of our ap-
proach. First, the results reveal that our interval combining method derives mean-
ingful intervals and effectively eliminates the generation of trivial intervals. Second,
the results demonstrate that NMI is both an effective measure of correlations and
a powerful tool for pruning unpromising search spaces arising from uncorrelated
patterns. In addition, the results show that all-confidence further ensures a stable
performance for QCoMine as well as the quality of the QCPs obtained. Third,
the results justify the effectiveness and efficiency of our techniques in removing
the redundant QCPs. Fourth, the results show that QCoMine attains impressive
speed but has small memory consumption, even when mining QFPs [Srikant and
Agrawal 1996] becomes too expensive. More importantly, the QCPs obtained are
shown to be more useful than the QFPs, since the QCPs are rare and correlated
patterns while most of the QFPs are uncorrelated, common patterns. Finally, we
applied QCPs to the problem of classification and showed that the classifier built
from QCPs is able to achieve higher accuracy and is very efficient. Based on the
solid empirical evidence, we conclude that mining QCPs, which is founded on the
well-established information theory, is both an effective and efficient approach for
mining quantitative databases.
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