
E�cient Query Processing on Graph Databases

We study the problem of processing subgraph queries on a database that consists of a large
set of graphs. The answer to a subgraph query is the set of grap hs in the database that are
supergraphs of the query. In this paper, we propose an e�cien t index, called FG*-index , to solve
this problem.

The cost of processing a subgraph query using most existing i ndexes mainly consists of two
parts, the index probing cost and the candidate veri�cation cost. Index probing is to �nd the
query in the index, or to �nd the graphs from which we can gener ate a candidate answer set for
the query. Candidate veri�cation is to test whether each gra ph in the candidate set is indeed a
supergraph of the query. We design FG*-index to minimize the se two costs as follows.

FG*-index consists of three components: the FG-index , the feature-index , and the FAQ-index .
First, the FG-index employs the concept of Frequent subGraph (FG) to allow the set of queries
that are FGs to be answered without candidate veri�cation. W e call this set of queries FG-queries .
We can enlarge the set of FG-queries so that more queries can b e answered without candidate
veri�cation; however, a larger set of FG-queries implies a l arger FG-index and hence the index
probing cost also increases. We propose the feature-index t o reduce the index probing cost. The
feature-index uses features to �lter false results that are matched in the FG-index, so that we can
quickly �nd the truly matching graphs for a query. For proces sing non-FG-queries, we propose the
FAQ-index, which is dynamically constructed from the set of Frequently Asked non-FG-Queries
(FAQs). Using the FAQ-index, veri�cation is not required for proc essing FAQs and only a small
number of candidates needs to be veri�ed for processing non- FG-queries that are not frequently
asked. Finally, a comprehensive set of experiments veri�es that q uery processing using FG*-index
is up to orders of magnitude more e�cient than state-of-the- art indexes and it is also more scalable.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems - Query process-
ing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Graph Databases, Graph In dexing, Graph Query Processing

1. INTRODUCTION

Graph is a powerful tool for representing and understandingobjects and their re-
lationships in various application domains. In recent years, graph databases have
become more in use and the volume of graph data increases rapidly. However, the
performance of query processing on graph databases is stillinadequate due to the
high complexity of processing graph data. As a result, it is important to develop
e�cient algorithms for processing queries on graph databases.

Existing research has been conducted mainly on two types of graph databases.
The �rst type is a database that consists of a single large graph or a small number
of large graphs, such as the Web graph and social networks. Typical querying tasks

Permission to make digital/hard copy of all or part of this ma terial without fee for personal
or classroom use provided that the copies are not made or dist ributed for pro�t or commercial
advantage, the ACM copyright/server notice, the title of th e publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prio r speci�c permission and/or a fee.
c 2008 ACM 0362-5915/2008/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, July 200 8, Pages 1{44.

2 · E�cient Query Processing on Graph Databases

for such graph databases include �nding the best connectionbetween a given set
of query nodes [Faloutsos et al. 2004; Koren et al. 2006; Tongand Faloutsos 2006]
and �nding subgraphs that match a given query pattern [G•uti ng 1994; Cook and
Holder 1994; Holder et al. 1994; Tong et al. 2007].

The second type is a database that consists of a large set of small graphs such
as chemical compounds and biological pathways. This type ofdatabases is espe-
cially popular in scienti�c domains such as chemistry [James et al. 2003] and bio-
informatics [Huan et al. 2004]. Typical queries for this type of databases include
subgraph queries and similarity queries. A subgraph query retrieves all the graphs
in the database that are supergraphs of a given query graph [Shasha et al. 2002;
Yan et al. 2005a; He and Singh 2006; Jiang et al. 2007; Williams et al. 2007; Zhang
et al. 2007; Cheng et al. 2007; Zhao et al. 2007], while a similarity query retrieves all
the graphs that are structurally similar to a given query graph [Yan et al. 2005b; He
and Singh 2006; Jiang et al. 2007; Williams et al. 2007]. These two types of queries
have a wide range of applications such as motif discovery in 3D protein structures,
pathway discovery in protein interaction graphs, drug design, schema matching,
correlation discovery in graph databases [Ke et al. 2007], and many more.

In this paper, we propose an e�cient index to process subgraph queries in a
database that consists of a set of small graphs. In most of theexisting work, a
similarity query is processed by evaluating the set of relaxed graphs of the query
graph using the index for processing subgraph queries. Thus, our work can also be
extended to handle similarity queries in a similar way.

Let D be a graph database that consists of a set of graphs. The processing of a
subgraph query is described as follows:given a graph q, retrieve all graphs g ∈ D
such that g is a supergraph of q. Processing a subgraph query is a fundamental
operation for querying graph databases. However, due to thediversity of graphs,
a subgraph query is in general very complex, since any part (i.e., any subgraph) of
the query graph is a predicate that needs to be satis�ed in thequery evaluation.
Processing the query by a sequential scan onD to check whether q is a subgraph
of each g ∈ D is infeasible, sincesubgraph isomorphism testing is known as an
NP-complete problem [Cook 1971].

In recent years, many e�cient indexes [Shasha et al. 2002; Yan et al. 2005a; He
and Singh 2006; Jiang et al. 2007; Zhang et al. 2007; Zhao et al. 2007] have been
proposed to process subgraph queries on graph databases. Query processing using
these indexes focuses mainly on the following two operations: filtering and candidate
verification. First, �ltering uses the index to eliminate part of the fals e results and
to produce a candidate answer set. Then, candidate veri�cation tests whether each
candidate is indeed a supergraph of the query. Since the candidate answer set is in
general much smaller than the entire graph database, query processing using the
indexes is signi�cantly more e�cient than the sequential scan approach.

As pointed out by the authors of the above-mentioned indexes, the cost of can-
didate veri�cation is the dominating factor in the cost of pr ocessing a subgraph
query. Therefore, the indexes aim at reducing the candidateset as much as possible.
However, due to the high complexity of subgraph isomorphismtesting, candidate
veri�cation is still the most expensive part in processing a subgraph query since
the size of the candidate answer set is at least that of the exact answer set.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 3

Among the existing indexes,GDIndex [Williams et al. 2007] is an exception that
does not require candidate veri�cation. However, GDIndex needs to index all the
subgraphs of every graph in the database and hence this approach is e�cient for
processing databases that contain only small graphs.

The recently proposedFG-index [Cheng et al. 2007] makes an advance in handling
the expensive candidate veri�cation process. FG-index is an index de�ned based on
the concept ofFrequent subGraphs (FGs) [Inokuchi et al. 2000]. An FG is a graph
that is a subgraph of at least (σ · |D|) graphs in D, where σ (0 ≤ σ ≤ 1) is a pre-
de�ned threshold. Since the set of FGs can be large, Cheng et al. de�ne the notion
of δ-Tolerance Closed FGs (δ-TCFGs) to cluster the FGs and to organize them into
levels. FG-index is then built as a tree-structured index, so that the search space
of the index probing is e�ectively reduced. The parameterδ determines the size of
a cluster and hence controls the size of the index at each level.

FG-index classi�es queries into two categories:FG-queries and non-FG-queries,
which are queries that are FGs and not FGs, respectively. Themain advantage
of FG-index over other existing indexes is that no candidateveri�cation is needed
for processing FG-queries. For processing non-FG-queries, FG-index is also able to
obtain a small candidate answer set to reduce the cost of candidate veri�cation.

There is a problem in FG-index inherited from the concept of FGs. In order to
answer a larger set of queries without candidate veri�cation, a small σ should be
used to build the index. However, a smallerσ implies a larger index and hence
a higher index probing cost. In the index probing process, weneed to match the
query with the indexed graphs and each matching involves a subgraph isomorphism
test. Thus, although the candidate veri�cation cost is lowered, the index probing
cost may become too high.

In this paper, we address this problem by incorporating afeature-based search
strategy into FG-index. We compute a set offeatures and build an index, called the
feature-index, on the features. Since features possess the structural information of
the indexed graphs, the feature-index can �nd a matching graph quickly without
processing many false results, thereby e�ectively reducing the number of subgraph
isomorphism tests performed in the index probing process. As a result, we are able
to use a smallσ to process a large set of queries without candidate veri�cation and
with a low index probing cost.

In addition to the improvement in the index probing e�ciency , this paper makes
another advance over FG-index. Using FG-index, the size of the candidate set for a
non-FG-query is at best close to (σ · |D|), since the candidate set is generated from
the indexed graphs, which are FGs. We eliminate this bound onthe candidate set
size for processing non-FG-queries. The candidate set sizecan now be smaller than
the answer set size and even zero (i.e., no candidate veri�cation).

We achieve this by proposing a new index, called theFAQ-index. We model the
set of all queries as a stream and de�ne the notion ofFrequently Asked non-FG-
Queries (FAQs) within a sliding window. Then, the FAQ-index is constructe d on
the set of FAQs and is dynamically updated for each window slide. When a query
is an FAQ, the FAQ-index answers the query without any candidate veri�cation.
When the query is not an FAQ, the FAQ-index is able to obtain a subset of the
answer set and to generate only a small number of candidates for veri�cation.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

4 · E�cient Query Processing on Graph Databases

q FG-index
FG

non-FG
verification

answer set

candidate set answer setQuery

Fig. 1. The Underlying Principle of Query Processing using F G-Index

q
feature-index

FG-index

FG

non-FG

answer set

FAQ-index

FAQ

non-FAQ

verification

answer set

sub-candidate set

answer set

sub-answer setQuery

Fig. 2. The Underlying Principle of Query Processing using F G*-Index

We incorporate the FG-index, the feature-index and the FAQ-index coherently
into a uni�ed index framework, called FG*-index. Figure 2 depicts the underlying
principle of processing a queryq using FG*-index, where the counterpart using
FG-index is shown in Figure 1. Using FG-index, non-FG-queries must go through
candidate veri�cation. In FG*-index, we �rst employ the fea ture-index to improve
the e�ciency of the index probing process. Then, non-FG-queries are answered
e�ciently using the FAQ-index.

We verify the performance of FG*-index with a comprehensiveset of experiments.
We demonstrate that the use of the feature-index signi�cantly improves the index
probing e�ciency, while the use of the FAQ-index signi�cant ly reduces the cost
of candidate veri�cation. We also show that FG*-index signi�cantly outperforms
FG-index with a series of comparisons between the two indexes. In addition, we
compare FG*-index with two other state-of-the-art graph in dexes, gIndex [Yan
et al. 2005a] andC-tree [He and Singh 2006]. The results show that FG*-index
is up to orders of magnitude faster and consumes signi�cantly less memory than
gIndex and C-tree. We further show that FG*-index is much more scalable than
gIndex and C-tree when we increase the database size as well as the graph density.

Although e�cient query processing is the primary objective of this paper, ef-
�cient index construction and update maintenance are also important concerns.
We show that the index construction cost depends mainly on the parameterσ, or
equivalently the number of FGs. Smallerσ results in faster query processing, but
higher index construction cost. However, we �nd that when σ increases, query
performance degrades only slightly but the performance of the index construction
improves exponentially. Thus, we can build the index with a smaller σ if the index
can be built during system idle time or if query performance is critical. Otherwise,
we can build the index with a relatively larger σ, which still achieves very impres-
sive query performance according to our extensive experimental results, especially
compared with the other indexes. We also suggest guidelinesto set σ, as well asδ
and other parameters used in the index, based on the experimental results.

For index maintenance, we propose a batch-update strategy that builds an aux-
iliary FG*-index to process queries on the set of updated graphs and rebuilds the
entire index only when the update overhead becomes more expensive than rebuild-
ing the index. This method is simple and can handle frequent database updates.
Finally, we verify the e�ciency of our update strategy with a set of experiments.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 5

Organization. The rest of the paper is organized as follows. Section 2 de�nes the
preliminary concepts. Section 3 presents FG-index. Section 4 conducts a detailed
analysis on FG-index, identifying its merits as well as its limitations. Section 5
proposes FG*-index, discussing in detail both the feature-index and the FAQ-index.
Section 6 discusses the update of FG*-index. Section 7 reports the experimental
results. Section 8 discusses the related work and Section 9 concludes the paper.

2. PRELIMINARIES

For simplicity in presentation, we restrict our discussion to undirected, labelled
connected graphs. However, our index and query processing algorithms apply in the
same way to directed graphs. Throughout the paper, we simplycall an undirected,
labelled connected graph a graph.

A graph g is de�ned as a 4-tuple (V, E, L, l), where V is the set of vertices,E is
the set of edges,L is the set of labels andl is a labelling function that maps each
vertex or edge to a label inL. We de�ne the size of a graph g as the number of
edges ing, denoted assize(g) = |E(g)|.

Given a set of graphsG, a distinct edge in G is de�ned as a 3-tuple, (lu , le, lv),
where le is the label of an edge (u, v) in a graph g ∈ G, and lu and lv are the labels
of vertices u and v in g. Given a distinct edge e and a graph g in G, we de�ne the
count of e in g, denoted ascount (e, g), as the number of occurrences ofe in g.

Given two graphs, g = (V, E, L, l) and g0 = (V 0, E0, L0, l0), a subgraph isomor-
phism from g to g0 is an injective function h: V → V 0, such that ∀(u, v) ∈ E,
(h(u), h(v)) ∈ E0, l(u) = l0(h(u)), l(v) = l0(h(v)), and l(u, v) = l0(h(u), h(v)).

A graph g is called a subgraph of another graph g0 (or g0 is a supergraph of g),
denoted asg ⊆ g0 (or g0 ⊇ g), if there exists a subgraph isomorphism fromg to g0.
We call g a proper subgraph of g0, denoted asg ⊂ g0, if g ⊆ g0 and g + g0.

2.1 Frequent Subgraphs

Let D be a graph database that consists of a set of graphs. Given a graph f , the
frequency of f in D, denoted asfreq(f), is de�ned as the number of graphs inD
that are supergraphs off ; that is, freq(f) = |{g : g ∈ D, g ⊇ f}|. A graph f is
called a Frequent subGraph (FG) [Inokuchi et al. 2000] if freq(f) ≥ (σ · |D|), where
σ (0 ≤ σ ≤ 1) is a pre-de�ned minimum frequency threshold.

Let F be the set of all FGs that are mined from D. A graph f is called a
Maximal Frequent subGraph (MFG) [Huan et al. 2004] if f ∈ F and @f0 ∈ F such
that f0 ⊃ f . A graph f is called aClosed Frequent subGraph (CFG) [Yan and Han
2003] if f ∈ F and @f0 ∈ F such that f0 ⊃ f and freq(f0) = freq(f).

Example 1. Figure 3 shows 14 FGs,f1, . . . , f14, mined from a graph database,
where a, b, c represent three distinct edges (note that a distinct edge represents a
unique tuple consisting of the labels of an edge and its incident vertices). Figure 4
organizes the FGs according to their size and represents each FG as a node, where
the number following \:" is the frequency of the FG. (The numb er on an edge in
Figure 4 is to be introduced later in other examples in the paper.)

Among the FGs, f8, f9 and f14 are MFGs since they have no proper supergraphs.
All the FGs, except f12 and f13, are CFGs. The FGs f12 and f13 are not CFGs
because they have a supergraphf14 which has the same frequency. �

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

6 · E�cient Query Processing on Graph Databases

b

(f1)

a

(f2)

c

(f3)

b

a

(f4)

c

a

(f5)

c

c

(f6)

a

a

(f7)

a

(f8)

b c

c

(f9)

a c

b

(f11)

a a

(f12)

a a

b

(f13)

a a

b

(f14)

a aa

b

(f10)

a a

a

Fig. 3. Frequent Subgraphs

f14:100

f10:104 f11:102 f12:100f9:110f8:112

f4:139 f5:130 f6:114 f7:108

f1:163 f2:141 f3:134

00.020
0.038

0.194
0.138 0.035 0.037

0.147
0.014 0.030

Size
4

3

2

1

f13:100

0

Fig. 4. Frequent Subgraphs and Their Frequency

2.2 Subgraph Queries

A subgraph query, or simply a query, is a graph that has at least one edge. Pro-
cessing a query with a single vertex is trivial and thus not discussed.

The query processing problem we tackle in this paper is stated as follows.Given
a graph database D and a query q, retrieve all g ∈ D such that g is a supergraph of
q. The answer set of a query q is denoted asDq = {g: g ∈ D, g ⊇ q}.

Given a minimum frequency threshold σ, a query q is called an FG-query with
respect to σ if |Dq| ≥ (σ · |D|), since freq(q) = |Dq| ≥ (σ · |D|) and henceq is an
FG. If |Dq| < (σ · |D|), then q is a non-FG-query with respect to σ.

Table 2.2 gives the notations used throughout the paper.

3. FG-INDEX

In this section, we presentFG-index [Cheng et al. 2007]. We �rst de�ne the notion
of δ-tolerance CFGs, which forms the core of FG-index. Then, we discuss the
construction of FG-index and query processing using FG-index.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 7

Table I. Notations Used Throughout
Symbol Description

D the graph database
size(g) the number of edges in a graph g

count (e; g) the number of occurrences of a distinct edge e in g
freq (f) the number of graphs in D that are supergraphs of a graph f

� the minimum frequency threshold (0 � � � 1)
F the set of all FGs mined from D w.r.t. �
q a query graph

Dq the answer set of a query q (the set of supergraphs of q in D)
� the frequency tolerance factor (0 � � � 1)
T the set of � -TCFGs mined from D
� a total order de�ned on F by De�nition 2

CLOS (f t) the closure of a � -TCFG f t

GA[i] the i -th entry of the GA of an IGI or an IFI
IDA (e; n; m) the m-edge ID-array in the size- n ID-entry of a distinct edge e

Cq the candidate answer set of a query q
F u

l the feature set that contains all FGs of size between [l; u]
w the number of time units in a sliding window W

NFAQ the number of FAQs in a sliding window
M the size of the available memory

Ddel the set of deleted graphs from D
Dnew the set of new graphs added to D

3.1 � -Tolerance Closed Frequent Subgraphs

FG-index is a tree-structured index built on the set of FGs, F . We de�ne the
notion of δ-tolerance CFGs (δ-TCFGs) to cluster the FGs in F so that they can
be organized into levels. The notion ofδ-TCFGs also allows us to exibly tune the
size of the index at each level by adjusting the value ofδ.

We de�ne the notion of δ-TCFG as follows.

Definition 1. (δ-Tolerance CFG) A graph, f ∈ F , is a δ-Tolerance CFG
(δ-TCFG) if and only if @f0 ∈ F such that f0 ⊃ f and freq(f0) ≥ ((1 − δ) · freq (f)) ,
where δ (0 ≤ δ ≤ 1) is a pre-defined frequency tolerance factor.

We can de�ne CFGs and MFGs by δ-TCFGs as follows.

Lemma 1. A graph f is a CFG if and only if f is a 0-TCFG. A graph f is an
MFG if and only if f is a 1-TCFG.

Corollary 1. Let T� be the set of δ-TCFGs, FC be the set of CFGs, and FM

be the set of MFGs. Then, FM ⊆ T� ⊆ FC .

Corollary 1 gives the upper bound and the lower bound on the size of T� . The
following example illustrates the concept ofδ-TCFGs.

Example 2. Consider the 14 FGs in Figure 4. The number on each edge is
computed asde = (1 −freq(fi)/freq(fj)), where fi is the smallest proper supergraph
of fj that has the greatest frequency. According to De�nition 1, fj is a δ-TCFG i�
de > δ. Let δ = 0 .04. Then, the set of 0.04-TCFGs is {f1, f4, f5, f8, f9, f14}, i.e.,
the set of bold nodes in Figure 4. For example,f1 is a 0.04-TCFG sincef1 does not

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

8 · E�cient Query Processing on Graph Databases

have a proper supergraph that has a frequency greater than ((1−0.04)×163)≈ 156.
The FG f6 is not a 0.04-TCFG since we havefreq(f9) > ((1 − 0.04) × freq(f6)).

The set of 1-TCFGs, i.e., the set of MFGs, is{f8, f9, f14}; while the set of 0-
TCFGs, i.e., the set of CFGs, contains all FGs exceptf12 and f13. �

From now on, we use the lighter notation T to represent T� when δ is clear in
the context. To create clusters fromF based onT , we need to �nd the connection
between the graphs inT and those in (F − T). We establish this connection by
de�ning the closure of a δ-TCFG.

To de�ne the closure of a δ-TCFG, we need to �rst de�ne a total order on
F . We assign a unique graph label,label (f), for each graph f ∈ F , such that
label (f1) < label (f2) means that f1 is lexicographically ordered beforef2 and
label (f1) = label (f2) meansf1 = f2. We de�ne the total order on F as follows.

Definition 2. (Graph Set Order) A graph set order� on F is a total order
defined as follows. Let f1,f2∈F , f1 � f2 if one of the following statements is true.

(1) size(f1) < size(f2).
(2) size(f1) = size(f2) and freq(f1) > freq(f2).
(3) size(f1) = size(f2), freq(f1) = freq(f2), and label (f1) ≤ label (f2).

We further define f1 ≺ f2 if f1 � f2 and f1 6= f2.

Based on the graph set order, we now de�ne the notion of the closest δ-TCFG
supergraph to build the connection of the graphs inT and those in (F − T).

Definition 3. (Closest δ-TCFG Supergraph) Given ft ∈ T and f ∈ (F − T),
ft is called the closestδ-TCFG supergraph of f if ft ⊃ f and @f0

t ∈ T such that
f0

t ⊃ f and f0
t ≺ ft .

Lemma 2. For each f ∈ (F − T), the closest δ-TCFG supergraph of f exists
and is unique.

Proof. We �rst prove the existence of f 's closest δ-TCFG supergraph. If
f ∈ (F − T) does not have any supergraph inT , then f itself must be an MFG.
According to Corollary 1, all MFGs are δ-TCFGs. Therefore, we havef ∈ T , which
contradicts the assumption that f ∈ (F − T).

The uniqueness off 's closestδ-TCFG supergraph follows directly from De�ni-
tions 2 and 3.

Based on De�nition 3 and Lemma 2, we can assign to eachδ-TCFG, ft ∈ T , with
a cluster of FGs whose closestδ-TCFG supergraph is ft . We de�ne this cluster of
FGs as the closure of aδ-TCFG as follows.

Definition 4. (Closure of a δ-TCFG) Given ft ∈ T , the closure of ft is
defined as CLOS (ft) = {f : ft is the closest δ-TCFG supergraph of f}.

Based on the graph set order, Lemma 2 ensures that a queryq ∈ (F − T) must
have a unique closestδ-TCFG supergraph, ft , and q can be located in the closure
of ft . We illustrate the concept of closure by the following example.

Example 3. Referring to Figures 3 and 4, the set of FGs is ordered according
to the graph set order �, where the label of eachfi is just fi . We have f1 ≺ f4

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 9

since size(f1) < size(f4); while for f1 and f2 which are of the same size,f1 ≺ f2
since freq(f1) > freq(f2). When δ = 0 .04, f14 is the closestδ-TCFG supergraph of
f7, f10, f11, f12 and f13; in other words, CLOS (f14) = {f7, f10, f11, f12, f13}. �

3.2 Framework of FG-Index

Before we present FG-index, we �rst give the framework of FG-index as follows.

(1) Index Construction. The construction of FG-index consists of two major
steps. The �rst step is to mine F , which can be done by using an existing
FG-mining algorithm [Inokuchi et al. 2000; Yan and Han 2002]. Note that Df

of eachf ∈ F is also obtained by the FG-mining process. The second step is
to compute T from F and then build the index based onT .

FG-index consists of two parts: the core FG-index and the edge-index. We
briey describe each of them as follows.
The core FG-index is a tree-structured index. The root of thetree is an inverted-
index constructed on the setT . Then, a child inverted-index is built on the
closure of eachf ∈ T . If a closure is too large, a local set ofδ-TCFGs is
computed from the closure. In this way, we construct the treerecursively. We
keep the root of the core FG-index in the main memory and othernodes on the
disk. We also associateDf with each indexed FG f .
The core FG-index is built on the set of FGs and hence is not able to answer
those non-FG-queries that do not have an edge in any of the FGs. To pro-
cess these queries, we build another index, called theedge-index, on the set
of infrequent distinct edges1 in D. For each infrequent distinct edgee in the
edge-index, we also associateDe with e.

(2) Query Processing. Given a queryq, we �rst search q in the core FG-index. If q
is a δ-TCFG, we directly retrieve q and Dq from the inverted-index at the root
of the core FG-index. Otherwise, we �rst �nd q's closestδ-TCFG supergraph,
f . Then, the index constructed on the closure off is loaded from the disk to
locate q and Dq.
If q cannot be found in the core FG-index, thenq is a non-FG-query. In this
case, we use the core FG-index to �nd a set ofq's subgraphs and retrieveDf

for each of these subgraphsf . If q consists of any infrequent distinct edges, we
also retrieve De from the edge-index for each infrequent distinct edgee in q.
Then, we compute Cq as the intersection of all the \Df "s and all the \ De"s.
Finally, we obtain Dq by verifying whether each g ∈ Cq is a supergraph ofq.

3.3 Index Construction

We now present the structure of FG-index and algorithm for constructing FG-index.

3.3.1 Structure of FG-Index

We �rst de�ne the structure of FG-index. The edge-index is a simple hashtable
that keeps the set of infrequent distinct edges. For the edgee in each non-empty
hash slot, we also linkDe to the slot.

1A distinct edge can be regarded as a graph with only one edge.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

10 · E�cient Query Processing on Graph Databases

f1

f4

f5

f8

f9

f14

1
2
3
4
5
6

Graph
Array

a
b
c

Edge
Array

1 {2, 3}
1 {2}
1 {3}

1 {4, 5}
1 {4}
1 {4}
2 {5}

3 {6}
1 {6}

1 {1}

Size-2
ID-entry

Size-3
ID-entry

Size-4
ID-entry

Size-1
ID-entry

Fig. 5. Inverted-Graph-Index of Example 4

The core FG-index is a multi-level index tree, where a node inthe tree is an
Inverted-Graph-Index (IGI) constructed on a cluster of FGs. The structure of an
IGI is formally de�ned as follows.

Definition 5. (Inverted-Graph-Index) Given a set of graphs G, an Inverted-
Graph-Index (IGI) constructed on G consists of the following components:

—An array, called the Graph Array (GA) , stores G.
—An array, called the Edge Array (EA) , stores the set of distinct edges in G.
—Each distinct edge e in the EA is associated with a set of IDs of the graphs that

contain e. The set of IDs is organized as follows.
—The IDs are first organized by the size of the graphs. The IDs of the graphs

that are of size n are grouped together in an entry, called a size-n ID-entry .
—Within each size-n ID-entry, the IDs are further organized by the number of

occurrences of e in each of the graphs. The IDs of the graphs that have m
occurrences of e are grouped together in an array, called an m-edge ID-array.

We assign the ID of a graph as the position that the graph is stored in the GA.
For example, the graph stored in thei-th entry of the GA, denoted as GA[i], is given
the ID \ i". We also denotethe m-edge ID-array in the size-n ID-entry of a distinct
edgee in the EA as IDA(e, n, m). We use the following example to illustrate the
structure of an IGI.

Example 4. Referring to the FGs in Figures 3 and 4, let δ = 0 .04, then T =
{f1, f4, f5, f8, f9, f14}. Figure 5 shows the corresponding IGI constructed onT . For
example, the size-3 ID-entry of the distinct edgec has two ID-arrays: the 1-edge
ID-array, denoted as IDA(c, 3, 1), containing one ID \4", and the 2-edge ID-array,
denoted asIDA(c, 3, 2), containing one ID \5". The two IDs correspond to f8 and
f9 in GA[4] and GA[5], respectively.

As shown in Figure 3, f9 is of size 3,count(a, f9) = 1 and count(c, f9) = 2. In
the IGI shown in Figure 5, f9 is stored in GA[5]. Thus, we have the ID \5" in
IDA(a, 3, 1) and IDA(c, 3, 2). �

We now describe the structure of the core FG-index. A conceptual view of the
core FG-index is shown in Figure 6. The root of the core FG-index, or simply called
the root IGI, is an IGI constructed on T . Then, for eachfi ∈ T , if CLOS (fi) 6= ∅,
a child IGI is constructed on CLOS (fi). However, if the size of CLOS (fi) is
larger than the size of T , a local set of δ-TCFGs, TCLOS (f i), is computed from

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 11

...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS(fi)={..., fij , ...}

IGI built on
CLOS(fn)

...

... IGI built on
CLOS(fij)

...

Fig. 6. The Conceptual View of the Core FG-Index

CLOS (fi). The child IGI is then constructed on TCLOS (f i) instead of CLOS (fi).
Thus, when the child IGI is loaded into the main memory, the memory consumption
is guaranteed to at most double the size of the root IGI. Then, for each fij ∈
TCLOS (f i), a child IGI is constructed on CLOS (fij) and so on recursively.

3.3.2 Constructing FG-Index

The algorithm for constructing FG-index, BuildIndex, is presented as Algorithm
1. The algorithm �rst invokes MineFG to mine F from D with respect to σ.
Then, ComputeTCFG is invoked to compute T from F with respect to δ. Finally,
BuildCoreFGindex and BuildEdgeIndex are invoked to construct the core FG-index
and the edge-index. We omit the details of the procedure MineFG, which can be
any existing FG-mining algorithm [Inokuchi et al. 2000; Yan and Han 2002], but
we discuss the other three procedures as follows.

Algorithm 1 BuildIndex
Input: D, σ and δ.
Output: FG-index.

1. F ← MineFG(D; �);
2. T ← ComputeTCFG(F ; �);
3. BuildCoreFGindex(T ;F ; |T |);
4. BuildEdgeIndex(D; �);

ComputeTCFG, as shown in Procedure 2, �rst sorts the set of input FGs Fthis

(note that the sorting does not involve any expensive graph operation). Based
on the order de�ned by ≺, the �rst supergraph f0 of a graph f found in Fthis

has the greatest frequency among all other supergraphs off . Thus, if freq(f0) <
((1−δ) ·freq(f)), then ∀f00⊃ f , freq(f00) ≤ freq(f0) < ((1−δ) ·freq(f)). This implies
that, to check whether f is a δ-TCFG, we only need to �nd the �rst supergraph
of f that has one more edge thanf (Lines 6-10). If the �rst supergraph of f , f0,
is found and freq(f0) ≥ ((1 − δ) · freq(f)) (Lines 7-8), then f is not a δ-TCFG by
De�nition 1. Thus, f is removed fromTthis (Line 9). Otherwise, f is a δ-TCFG.

BuildCoreFGindex, as shown in Procedure 3, recursively constructs the core FG-
index as follows. We �rst build an IGI on Tthis (Lines 2-7). For eachft ∈ Tthis ,
we storeft in the GA in the order that ft is processed. For each distinct edgee in
ft , if e is not in the EA, we add e to the EA. Then, the ID of ft is added to the
end of the array IDA(e, size(ft), count(e, ft)). Since the ID of ft is assigned as the

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

12 · E�cient Query Processing on Graph Databases

Procedure 2 ComputeTCFG(Fthis , δ)

1. Sort Fthis s.t. ∀f 1 ; f 2 ∈ Fthis , f 1 is ordered before f 2 if f 1 ≺ f 2 ;
2. Tthis ← Fthis ;
3. Let Ti be the set of FGs in Tthis that consist of i edges;
4. for each i = 1; 2; : : : do
5. for each f ∈ Ti do
6. for each f 0 ∈ Ti +1 do
7. if (f ⊂ f 0)
8. if (freq(f 0) ≥ (1− �) · freq(f))
9. Tthis ← Tthis − {f };
10. break; / � go to Line 5 � /
11. Return Tthis ;

Procedure 3 BuildCoreFGindex(Tthis , Fthis , N)

1. Create an empty IGI, with an empty GA and an empty EA;
2. for each f t ∈ Tthis do
3. Store f t in the first free entry in the GA;
4. for each distinct edge e in f t do
5. if (e is not in the EA)
6. Add e to the EA;
7. Add the ID of f t to IDA (e;size(f t); count (e; f t));
8. if(Fthis 6= Tthis)
9. for each f ∈ (Fthis − Tthis) do
10. Find f ’s closest � -TCFG supergraph, f t ;
11. Add f to CLOS (f t);
12. for each f t ∈ Tthis do
13. if(CLOS (f t) 6= ∅)
14. if(|CLOS (f t)| ≥ N)
15. TCLOS (f t) ← ComputeTCFG(CLOS(f t); �);
16. BuildCoreFGindex(TCLOS (f t) ; CLOS (f t); N);
17. else
18. BuildCoreFGindex(CLOS(f t); CLOS (f t); N);

Procedure 4 BuildEdgeIndex(D, σ)

1. Create an empty edge-index;
2. for each distinct edge e that appears in less than � |D| graphs do
3. Add e and De to the edge-index;

position in the GA where ft is stored, the IDs in each ID-array are automatically
sorted. We use a hashtable to access each distinct edge in theEA.

After we build the IGI on Tthis , Line 8 checks if Tthis is the closure of a δ-
TCFG. If Tthis is the closure of aδ-TCFG, i.e., Tthis = Fthis , then we do not
need to construct any child IGI. Otherwise, Tthis is a set of δ-TCFGs and Lines
9-11 compute the closure for eachft ∈ Tthis . We can use the IGI built on Tthis

to �nd the closest δ-TCFG supergraph of a graph (Line 10) e�ciently, which will
be discussed in Algorithm 5 when we process a query using the IGI. Finally, Lines
12-18 recursively call BuildCoreFGindex to construct the child IGI on the closure
of eachft ∈ Tthis . If the closure of someft is still too large, ComputeTCFG is �rst

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 13

called to construct a nested set ofδ-TCFGs on CLOS (ft).
BuildEdgeIndex, as shown in Procedure 4, adds each infrequent distinct edge in

D to the edge-index. The set of infrequent distinct edges can be obtained freely
from the FG-mining process. These edges are also accessed via the same hashtable
used for the EA, where a ag is used to indicate whether or not an edge is frequent.

3.3.3 Memory and Disk Residence

We keep the root IGI and the edge-index in the main memory, andwe store all the
other parts of FG-index on the disk.

The Df for each indexed graphf is stored on the disk. Given two graphsf and
f0, if f ⊃ f0, then (Df ∩ Df 0) = Df . Thus, we do not want to store the duplicate
graphs in Df and Df 0. We remove the duplicates as follows. For eachf ∈ T , we
organize the FGs in CLOS (f) as a tree. The root of the tree isf and the parent
of a node in the tree is the �rst supergraph (as ordered by≺) of the node. This
supergraph can be found e�ciently using the child IGI that is built on CLOS (f).
Then, we only keep (Df c − Df p) at each node fc, where fp is the parent of fc.
Thus, only Df is exact, while the duplicate graphs in Df 0, where f0 ∈ CLOS (f),
are removed and can be recovered by traversing fromf0 up to the root f .

3.4 Query Processing using FG-index

The processing of a queryq using FG-index is classi�ed into two cases: whenq is
an FG-query and whenq is a non-FG-query.

3.4.1 Processing FG-Queries

When q is an FG-query, Algorithm 5 invokes Procedure 6 to processq recursively,
starting at the root IGI. Let E be the set of distinct edges inq. ProcFGQbyIGI
checks only those graphs that contain all edges inE. It starts with the graphs that
have the same size asq (Line 2) until a supergraph of q is found (Lines 9-14).

Let i be the size of the graphs that are indexed inthisIGI. For each e ∈ E,
ProcFGQbyIGI �rst obtains K(e), which is the set of IDs of the graphs that are of
sizei and have at leastcount(e, q) occurrences ofe (Lines 5-6). The IDs in eachK(e)
are sorted in ascending order. Then, the \K(e)"s for all e ∈ E are intersected to
�nd a supergraph for q. Let f be the �rst supergraph of q, whose ID is obtained by
the intersection (Lines 8-9). According to the order in which each graph is added to
the GA, f must be either q or the closestδ-TCFG supergraph of q. Thus, we either
output Dq (Line 11), or continue to �nd q by recursively invoking ProcFGQbyIGI
to process onf 's child IGI (Lines 13-14). If the intersection of the \ K(e)" is an
empty set or if no supergraph ofq is found for the current i, we increment i (Line
2) and continue a new round of iteration to search for a supergraph of q. Finally,
Line 17 shows a terminating condition, which indicates that q is not an FG-query
and we processq by Algorithm 7 in Section 3.4.2.

The e�ciency of the intersection of the \ K(e)"s depends on the size of eachK(e).
The IDs in each K(e) belong to a local set ofδ-TCFGs that are of a speci�c size
and contain at least count(e, q) occurrences ofe. Thus, the size ofK(e) is small,
because the size of the whole set ofδ-TCFGs is small as controlled by δ.

The following example illustrates the processing of an FG-query by Algorithm 5.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

14 · E�cient Query Processing on Graph Databases

Algorithm 5 ProcFGQ
Input: The core FG-index and a query q.
Output: Dq.

1. Return ProcFGQbyIGI(The root IGI; q);

Procedure 6 ProcFGQbyIGI(thisIGI , q)

1. Let E be the set of distinct edges in q;
2. for each i = size(q); size(q) + 1; : : : do
3. for each e ∈ E do
4. Create an empty set, K (e);
5. for each j ≥ count (e; q) do
6. Access IDA (e; i; j) in thisIGI and copy the IDs in IDA (e; i; j) to K (e);
7. Sort K (e) in ascending order;
8. Intersect K (e), ∀e ∈ E , until an ID, k, is obtained;
9. if(f in GA[k] of thisIGI is a supergraph of q)
10. if(f = q)
11. Return Df ;
12. else
13. Load f ’s child IGI, childIGI , into the main memory;
14. Return ProcFGQbyIGI(childIGI ; q);
15. else
16. Go to Line 8 and continue the intersection;
17. Return ∅;

Example 5. Referring to the IGI in Example 4, let q = f11. We demonstrate
how Dq is obtained by ProcFGQbyIGI. Since size(f11) = 3, we start from the Size-3
ID-entries, that is, i = 3. Since IDA(a, 3, j) is empty, for j ≥ count(a, f11) = 2,
we haveK(a) = ∅, which implies that the intersection of K(a) and K(b) will also
be an empty set. Therefore, ProcFGQbyIGI directly proceedsto i = 4 in Line 2.
We �rst copy the ID \6" from IDA(a, 4, 3) to K(a). Since count(b, f11) = 1, we
also copy the ID \6" from IDA(b, 4, 1) to K(b). Then, intersecting K(a) and K(b)
gives \6". Since f14 in GA[6] is a supergraph off11 (in fact, the closest δ-TCFG
supergraph off11), Line 14 invokes ProcFGQbyIGI to process on the child IGI of
f14. The recursive call �nally returns Df 11 (details omitted). �

3.4.2 Processing Non-FG-Queries

When ProcFGQ returns an empty set, then q is a non-FG-query. In this case,
Algorithm 7 is used to obtain Dq. The algorithm ProcNonFGQ consists of two
parts: Lines 2-14 check the set of frequent distinct edgesE (if any) in q, while Lines
15-16 handle the set of infrequent distinct edges (if any). In Line 1, ProcNonFGQ
assigns an empty setS, which is used to hold the answer sets ofq's subgraphs.
Intersecting the answer sets inS then gives the candidate set ofq, Cq, in Line 17.

First, in Lines 2-14, ProcNonFGQ uses the core FG-index to �nd a set of sub-
graphs of q that are indexed. Then, for each subgraphf found, Df is retrieved
and included into S. Then, in Lines 15-16, ProcNonFGQ retrievesDe for each
infrequent distinct edge e of q from the edge-index and includesDe into S. Finally,
in Lines 17-18, ProcNonFGQ generatesCq by intersecting all ID sets (i.e., Df or

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 15

Algorithm 7 ProcNonFGQ
Input: FG-index, and a query q.
Output: Dq.
1. Create an empty set, S;
2. Let E be the set of frequent distinct edges of q;
3. for each i = size(q)− 1; size(q)− 2; : : : ; 1 do
4. Create an empty set, K ;
5. for each e ∈ E do
6. for each j = 1; : : : ; count (e; q) do
7. if(IDA (e; i; j) is not empty)
8. Copy the IDs in IDA (e; i; j) to K ;
9. Sort K in descending order and remove the duplicate IDs;
10. for each ID, k, in K do
11. if(f in GA[k] has edges in E and f ⊂ q)
12. S ← (S ∪ {Df });
13. Remove all distinct edges of f from E ;
14. Go to Line 15 if E becomes empty;
15. for each infrequent distinct edge, e, in q do
16. S ← (S ∪ {De});
17. Cq ← (

T
s2 S s);

18. Return Dq ← {g : g ∈ Cq ; g ⊇ q};

De) in S, and veri�es each candidate inCq to give Dq.
We now explain how to search for the subgraphs ofq that are indexed in FG-

index. Unlike the search for the supergraph ofq in Procedure 6, the search for
subgraphs moves in the reverse direction starting with the graphs that have one
fewer edge thanq (Line 3). Then, the IDs of the graphs are copied to a setK and
sorted in descending order (Lines 4-9), since for graphs of the same size, a graphf
with a larger ID implies that f has a smaller frequency and hence a smallerDf .

For each ID in K, Lines 10-11 perform a subgraph isomorphism test betweenf
and q to ensure that f is a subgraph ofq before usingDf to produce Dq. This
process can be costly sinceK contains all potential subgraphs ofq. To reduce the
number of subgraph isomorphism tests in this step, we obtainonly a small set of
maximal FG subgraphs of q. Here, f is a maximal FG subgraph ofq i� f ∈ F and
@f0 ⊃ f such that f0 ⊂ q. Using the maximal FG subgraphs ofq is more e�ective
in reducing the size ofCq because the answer set of a maximal FG subgraph is
smaller than that of a non-maximal FG subgraph of q. However, we do not obtain
all maximal FG subgraphs ofq in the index but stop the search when all edges inE
are covered (Lines 11-14), since obtaining all those missing maximal FG subgraphs
does not further reduce the size ofCq substantially.

4. THE ANATOMY OF FG-INDEX: MERITS AND LIMITATIONS

In this section, we present a detailed analysis of the e�ciency of query processing
using FG-index. We identify the merits of using FG-index and also discuss the
limitations. Then, in Section 5, we proposeFG*-index to address the limitations.

Let Cq be the candidate answer set of processing a queryq. Let Tsearch be the
index probing time, TI =O be the disk I/O time of fetching each candidate graph
from the disk, and Tverify be the candidate veri�cation time.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

16 · E�cient Query Processing on Graph Databases

The response time of processingq using a graph index is given as follows:

Tresponse = (Tsearch + |Cq| × TI =O + |Cq| × Tverify) . (1)

Since candidate veri�cation involves the expensive operation of subgraph isomor-
phism testing, (|Cq| × Tverify) usually dominates Tresponse . Most existing indexes
[Shasha et al. 2002; Yan et al. 2005a; He and Singh 2006; Jianget al. 2007; Zhang
et al. 2007] aim to reduce|Cq| as much as possible. Thus, theoptimal Tresponse of
using these indexes is whenCq = Dq:

Tresponse = (Tsearch + |Dq| × TI =O + |Dq| × Tverify) . (2)

4.1 Merits of FG-Index

The major advantage of using FG-index over existing indexesis its e�ciency for
processing FG-queries. Whenq is an FG, using FG-index obtains Dq directly
without any candidate veri�cation. Thus, the response time is given as follows:

Tresponse = (Tsearch + |Dq| × TI =O) . (3)

Equation (3) is a signi�cant reduction from Equation (2), be cause we completely
remove the dominating factor, (|Cq| × Tverify), from Tresponse . We remark that the
cost of retrieving the answer set from the disk, i.e., (|Dq| × TI =O), is inevitable
unless the main memory is large enough to store the whole database.

4.2 Limitations of FG-Index

Although FG-index is a signi�cant improvement over existin g indexes, there is a
condition that must be satis�ed in order to achieve the response time de�ned by
Equation (3); that is, the queries must be FGs with respect to σ. This becomes a
limitation in using FG-index.

To include more queries into the category of FGs, FG-index should use a small
σ. However, a smallσ produces a large number of FGs, which in turn gives rise
to a large index. Although the concept of δ-TCFG partitions the large indexing
space into many smaller spaces at di�erent levels, the search space can still be large
when the number of FGs is large. The large search space leads to more subgraph
isomorphism tests (Line 9 of Procedure 6) performed in the process of �nding q's
closestδ-TCFG supergraph. As a result, Tsearch is substantially increased.

Thus, the setting of σ becomes a limitation of FG-index in achieving the best
query performance, as stated below:

|When σ is small, more queries can be answered by FG-index without candidate
veri�cation. The response time for processing the FG-queries is given by Equation
(3), but Tsearch can be large.

|When σ is large, Tsearch is small but the best response time for processing most
queries is given by Equation (2).

Another limitation of FG-index is on the processing of non-FG-queries. In order
to reduce the candidate veri�cation cost, FG-index generatesCq by intersecting the
answer sets of the maximal FG subgraphs ofq. Thus, Cq is close to (σ · |D|) since

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 17

the frequency of the maximal FG subgraphs is at least (σ · |D|). However, Dq can
be much smaller than (σ · |D|) since q is a non-FG-query. Therefore, for processing
non-FG-queries, theCq obtained by FG-index may be much larger thanDq.

5. FG*-INDEX

In Section 4, we identify two limitations of FG-index, one related to the index
probing cost and another related to the candidate veri�cation cost. In this section,
we propose our solution,FG*-index, to both of the limitations. FG*-index consists
of FG-index as well as two new indexes: thefeature-index and the FAQ-index.

The feature-index is used to lower the index probing cost by reducing the number
of subgraph isomorphism tests performed in the index probing process, even when
the number of FGs is large.

The FAQ-index totally avoids candidate veri�cation for pro cessing frequently
asked non-FG-queries. For processing those non-FG-queries that are not frequently
asked, the FAQ-index improves the query performance in either of the following two
ways: (1) the FAQ-index obtains a large subset of the answer set and thus only a
small number of candidates need to be veri�ed; or (2) the FAQ-index generates a
small candidate set that is close to the answer set.

5.1 The Feature-Index

We process a queryq using FG-index by intersecting the IDs of the size-i (i ≥
size(q)) graphs that contain the edges in q. When the number of indexed graphs
is large or the database is dense, this edge-based intersection may return a large
number of matches, because edges lose most of the structuralinformation of the
graphs. Since each match needs to be veri�ed by a subgraph isomorphism test,
Tsearch is signi�cantly increased as a result.

Our solution to this problem is to adopt a feature-based search strategy. We �rst
de�ne a set of features and then build an index on the features.

5.1.1 Feature Selection

The selection of features can rely on domain expert knowledge. However, consider-
ing that domain expert knowledge may not always be available, we provide a way
to select the features without using domain expert knowledge.

To facilitate the index probing process, a desirable set of features should satisfy
the following criteria. First, the features should possessthe structural information
of their supergraphs that are indexed. Second, the number offeatures cannot be
large; otherwise, the search for the features of a query is itself too expensive. Third,
it should be e�cient to compute the features.

A suitable feature that satis�es the �rst criterion is the su bgraphs of the graphs
indexed in FG-index. However, it cannot meet the second criterion if all the sub-
graphs are used as features. Thus, we use only part of the subgraphs and de�ne
the feature set asFu

l = {fe : fe ∈ F , l ≤ size(fe) ≤ u}. We set l = 2 in Fu
l , since

the size-1 FGs are just frequent edges. The choice ofu determines the �rst two
criteria but also presents a dilemma: u should be set larger so that the features
can possess more structural information of their supergraphs, but a larger u also
means a larger number of features. However,u can be easily determined by running
a few test sets. Our experiments show that, compared with theedge-based index

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

18 · E�cient Query Processing on Graph Databases

probing, the search e�ciency is already signi�cantly impro ved for a value of u as
small as 4. The last criterion for selecting the features is also satis�ed sinceFu

l is
obtained freely from F , which is used to build FG-index.

Another bene�t of selecting Fu
l as the feature set is that it makes the index partic-

ularly e�cient for answering queries that are small structu res, which are commonly
found in many applications [Williams et al. 2007].

5.1.2 The Structure of the Feature-Index

The feature-index consists of the following two components: the Feature Hash Index
(FHI) and a set of Inverted-Feature-Indexes (IFIs).

The FHI is a simple hashtable that keeps the set of features. The hash key of a
feature is computed from the canonical label [Williams et al. 2007] of the feature.
If there are more than one feature being hashed into the same hashtable slot, the
collision is handled by chaining. We compute the canonical label of a feature from
the adjacency list of the feature.

Each featurefe in the FHI is also associated withDf e . Therefore, if a query q is
a feature, its answer set can be directly retrieved using theFHI.

The structure of an IFI is de�ned as follows.

Definition 6. (Inverted-Feature-Index) Given a set of graphs G and a set
of features Fe, an Inverted-Feature-Index (IFI) on G and Fe is defined as follows:

—An array, called the Graph Array (GA) , stores G.
—An array, called the Feature Array (FA) , stores Fe.
—Each feature fe in the FA is associated with a set of IDs of the graphs in G that

are supergraphs of fe. The IDs are organized by the size of the graphs. The IDs
of the graphs that are of size n are stored together in an array, called the size-n
ID-array of fe.

Recall from De�nition 5 that each IGI in FG-index is built on a set of graphsG.
Thus, we construct an IFI on G and Fu

l to improve the index probing e�ciency.
We keepFu

l in the FHI and store it in the main memory, while each IFI is resident
in the memory or on the disk according to their respective IGI. The construction
of an IFI is similar to that of an IGI as shown in Lines 1-7 of Procedure 3; thus,
we omit the details here. An example of an IFI is shown as follows.

Example 6. Referring to the FGs in Figures 3 and 4, for the purpose of il-
lustration, we choose the feature setF2

2 = {f4, f5, f6, f7} and we setδ = 0, i.e.,
T = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f14}. Figure 7 shows an IFI constructed
on T and F2

2 , where we omit{f1, f2, f3, f4, f5, f6, f7} from the GA for clarity. Note
that the IFI and the IGI of FG-index share the same GA.

In Figure 7, the size-3 ID-array of the feature f4 has three IDs, {1, 3, 4}, which
correspond to the three size-3 supergraphs off4, {f8, f10, f11}, in GA[1], GA[3] and
GA[4], respectively. �

We do not build an IFI for every IGI in FG-index, since an IFI is used to reduce
the number of subgraph isomorphism tests performed in the index probing process
when the IGI is large. Thus, we only build an IFI for the IGI at a n intermediate
node in the core FG-index, since these IGIs are usually large(otherwise they will

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 19

f4

f5

f6

Features

 {1, 3, 4}

Size-4
ID-array

Size-3
ID-array

f8

f9

f10

f11

f14

1
2
3
4
5

Graph
Array

f7

 {1, 2}
 {2}

 {4}

 {5}

 {5}

Fig. 7. The Inverted-Feature-Index of Example 6

not have child IGIs). The IGIs at a leaf node of the core FG-index are small; thus,
no IFI is needed for the IGI at a leaf node.

5.1.3 Query Processing Using the Feature-Index

We now discuss query processing using the feature-index, for both FG-queries and
non-FG-queries. As shown in Algorithm 8, we process a query according to its
size. If size(q) < l, we processq using FG-index since the size of the features is
at least l. If the size of q falls within the size range of a feature, i.e., [l, u], we can
directly retrieve Dq using the FHI if q is an FG. But if q is not an FG, FG-index
is used to answerq. We will discuss how to improve the e�ciency of processing
non-FG-queries later using the FAQ-index.

Algorithm 8 FProcQ
Input: FG-index, the feature-index, and a query q.
Output: Dq.
1. if(size(q) < l)
2. Process q using FG-index;
3. else if(l ≤ size(q) ≤ u)
4. Search q in the FHI;
5. Return Dq if q is found, otherwise process q using FG-index;
6. else if(size(q) > u)
7. Find a set of maximal features of q, Fq, using the FHI;
8. Dq ← FProcFGQ(q; Fq);
9. if(Dq 6= ∅)
10. Return Dq ;
11. else
12. Return FProcNonFGQ(q; Fq);

When the size of q is greater than u, we �rst �nd a set of features that are
subgraphs ofq. For the purpose of facilitating index probing, we only needthe set
of maximal features of q, de�ned as Fq = {fe : fe ⊂ q, fe ∈ Fu

l , @f0
e ∈ Fu

l s.t. f0
e ⊃ fe

and f0
e ⊂ q}, since the maximal features contain the structural information of their

subgraph features. Thus, we can enumerate the size-u subgraphs ofq and then the
size-(u − 1) subgraphs, and so on until we �nd all the maximal features.

However, the number of maximal features can still be large, especially because
all the size-u subgraphs ofq are maximal features ofq. Therefore, we �nd a repre-

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

20 · E�cient Query Processing on Graph Databases

Procedure 9 FProcFGQ(q, Fq)

1. for each i = size(q); size(q) + 1; : : :, do
2. Intersect the size-i ID-arrays of all f e ∈ Fq until an ID, k, is obtained;
3. if(f in GA[k] is a supergraph of q)
4. Return Df if f = q, otherwise search q using f ’s child IGI and IFI (if any);
5. else
6. Go to Line 2 and continue the intersection;
7. Return ∅;

Procedure 10 FProcNonFGQ(q, Fq)

1. Create an empty set, S;
2. for each i = size(q)− 1; size(q)− 2; : : : ; u + 1 do
3. for each unique ID, k, in the size-i ID-arrays of all f e ∈ Fq do
4. if(f in GA[k] is a subgraph of q)
5. S ← (S ∪ {Df });
6. Remove any f e, whose size-i ID-array contains k, from Fq;
7. Go to Line 11 if Fq becomes empty;
8. if(Fq 6= ∅)
9. for each f e ∈ Fq do
10. S ← (S ∪ {Df e});
11. for each infrequent distinct edge, e, in q do
12. Obtain De from the edge-index in FG-index;
13. S ← (S ∪ {De});
14. Cq ← (

T
s2 S s);

15. Return Dq ← {g : g ∈ Cq ; g ⊇ q};

sentative set of maximal features that contain all distinct edges ofq. We compute
this representative set by enumerating the features ofq starting from the size-u
features. Let E be the set of distinct edges inq. For each featurefe enumerated,
we remove all distinct edges infe from E. We add fe to Fq and continue the
enumeration, until E becomes empty. Thus, we stop when all edges inE (i.e., q)
are covered, since obtaining all those missing maximal features does not further
improve the �ltering power much (Line 3 of Procedure 9) but in creases the cost of
the intersection since we need to process more features (Line 2 of Procedure 9).

After we obtain Fq, we invoke FProcFGQ, as shown in Procedure 9, that uses
the IFI to process q. We intersect the size-i ID-array of each feature fe ∈ Fq,
starting from i = size(q) and upwards. The �rst supergraph of q obtained by the
intersection is either q, in which case we returnDq directly, or q's closestδ-TCFG
supergraph, in which case we recursively invoke FProcFGQ, or ProcFGQbyIGI (as
in Procedure 6), to processq.

If q is not found by FProcFGQ, Line 7 of Procedure 9 returns an empty set
to Algorithm 8, which then invokes FProcNonFGQ in Procedure 10 to process
q. The algorithm is very similar to ProcNonFGQ in Algorithm 7; thus, we omit
the detailed description here due to the space limit. However, FProcNonFGQ is
far more e�cient than ProcNonFGQ since we are now using features rather than
simple edges. In addition, the ID-arrays of the features arealso more e�cient to
access than are theIDAs of the edges.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 21

Example 7. Referring to the IFI in Example 6, let q = f11. We demonstrate
how the use of the feature-index can improve the index probing e�ciency.

According to the settings of Example 6, T = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10,
f11, f14}. If we use the IGI, we will use the ID-entries of the edgesa and b to search
for q. Thus, we will �rst check whether f10 is q and then whether f11 is q, since
both f10 and f11 contain the edgesa and b.

However, if we use the IFI, we intersect the ID-arrays of the featuresf4 and f7,
which givesf11 directly. Thus, f10 is skipped since its ID is not in the ID-array of
f7, i.e., f10 is not a supergraph off7. In reality, when the index is much bigger, a
signi�cantly larger number of false results can be pruned using the IFI. �

5.1.4 The Advantages of Using the Feature-Index

The use of the feature-index improves the index probing of FG-index, or reduces
Tsearch , in the following two ways.

First, the size-i ID-array of a maximal feature of q is much smaller than the total
size of IDA(e, i, j), ∀j ≥ count(e, q), of an edgee. This is apparent since an edge
has far more supergraphs than a feature. Thus, the intersection using the IFI is
more e�cient than using the IGI. Moreover, using the IGI requ ires us to �rst collect
the set of IDs from the \ IDA(e, i, j)"s and then sort the IDs, while the ID-arrays
in the IFI are sorted already.

Second, features possess much more structural informationabout q and its super-
graphs than do the simple edges ofq. There can be a large number of graphs that
contain the edges ofq but are not the supergraphs ofq. In contrast, the number of
graphs that contain the set of maximal features ofq but are not the supergraphs
of q is much smaller. Therefore, using the IFI signi�cantly reduces the number of
subgraph isomorphism tests required in the index probing process.

5.2 The FAQ-Index

The use of the feature-index signi�cantly reduces the indexprobing cost; however,
the dominating factor in the cost of processing non-FG-queries is the candidate
veri�cation cost. We propose an index built on a set of Frequently Asked non-FG-
Queries (FAQs), called the FAQ-index, to improve the performance of processing
non-FG-queries (i.e., both FAQs and non-FAQs).

5.2.1 De�nition of FAQ

Before we de�ne the notion of FAQs, we �rst de�ne a sliding window model [Golab
and •Ozsu 2003] in astream of queries. We need the sliding window model because
the set of all queries asked in the whole history is too large for building an index.
Thus, the sliding window model allows us to control the size of the index to be built.
In addition, the model also enables us to index the more recently asked queries,
which are more likely to be asked again according to the principle of temporal
locality. We de�ne the sliding window as follows.

Definition 7. (Time Unit and Sliding Window) Let S be a stream of
non-FG-queries. A time unit , ti , is an excerpt of S. A sliding window is a fixed
number of successive time units in S, where the window slides forward for every
incoming time unit. Let t� be the current time unit . The current window is W =

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

22 · E�cient Query Processing on Graph Databases

〈t� � w+1, . . . , t� 〉, where w is the number of time units in W .

In the real case, both non-FG-queries and FG-queries come together in the
stream. Since FG-queries can be answered without candidateveri�cation, we only
focus on non-FG-queries. In the rest of Section 5.2, all queries refer to non-FG-
queries. We now de�ne FAQ.

Definition 8. (Frequently Asked Queries) Let freq(q, t) be the frequency
of a query q within a time unit t, i.e., the number of times q is asked within t. Let
T k = 〈t� � k+1, . . . , t� 〉 be the k most recent time units in W = 〈t� � w+1, . . . , t� 〉,
where 1 ≤ k ≤ w. The average frequencyof q in T k is defined as follows:

avgFreq(q, T k) =

P �
i =� � k+1 freq(q, ti)

k
.

We define the maximum average frequency (maxAvgFreq)of q in W as follows:

maxAvgFreq(q, W) = MAX {avgFreq(q, T k) : 1 ≤ k ≤ w}.

Let Q(W) be the set of all queries in W . The set of Frequently Asked Queries
(FAQs) in W is defined as the first NFAQ queries in Q(W) that have the highest
values of maxAvgFreq, where NFAQ (0 ≤ NFAQ ≤ |Q(W)|) is a pre-defined threshold.

We de�ne the average frequency for a query in the window, since the query may
have low frequency in some time units but high frequency in others. In addition, we
favor the more recent time units since the older units are expiring. We compute the
average frequency for a query over eachk most recent time units, for 1 ≤ k ≤ w, and
take the maximum, which is then used to determine whether thequery is an FAQ.
We discuss how we set the thresholdNFAQ later when we construct the FAQ-index.

De�nition 8 works well when the frequency at which queries of each size are
asked is roughly equal. However, when the queries of a certain size are asked much
less frequently than the queries of other sizes, the queriesof that size may mostly
be non-FAQs and discarded. Discarding these queries, especially the largest and
smallest queries, is not desirable according to the following two lemmas.

Lemma 3. Given a query q and two FAQs q1 and q2, where q1 ⊂ q2 ⊂ q, then
Dq ⊆ Dq2 ⊆ Dq1 .

Lemma 4. Given a query q and two FAQs q3 and q4, where q3 ⊃ q4 ⊃ q, then
Dq ⊇ Dq4 ⊇ Dq3 .

Lemma 3 implies that we can estimateCq by either Dq1 or Dq2 . However, if both
q1 and q2 are indexed, then we takeCq = Dq2 sinceDq2 is smaller and closer toDq.

Now, suppose that we also haveq3 indexed. Then, we can obtainCq = (Dq2 −Dq3),
sinceDq3 ⊆ Dq. However, if we have a smaller supergraph ofq, sayq4, we can obtain
an even smallerCq = (Dq2 −Dq4). Therefore, keeping FAQs of every size can better
improve the query performance since a query can be of any size.

Since we determine the FAQs by ranking the maxAvgFreq values, we propose a
normalization on the maxAvgFreq of the queries, as given by De�nition 9.

Definition 9. (Normalized maxAvgFreq) Let AVG-maxAvgFreq(i) be the
averagemaxAvgFreq of all queries in W that are of size i. The normalized max-
AvgFreq of q in W is defined as follows:
ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 23

maxAvgFreq � (q, W) = maxAvgFreq(q, W) ∗
MAX {AVG-maxAvgFreq(i) : ∀i}

AVG-maxAvgFreq(size(q))
.

By substituting the normalized maxAvgFreq into De�nition 8 , queries of each
size now have an equal probability to be selected as FAQs or discarded. We will
further demonstrate the e�ect of taking this normalization by our experiments.

5.2.2 Construction and Query Processing of the FAQ-Index

The FAQ-index consists of the following two components: theFAQ Hash Index
(QHI) and the Inverted-FAQ-Index (IQI).

The QHI is the same as the FHI except that the QHI is built on the set of FAQs.
The IQI is an IGI (see De�nition 5) de�ned on a set of FAQs. However, we do not
include all the FAQs in the IQI, since the IQI needs to be updated incrementally for
each window slide and hence updating the IQI for all FAQs can be expensive. Note
that unlike the update on the graph database, the update on a stream of queries is
much more frequent and the amount of changes to the FAQ-indexis much greater
than that to FG-index due to a database update. Therefore, weonly build a single
IQI for the FAQs. We limit the number of FAQs to be the number of graphs indexed
by the largest IGI at any leaf node of the core FG-index, so that searching a query
in the IQI can be as e�cient as in an IGI. When the number of FAQs exceeds this
limit, we discard the FAQs that have smaller maxAvgFreq values.

The FAQ-index is used to improve the e�ciency of processing non-FG queries as
follows. First, an incoming query in the stream is hashed to match with the FAQs
in the QHI. If the query is found in the QHI, the answer set is retrieved directly
without any candidate veri�cation. If the query is not an FAQ , we use the IQI
to �nd its subgraphs and supergraphs that are FAQs. Then, Lemmas 3 and 4 are
applied to obtain the candidate set. The algorithm of query processing using the
FAQ-index is shown in Algorithm 11. Since the IQI shares the same structure as the
IGI, Lines 5-6 of Algorithm 11 are processed in a similar way as we process the IGI
in Procedure 6 and Algorithm 7. We omit the details but point out the di�erence
as follows. Line 5 of Algorithm 11 is processed in the same wayas Algorithm 7
except that we skip Lines 15-16 and Line 18 of Algorithm 7, andfrom Line 14 we go
to Line 17 instead of to Line 15. Line 6 of Algorithm 11 is processed as Procedure
6 except that we replace Lines 10-14 of Procedure 6 by computing the union of Df

for each supergraphf of q obtained by the intersection in Line 8 of Procedure 6.

5.2.3 Parameter Settings and Maintenance of the FAQ-Index

Before discussing the maintenance of the FAQ-index, we �rstneed to determine the
number of time units w in the window and the length of each time unit.

Let M be the size of the available memory. We use (wM/(w + 1)) memory for
the sliding window and the remaining M/(w + 1) memory as a bu�er to keep the
incoming queries from the stream. The length of a time unit isde�ned as the length
of time that is needed to �ll the M/(w + 1) memory with the incoming queries.
The threshold NFAQ in De�nition 8 is set as the total number of FAQs that the
(wM/(w + 1)) memory is able to hold.

The following example illustrates how we set the parameters.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

24 · E�cient Query Processing on Graph Databases

Algorithm 11 QProcNonFGQ
Input: The FAQ-index, and a query q.
Output: Dq.
1. Search q in the QHI;
2. if(q is in the QHI)
3. Return Dq;
4. else
5. Use the IQI to generate Cq from q’s subgraphs that are FAQs;
6. Use the IQI to obtain D0

q, which is the union of
the answer sets of q’s supergraphs that are FAQs;

7. Return Dq ← D0
q ∪ {g : g ∈ (Cq −D0

q); g ⊇ q};

Example 8. Suppose that we haveM = 110 MB of available memory and the
number of time units in the window is 10, i.e., w = 10. Then, we have 100 MB
of memory for the sliding window and 10 MB for the bu�er to keep the incoming
queries. The length of a time unit is the time needed to �ll the 10 MB bu�er with
the incoming queries. Assume that the 100 MB of memory is ableto hold 1000
FAQs. Then, NFAQ = 1000. �

Finally, we discuss the maintenance of the FAQ-index. For each distinct incoming
query in the stream, we keep the query in the QHI, where the memory to hold the
query is assigned from the bu�er of M/(w + 1) memory. When the M/(w + 1)
memory is used up, we re-compute the FAQs as de�ned in De�nition 8. Those
queries that are not FAQs are deleted from the QHI until M/(w + 1) memory is
released for the bu�er to hold the incoming queries. Then, the old IQI is deleted
and a new IQI is constructed from the set of FAQs in the currentwindow.

5.3 Query Processing using FG*-Index

FG*-index consists of the following three components: FG-index, the feature-index
and the FAQ-index. We have discussed how to use each of the components to
process a query. Now, we combine the three components to process a query, as
shown in Algorithm 12.

The algorithm ProcessQuery processesq according to the size ofq. First, if the
size of q is smaller than that of the smallest feature, we use FG-indexto process
q. However, if q is not an FG, then we use the FAQ-index instead of FG-index to
processq, since FG-index generates a large candidate set for non-FG-queries.

If the size of q is within the size range of features, we �rst check ifq is a feature
using the FHI. If q is not a feature, then it must be a non-FG-query. Thus, the
FAQ-index is used to processq.

If the size of q is greater than that of the largest feature, then we �rst check
whether q is an FAQ using the QHI, since large-sized queries are more likely to be
non-FG-queries. If q is not an FAQ, then we processq using the feature-index. If q
is not found by the feature-index, then q must be a non-FG-query and we use the
IQI to answer q. We also invoke FProcNonFGQ to re�ne Cq using the feature-index.

5.4 Query Performance Improvement of FG*-Index

In Section 4, we give the query response time of FG-index in Equation (3) for
processing FG-queries and in Equation (1) for non-FG-queries. We now give the

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 25

Algorithm 12 ProcessQuery
Input: FG*-index, and a query q.
Output: Dq.
1. if(size(q) < l)
2. Invoke ProcFGQ to use FG-index to process q;
3. if(q is not found by ProcFGQ)
4. Invoke QProcNonFGQ to use the FAQ-index to process q;
5. else if(l ≤ size(q) ≤ u)
6. if(q is a feature in the FHI)
7. Return Dq ;
8. else / � q is not an FG � /
9. Invoke QProcNonFGQ to use the FAQ-index to process q;
10. else if(size(q) > u)
11. if(q is an FAQ in the QHI)
12. Return Dq ;
13. else
14. Invoke FProcFGQ to use the feature-index to process q;
15. if(q is not found by FProcFGQ)
16. Invoke QProcNonFGQ to use the FAQ-index to process q,

and invoke FProcNonFGQ to use the feature-index to refine Cq;

response time of FG*-index by comparing with that of FG-index.
For processing FG-queries using FG*-index, ifq is a feature, then the response

time is given as follows:

Tresponse = (|Dq| × TI =O) . (4)

We do not include the index probing time in Equation (4) because the time taken
to �nd q in the FHI by hashing q is negligible.

If q is not a feature, then the response time of FG*-index is givenas follows:

Tresponse = (T�
search + |Dq| × TI =O) . (5)

T�
search in Equation (5) is signi�cantly smaller than Tsearch in Equation (3),

because using the feature-index signi�cantly reduces the number of subgraph iso-
morphism tests in the index probing process.

For processing non-FG-queries, ifq is an FAQ, then the response time of FG*-
index is given by Equation (4), becauseq is answered using the QHI and the QHI
has the same structure as the FHI.

If q is not an FAQ, then the response time of FG*-index is given as follows:

Tresponse = (T�
search + |Dq| × TI =O + |C �

q | × Tverify) . (6)

If we have indexed the supergraphs ofq in the IQI, then we can obtain a subset
D0

q ⊂ Dq. Thus, |C �
q | = |(Cq − D0

q)|, which is usually very small. Otherwise, theC �
q

obtained using the IQI and the IFI is also much smaller than the Cq obtained by
FG-index as given in Equation (1).

Overall, the use of the feature-index and the FAQ-index in FG*-index improves
the performance of FG-index for processing both FG-queriesand non-FG-queries,
which we verify by extensive experiments in Section 7.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

26 · E�cient Query Processing on Graph Databases

6. UPDATE OF FG*-INDEX

In this section, we propose an e�cient algorithm for updatin g FG*-index when the
graph database is updated.

[Cheng et al. 2007] briey discusses how to update FG-index incrementally for
each graph added to or deleted from the database, which can beextended to update
FG*-index. However, this update algorithm is not e�cient fo r the following reasons.
Let g be the graph to be updated. First, this algorithm requires the enumeration of
every subgraphg0 ⊆ g, which can be costly especially wheng is large, even though
some pruning can be performed. Second, the update requires the ID of g to be
inserted into or removed from Df for every subgraph f of g in the index, which
involves many disk I/Os since Df is stored on the disk. Third, processing update
on one graph at a time is ine�cient and may severely slow down query processing,
especially when updates are frequent and queries are asked frequently.

We propose a di�erent strategy for updating the index. Instead of updating the
index for each graph each time, we devise an algorithm that updates the index for
a batch of graphs each time. The update is divided into two parts: handling deleted
graphs and handling new graphs.

We �rst discuss the handling of deleted graphs. We do not update FG*-index for
each deleted graph but keep all currently deleted graphs in aset, Ddel . Then, for
each queryq, after we obtain Dq using FG*-index, we compute (Dq − Ddel) as the
�nal answer set. The set subtraction is e�cient since it is op erated on graph IDs;
but the question is: when do we update the index for the deleted graphs? We use
a simple mechanism here: when the set subtraction time is longer than the query
processing time using FG*-index, we rebuild the index from scratch on (D − Ddel).

Next, we discuss the handling of new graphs that are added to the database.
Again, we do not update FG*-index for each new graph but keep all new graphs
in a set, Dnew . For each query q, we �rst obtain Dq using FG*-index. Then, we
perform candidate veri�cation for each graph in Dnew against q. Finally, (Dq ∪{g ∈
Dnew : g ⊇ q}) is returned as the answer set.

The question again is:when do we update the index for the newly added graphs?
We cannot simply rebuild FG*-index when verifying the graphs in Dnew is more
costly than query processing using FG*-index, because candidate veri�cation is far
more costly than set subtraction. Obviously, we do not want to rebuild the entire
FG*-index too frequently because it is costly. We devise a solution as follows.

When the time for candidate veri�cation on Dnew is longer than the query pro-
cessing time using FG*-index, we build a new FG*-index onDnew with the same
setting of the parameters, except that we disable the FAQ-index to avoid duplicate
processing of the same query. We call this new FG*-index theauxiliary FG*-index.
If the auxiliary FG*-index already exists, we delete it and build a new one onDnew

and the set of graphs on which the old auxiliary FG*-index wasbuilt. We then
empty Dnew to keep new added graphs. Now, we process each query with both
FG*-index and the auxiliary FG*-index, as well as performing candidate veri�ca-
tion on Dnew if more new graphs are just added. The answer set for a queryq is
(Dq ∪ D0

q ∪ {g ∈ Dnew : g ⊇ q}), where Dq and D0
q are the answer sets returned by

FG*-index and the auxiliary FG*-index, respectively.
We adopt the following strategies for handling newly added graphs:

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 27

(1) When the time for candidate veri�cation on Dnew is longer than the query
processing time using FG*-index, we rebuild the auxiliary FG*-index.

(2) When the accumulated time of constructing the auxiliary FG*-indexes is longer
than the construction time of the current FG*-index, we rebuild the FG*-index.

We set the �rst condition based on the reason that rebuilding the auxiliary FG*-
index on the newly added graphs is much more e�cient than rebuilding the FG*-
index from scratch on the entire database. This is simply because the number of
newly added graphs is far smaller than the number of graphs inthe original graph
databaseD; otherwise, the database should have been updated as triggered by the
second condition.

The second condition is met when the overall overheads on building all the aux-
iliary FG*-indexes become greater than rebuilding the index from scratch. Note
that the total update cost should be counted into the query processing cost, since
if update can be done o�-line, we can simply rebuild the indexfor every database
update. Therefore, we need to control the overall cost spenton the update. Note
that rebuilding FG*-index from the new database is of approximately the same cost
as building the FG*-index from the old database, because thenumber of updated
graphs is relatively small compared with the size of the database. Thus, the second
condition triggers the index to be rebuilt when the overall time spent on building
the auxiliary FG*-indexes becomes greater than rebuildingthe index.

Note that the above two types of database update are not processed separately.
Rather, at any time we may have both deleted graphs and new graphs. Thus, the
answer set of a queryq is (Dq ∪ D0

q ∪ {g ∈ Dnew : g ⊇ q} − Ddel).
The e�ciency of our batch-update algorithm depends on two factors: the e�-

ciency of mining the set of FGs and that of building the index structures from
the FGs. The latter is e�cient since our index does not require a set of FGs of
low support, for which the index construction cost is very e� cient as veri�ed by
our experiments. This is true even when the database becomeslarge, because the
number of FGs remains roughly the same for the sameσ, which is evidenced from
frequent pattern mining from data streams [Manku and Motwani 2002; Yu et al.
2004]. The former, i.e., mining FGs, is also e�cient when thedatabase size is small
to moderate, because we do not require a set of FGs of low support. However, when
the database becomes very large, then the cost of mining FGs from scratch can be
costly. In this case, we need incrementally update the set ofFGs.

The problem of incrementally updating the set of FGs is very similar to the
problem of incrementally maintaining the set of FGs in a data stream (we can
use a sliding window with variable size when there is deletion). We can apply
the concepts for incrementally maintaining frequent itemsets in a data stream to
design an e�cient algorithm for updating the FGs, which is ou r on-going work. At
the current stage, however, when we do not have an algorithm for incrementally
maintaining the set of FGs, our index is more suitable for static environments, or
for the dynamic environments in which the database size is small to moderate.

7. PERFORMANCE EVALUATION

We evaluate the query performance using FG*-index by comparing with FG-index
[Cheng et al. 2007], as well as two other state-of-the-art graph indexes,gIndex [Yan

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

28 · E�cient Query Processing on Graph Databases

et al. 2005a] and C-tree [He and Singh 2006]. We run all experiments on an AMD
Opteron 248 with 2GB RAM, running Linux 64-bit.

7.1 Datasets and Query Sets

We use the following datasets and query sets as shown in TableII, where datasets
are represented asDx and query sets asQy .

Table II. Characteristics of Datasets and Query Sets

Number Range Average Range Average Number Number
of of graph graph of density of distinct of distinct

graphs size size density edges nodes

DAIDS 10K 1� 217 27.40 0.009� 1.0 0.10 221 51
Dcancer 10K� 100K 1� 252 19.95 0.008� 1.0 0.14 303 63
Ddensity0 :1 10K 31� 68 50.49 0.06� 0.15 0.10 220 20
Ddensity0 :2 10K 31� 68 50.49 0.17� 0.26 0.20 220 20
Ddensity0 :3 10K 31� 68 50.49 0.27� 0.38 0.32 220 20
Ddensity0 :4 10K 31� 68 50.49 0.37� 0.50 0.43 220 20
Ddensity0 :5 10K 31� 68 50.49 0.48� 0.62 0.54 220 20

QAIDS -1 100K 1� 24 14.16 0.08� 1.0 0.15 221 51
QAIDS -2 100K 1� 24 14.77 0.08� 1.0 0.14 221 51
QFG 100K 1� 21 13.47 0.09� 1.0 0.15 303 63
Qnon -FG 100K 2� 23 15.67 0.08� 1.0 0.13 303 63
Qmixed 100K 1� 23 15.12 0.08� 1.0 0.14 303 63
Qdensity0 :x 100K 1� 8 3.80 0.29� 1.0 0.59 220 20

Among the datasets, DAIDS and Dcancer are real datasets. DAIDS is the AIDS
antiviral screen dataset, which is provided by [Yan et al. 2005a]. SinceDAIDS has
only 10K graphs, we use sixDcancer datasets of size from 10K to 100K to perform a
scalability test. We obtain the Dcancer datasets from the National Cancer Institute
database2, where more detailed characteristics of the data can be found.

We notice that the density of most graphs in the real datasetsis relatively low;
thus, we use the synthetic graph data generator3 [Cheng et al. 2007] to generate
�ve datasets Ddensity0 :x , by varying the average graph density from 0.1 to 0.5.

The queries inQAIDS -1 and QAIDS -2 are randomly selected from 400K subgraphs
of the graphs in the dataset DAIDS . The queries in QFG , Qnon -FG and Qmixed

are randomly selected from 430K subgraphs of the graphs inDcancer . Qdensity0 :x

represents �ve sets of query sets, in which the queries are randomly selected from
up to 4.8M subgraphs of the graphs in the correspondingDdensity0 :x . The query
sets are also further classi�ed into FG-, non-FG-, and mixed-type- queries; we give
this detail until we use the respective query sets.

7.2 Sensitivity Analysis on the Parameters of FG*-Index

We �rst test the e�ects of the parameters, σ and δ, as well as the feature-index and
the FAQ-index, on the performance of FG*-index. We also provide guidelines on
how to set the parameters in FG*-index. We use the datasetDAIDS .

2http://cactus.nci.nih.gov/ncidb2/download.html.
3http://www.cse.ust.hk/graphgen/.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 29

0.010.020.030.040.050.060.070.080.090.1
10

0

10
1

10
2

10
3

10
4

Value of σ

In
de

xi
ng

 T
im

e
(s

ec
)

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1
FG-mining

(a) Index Construction Time

0.010.020.030.040.050.060.070.080.090.1
10

1

10
2

10
3

10
4

10
5

Value of σ

of

 G
ra

ph
s

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1
of FGs

(b) Number of � -TCFGs/FGs

0.010.020.030.040.050.060.070.080.090.1
0

20

40

60

80

Value of σ

In
de

x
S

iz
e

on
 D

is
k

(M
B

)

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1

(c) Size of Index on Disk

Fig. 8. The E�ects of � and � on the Index Construction

7.2.1 The E�ects ofσ and δ
We test σ from 0.1 to 0.01 andδ from 0 to 1. We usegSpan [Yan and Han 2002]
to mine the set of FGs for eachσ. We construct FG*-index, where the feature set
used to construct the feature-index isF7

2 . We disable the FAQ-index in FG*-index
in this experiment so that the e�ect of σ can be more clearly revealed. We will test
the e�ect of σ on processing non-FG-queries using the FAQ-index in Section 7.3.1.
We also note that δ is automatically adjusted in the FAQ-index.

Figure 8 shows the index construction time and the number ofδ-TCFGs. The
construction time includes the time taken by gSpan to mine the FGs; but we also
report the FG-mining time in Figure 8(a), which dominates th e total index con-
struction time in most cases. We omit δ between 0.3 and 1 because the number
of 0.3-TCFGs is very close to that of 1-TCFGs, as shown in Figure 8(b). Figure
8(b) also shows that the number ofδ-TCFGs at a value of δ as small as 0.1 is al-
ready signi�cantly smaller than the number of FGs, which is the top line in Figure
8(b). Figure 8(a) shows that it is very e�cient to construct t he index except for
σ smaller than 0.03, after which the indexing time increases almost exponentially.
The increase in the indexing time is mainly due to the rapid increase in the number
of FGs whenσ becomes smaller than 0.03, as shown in Figure 8(b).

Figure 8(c) reports the size of the FG*-indexes on the disk, for eachσ and each
δ. The raw dataset DAIDS requires 4.8 MB of space on the disk. The indexes
at σ ≥ 0.03 are about 2-3 times larger than the raw dataset, but the indexes at
σ < 0.03 are much larger. We emphasize that the index size depends mainly on the
number of FGs as shown in Figure 8(b), rather than on the size of the raw dataset.
For di�erent values of δ, the index size is the largest whenδ = 0, because most of
the FGs indexed are 0-TCFGs and hence the duplicate graphs inthe answer sets
of most FGs are not removed since they areδ-TCFGs (see details in Section 3.3.3).

Finally, Table III lists the peak memory consumption of constructing the indexes
for each σ. The increase in the memory consumption is due to the increase in the
number of FGs when σ becomes smaller. However, for the di�erent values ofδ,
the memory consumption remains unchanged, because all FGs are loaded into the
main memory for constructing FG*-index.

Table III. Peak Memory Consumption (MB) of the Index Constru ction
� 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

0 ≤ � ≤ 1 8 8 8 9 9 10 11 16 29 108

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

30 · E�cient Query Processing on Graph Databases

For query processing, we aim to test the performance of processing both FG-
queries and non-FG-queries. We useQAIDS -1 because the answer set of the queries
in QAIDS -1 has a size ranging from 50 to 8222; thus, a query inQAIDS -1 can be
either an FG-query or a non-FG-query with respect to σ (0.01 ≤ σ ≤ 0.1).

Figure 9(a) reports the average response time of processinga query for QAIDS -1 .
In contrast to the index construction, the result shows that a smaller σ gives a
shorter response time in query processing. The decrease in the response time can
be explained by the decrease in the size of the candidate set reported in Figure 9(d).
Although Figure 9(c) reveals an increase in the number of subgraph isomorphism
tests performed in the index probing process, the combined cost of index probing
and candidate veri�cation still decreases whenσ is smaller.

Figure 9(a) shows that the variation in δ does not have much e�ect on the query
response time. However, Figure 9(b) shows that the memory consumption is sig-
ni�cantly increased when δ = 0 and σ is small. The increase in the memory con-
sumption can be explained by Figure 8(b), which shows that the set of 0-TCFGs
is much larger than that of the other δ-TCFGs. As a result, the root IGI that is
built on the set of 0-TCFGs is also larger.

Overall, the query performance of FG*-index is only slightly degraded whenσ
becomes larger and still very impressive even for the largest σ. Considering the
index construction cost, a moderateσ seems to be the best choice. For example,
when σ = 0 .05, the index construction cost is only slightly higher than that of
σ = 0 .1, while the query response time is only slightly longer thanthat of σ = 0 .01
but the memory consumption is much lower. Therefore, we can build FG*-index
at a moderate σ in most cases and at a smallσ only when query response time is
critical. On the other hand, the value of δ does not have a signi�cant e�ect on index

0.010.020.030.040.050.060.070.080.090.1
0

4

8

12

16

Value of σ

R
es

po
ns

e
T

im
e

(m
se

c)

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1

(a) Average Response Time

0.010.020.030.040.050.060.070.080.090.1
0

10

20

30

40

50

Value of σ

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) δ = 0

δ = 0.1
δ = 0.2
δ = 0.3
δ = 1

(b) Peak Memory Consumption

0.010.020.030.040.050.060.070.080.090.1
0

20

40

60

80

100

120

140

Value of σ

of

 S
ub

G
 Is

o.
 T

es
ts

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1

(c) Average Index Probing Cost

0.010.020.030.040.050.060.070.080.090.1
0

100

200

300

400

500

600

Value of σ

of

 C
an

di
da

te
s

δ = 0
δ = 0.1
δ = 0.2
δ = 0.3
δ = 1
answer set

(d) Average Candidate Set Size

Fig. 9. The E�ects of � and � on Query Performance

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 31

construction and query processing, except that the memory consumption increases
considerably whenδ = 0. We further discuss how to �nd the optimal values of the
two parameters in Section 7.2.4.

7.2.2 The E�ect of the Feature-Index

We now show how the use of the feature-index improves the index probing e�ciency,
by comparing with FG-index. We disable the FAQ-index in FG*- index, so that the
improvement comes only from the feature-index. We setδ = 0 .1 and report the
two extreme values ofσ tested in Section 7.2.1, i.e.,σ = 0 .1 and σ = 0 .01. For each
σ, we construct �ve feature-indexes from the feature setsF4

2 , F5
2 , F6

2 , F7
2 , and F8

2 ,
which are represented in Figure 10 as [2, 4], [2, 5], [2, 6], [2, 7], and [2, 8], respectively.

Table IV reports the index construction time (including FG- mining time, which
is 10.19 and 628.1 sec forσ = 0 .1 and 0.01), the peak memory consumption, and
the size of the indexes on the disk. To save space, we report the results of FG*-
index as a range, since the range is small and the increase is linear whenu increases
from 4 to 8, whereu is the upper bound of the size of a feature. The results show
that constructing FG*-index is almost as e�cient as constru cting FG-index. The
indexing time of FG*-index is almost not changed for σ = 0 .1, because we have
only 455 FGs and hence the size of the feature sets is also small. The memory
consumption is increased only slightly. However, there is agreater increase in both
the indexing time and memory consumption for σ = 0 .01, because about 60K FGs
are used to build FG*-index. The size of the index on the disk increases by at most
20 MB due to the feature-index.

Table IV. The E�ect of the Feature-Index on the Index Constru ction
FG-index FG*-index FG-index FG*-index

(0.1) (0.1) (0.01) (0.01)

Indexing time (sec) 10.20 10.21 � 10.27 1108 1111 � 1430
Memory consumption (MB) 9 10 � 11 103 104 � 110
Index size on disk (MB) 2 5 � 7 40 44 � 64

For evaluation of the query performance, we useQAIDS -1 for the same reason as
we give in Section 7.2.1. We record the following four metrics: the average number
of subgraph isomorphism tests performed in the index probing process per query,
the average size of the candidate set per query, the average response time per query,
and the peak memory consumption. The results are reported inFigures 10(a-d).

Figure 10(a) shows that, for σ = 0 .01, the number of subgraph isomorphism
tests performed in the index probing process using FG-indexis very large, while
that using FG*-index is signi�cantly reduced due to the use of the feature-index.

For σ = 0 .1, the number of subgraph isomorphism tests using FG-index is the
smallest since only 455 FGs are indexed. However, Figure 10(b) reveals that, for
σ = 0 .1, the size of the candidate set using FG-index is very large,becauseσ is large
and hence most queries are non-FG-queries. Thus, index probing using FG-index
at σ = 0 .1 is fast but the candidate veri�cation is very costly.

From Figure 10(b), we see that using the feature-index also reduces the candidate
set size. However, forσ = 0 .01, the candidate set size of FG*-index is smaller than
that of FG-index only when F7

2 and F8
2 are used to build the feature-index. This

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

32 · E�cient Query Processing on Graph Databases

[2, 4] [2, 5] [2, 6] [2, 7] [2, 8]
0

200

400

600

800

Feature Set

of

 S
ub

G
 Is

o.
 T

es
ts

FG-index (0.1)
FG*-index (0.1)
FG-index (0.01)
FG*-index (0.01)

(a) Average Index Probing Cost

[2, 4] [2, 5] [2, 6] [2, 7] [2, 8]
0

200

400

600

800

1000

Feature Set

of

 C
an

di
da

te
s FG-index (0.1)

FG*-index (0.1)
FG-index (0.01)
FG*-index (0.01)

(b) Average Candidate Set Size

[2, 4] [2, 5] [2, 6] [2, 7] [2, 8]
0

5

10

15

20

25

30

35

Feature Set

R
es

po
ns

e
T

im
e

(m
se

c)

FG-index (0.1)
FG*-index (0.1)
FG-index (0.01)
FG*-index (0.01)

(c) Average Response Time

[2, 4] [2, 5] [2, 6] [2, 7] [2, 8]
0

10

20

30

40

50

Feature Set

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) FG-index (0.1)

FG*-index (0.1)
FG-index (0.01)
FG*-index (0.01)

(d) Peak Memory Consumption

Fig. 10. Query Performance of the Feature-Index

is because, in our implementation, we simply use the featuresubgraphs of a query,
rather than the maximal FG subgraphs, to obtain the candidate set; while we
mainly rely on the FAQ-index to obtain a small candidate set.

Figure 10(c) veri�es that using the feature-index indeed speeds up the query
processing signi�cantly. We also �nd that using FG-index at σ = 0 .01 is slower
than that at σ = 0 .1, which can be explained by the high index probing cost when
σ = 0 .01. However, when the feature-index is used, we can use a smaller σ to build
FG*-index to reduce the index probing cost and at the same time obtain a small
candidate set. The �gure also shows that the feature-indexes built on F6

2 and F7
2

achieve the best response time. Thus, it shows that when too few features are used,
the index probing performance is not improved; but when too many features are
used, �nding the features themselves becomes too costly.

Figure 10(d) shows that FG*-index consumes about 15 to 25 MB more memory
than FG-index, as u increases from 4 to 8. The increase in the memory consumption
is due to the use of the feature-index. However, we emphasizethat the increase in
memory consumption is not relative, but solely depends on the number of features,
which should not be too large as too many features will have a counter e�ect on
the index probing performance as veri�ed by both Figures 10 (a) and (c).

7.2.3 The E�ect of the FAQ-Index

We now test how the use of the FAQ-index improves the performance of processing
non-FG-queries. We setσ = 0 .01 and δ = 0 .1 for both FG*-index and FG-index,
and the feature-index of FG*-index is constructed onF7

2 .
Since the FAQ-index is constructed on the set of non-FG-queries, we use the

query set QAIDS -2 , which consists of only queries with an answer set size at most
99 < (σ × 10K) = 100. The query set QAIDS -2 is modeled as a stream prepared

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 33

as follows. The stream is made up of 100 blocks and each block consists of 1K
queries. Each block has some queries that are repeated from the previous block.
The number of repetitions follows a Poisson distribution with 100 as the mean.

We test the e�ects of the normalization of maxAvgFreq de�ned in De�nition 9,
the total available memory for the FAQ-index, and the length of a time unit in a
sliding window in terms of memory size (or simply the unit length). If we set the
unit length to be 1 MB, the length of the time unit is the time ne eded to �ll 1 MB
of memory with incoming queries.

We �rst examine the e�ect of the normalization. The total ava ilable memory for
the FAQ-index is set to 8 MB and the unit length to 1 MB. We recor d the following
�ve metrics of query performance: the average number of subgraph isomorphism
tests performed in the index probing process per query, the average size of the
candidate set per query, the total elapsed time for processing all 100K queries
(including dynamically updating the FAQ-index), the total time for dynamically
updating the FAQ-index, and the peak memory consumption.

Table V shows that the normalization indeed improves the query performance.
In particular, the candidate set size is reduced, which veri�es Lemmas 3 and 4 and,
as a result, the query response time is also reduced by about 16.5%.

Table V. The E�ect of Normalization of maxAvgFreq
Index Candidate Total Total Memory

probing cost set size response time update time consumption

Normalized 155 181 1379 sec 9 sec 36 MB
Non-normalized 156 198 1606 sec 22 sec 44 MB

We now test the available memory for the FAQ-index from 8 MB to 512 MB.
At the same time, we test four unit lengths, 1 MB, 2 MB, 4 MB and 8 MB, which
are represented as \FG*-index (i MB)" in this experiment, where i = 1 , 2, 4 and 8.
Equivalently, we also test the e�ect of the number of units in a sliding window (i.e.,
w), since the number of units is equal to (\available memory"/\ unit length"). We
report the results in Figures 11(a-d). Since the memory consumption is consistently
35-40 MB greater than the available memory for the FAQ-index, we omit the details.

Figures 11 (a) and (b) show that both the index probing cost and the candidate
set size are signi�cantly reduced when more memory is available for the FAQ-index,
except when the available memory increases from 256 MB to 512MB. The results
explain the speed-up of query processing when the availablememory increases from
8 MB to 256 MB, as shown in Figure 11(c).

We observe from Figures 11(a-c) that the results remain almost unchanged when
the available memory increases from 256 MB to 512 MB. This is because all the
queries are kept in the QHI when the available memory is slightly larger than 256
MB. Although more available memory allows us to keep more FAQs and answer
queries that are FAQs directly using the QHI, we remark that not all queries are
FAQs and the performance improvement shown in Figure 11 doesnot come only
from the use of the QHI. When a query is asked the �rst time, it is not an FAQ and
cannot be answered using the QHI. For processing such queries, the performance
improvement comes from the use of the IQI. In the query set tested, we allow 10%
of the queries to be repeated in each block of the query streamas to test the e�ect
of the QHI, while the rest of the queries are processed using the IQI.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

34 · E�cient Query Processing on Graph Databases

8 64 128 256 512
0

50

100

150

200

Total Available Memory (MB)

of

 S
ub

G
 Is

o.
 T

es
ts

FG*-index (1MB)
FG*-index (2MB)
FG*-index (4MB)
FG*-index (8MB)

(a) Average Index Probing Cost

8 64 128 256 512
0

50

100

150

200

Total Available Memory (MB)

of

 C
an

di
da

te
s

FG*-index (1MB)
FG*-index (2MB)
FG*-index (4MB)
FG*-index (8MB)

(b) Average Candidate Set Size

8 64 128 256 512
0

400

800

1200

1600

Total Available Memory (MB)

T
ot

al
 R

es
po

ns
e

T
im

e
(s

ec
)

FG*-index (1MB)
FG*-index (2MB)
FG*-index (4MB)
FG*-index (8MB)

(c) Total Response Time

8 64 128 256 512
0

200

400

600

800

Total Available Memory (MB)

T
ot

al
 U

pd
at

e
T

im
e

(s
ec

)

FG*-index (1MB)
FG*-index (2MB)
FG*-index (4MB)
FG*-index (8MB)

(d) Total FAQ-Update Time

Fig. 11. Performance of the FAQ-Index

Although the query response time is not improved further when the available
memory increases from 256 MB to 512 MB, the time taken to update the FAQ-
index increases. This is particularly obvious for FG*-index (1 MB), since the up-
date becomes more frequent when the unit length decreases. Thus, the result also
explains why FG*-index (1 MB) is the slowest in Figure 11(c).

Table VI gives the performance comparison of FG-index, FG*-index without the
FAQ-index, and the full FG*-index. We report the results of F G*-index (4 MB)
with 256 MB of available memory for the FAQ-index.

The results show that using the FAQ-index even further improves the index prob-
ing e�ciency. The size of the candidate set is also signi�cantly reduced. On average,
query processing using FG*-index is �ve times faster than using FG-index, and two
times faster than using FG*-index without the FAQ-index. No te that the larger
memory consumption of FG*-index does not imply that FG*-ind ex is not scal-
able, because the memory consumption isnot relative but depends on theabsolute
available memory assigned for the FAQ-index. In addition, it is acceptable to use
(291-27)=264 MB of memory to double the speed of query processing, because 264
MB of memory is commonly a�ordable today. Moreover, we will show in Section
7.3 that other indexes consume signi�cantly more memory than FG*-index.

Table VI. Performance Improvement made by the FAQ-Index
Index Candidate Response time Memory

probing cost set size per query consumption
FG-index 726 196 34.83 msec 15 MB
FG*-index (no FAQ) 148 210 15.94 msec 27 MB
FG*-index 85 94 7.69 msec 291 MB

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 35

7.2.4 Guidelines on Setting the Parameters of FG*-Index

We have tested the e�ects of the following parameters on the performance of FG*-
index: (1) σ; (2) δ; (3) u; (4) the available memory; and (5) the unit length. Based
on the results we obtain from the previous experiments, we provide the following
guidelines on setting the parameters.

First, the results show that the smaller the value of σ, the shorter the query
response time (Figure 9(a)), but the longer the index construction time (Figure
8(a)). However, it is not entirely true that when the value of σ is smaller, the query
response time will always be shorter. The advantage of usinga smaller σ is to
reduce the size of the candidate set as shown in Figure 9(d); however, Figure 9(c)
shows that the index probing cost increases whenσ decreases. Therefore, there is a
point at which the response time will become longer, when theincrease in the index
probing cost is greater than the reduction in the candidate veri�cation cost. Thus,
the optimal value of σ can be found if query response time is critical. However, if
we take into account both the index construction cost and thequery performance,
Figures 8 and 9 show that a moderate value ofσ is actually a better choice. We
further demonstrate that FG*-index at a moderate σ achieves orders of magnitude
better query performance than other indexes in Section 7.3.

Second, Figures 8 and 9 show that the values ofδ do not signi�cantly a�ect the
index construction cost and the query response time, but thememory consump-
tion is doubled when δ decreases from 0.1 to 0. Therefore, the choice ofδ is not
very critical as far as δ is not too close to 0 and a recommendation based on the
experimental results is to setδ ≥ 0.1.

Third, Figure 10(a) shows that the index probing cost �rst de creases and then
increases whenu increases, implying that there is an optimal u in reducing the
index probing cost. However, Figure 10(b) shows that the candidate veri�cation
cost decreases whenu increases. Thus, we need to consider both the index probing
cost and the candidate veri�cation cost in setting u. We can setu slightly larger
than 2 and increaseu until the index probing cost starts to increase. Then, we
start to consider the candidate veri�cation cost as well when we further increaseu.
Since the number of FGs increases quickly whenu becomes larger, usually there are
only a few tests needed. More importantly, the results in Figure 10 show that the
FG*-indexes built on the di�erent feature-sets are all very e�cient, which means
that these values ofu are all sub-optimal.

Lastly, the available memory for the FAQ-index depends on the memory available
in the system in which the queries are evaluated. However, weremark that an
amount of memory as small as 8 MB can already improve the response time from
15.94 msec to 13.78 msec (about 16%), and 256 MB of memory can reduce the
response time to only 7.69 msec (two times). The unit length a�ects the update
cost of the FAQ-index and hence it should not be too small. However, the optimal
length of a unit depends on the query workload. From our experimental results as
shown in Figures 11(c) and 11(d), setting the length of a unitto be at least 4 MB
only incurs a small update cost on the total response time.

In conclusion, our results show that the query performance of FG*-index is very
impressive for a wide range of parameters tested and the index construction is
also very e�cient except for σ ≤ 0.02. More importantly, we show in the follow-

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

36 · E�cient Query Processing on Graph Databases

ing experiments that, compared with other state-of-the-art indexes, FG*-index is
signi�cantly more robust and scalable.

7.3 Scalability Tests

We now compare FG*-index with gIndex and C-tree, as well as FG-index, through
two scalability experiments by varying the database size and the graph density.

7.3.1 Scalability Test on Database Size

We �rst assess the performance of the indexes at di�erent database sizes. We use
the dataset Dcancer by varying the size from 10K graphs to 100K graphs.

For both FG*-index and FG-index, we set δ = 0 .1 and test two values of σ,
σ = 0 .05 and σ = 0 .01. For FG*-index, we useF7

2 to construct the feature-index,
and set the available memory for the FAQ-index to be 256MB andthe unit length
to be 4MB. The settings of gIndex and C-tree are the default values suggested in
their papers.

Figure 12 reports the experimental results of constructingeach of the indexes.
Figure 12(a) shows that the indexing time of FG*-index and FG-index at σ = 0 .01
is much longer (due to the large number of FGs) than that of theothers. However,
constructing both FG*-index and FG-index at σ = 0 .05 is very quick. Constructing
C-tree is the quickest but the construction uses much more memory as shown in
Figure 12(b), while gIndex cannot be built for databases that have more than 10K
graphs. Thus, taking both the indexing time and the memory consumption into
account, FG*-index and FG-index at σ = 0 .05 are the most e�cient to construct
and the �gures also show that their construction costs increase only slightly as the
database size increases.

Figure 12(c) shows that the size of the indexes on the disk increases linearly when
the database size increases. The result also shows that FG*-index and FG-index
are the largest whenσ = 0 .01 but the smallest whenσ = 0 .05. The result thus
shows that, with the increase in the database size, the indexsize of FG*-index and
FG-index also depends mainly on the value ofσ, or more precisely, on the number
of FGs. When the database size increases, the index size increases linearly because
the answer set size of the FGs increases.

To test the query performance, we prepare three sets of queries,QFG , Qnon -FG

and Qmixed , as shown in Table II. With respect to σ = 0 .01, QFG consists of
only FG-queries, Qnon -FG consists of only non-FG-queries, andQmixed consists

10 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

In
de

xi
ng

 T
im

e
(s

ec
)

Database Size (K)

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)
FG-mining(0.05)
FG-mining(0.01)

(a) Index Construction Time

10 20 40 60 80 100
0

200

400

600

800

1000

1200

Database Size (K)

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(b) Peak Mem. Consumption

10 20 40 60 80 100
0

50

100

150

200

250

300

350

Database Size (K)

In
de

x
S

iz
e

on
 D

is
k

(M
B

)

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)
Raw Data

(c) Size of Index on Disk

Fig. 12. The E�ect of Database Size on Index Construction

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 37

10 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Database Size (K)

R
es

po
ns

e
T

im
e

(m
se

c)
gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(a) Average Response Time

10 20 40 60 80 100
0

500

1000

1500

2000

2500

Database Size (K)

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(b) Peak Mem. Consumption

10 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Database Size (K)

of

 C
an

di
da

te
s

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)
answer set

(c) Average Candidate Set Size

Fig. 13. Performance of Processing FG-Queries

10 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Database Size (K)

R
es

po
ns

e
T

im
e

(m
se

c)

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(a) Average Response Time

10 20 40 60 80 100
0

500

1000

1500

2000

2500

Database Size (K)

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(b) Peak Mem. Consumption

10 20 40 60 80 100
0

1000

2000

3000

4000

Database Size (K)

of

 C
an

di
da

te
s

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)
answer set

(c) Average Candidate Set Size

Fig. 14. Performance of Processing non-FG-Queries

10 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Database Size (K)

R
es

po
ns

e
T

im
e

(m
se

c)

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(a) Average Response Time

10 20 40 60 80 100
0

500

1000

1500

2000

2500

Database Size (K)

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)

(b) Peak Mem. Consumption

10 20 40 60 80 100
0

1000

2000

3000

4000

5000

Database Size (K)

of

 C
an

di
da

te
s

gIndex
C-tree
FG-index(0.05)
FG*-index(0.05)
FG-index(0.01)
FG*-index(0.01)
answer set

(c) Average Candidate Set Size

Fig. 15. Performance of Processing Both FG and Non-FG Querie s

of a mixture of FG-queries and non-FG-queries. The purpose for using the three
types of queries is to test whether FG*-index is e�cient for a ll types of queries. In
Figures 13 to 15, we report the following three metrics: the average response time
per query, the peak memory consumption, and the average sizeof the candidate
set of a query.

The results are very clear: FG*-index at both σ = 0 .05 and σ = 0 .01 achieves
remarkable performance improvement as compared with the other indexes. The
�gures show that FG*-index is more scalable than gIndex and C-tree. Compared
with gIndex, FG*-index is over two orders of magnitude faster and also consumes
signi�cantly less memory, for all types of queries. Compared with C-tree, FG*-
index is two orders of magnitude faster for processing FG-queries and mixed-type
queries and, on average, 60 times faster for processing non-FG-queries. We also see

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

38 · E�cient Query Processing on Graph Databases

from the �gures that the performance improvement becomes greater when the size
of the database increases. The memory consumption of C-treeincreases quickly and
the main memory is used up when the database size is greater than 40K. Compared
with FG-index (with respect to the same σ), FG*-index is also signi�cantly faster,
although the improvement is not as obvious as compared with gIndex and C-tree.
On average, FG*-index is from two times to almost an order of magnitude faster
than FG-index.

The performance improvement of FG*-index can be explained by the size of the
candidate sets obtained by FG*-index and the other indexes,as shown in Figures
13(c), 14(c) and 15(c), in which we also give the average sizeof the answer set of a
query as a reference.

From the results of this experiment, we conclude that FG*-index is signi�cantly
more e�cient than the other indexes for processing both FG-queries and non-FG-
queries, i.e., all types of queries.

Figures 13(b) and 15(b) show that the memory consumption of FG*-index at
σ = 0 .05 is slightly higher than that of the other FG*-index and FG- index. This
is becauseQFG consists of only FG-queries with respect toσ = 0 .01, but those
FG-queries that have frequency greater than 0.01|D| but smaller than 0.05|D| are
non-FG-queries with respect toσ = 0 .05. Thus, there are both FG-queries and non-
FG-queries in QFG with respect to σ = 0 .05. For the same reason, there are more
non-FG-queries in Qmixed with respect to σ = 0 .05 than with respect to σ = 0 .01.
As a result, more memory is used for the FAQ-index in FG*-index at σ = 0 .05 for
processingQFG and Qmixed .

Figures 13 to 15 show that the query performance of FG*-indexat σ = 0 .05 is
also very impressive and close to that of FG*-index atσ = 0 .01. In addition, Figure
12 shows that FG*-index at σ = 0 .05 is the most e�cient to construct. Therefore,
this set of experiments veri�es that the following strategy is not a�ected by the
change in the database size: we can use FG*-index at a largerσ if it is too costly
to construct FG*-index at a smaller σ.

7.3.2 Scalability Test on Graph Density

As shown in Table II, the average density of the graphs in bothDAIDS and Dcancer

is relatively low. Thus, we use the �ve datasets,Ddensity0 :x , by varying the average
graph density from 0.1 to 0.5.

We set δ = 0 .1 for both FG*-index and FG-index. And we set σ = 0 .05 in this
experiment so that the query processing e�ciency does not come from a high index
construction cost. For FG*-index, we useF3

2 to construct the feature-index since
the FGs are smaller graphs, and set the available memory for the FAQ-index to
256 MB and the unit length to 4 MB. The settings of gIndex and C-tree are the
default values suggested in their papers.

Figure 16(a) shows that the index construction time of FG*-index is comparable
to those of FG-index and C-tree, but signi�cantly shorter th an that of gIndex.
Figure 16(b) shows that constructing FG*-index consumes signi�cantly less memory
than constructing both gIndex and C-tree. The construction costs of FG*-index,
FG-index and C-tree remain stable over di�erent graph densities. The increase in
the cost of constructing gIndex is due to the rapid increase in the number of graphs

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 39

0.1 0.2 0.3 0.4 0.5
10

0

10
1

10
2

10
3

10
4

Graph Density

In
de

xi
ng

 T
im

e
(s

ec
)

gIndex
C-tree
FG-index
FG*-index
FG-mining

(a) Index Construction Time

0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

Graph Density

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index
FG*-index

(b) Peak Memory Consumption

Fig. 16. The E�ect of Graph Density on Index Construction

0.1 0.2 0.3 0.4 0.5
10

-1

10
0

10
1

10
2

10
3

10
4

Graph Density

R
es

po
ns

e
T

im
e

(m
se

c)

gIndex
C-tree
FG-index
FG*-index

(a) Average Response Time

0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

Graph Density

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) gIndex

C-tree
FG-index
FG*-index

(b) Peak Mem. Consumption

0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

Graph Density

of

 C
an

di
da

te
s

gIndex
C-tree
FG-index
FG*-index
answer set

(c) Average Candidate Set Size

Fig. 17. Query Performance on Di�erent Graph Densities

to be indexed, because a graph with a higher density has more subgraphs.
Figure 16(a) shows that it takes slightly longer time to build FG*-index and FG-

index at the density of 0.5. This is because considerably more FGs are generated
at the density of 0.5. However, the peak memory consumption is not increased
because building the index consumes less memory than miningthe FGs; thus, the
peak memory consumption is taken from mining the FGs, which is relative to the
database size and hence remains stable over di�erent densities.

The size of the indexes on the disk is at most 6 MB larger than that of the
respective database size on the disk, except that of gIndex which grows from 14 to
74 MB when the density increases from 0.1 to 0.4. This result also con�rms the
results reported in Figures 16 (a) and (b). We omit the details due to space limits.

To test the query performance, we prepare a set of queries foreach of the �ve
datasets, shown asQdensity0 :x in Table II. We randomly select the queries and do
not classify them as FG-queries or non-FG-queries, since gIndex and C-tree do not
distinguish between the two types of queries and we have tested the performance
of FG*-index on di�erent types of queries in Section 7.3.1.

Figures 17(a) and 17(b) show that FG*-index can process a query orders of
magnitude faster than both gIndex and C-tree, and FG*-index also consumes sig-
ni�cantly less memory. This result can be explained by the size of the candidate
set as shown in Figure 17(c). Note that the candidate set obtained by FG*-index
is even signi�cantly smaller than the answer set because candidate veri�cation is
only needed for non-FG-queries that are not frequently asked.

The �gures show that the query performance of the indexes is not degraded when
the density increases. We explain this result as follows. The two main factors that

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

40 · E�cient Query Processing on Graph Databases

determine the query performance are the index probing cost and the candidate set
size. The index probing cost mainly depends on the number of graphs that are
indexed, which does not change signi�cantly for di�erent densities. The candidate
set size is determined by the answer set of the subgraphs (andalso that of the
supergraphs for the FAQ-index in FG*-index) of the query. Since a graph with a
high density has more subgraphs, more subgraphs of the querycan be found to give
a small candidate set. This explains why the query performance of the indexes is
actually improved slightly when the density increases.

The performance of FG*-index is the best when the density is 0.1 and 0.2. This
di�erence from the other indexes is because the query sets ofthese two densities
contain many small-size FG-queries, which can be directly answered by the FHI
in the feature-index. This result highlights another advantage of FG*-index: it is
e�cient in processing small-size FG-queries.

7.4 The E�ect of Database Updates on FG*-index

Finally, we assess the performance of our update algorithm using the datasetDcancer

that consists of 20K graphs. We divide the 20K graphs into twodatabases, namely
the current database and the source database, where each database initially contains
10K graphs. We �rst build FG*-index on the current database, with σ = 0 .05
and other settings being the same as in Section 7.3.1. This FG*-index is called
the current FG*-index. Then, at each step, we randomly select 10 graphs from
the current database and the source database. The graphs aredeleted from the
database from which they are selected; however, if the graphs are from the source
database, then they are also added to the current database. In this way, we model
both the insertion and deletion for the current database.

We randomly select 10K queries fromQmixed . After each update of the current
database, we process the 10K queries using the current FG*-index and theauxiliary
structures, which include the auxiliary FG*-index, Ddel and Dnew . This process
continues until we need to rebuild FG*-index from scratch.

At the point when we rebuild a new FG*-index from the new database, about
3.3K new graphs are added and 3K graphs are deleted. We reportthe experimental
results as follows. During the entire update process, 11 auxiliary FG*-indexes are
built. The time taken to construct each of them is shown in Table VII. The total
time of building these indexes is 15.33 sec, which is longer than the time taken to
build the current FG*-index, which takes 14.52 sec, therebysatisfying Condition
(2) in Section 6. The memory required to build these indexes is 2-4 MB.

The total index construction time for the entire update process is 29.43 sec, which
includes the 15.33 sec for building the 11 auxiliary FG*-indexes and 14.10 sec for
rebuilding the new FG*-index from the new database at the endof the update
process.

Table VII. Construction Time (sec) of the 11 Auxiliary FG*-I ndexes
1 2 3 4 5 6 7 8 9 10 11

0.81 0.52 0.71 0.95 1.17 1.33 1.49 1.74 1.99 2.19 2.43

The average response time of processing a query using the current FG*-index
and the auxiliary structures is 18.23 msec, including the total index construction

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 41

time. However, the result does not show how much the query performance is de-
graded compared with using the FG*-index that is updated whenever the database
is updated. Since it takes too long if we build a new FG*-indexfor each of the
6.3K graphs that are updated, we use an approximation as follows. We build a new
FG*-index at each of the 11 points when an auxiliary FG*-index is built and use
this FG*-index to process the 10K queries. The response timeper query averaged
over the 11 points is 13.75 msec, not including the time to build the FG*-indexes.
Thus, the response time of the batch-update strategy is only(18.23/13.75) = 1 .33
times longer than the (approximated) optimal time. We note t hat the optimal time
does not include the time taken to update the index whenever agraph is inserted
or deleted, which can be expensive especially if the index islarge.

Finally, we note that we do not draw comparisons with gIndex, C-tree and FG-
index, because the update is not implemented in the package provided to us by the
authors. Although we are not able to compare with the update-per-graph strategy,
we are convinced that our batch-update strategy is more e�cient and practical for
the following reason. In practice, there can be in fact threeoperations that we
need to process at any time: a query to be processed, a graph tobe deleted, and a
graph to be inserted. Our update strategy allows us to �rst place the graphs to be
updated into Ddel and Dnew , and continue the query processing instantly, rather
than waiting for the update to be completed. This is particularly advantageous
when the update is frequent. On the contrary, if the update is not frequent, we
can even build FG*-index at a smaller σ to optimize the query performance and
perform the update when the system is idle.

8. RELATED WORK

A number of indexes have been proposed for processing subgraph queries. Among
them, GraphGrep [Shasha et al. 2002] is a path-based approach to indexing graph
databases. However, the set of paths in a graph database is huge and hence may
a�ect the performance of the index. To address the weakness of the path-based
approach, gIndex [Yan et al. 2005a] is proposed to index the subgraphs of the
graphs in the database. Since the number of all subgraphs is too large, a set of
discriminative FGs, Fd, is de�ned and gIndex is then constructed onFd. A query
q is processed by �rst generatingCq = (

T
f 2F d^ f � q Df) and then Dq is obtained

by verifying Cq. Another graph-based approach isC-tree [He and Singh 2006]
de�ned on the notion of graph closure. Each internal node in C-tree is a closure
of its children and each leaf node is a graph in the database. Thus, a closure is
similar to a minimum bounding rectangle in an R-tree. Searching in C-tree is also
analogous to that of an R-tree, except that the matching is between graphs. A
faster approximate subgraph isomorphism testing is performed between a query
and every internal node; however, the exact subgraph isomorphism testing is still
required for matching a query with every leaf node (i.e., candidate veri�cation).

We are also aware of a number of recent developments in indexing graph databases.
TreePi [Zhang et al. 2007] is an index constructed on a set of discriminative features
selected from a set of frequent subtrees. A query is �rst partitioned into a set of
features and then matched with the set of indexing features to obtain a candidate
set. TreePi also utilizes the location information of the features in the database

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

42 · E�cient Query Processing on Graph Databases

graphs to further re�ne the candidate set as well as to facilitate the subgraph iso-
morphism testing in the veri�cation step. GString [Jiang et al. 2007] considers the
semantics of the graph structures in the database. A set of basic structures in the
speci�c domain is selected. Both the graphs and the query aretransformed into
strings in terms of the basic structures. Then, an index is built on the strings of
the graphs and query processing is performed as string matching. The use of the
basic structures, instead of using individual nodes and edges, not only improves the
searching e�ciency, but also reduces the candidate set size. For both TreePi and
GString, candidate veri�cation is required for processingall queries.

GDIndex [Williams et al. 2007] is an index constructed based on graphdecom-
position. GDIndex is essentially a lattice structure built on the set of all subgraphs
of all graphs in the database. A query can be answered e�ciently by locating the
query graph in the lattice by hashing and then reporting all its descendants that
correspond to database graphs. No candidate veri�cation isneeded since all sub-
graphs are indexed. However, since a graph ofn edges hasO(2n) subgraphs, this
approach is only suitable for databases that consist of verysmall graphs and do
not have a large number of distinct graphs.

[Zhao et al. 2007] use frequent trees as features to build an index. Trees, instead
of graphs, are used as features because they achieve a good tradeo� between feature
size, feature selection cost and pruning power. They also select a small number of
discriminate graphs on demand to achieve better pruning ability. For processing a
query, they �rst use the features to �lter the graphs in the da tabase and to produce
a candidate set. Thus, candidate veri�cation is required for processing all queries.

In addition to the above-mentioned indexes, we discussedFG-index [Cheng et al.
2007] in Section 3, which serves as the basis for the development of FG*-index. We
analyzed the desirability and limitations of FG-index in Section 4 and addressed
its limitations by proposing the feature-index and the FAQ- index in Section 5. The
improvements made by FG*-index over FG-index were clearly demonstrated in the
comprehensive experiments presented in Section 7.

In addition to the above indexes,Daylight [James et al. 2003] andAnMol [Srini-
vasa and Kumar 2003] are indexes for processing molecular structures. DataGuides
[Goldman and Widom 1997],T-index [Milo and Suciu 1999],F&B-index [Kaushik
et al. 2002],D(k)-index [Chen et al. 2003], andFIX [Zhang et al. 2006] are indexes
for query processing on semi-structured data and XML. Most of these indexes are
based on path or subtree structures.

Apart from the query processing on a database that consists of a set of graphs,
searching subgraphs in a single large graph is studied inGraphDB [G•uting 1994]
and SUBDUE [Cook and Holder 1994; Holder et al. 1994]. Finding subgraphs that
match a given query pattern in a large graph is also studied by[Tong et al. 2007],
while �nding the best connection between a given set of querynodes is studied
by [Faloutsos et al. 2004; Koren et al. 2006; Tong and Faloutsos 2006]. Another
type of queries on single graphs is thereachability query, that is, whether a node is
reachable from another node. Reachability queries are studied in [Chen et al. 2005;
Cheng et al. 2006; Wang et al. 2006; Tri�l and Leser 2007].

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

E�cient Query Processing on Graph Databases · 43

9. CONCLUSIONS

We propose an e�cient index, FG*-index, for processing subgraph queries on graph
databases. FG*-index consists of the following three components: FG-index, the
feature-index, and the FAQ-index.

First, FG-index adopts the concept of FGs to classify a largeset of queries as
FG-queries, which are answered without candidate veri�cation. As shown by our
experiments, FG-queries are the most expensive queries to process using other
existing indexes due to the large size of the candidate sets.

Second, the feature-index is employed to reduce the high index probing cost, so
that more FGs can be indexed to allow more queries to be answered without can-
didate veri�cation. In addition, queries that are features can be answered instantly
using the feature-index.

Lastly, the FAQ-index is used to answer frequently asked non-FG-queries without
candidate veri�cation and with negligible index probing cost. If the query is not
frequently asked and not an FG, using the FAQ-index allows usto obtain part of
the answer set and verify only a small number of candidates.

We evaluate the performance of FG*-index with extensive experiments. The
results show that using FG*-index is up to orders of magnitude faster than using
the state-of-the-art indexes, including gIndex [Yan et al. 2005a], C-tree [He and
Singh 2006] and FG-index [Cheng et al. 2007], for processingboth FG-queries and
non-FG-queries. FG*-index is also much more scalable than the other indexes.

Finally, we propose a batch-update strategy that enables FG*-index to keep its
query processing e�ciency while at the same time handling frequent updates. The
experimental results show that our update strategy achieves query performance
(including the update cost) that is only slightly worse than the optimal query
performance (not including the update cost).

REFERENCES

Chen, L. , Gupta, A. , and Kurul, M. E. 2005. Stack-based algorithms for pattern matching on
dags. In VLDB . 493{504.

Chen, Q. , Lim, A. , and Ong, K. W. 2003. D(k)-index: An adaptive structural summary for
graph-structured data. In SIGMOD Conference . 134{144.

Cheng, J. , Ke, Y. , Ng, W. , and Lu, A. 2007. Fg-index: towards veri�cation-free query processin g
on graph databases. In SIGMOD Conference . 857{872.

Cheng, J. , Yu, J. X. , Lin, X. , Wang, H. , and Yu, P. S. 2006. Fast computation of reachability
labeling for large graphs. In EDBT . 961{979.

Cook, D. J. and Holder, L. B. 1994. Substructure discovery using minimum description le ngth
and background knowledge. J. Artif. Intell. Res. (JAIR) 1 , 231{255.

Cook, S. A. 1971. The complexity of theorem-proving procedures. In STOC . 151{158.
Faloutsos, C. , McCurley, K. S. , and Tomkins, A. 2004. Fast discovery of connection sub-

graphs. In KDD . 118{127.
Golab, L. and •Ozsu, M. T. 2003. Issues in data stream management. SIGMOD Record 32, 2,

5{14.
Goldman, R. and Widom, J. 1997. Dataguides: Enabling query formulation and optimiza tion

in semistructured databases. In VLDB . 436{445.
G•uting, R. H. 1994. Graphdb: Modeling and querying graphs in databases. I n VLDB . 297{308.
He, H. and Singh, A. K. 2006. Closure-tree: An index structure for graph queries. I n ICDE . 38.
Holder, L. B. , Cook, D. J. , and Djoko, S. 1994. Substucture discovery in the subdue system.

In KDD Workshop . 169{180.

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

44 · E�cient Query Processing on Graph Databases

Huan, J. , Wang, W. , Bandyopadhyay, D. , Snoeyink, J. , Prins, J. , and Tropsha, A. 2004.
Mining protein family speci�c residue packing patterns fro m protein structure graphs. In
RECOMB . 308{315.

Huan, J. , Wang, W. , Prins, J. , and Yang, J. 2004. Spin: mining maximal frequent subgraphs
from graph databases. In KDD . 581{586.

Inokuchi, A. , Washio, T. , and Motoda, H. 2000. An apriori-based algorithm for mining frequent
substructures from graph data. In PKDD . 13{23.

James, C. A. , Weininger, D. , and Delany, J. 2003. Daylight theory manual daylight version
4.82. Daylight Chemical Information Systems, Inc. .

Jiang, H. , Wang, H. , Yu, P. S. , and Zhou, S. 2007. Gstring: A novel approach for e�cient
search in graph databases. In ICDE . 566{575.

Kaushik, R. , Bohannon, P. , Naughton, J. F. , and Korth, H. F. 2002. Covering indexes for
branching path queries. In SIGMOD Conference . 133{144.

Ke, Y. , Cheng, J. , and Ng, W. 2007. Correlation search in graph databases. In KDD . 390{399.
Koren, Y. , North, S. C. , and Volinsky, C. 2006. Measuring and extracting proximity in

networks. In KDD . 245{255.
Manku, G. S. and Motwani, R. 2002. Approximate frequency counts over data streams. In

VLDB . 346{357.
Milo, T. and Suciu, D. 1999. Index structures for path expressions. In ICDT . 277{295.
Shasha, D. , Wang, J. T.-L. , and Giugno, R. 2002. Algorithmics and applications of tree and

graph searching. In PODS. 39{52.
Srinivasa, S. and Kumar, S. 2003. A platform based on the multi-dimensional data model f or

analysis of bio-molecular structures. In VLDB . 975{986.
Tong, H. and Faloutsos, C. 2006. Center-piece subgraphs: problem de�nition and fast s olutions.

In KDD . 404{413.
Tong, H. , Faloutsos, C. , Gallagher, B. , and Eliassi-Rad, T. 2007. Fast best-e�ort pattern

matching in large attributed graphs. In KDD . 737{746.
Tri�l, S. and Leser, U. 2007. Fast and practical indexing and querying of very large graphs.

In SIGMOD Conference . 845{856.
Wang, H. , He, H. , Yang, J. , Yu, P. S. , and Yu, J. X. 2006. Dual labeling: Answering graph

reachability queries in constant time. In ICDE . 75.
Williams, D. W. , Huan, J. , and Wang, W. 2007. Graph database indexing using structured

graph decomposition. In ICDE . 976{985.
Yan, X. and Han, J. 2002. gspan: Graph-based substructure pattern mining. In ICDM . 721{724.
Yan, X. and Han, J. 2003. Closegraph: mining closed frequent graph patterns. I n KDD . 286{295.
Yan, X. , Yu, P. S. , and Han, J. 2005a. Graph indexing based on discriminative frequent str ucture

analysis. ACM Trans. Database Syst. 30, 4, 960{993.
Yan, X. , Yu, P. S. , and Han, J. 2005b. Substructure similarity search in graph databases. In

SIGMOD Conference . 766{777.
Yu, J. X. , Chong, Z. , Lu, H. , and Zhou, A. 2004. False positive or false negative: Mining

frequent itemsets from high speed transactional data strea ms. In VLDB . 204{215.
Zhang, N. , •Ozsu, M. T. , Ilyas, I. F. , and Aboulnaga, A. 2006. Fix: Feature-based indexing

technique for xml documents. In VLDB . 259{270.
Zhang, S. , Hu, M. , and Yang, J. 2007. Treepi: A novel graph indexing method. In ICDE .

966{975.
Zhao, P. , Yu, J. X. , and Yu, P. S. 2007. Graph indexing: Tree + delta > = graph. In VLDB .

938{949.

...

ACM Transactions on Database Systems, Vol. V, No. N, July 2008.

