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This paper addresses search engine personalization. We present a new approach to mining a
user’s preferences on the search results from clickthrough data and using the discovered preferences
to adapt the search engine’s ranking function for improving search quality. We develop a new
preference mining technique called SpyNB, which is based on the practical assumption that the
search results clicked on by the user reflect the user’s preferences, but it does not draw any
conclusions about the results that the user did not click on. As such, SpyNB is still valid even if
the user does not follow any order in reading the search results or does not click on all relevant
results. Our extensive offline experiments demonstrate that SpyNB discovers many more accurate
preferences than existing algorithms do. The interactive online experiments further confirm that
SpyNB and our personalization approach are effective in practice. We also show that the efficiency
of SpyNB is comparable to existing simple preference mining algorithms.
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1. INTRODUCTION

As the amount of information on the Web (World Wide Web) is abundant and per-
sonal electronic devices are ubiquitous, there has been much research work related
to personalization with the objective to satisfy users’ diversified needs in searching
Web information [Liu et al. 2002; 2004; Jeh and Widom 2003; Haveliwala 2002;
Sugiyama et al. 2004]. Most current search engines, however, return the same re-
sults to all users who ask the same query. This is clearly inadequate when the
users have different search goals, tasks and interests. For example, for the query
“apple”, some users may be interested in Web pages about “apple” as a computer,
while other users may want information related to “apple” as a fruit. In fact, cur-
rent Web search engines return mostly pages about apple as a computer, making
it difficult for users to retrieve pages about apple as a fruit. We can easily find
many queries such as “mouse”, “chair”, “ir” and “Java”, which may be interpreted
by different users differently. We should also note that this problem is more than
a problem of query semantics; even if a query is interpreted by users in the same
way, users may still be looking for different aspects of the subject (e.g., one may
be interested in Java tutorials while others may be interested in Java compilers).
Therefore, delivering the same search results for the same query is not satisfactory.
Recent work on search engine adaptation techniques aims to address this problem
[Joachims 2002b; Tan et al. 2004; Deng et al. 2004].
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In this paper, we tackle the problem of search engine adaptation by considering

two main research issues. The first one is preference mining, which discovers user’s
preferences of search results from clickthrough data. For example, for a particular
query, q, if a user chooses to click a search result, lA, but skips another one, lB ,
preference mining algorithms aim to discover the user’s preferences from the click-
through data, e.g., the user prefers search result lA to lB for query q. Clickthrough
data (or we may simply say CT data) is a search engine log that records for each
query the result list presented to the user as well as the links clicked on by the user.
The second research issue is ranking function optimization, which optimizes the
ranking (retrieval) function of a search engine according to the user’s preferences.
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Fig. 1. The general process of search engine adaptation using clickthrough data

The general process of search engine adaptation is shown in Figure 1. The main
idea is to use our new approach, SpyNB (Spy Näıve Bayes), to generate a set of
preferences that are then fed into the RSVM (Ranking Support Vector Machine)
algorithm for optimizing the ranking function for the user, which will be detailed in
Sec 2.2. Essentially, SpyNB discovers the fragment preference pairs as constraints
that are fed into the RSVM framework as shown in Figure 2. SpyNB is an effective
means to generate the positive and negative datasets, from which accurate prefer-
ence fragment pairs can be derived for optimizing the ranking function. In addition,
the generated preference pairs do not rely on the strict scan order assumption. This
approach also solves the problem that a user might skip some relevant links when
he or she scans down the result list, leading to the extraction of wrong preference
pairs.
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Fig. 2. A functional diagram of the SpyNB process
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At the very beginning of search engine adaptation, an adaptable search engine
adopts a general (not adapted) ranking function to serve a new user. Then, the
user submits queries and clicks on the search results while the search engine logs
the user’s actions as clickthrough data for analysis. The clickthrough data is first
processed by a preference mining algorithm, which outputs explicit user preferences
in the form of “the user prefers lA to lB”. Later a ranking function optimizer takes
the explicit user preferences as input data and produces an optimized ranking func-
tion with respect to the user’s preferences. Finally, the updated ranking function
replaces the old general ranking function to serve the future queries of this par-
ticular user. At this stage, a round of search engine adaptation is finished. The
adaptation process can be repeated regularly to determine the most updated user
preferences.

It is worth mentioning that in our recent survey [Ke et al. 2005], we classified
search engine adaptation into three categories, namely, content-based personaliza-
tion, link-based personalization and function-based personalization. Our current
approach falls in the third category. Essentially, we propose a new preference min-
ing algorithm and extend the work of search engine adaptation to personalization,
which is achieved through adapting the search engine’s ranking function for indi-
vidual users. In particular, our clickthrough interpretation is more reasonable and
intuitive than previous approaches, since our preference mining algorithm does not
make strong assumptions on how users read the search results.

The information source we investigate is clickthrough data, which can be formally
represented as a triplet (q, r, c) [Joachims 2002b], where q is the input query, r
is the result list of links (l1, . . . , ln), and c is the set of links that the user has
clicked on. Figure 3 illustrates an example of clickthrough data for the query
“apple”. In the figure, the three links, l1, l4 and l8, are in bold, indicating that
they have been clicked on by the user. The advantage of using clickthrough data
to discover a user’s preferences is that it does not intervene the user’s interaction
with the searching process. The data can be collected by a search engine without
additional burden on the user. Thus, clickthrough data are much easier to collect
and more abundant than explicit feedback [Bartell et al. 1994] that requires the
user’s explicit ratings. However, the user’s preferences conveyed by clickthrough
data are implicit and sometimes ambiguous. Therefore, discovering the real user
preferences from clickthrough data is non-trivial but critical to high-quality search
engine adaptation. The reason is that if the identified preferences are inaccurate,
optimizing the ranking function using inaccurate preferences can make the ranking
(retrieval) quality worse.

Preference mining is a challenging problem as evidenced by the recent work in
[Joachims 2002b; Deng et al. 2004; Joachims et al. 2005]. Existing algorithms are
based on some strong assumptions on how users scan the search results in a strict
order and then deduce the relative preferences, which may not be correct in reality.
For example, Joachims’ algorithm assumes that users scan search results strictly
from top to bottom. However, it is possible that a user skips several results without
examining them carefully. As a result, Joachims’ assumption is too simplistic to
predict all correct preference pairs to accurately reflect users’ needs. We do not
make this strong assumption about a user’s scanning behavior but introduce a new
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Links The list of search results with titles, abstracts and URLs of Web pages

l1 Apple
(clicked) Opportunities at Apple. Visit other Apple sites . . .

http://www.apple.com/
l2 Apple - QuickTime - Download

Visit the Apple Store online or at retail locations . . .
http://www.apple.com/quicktime/download/

l3 Apple - Fruit
Apples have a rounded shape with a depression at the top . . .
http://www.hort.purdue.edu/ext/senior/fruits/apple1.htm

l4 Apple .Mac Welcome
(clicked) . . .member specials throughout the year. See . . .

http://www.mac.com/
l5 www.apple-history.com

A brief history of the company that changed the computing world . . .
http://www.apple-history.com/

l6 MacCentral: Apple Macintosh News
Steve Jobs unveils Apple mini stores. . . .
http://www.macworld.com/news/

l7 Adams County Nursery, apple trees
One of the most widely planted apple cultivars worldwide.
http://www.acnursery.com/apples.htm

l8 Apple - Support
(clicked) Support for most Apple products provided by Apple Computer

http://www.info.apple.com/
l9 AppleInsider

. . . Apple seeds Mac OS X Server 10.3.6 build 7R20.
http://www.appleinsider.com/

l10 ROSE APPLE Fruit Facts
The rose apple is too large to make a suitable container plant. . . .
http://www.crfg.org/pubs/ff/roseapple.html

Fig. 3. Search on the query “apple” and the CT data. (Links in bold are clicked
on by the user.)

interpretation on clickthrough data based on the simple but reasonable assumption
that the user’s preferences can be reflected by the links he or she clicks on. We
do not make any explicit assumptions on the relevancy of the links that he or she
did not click on. Accordingly, we propose a novel Spy Näıve Bayes algorithm for
discovering preferences, denoted as SpyNB. Furthermore, we present an approach
to personalizing a search engine through adapting its ranking function using SpyNB
with a ranking function optimizer.

To evaluate the effectiveness of SpyNB and our search engine personalization
approach, we personalize a metasearch engine that comprises MSNSearch [MSN ],
Overture [Ove ] and WiseNut [Wis ] in the experiments. The offline empirical results
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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demonstrate that SpyNB discovers much more accurate preferences than Joachims’
[Joachims 2002b] and mJoachims’ [Deng et al. 2004] algorithms do. Moreover, we
show that the ranking (retrieval) function personalized with SpyNB improves the
ranking quality in terms of the average rank of user’s clicks by 20% compared
with the case without learning, which clearly indicates that the personalization
effect is significant. Our interactive online experiments further confirm that the
metasearcher personalized by SpyNB is significantly better in retrieval quality than
MSNSearch and the metasearcher based on Joachims’ algorithm.

In summary, this paper makes two main contributions. First, a novel SpyNB
preference mining algorithm is proposed, which is demonstrated to be more effective
and accurate than existing algorithms. Second, a search engine personalization
framework based on preference mining is presented.

The rest of this paper is organized as follows: Section 2 surveys the related work.
In Section 3, we introduce a new clickthrough interpretation. In Section 4, we
present our SpyNB preference mining algorithm. In Section 5, we report empirical
results when SpyNB applied to search engine personalization. Finally, Section 6
concludes the paper.

2. RELATED WORK

Personalization techniques have been developed in diversified ways (cf. see Section
5.1 of [Ke et al. 2005] for a detailed analysis). For example, content-based person-
alization deals with the “relevance” measure of Web pages and the user’s queries.
In this approach, the user’s query is modified to adapt the search results for the
specific user. In order to manage users’ interests, a content-based personalization
technique is used to construct users’ profiles, which store users’ interests derived
from their search histories.

Link-based personalization performs personalization based on link analysis tech-
niques. Traditional link analysis techniques, like the PageRank algorithm, compute
scores that reflect a “democratic” importance with no preferences on any particu-
lar pages. However, in reality, a user may have a set of preferred pages in mind.
The link-based personalized searching techniques redefine the importance of Web
pages according to different users’ preferences. For example, a user may wish to
use his or her bookmarks as a set of preferred pages, so that any retrieved pages
that are important with respect to the bookmarked pages would be ranked higher
than other non-bookmarked pages. It is worth mentioning that [Pretschner and
Gauch 1999] introduced an ontology-based Web site mapping approach for identi-
fying conceptual meta-information from local sites. The information can be used to
classify Web pages into categories, which is an effective text classification approach
for matching user preferences. The work in [Heer and Chi 2002] incorporated text
analysis to discover preferences in order to obtain personalised ranking functions.

Research on personalizing search engines based on clickthrough consists of two
main research issues: preference mining and ranking function optimization. A
preference mining algorithm first discovers user’s preferences on the search results
from clickthrough data. A ranking function optimization method optimizes a search
engine’s ranking function according to the discovered preferences. We now review
these two research issues in more detail in the following subsections, since they are
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directly relevant to our subsequent discussion.

2.1 Preference Mining Algorithms

Preference mining has been investigated in recent years. The mathematical foun-
dation for preferences was studied in [Kießling 2002; Agrawal and Wimmers 2000].
In this paper, we adopt the strict partial order model [Kießling 2002] to express
preferences.

Definition 1. (Preference) Given two retrieved links, li and lj, for a given
query, q, the pairwise preference, li <q lj, means that the user prefers lj to li with
respect to the query q.

There are two existing algorithms for mining preferences from clickthrough data.
One is the algorithm proposed in [Joachims 2002b], which assumes that the user
scans the ranked list of the search results strictly from top to bottom. In particular,
Joachims’ algorithm elicits preferences based on a clickthrough interpretation as de-
scribed in Interpretation 1. We hereafter refer to Joachims’ algorithm in [Joachims
2002b] as “Joachims’ algorithm” or simply “Joachims”.

Interpretation 1. When a user scans the ranked list of the search results with
respect to the query, q, if he or she does not click on a link, li, but clicks on a lower
link, lj, where j > i, then this indicates that the user prefers link lj to li. In this
case, the preference is identified by the partial order, <q, and is denoted as li <q lj.
The rationale is that when the user scans the search results from top to bottom, he
or she must have observed li and decided to skip it, before he or she clicks on lj.

To exemplify Joachims’ algorithm, consider the clickthrough example in Figure 3.
According to Interpretation 1, all the preferences identified by Joachims’ algorithm
are shown in Table I.

Preferences Preferences Preferences
containing l1 containing l4 containing l8

Empty Set l2 <q l4 l2 <q l8
l3 <q l4 l3 <q l8

l5 <q l8
l6 <q l8
l7 <q l8

Table I. Pairwise preferences identified by Joachims’ algorithm from the clickthrough data shown
in Figure 3

Joachims’ algorithm has been shown to have the problem of penalizing high-
ranking links [Deng et al. 2004], which means that the high-ranking links (e.g., l1,
l2) are more likely to be “less preferred” compared to the low-ranking links (e.g.,
l9, l10). Consider the preference example shown in Table I. Links l1 and l8 are
both clicked links; however l1 appears on the right-hand side of the preferences
(meaning they are “preferred” by the user) less often than l8 does (l1, 0 times; l8,
five times). On the other hand, links l2 and l9 are both unclicked links; however,
l2 appears on the left-hand side of the preferences (meaning “not preferred” by the
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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user) more often than l9 does (l2, twice; l9, 0 times). This explains the problem of
over-penalizing the high-ranking links.

To address the above problem, the mJoachims’ algorithm [Deng et al. 2004] was
proposed. We hereafter refer to mJoachims’ algorithm as mJoachims. Besides Inter-
pretation 1 of Joachims’ algorithm, mJoachims further introduces Interpretation 2
in order to alleviate Joachims’ problem with penalizing high-ranking links.

Interpretation 2. Suppose li is a clicked link, lj is the next clicked link right
after li (i.e., no other clicked links between li and lj), and lk is any unclicked
link between li and lj (i < k < j). When the user clicks on lj, he or she must
have observed link lk (k < j) and decided not to click on it. Therefore, besides
Interpretation 1, the clickthrough also indicates that the user prefers link li to lk.
Thus, the additional preferences lk <q li can be identified.

Overall, the preferences identified by mJoachims are those identified by the stan-
dard Joachims’ algorithm plus the preferences lk <q li (i < k < j). Consider
again the clickthrough example in Figure 3. The pairwise preferences identified by
mJoachims are shown in Table II. By comparing the preferences in Table I and Ta-
ble II, we can see that mJoachims adds some preferences to the standard Joachims’
algorithm with high-ranking links (e.g., l1 and l4) being the preferred links.

Preferences Preferences Preferences
containing l1 containing l4 containing l8

l2 <q l1 l2 <q l4 l2 <q l8
l3 <q l1 l3 <q l4 l3 <q l8

l5 <q l4 l5 <q l8
l6 <q l4 l6 <q l8
l7 <q l4 l7 <q l8

Table II. Pairwise preferences identified by mJoachims’ algorithm from the clickthrough data
shown in Figure 3

2.2 Ranking Function Optimization

After the preferences have been discovered, a ranking function optimizer can take
the preferences as input data to optimize the ranking function of a search engine.
Joachims [Joachims 2002b] first proposed a ranking SVM algorithm, which solves
the optimization problem using an SVM approach. Later, Tan et al. extended
the ranking SVM using a co-training framework [Blum and Mitchell 1998] and
proposed the RSCF (Ranking SVM in Co-training Framework) algorithm, which
was reported to be better than the standard ranking SVM for small training data
sets [Tan et al. 2004]. As the ranking SVM is used in our search engine adaptation
experiments, we briefly revisit its main ideas in this section. For more details about
the ranking SVM, readers may refer to Joachims paper [Joachims 2002b].

We now illustrate the basic idea of the ranking SVM by using a simple example
shown in Figure 4. Suppose there are three links, l1, l2, and l3, in the feature
space and the input preferences are l3 <q l2 <q l1. Let us compare two possible
linear ranking functions, −→ω1 and −→ω2. (The formal definition of −→ω and the feature
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space will be detailed in Section 5.2.) Note that the ranking result is equal to the
order of the links projected on −→ω1 and −→ω2. As the figure shows, −→ω1 ranks the three
links as l3 <q l2 <q l1, which is equivalent to the input preferences; while −→ω2 ranks
the links as l3 <q l1 <q l2, which does not conform to all of the input preferences.
Therefore, −→ω1 is better than −→ω2 for holding the input preferences. Moreover, if more
than one ranking function can hold the input preferences, the one that maximizes
the distance (marked as δ in the figure) between the two closest projections is the
best. In the figure, −→ω1 is the best ranking function, because it holds all the input
preferences and also maximizes the distance, δ1. The ranking SVM algorithm aims
at finding the best ranking functions such as −→ω1 in the example. For a large set of
input preferences, ranking functions that hold all preferences may not exist. Then,
the ranking SVM outputs a ranking function that holds as many preferences as
possible.

1�
���

2�
���

1l
2l

3l

1�

2�

Fig. 4. Ranking links l1, l2, l3 with functions −→ω1 and −→ω2

Beyond the simple example of the ranking SVM, we further describe its technique
formally. Let qk denote a query, Dk denote the set of retrieved documents of qk, and
Pk denote the set of discovered preferences from Dk: Pk = {di <qk

dj}, di, dj ∈
Dk. Given the training data:

T = {(D1, P1), (D2, P2), . . . , (Dn, Pn)},
the ranking SVM aims at finding a ranking function, f(q, d), which holds as many
preferences in T as possible. f(q, d) is defined as f(q, d) = −→ω ·φ(q, d), where φ(q, d)
is a feature vector representing how well a document, d, matches a query, q, and −→ω
is a weight vector, which actually determines the ranking function, f(q, d).

Thus, the problem of the ranking SVM becomes finding a −→ω that holds the
maximum number of the following inequalities:

For all di <qk
dj ∈ Pk , (1 ≤ k ≤ n)

−→ω · φ(qk, dj) > −→ω · φ(qk, di). (1)
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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The problem of solving −→ω with the constraints in Equation (1) is NP-hard [Hof-
fgen et al. 1995]. An approximate solution can be obtained by introducing non-
negative slack variables, ξijk, to the inequalities to tolerate some ranking errors.
The inequalities are rewritten as:

For all (di <qk
dj) ∈ Pk , (1 ≤ k ≤ n)

−→ω · φ(qk, dj) > −→ω · φ(qk, di) + 1− ξijk, ξijk ≥ 0, (2)

and the ranking SVM is then formulated as a constrained optimization problem,
which is stated as minimizing the target function:

V (−→ω , ξ) =
1
2
−→ω · −→ω + C

∑
ξijk, (3)

subject to the constraints given in Equation (2).
The basic idea of solving the above optimization problem is as follows. Let δ be

the distance between the two closest projected documents along a weight vector.
For example, in Figure 4, δ1 and δ2 are the distances between the two closest
projections along −→ω1 and −→ω2, respectively. If there are several weight vectors that
are able to hold all rankings subject to the condition in Equation (2), the one that
maximizes the margin, δ, is preferred. This is because the larger the value of δ, the
more definite the ranking, and hence the better the quality of the weight vector, −→ω .
The summation term,

∑
ξijk, of the slack variables in the target function (3) is the

sum of the errors in the ranking pairs. Therefore, minimizing this summation term
can be viewed as minimizing the overall training errors. Finally, parameter C is
introduced to allow a trade-off between the margin size, δ, and the overall training
error.

The ranking SVM returns as output a weight vector, −→ω , which is used to rank
search results according to the value: f(q, d) = −→ω · φ(q, d).

3. CLICKTHROUGH INTERPRETATION

In this section, we first discuss the inadequacy of the existing preference mining
algorithms. Then, we introduce a new clickthrough interpretation for preference
mining that does not rely on the user’s scan order on the result list.

3.1 Inadequacy of Existing Algorithms

Although Joachims and mJoachims are simple and efficient, their extraction of
preference pairs resulting from the strict scan order assumption may not be entirely
correct. This is because, in reality, the user’s behavior may be very diversified. For
example, Joachims assumes that the user scans the search results strictly from top to
bottom. However, it is possible that a user skips several results without examining
them carefully and clicks on a link at a lower rank. However, both Joachims and
mJoachims would conclude that these skipped links are uninteresting to the user
but in fact we could only say that whether these links are interesting to the user or
not is unknown. As a result, the preferences identified by Joachims and mJoachims
may not reflect users’ preferences accurately.

Let us consider again the clickthrough example for the query “apple” in Figure 3.
After analyzing the titles, abstracts and URLs of all the ten links, we find that
basically the links are about two different topics: links l3, l7 and l10 are about “apple
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fruit”, while the other seven links are related to “Apple computer”. Furthermore, we
can see that the clicked links l1, l4 and l8 (in bold) are all about “Apple computer”.
Therefore, an intuitive interpretation of this clickthrough data is that the user is
looking for results about “Apple computer”. From a preference mining point of
view, we can infer that the user likes links about “Apple computer” more than links
about “apple fruit”. Now, according to this interpretation, we list in Table III the
real preferences conveyed by the clickthrough example. If the results of Table III
are compared to those in Table I and Table II, we can see that the preferences
identified by Joachims and mJoachims are not entirely accurate.

Preferences Preferences Preferences
containing l1 containing l4 containing l8

l3 <q l1 l3 <q l4 l3 <q l8
l7 <q l1 l7 <q l4 l7 <q l8
l10 <q l1 l10 <q l4 l10 <q l8

Table III. The real preferences of the clickthrough data shown in Figure 3

In the above example, the problem of the existing algorithms is that they mis-
takenly identify some high-ranking unclicked links about “Apple computer” (e.g.,
l2, l5) as “unpreferred” links. We argue that in practice it is possible that the
user does not click on all of the links relevant to his or her interests, because he
or she may not be patient enough to examine all the relevant links, or he or she
may stop clicking after seeing “enough” information, and thus leave some relevant
links unclicked. Moreover, a user may skip a relevant link because the abstract
of that link is not informative enough. However, existing algorithms cannot han-
dle the above-mentioned possibilities but simply derive preferences based on the
simple rule that if a high-ranking link is not clicked, it is then considered as an
“unpreferred” link.

3.2 New Clickthrough Interpretation

Motivated by the example in Section 3.1, we aim to design an algorithm that can
find the exact preferences in Table III based on the clickthrough data in Figure 3
in an effective way.

We note that a user typically judges the links based on the summaries1 displayed
on the result page and clicks on the links that appear to be of interesting to him or
her. Therefore, it is reasonable to assume that the clicked links collectively reflect
the user’s preferences. Moreover as stated before, the user is unlikely to click on
all of the returned links that match his or her interests. Thus, it is also reasonable
to assume that the unclicked links consist of links that the user may or may not
prefer. We then assume that the links not preferred by the user are those with
topics different from that of the clicked links. For example, if the search results are
on three topics A, B and C, when the user clicks on links that are relevant only to

1Most search engines display textual information such as titles and abstracts, in addition to non-
textual information such as last modification dates, size, etc.
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A, we can treat B and C as unpreferred topics; when the user clicks on links that
are about topics A and B, then C is treated as unpreferred.

Formally, our clickthrough interpretation is described as follows.

Interpretation 3 (Our interpretation). We treat the links clicked by the
user as positive examples and those not clicked as unlabeled data. Let P denote
the positive set, and U denote the unlabeled set. Then, by analyzing the textual
summaries, we can identify which links in U are on a different topic than that of
the positive links and take them as the predicted negative examples. Let PN denote
the predicated negative set (PN ⊂ U). Then, the clickthrough data indicate that
the user likes all the links in P better than all the links in PN . The preferences are
expressed as follows:

lj <q li, ∀ li ∈ P, lj ∈ PN. (4)

According to Interpretation 3, the preferences conveyed by the clickthrough in
Figure 3 are those listed in Table III. Remarkably, our interpretation does not
assume how the user scans the search results, but only assumes that the links
“preferred” by the user and the links “unpreferred” by the user are about different
topics. We believe that this assumption is reasonable and reflects user behaviors.
Moreover, our idea of analyzing the texts (e.g., titles and abstracts) of the links for
discovering preferences is reasonable, since it is generally believed that users read
the summaries to judge if a link is relevant to their information needs.

4. SPY NÄIVE BAYES

In this section, we propose a new preference mining algorithm, called Spy Näıve
Bayes (SpyNB). It consists of two main components: a spying technique to obtain
more accurate negative samples and a voting procedure to consider the opinions of
all spies.

According to our clickthrough interpretation, we need to categorize unlabeled
data in order to discover the predicted negative links. Näıve Bayes [Mitchell 1997]
is a simple and efficient text categorization method. However, conventional Näıve
Bayes requires both positive and negative examples as training data, while we only
have positive examples. To address this problem, we employ a spying technique [Liu
et al. 2003; Liu et al. 2002] to train Näıve Bayes by incorporating unlabeled train-
ing examples. Moreover, in order to obtain more accurate predicted negatives, we
further introduce a voting procedure to make full use of all potential spies. Finally,
we propose our Spy Näıve Bayes algorithm.

4.1 The Spying Technique and Voting Procedure

We first describe how the standard Näıve Bayes is adapted in our context as follows.
Let “+” and “–” denote the positive and negative classes, respectively. Let L =
{l1, l2, . . . , lN} denote a set of N retrieved links. Each link, li, is represented as a
word vector, W = (w1, w2, . . . , wM ), where we keep the number of occurrences of
wi appearing in the summary. Then, Näıve Bayes can be trained by estimating the
prior probabilities (Pr(+) and Pr(−)), and likelihood (Pr(wj |+) and Pr(wj |−))
as shown in Algorithm 1. It is also straightforward to observe that Pr(+) =
(1− Pr(−)).
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Algorithm 1 Training the Näıve Bayes Algorithm
Input:

L = {l1, l2, . . . , lN} /∗ a set of links ∗/
Output:

Prior probabilities: Pr(+) and Pr(−);
Likelihoods: Pr(wj |+) and Pr(wj |−) ∀j ∈ {1, . . . , M}

Procedure:

1: Pr(+) =

∑N
i=1 δ(+|li)

N
;

2: Pr(−) =

∑N
i=1 δ(−|li)

N
;

3: for each attribute wj ∈ W do

4: Pr(wj |+) =
λ+

∑N
i=1 Num(wj ,li)δ(+|li)

λM+
∑M

k=1

∑N
i=1 Num(wk,li)δ(+|li) ;

5: Pr(wj |−) =
λ+

∑N
i=1 Num(wj ,li)δ(−|li)

λM+
∑M

k=1

∑N
i=1 Num(wk,li)δ(−|li) ;

6: end for

In Algorithm 1, δ(+|li) indicates the class label of link li. Its value is 1 if li is
positive and 0 otherwise. Num(wj , li) is a function counting the number of times
wj appears in li. λ is a smoothing factor [McCallum and Nigam 1998]; we set λ = 1
to make Näıve Bayes more robust.

When predicting unlabeled links, Näıve Bayes calculates the posterior probability
of a link, l, using the Bayes rule:

Pr(+|l) =
Pr(l|+)Pr(+)

Pr(l)
,

where Pr(l|+) =
∏|wl|

j=1 Pr(wlj |+) is the product of the likelihoods of the keywords
in link l. Then, link l is predicted to belong to class “+”, if Pr(+|l) is larger than
Pr(−|l) and “–” otherwise.

When the training data contains only positive and unlabeled examples, the spying
technique can be introduced to learn the Näıve Bayes classifier. The idea behind
the procedure is illustrated in Figure 5. First, a set of positive examples, S, are
randomly selected from P and put in U to act as “spies”. Then, the unlabeled
examples in U together with S are regarded as negative examples to train the Näıve
Bayes classifier. The trained classifier is then used to assign posterior probability,
Pr(+|l), to each example in (U∪S). After that, a threshold, Ts, is determined based
on the posterior probabilities assigned to S. An unlabeled example in U is selected
as a predicted negative example if its probability is less than Ts. The examples in
S act as “spies”, since they are positive and put into U pretending to be negative
examples. During the process of prediction, the unknown positive examples in
U are assumed to have similar behavior as the spies (i.e., assigned comparative
probabilities). Therefore, the predicted negatives, PNi, can be identified, which
is separated from U . As a result, the original U is split into two parts after the
training. One is PNi which may still contain some positive items (white region)
due to error in the classification arising from pi. Another is the remaining items in
U which may still contain some negative items (black region), also due to error in
the classification. Note that pi returns to P , since it is known to be (sure) positive.
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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Fig. 5. The underlying principle of the spying technique

We notice that, in our spying technique, the identified PN can be influenced
by the selection of spies. As for clickthrough data, there are typically very few
positive examples (recall that they are clicked links). We can make full use of all
the potential spies to reduce the influence. Thus, we introduce a voting procedure
to strengthen the spying technique further.

The idea of a voting procedure is depicted in Figure 6 and is explained as fol-
lows. First of all, the algorithm runs the spying technique n times, where n = |P |
is the number of positive examples. Each time, a positive example, pi, in P is
selected to act as a spy and put into U to train the Näıve Bayes classifier, NBi.
The probability, Pr(+|pi), assigned to the spy, pi, can be used as the threshold,
Ts, to select a candidate predicted negative set (PNi). That is, any unlabeled
example, uj , with a smaller probability of being a positive example than the spy
(Pr(+|uj) < Ts) is selected into PNi. As a result, n candidate predicted negative
sets, PN1, PN2, . . . , PNn, are identified. Finally, a voting procedure is used to
combine all PNi into the final PN . An unlabeled example is included in the final
PN , if and only if it appears in at least a certain number (Tv) of PNi. Tv is called
the voting threshold. The voting procedure selects PNs based on the opinions of
all spies and thus minimizes the bias of the spy selection.

4.2 The SpyNB algorithm

We now present the Spy Näıve Bayes algorithm in Algorithm 2. In the SpyNB
algorithm, Steps 2 to 15 employ the spying technique |P | times to generate |P |
candidate sets of PNi. Steps 16 to 21 combine all PNi into the final PN using spy
voting.

To analyze the time complexity of SpyNB, we let |P | denote the number of clicked
links (positive examples), |U | denote the number of unclicked links (unlabeled ex-
amples) and N denote the number of all links. Training Näıve Bayes (Algorithm 1)
requires only one scan of all links. Thus, the time complexity of training is O(N).
The prediction of Näıve Bayes costs O(|U |) time, where |U | < N . Thus, Steps 2 to
15 of SpyNB cost O(|P | · (N + |U |)) = O(|P | ·N) time. With a similar analysis, the
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Algorithm 2 The Spy Näıve Bayes (SpyNB) Algorithm

Input:
P – a set of positive examples; U – a set of unlabeled examples; Tv – a voting threshold;

Output:
PN – the set of predicted negative examples

Procedure:
1: PN1 = PN2 = · · · = PN|P | = {} and PN = {};
2: for each example pi ∈ P do
3: Ps = P − {pi};
4: Us = U ∪ {pi};
5: Assign each example in Ps the class label 1;
6: Assign each example in Us the class label -1;
7: Train a Näıve Bayes on Ps and Us using Algorithm 1;
8: Predict each example in Us using trained Näıve Bayes;
9: Spy threshold Ts = Pr(+|pi);

10: for each uj ∈ U do
11: if Pr(+|uj) < Ts then
12: PNi = PNi ∪ {uj};
13: end if
14: end for
15: end for
16: for each uj ∈ U do
17: V otes = the number of PNi such that uj ∈ PNi

18: if V otes > Tv · |P | then
19: PN = PN ∪ {uj};
20: end if
21: end for

time complexity of Steps 16 to 21 of SpyNB is O(|P | · |U |), which is smaller than
O(|P | ·N).

Overall, the time complexity of SpyNB is O(|P | · N). We know that the time
complexity of Joachims and mJoachims are both O(N). Although, SpyNB is not as
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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efficient as Joachims and mJoachims based on the complexity analysis, in practice
|P | is very small making SypNB’s time complexity in effect constant bound. For
example, the empirical clickthrough data reported in [Tan et al. 2004] shows that
it has merely 2.94 clicks per query on average.

By employing SpyNB for mining preferences and ranking SVM for ranking func-
tion optimization, we are able to build a personalized ranking function by serving
the user with the specific ranking function adapted with his or her clickthrough.
In practice, to identify the user’s ID, a search engine can use cookies or require the
user to login before he or she uses the personalized search service.

5. EXPERIMENTAL EVALUATION

We conducted both offline and online experiments to evaluate the effectiveness of
SpyNB and our search engine personalization approach. The ranking SVM used in
our experiments was implemented with the SVM-Light package [Joachims 1999],
which can be downloaded from [SVM ].

5.1 Experimental Setup: Personalized Metasearch

In general, our personalization approach can be used to personalize a standalone
search engine. However, in the experimental evaluation, we apply our personal-
ization approach to a metasearch engine. There are some advantages of adopting
a metasearch engine for experimental evaluation. First, the end users do not see
any difference between a single search engine and a metasearch engine; in both
cases, the users see a uniform list of results without knowing which search engine
or metasearch engine they are using. Second, a metasearch engine allows us to
choose different underlying search engines with different strengths, coverages and
focuses, thus giving us an additional dimension on which to personalize the search
results. Finally, a metasearch engine does not need to deal with crawling and
indexing issues, which are not the goal of our paper.

Our metasearch engine comprises MSNSearch [MSN ], WiseNut [Wis ] and Over-
ture [Ove ]. At the time we conducted the experiments, MSNSearch was one of
the most popular general search engines. WiseNut was a new and growing search
engine. Overture was specialized in the advertising domain, which ranked results
based on the prices paid by the sponsors. The three search engines have differ-
ent strengths, coverages and focuses, and thus are suitable for us to evaluate the
personalization effect.

We asked three groups of students from three different departments at our univer-
sity, namely Computer Science, Finance and Social Science to use our metasearch
engine. Each group had ten students. We assumed the following about our sub-
jects: users from different departments have different interests but users within the
same department share the same interests. The students from computer science
are looking for computer science information; the finance students are interested
in product information; and the social science students prefer to receive news. As
far as the personalization method is concerned, the three groups of students can be
considered as three “logical” users and the personalization methods tries to adapt
the metasearch engine to deliver the best results to the respective group of users.
Using more than one student in each group ensures that the experimental results
are not affected by a few peculiar actions made by one or two users.
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To collect the clickthrough data, each of the three groups of students submits to

the metasearch engine 30 queries that are related to their interests. The metasearch
engine at the beginning adopts a default ranking function to deliver results. The
default ranking function combines the retrieved results from the underlying search
engines in a round-robin manner. If a result is returned by more than one search
engine, one of the results is randomly picked and presented only once. Moreover, all
the links are displayed in a uniform format. Thus, a user cannot tell which search
engine a result is from. These precautions ensured that we obtained unbiased
clickthrough data. The same method was adopted in [Joachims 2002a]. Table IV
shows some statistics of the clickthrough data we collected.

Departments Computer Science Social Science Finance

Number of queries 300 300 300

Number of clicks 1230 875 1302

Avg. clicks per query 4.1 2.9 4.3

Avg. rank clicked on 5.87 5.6 5.59

Table IV. Statistics of our clickthrough data set.

5.2 Linear Ranking Function

Our metasearch engine adopts a linear ranking function to rank search results.
Suppose q is a query and l is a link related to a Web document returned from the
underlying search engines. The links are ranked according to the value f(q, l) =−→ω ·φ(q, l), where φ(q, l) is a feature vector representing the match between query q
and link l, and −→ω is a weight vector that can be learned by our adaptation approach.
We then define the feature vector, φ(q, l), as three kinds of features, namely, Rank
Features, Common Features and Similarity Features:

(1) Rank Features (3 numerical and 12 binary features).
Let E ∈ {M, W,O} (M stands for MSNsearch, W for WiseNut, and O for
Overture) and T ∈ {1, 3, 5, 10} (the rank value). We define numerical features,
Rank E, and binary features, Top E T , of document d as follows:

Rank E =





11−X
10 if document d ranks at X in

the result of E, and X <= 10;
0 otherwise.

Top E T =

{
1 if d ranks top T in E;
0 otherwise.

(2) Common Features (2 binary features).
—Com 2 :

If the retrieved document ranks the top 10 in at least two search engines, the
value is 1, otherwise it is 0.

—Com 3 :
If the retrieved document ranks top 10 in three search engines, the value is
1, otherwise it is 0.
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(3) Similarity Features (1 binary and 2 numerical features).
—The similarity between query and URL.

Sim U =

{
1 if any word in q appears in URL;
0 otherwise.

—Sim T :
The cosine similarity between query and title.

—Sim A:
The cosine similarity between query and abstract.

Overall, φ(q, l) contains 20 features as shown below:

(Rank M,Top M 1, . . . , T op M 10, Rank W, . . . ,

Rank O, . . . , Com 2, Com 3, Sim U, . . . , Sim A). (5)

Corresponding to the above feature vector definition, the weight vector, −→ω , con-
tains 20 weights, each of which reflects the importance of a feature in Equation (5).
Our definitions of φ(q, l) and −→ω are defined in a similar way as those adopted in
[Joachims 2002b; Tan et al. 2004].

5.3 Offline Experimental Analysis

The offline experiments consist of two parts. In the first part, we compare the
effectiveness of SpyNB with Joachims and mJoachims on preference mining. More-
over, we evaluate if the ranking function personalized with SpyNB can improve the
ranking quality of the original search results. In the second part, we analyse the
effect of the voting threshold on the performance of SpyNB. We also make some
interesting observations on the adaptive ranking function related to the strengths
of the underlying search engines.

5.3.1 Evaluation of Ranking Quality. In order to compare SpyNB with other
preference mining algorithms, we incorporate SpyNB, Joachims and mJoachims
with ranking SVM to obtain three personalized ranking functions. We arbitrarily
set the voting threshold of SpyNB (Tv in Algorithm 2) to 50%. Then, we rerank
the original search results with the personalized ranking functions and see if they
can improve the ranking quality.

Intuitively, a good ranking function should give high ranking to links that the
users want. Thus, the smaller the average rank of the users’ clicks, the better the
ranking quality. According to this intuition, we measure ranking quality based on
the average rank of users’ clicks, denoted by Ψ. To show the actual improvement,
we define a metric, “relative average rank of users’ clicks”, denoted by Ψr, as the
ratio of Ψ derived from a personalized ranking function divided by Ψ of the original
search result. If Ψr < 1, then it indicates that an actual improvement is achieved.

The results are shown in Figure 7. First, the values of Ψr of SpyNB are all about
0.8, which means that the ranking function personalized with SpyNB satisfies the
three user groups better than the original ranking does. Thus, the effect of per-
sonalization is significant. In particular, the improvement of SpyNB in ranking
quality is about 20%, which clearly indicates that SpyNB is effective in preference
mining. Moreover, we find that Joachims and mJoachims fail to achieve any actual
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Fig. 7. Relative Average Rank of Users’ Clicks of three preference mining algorithms

improvement after reranking the original search results, since their Ψr values are
greater than 1. This can be attributed to their strong assumptions (recall Interpre-
tations 1 and 2 in Section 2.1) that do not hold in our empirical clickthrough data.
Thus, the preferences identified by the existing algorithms are incorrect. Specif-
ically, mJoachims is better than Joachims, which can be attributed to Joachims
penalty imposed on high-ranking links, while mJoachims alleviates this problem.
Finally, we can conclude that the preferences discovered by SpyNB are much more
accurate than those discovered by Joachims and mJoachims.

5.3.2 Effect of Varying the Voting Threshold. The voting threshold, Tv, in Al-
gorithm 2, is the only parameter that a user needs to decide for SpyNB. In order to
study the impact of Tv on the performance of SpyNB, we carried out an experiment
to test various values of Tv. The result is presented in Figure 8.

As elaborated in Section 4.1, the Tv value reflects the confidence that SpyNB has
in a single “spy” in selecting the predicted negative (PN) examples. On the one
hand, small Tv values (e.g., 20%) imply that SpyNB is “credulous”, since it may
assign a link as an PN example based on the results of just one or two spies. On
the other hand, large Tv values (e.g., 100%) mean that SpyNB is “conservative”.
In this case, it assigns a link as a PN if and only if all the spies decided that the
link is a PN. Thus, the larger the value of Tv is, the more conservative SpyNB is,
and the fewer predicted negative examples are selected.

Figure 8 shows that Tv indeed affects the performance of SpyNB, since the curves
are sloped. The optimal values generally lie in the range of 20% to 40%. Large Tv

values decrease the performance of SpyNB, indicating that large Tv values make
SpyNB too conservative, which results in the missing of some real PN examples.
On the other hand, overly small Tv values may have the problem of admitting noisy
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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Fig. 8. Performance of SpyNB with varying voting threshold, Tv

PN examples, which can also be observed in Figure 8.
Finally, it is worth pointing out that the voting threshold gives important flexibil-

ity to SpyNB. We note that users in reality have diversified interests and behaviors.
The voting threshold can be used to adapt SpyNB to different users. For example,
in Figure 8, Tv = 30% is the optimal for the social science students, while Tv = 40%
is the optimal for the finance students. Compared with the existing algorithms that
are based on strong assumptions of the user’s scanning behavior, SpyNB is more
flexible in adapting to different users’ preferences.

5.3.3 Analysis of the Adapted Ranking Function. As detailed in Section 5.2, the
ranking function of our metasearch engine is composed of 20 weighted features.
The adapted ranking function is examined in order to find out which features
better reflect users’ interests. We list two adapted ranking functions derived from
the clickthrough of the computer science students (in Table V), and the finance
students (in Table VI), respectively. Similar observations can also be found for the
group of social science students, which are not presented here.

We have analyzed the meaning of each feature and weight. As detailed in Sec-
tion 5.2, the ranking function is defined as f(q, d) = −→ω · φ(q, d), which is the inner
product of a feature vector, φ(q, d), and a weight vector, −→ω . Roughly speaking,
features with high absolute weights have large impacts on the result ranking. In
particular, the numerical Rank Features, Rank M , Rank O and Rank W , reflect
the relative importance of MSNSearch, Overture and WiseNut, respectively.

From Tables V and VI, we can observe that the weights of feature Rank M are
large for both groups of students; the weight of Rank O is small for the computer
science students, but large (almost equal to Rank M) for the finance students; and
the weight of Rank W is moderate for the computer science students, but very
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Feature Weight Feature Weight

Rank M 1.811 Rank W 1.275

Top M 1 0.566 Top W 1 0.480

Top M 3 -0.003 Top W 3 0.229

Top M 5 0.063 Top W 5 -0.138

Top M 10 -0.021 Top W 10 -0.458

Rank O 0.415 Sim A 0.357

Top O 1 -0.677 Sim T 0.785

Top O 3 0.447 Sim U 0.288

Top O 5 -0.087 Com2 0.186

Top O 10 -0.440 Com3 -0.226

Table V. Adapted ranking function for computer science students

Feature Weight Feature Weight

Rank M 1.154 Rank W -0.217

Top M 1 0.108 Top W 1 0.355

Top M 3 0.563 Top W 3 0.362

Top M 5 -0.045 Top W 5 -0.364

Top M 10 -0.757 Top W 10 -1.429

Rank O 1.019 Sim A 0.025

Top O 1 0.718 Sim T 0.520

Top O 3 0.586 Sim U -0.106

Top O 5 0.528 Com2 0.240

Top O 10 -0.864 Com3 0

Table VI. Adapted ranking function for finance students

small for the finance students.
It is interesting to note that these observations actually match the users’ interests

and the nature of the search engine components. For example, the fact that both
the weights of Rank M are large indicates that both groups of students like the
results returned by MSNSearch. Since MSNSearch is widely considered as one of
the best general search engines, it is not surprising to see that both groups of
students like its results. As another example, we know that Overture is a search
engine that specializes in advertising. Thus, it has a special strength in searching
for product information, which matches the interests of finance students but not
computer science students. The experimental results confirmed this intuition, since
the value of Rank O is large for finance students, but small for computer science
students, which exactly matches our intuition. Roughly speaking, both groups of
students prefer Overture’s results to WiseNut’s results. This is also reasonable,
since WiseNut is a new and growing search engine that still needs to be improved.
The Rank M values for both groups of students are not so large, though MSMsearch
seems to be a popular search engine.

As another interesting observation, we find that the values of Sim T (the similar-
ity between query and title) are larger than those of Sim A (the similarity between
query and abstract), meaning that users tend to select results with titles matching
the query. Again, this result conforms to our intuition since the titles were cre-
ated by the authors to precisely capture the page contents and they are displayed
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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prominently on the result page.
We can also make other observations from the adapted ranking functions. Ana-

lyzing the functions is not only useful for observing the personalization effect but
also for understanding the users’ interests and behaviors.

5.4 Interactive Online Experiment

In order to verify that the ranking function personalized with SpyNB does improve
retrieval quality in practice, we further asked the same three groups of students, who
participated in our offline experiment, to conduct an interactive online evaluation.
Again, each student submitted 30 queries, which were related to his or her interests.

The online experiment compares the three rankers: the ranker derived from
SpyNB, that derived from Joachims and that of MSNSearch. The experimental
procedure is as follows. When a user submits a query to our system, three rankings
produced by the three rankers are obtained. We then combine the three rankings
into an unbiased combined list using the same method of obtaining unbiased click-
through data as described in Section 5.1. The property of unbiased combining is to
ensure that the final ranking presented to the user is fair to all the sources. Finally,
our system captures the new users’ clickthrough data on the unbiased combined
list.

We now explain how we evaluate the quality of different rankings. Let l be
a clicked link in the combined list of query q, Ra and Rb are two rankings for
comparison. Suppose that l is ranked as ith and jth in Ra and Rb, respectively.
(If l is not in a ranking, its rank is set to a large enough number.) We say that
the clicked link, l, favors ranking Ra if i < j, since it ranks higher in Ra than in
Rb. After all the clicked links of query q are examined, we can conclude that Ra is
better than Rb with respect to q, if there are more links favoring Ra than Rb.

For example, suppose two links, l1 and l2, in the combined result of query q are
clicked; and link l1 ranks 4th and 9th in rankings Ra and Rb, respectively, while
link l2 ranks the same, 5th and 5th, in both rankings. In this case, link l1 favors
Ra more than Rb, and l2 favors both equally. Therefore, Ra is better than Rb for
query q. Such evaluation not only takes into consideration the quantity of a ranking
(the number of clicked links) but also the quality of a ranking (the ranks of clicked
links).

In order to screen the online experimental results in different granularities, we
further analyze the candidate rankings with different numbers of user’s clicks per
query. Specifically, we adopt a top-k parameter for screening, which means that, in
each row in Tables VII and VIII, only the top-k clicks are counted. For example,
if k = 1, then the top-1 parameter means that in this row, only the first click of
the user is considered.

We present the comparison result of SpyNB with Joachims in Table VII and
the result of SpyNB with MSNSearch in Table VIII. In both tables, “Tie” means
that there were equal numbers of links favoring Ra and Rb. Moreover, as the
largest number of user’s clicks for a query is 8 for the data we collected in the
online evaluation, we adopt four different values: 1, 3, 5 and “all”, for the top-k
parameter to present the result, in which “all” means that the comparison is based
on all users’ clicks (up to 8).

The online result clearly indicates that the result ranking derived from SpyNB
ACM Transactions on Internet Technologies, Vol. 7, No. 3, August 2007.
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Comparison on Ra better Rb better Tie No Total

Top-k clicks than Rb than Ra clicks
1 63 15 2 10 90
3 61 15 8 6 90
5 57 14 16 3 90

All 59 17 12 2 90

Table VII. Comparison on the rankings of SpyNB (Ra) and that of Joachims (Rb)

Comparison on Ra better Rb better Tie No Total
Top-k clicks than Rb than Ra clicks

1 49 24 4 13 90
3 43 27 16 4 90
5 41 33 14 2 90

All 42 30 16 2 90

Table VIII. Comparison on the rankings of SpyNB (Ra) and that of MSNSearch
(Rb)

is much better than the results derived from Joachims and MSNSearch, since the
values in the first column are consistently larger than the values in the second
column in both Tables VII and VIII.

We now further apply a one-tailed binomial sign test [Goulden 1956] on the
observed data, in order to justify, in terms of statistics, how significant the supe-
riorities of SpyNB are to Joachims and MSNSearch. The binomial signed test is a
commonly used statistical hypothesis testing method when the observed data are
binary. In our context, the observed data are either “Ra is better than Rb” or “Rb

is better than Ra”, which is binary, so that the binomial signed test is well suited.
Specifically, we are going to test if it is statistically significant that “Ra is better
than Rb” for both Tables VII and VIII. We let the null hypothesis be H0: Ra and
Rb are equally good, the alternative hypothesis be HA: Ra is better than Rb, and
the level of significance be α. The intuition of the test is that if the null hypothesis
is true, then the difference of the observed values of “Ra is better than Rb” and
“Rb is better than Ra” cannot be too large; otherwise the null hypothesis must be
false. Technically, we need to compute a p-value for a pair of observed samples
and check if p exceeds the critical value [Goulden 1956]. (The reader may refer to
[Goulden 1956] for the detailed formulae.) We present the numerical results of the
tests, which are computed with Matlab software, as given in Table IX. The basic
idea is that p is viewed as the probability of wrongly rejecting the null hypothesis
if it is in fact true. We thus reject the null hypothesis if the p-value is less than
the level of significance α. We adopt the commonly used symbols to indicate the
test result: a single asterisk (?) if the null hypothesis is rejected at the 0.05 level of
significance, which is standard requirement, and two asterisks (??) if it is rejected
at the 0.01 level, which is a stringent requirement.

The computed p-values and significance levels in Table IX show that the supe-
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Engines Comparison Top-k Clicks p-value Test Result
SpyNB better than Joachims 1 1.88× 10−8 ??
SpyNB better than Joachims 3 4.92× 10−8 ??
SpyNB better than Joachims 5 1.34× 10−7 ??
SpyNB better than Joachims All 7.00× 10−7 ??

SpyNB better than MSNSearch 1 2.30× 10−3 ??
SpyNB better than MSNSearch 3 3.61× 10−2 ?
SpyNB better than MSNSearch 5 2.08× 10−1

SpyNB better than MSNSearch All 9.75× 10−2

Table IX. The p-values and significance levels for the comparison result in Table VII
and Table VIII

riority of the SpyNB ranker over the Joachims’ ranker is consistently at a 99%
significance level for any top-k clicks parameter, and the superiority of the SpyNB
ranker over MSNSearch is at a significance level that varies from 75% (p < 0.25)
to 99% (p < 0.01) depending on different values of the top-k clicks parameter. The
superiority of the SpyNB ranker over the Joachims’ ranker and MSNSearch are
remarkable. The online results confirm again that SpyNB discovers more accurate
preferences than the Joachims’ algorithm. Furthermore, as MSNSearch is regarded
as the strongest search engine component in our experiment, the superiority of
SpyNB ranker over MSNSearch indicates that our personalized metasearch engine
is better than its components. This verifies that our search engine personalization
approach is effective in practice.

6. CONCLUSIONS AND FUTURE WORK

Personalization in Web search is an important research problem and is attracting
a great deal of attention from the research community. We proposed a SpyNB
preference mining algorithm, which is more effective and flexible than the existing
algorithms. The contribution of SpyNB to preference mining is significant, since it
is based on a new clickthrough interpretation and the application of the spying tech-
nique to ranking adaptation is a novel approach. Importantly, the interpretation
does not assume any scanning order on the ranked results, which has been shown in
this paper to perform much better than the existing methods. Our application of
the spy voting procedure in adapting rankings is an interesting and novel approach.
In the experiments, we personalized a metasearch engine using SpyNB. Both the
offline and online results showed that our approach and algorithm are effective: the
personalized metasearch engine improved the ranking quality and was able to cater
for users’ specific interests.

Admittedly, the very recent finding in [Joachims et al. 2005] suggests that there
may be a “trust bias” effect on top links, which might restrict the accuracy of our
classification. A solution to tackling this problem is to impose a weight on spies
according to their rank position. For example, the spy from the first link may
be less trustworthy compared to other spies due to the possible trust bias. Then,
in the voting process, we moderate the credibility of the vote from the top rank
spies, which is an interesting extension of Algorithm 2. We still need to develop
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a more sophisticated voting strategy by incorporating continuous probability into
the voting procedure to replace the current binary voting method. In the current
binary voting strategy, every spy has equal voting power, which implies that every
spy is equally important with respect to the final decision. However, in reality, spies
could have different trustworthiness. For example, in SpyNB, each spy is already
associated with a probability of confidence, which could be used to determine its
level of trustworthiness.

We believe that the use of the spying technique in text classification in order
to mine preference knowledge is only one of many interesting applications. In
general, we could further apply SpyNB in other contexts that need semi-supervised
learning in classification. Even in the context of search result personalization,
we could further gear the spying technique towards the RSVM directly to mine
preferences by voting on the rank order, which is a lightweight approach to the
problem. Since the new direction of personalizing a search engine through adapting
its ranking function has just emerged, many extensions can be further investigated.
As evident in our experiments, the linear ranking function is quite effective for
search engine personalization; however, the power of a linear ranking function is
still limited compared to more sophisticated ranking functions, e.g., a polynomial
ranking function. (Note that the linear function is just a special case of a polynomial
function.) We also aim to develop the existing prototype into a full-fledged adaptive
search engine. We are considering incremental updates on the ranking function. In
other words, whenever the user clicks on the result of a query, the training process
is invoked, leading to the optimization of the corresponding ranker. The challenge
is that we need to ensure the scalability of the training and optimization processes.
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Appendix: The queries used in the online and offline experiments

Computer Science Social Science Finance

B tree Afghan crash 10 day MBA

Convex Hull China manned space flight Adobe Photoshop

database China SARS air ticket

Finite Automaton Columbia space shuttle loss barbie dolls

Gaussian elimination COMDEX 2003 Canon Photo Printer

Geotools Fire in Moscow Database Software

greedy algorithm Gay civil rights Digital Image Process

Hamming code Georgia president resign Elizabeth Arden

Huffman code grammy 2003 Farewell My Concubine

image segmentation HKUST CUHK merge Finding Nemo

instruction set HSBC terrorist flower

Karnaugh maps crocodile Hong Kong Garfield

KD-tree Jackson child abuse HD600

Kohonen’s map Japan spy satellite m-audio revolution

latent variable Miss World 2003 NET MultiSync LCD

LDAP NBA Neutrogena

matlab newegg OLAP

Multiplexing Olympics Beijing OMEGA watch

Oracle Pakistan India peace talks Panasonic av100

OSI layer Palestinians Israeli barrier Pentax optio

planar graph Qusay and Uday Hussein perfume

Polymorphism Robert Baggio pocket PC H4100

Quick Sort SARS report Hong Kong refrigerator

RAID sina sennheiser

sparse matrix Donald Tsang sofa

Sunil Arya Taiwan new vote law SonyEricsson P900

UPD protocols Turks bomb synagogues Tablet PC

vector space model War in Iraq Visual Studio

machine learning WTO Web cam

XML Saddam captured Windows XP

Table X. Queries used in the offline experiment
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Computer Science Social Science Finance

apriori algorithm Al Qaeda American Wedding

AVL tree Afghanistan Kabul Battery Pack

bayesian networks al-Qaeda attack warning Bruce Almighty

Broadcast disk Arnold role after election Canon PowerShot A80

CISI collection ATLANTA severe flu Christian Dior

Cosine Similarity Baghdad blast digital camera

De Morgan’s Theorem Bush visit Iraq Discman

Delauney triangulation California gubernatorial Flash Memory

Dik Lun Lee China property right Fortune magazine

Directed Graph former Congo dictator Harry Potter

dynamic programming China firework bomb Hello Ketty

eulerian graph Gay marriage Hi-Fi

infinite automaton Gaza blast Intel CPU

hidden markov model Georgia opposition bomb Jewelry pendant

k means clustering Howard Dean Lord of ring

metasearch engine Iran quake Microsoft Office

mobile wireless protocol Karbala attacks New York Times

Overriding Kuala Lumpur Kidnappers Nokia 6610

PGPS Lost electricity America Canada Norton security

Process control block Moscow tragedy Panasonic DVD player

R Tree Mugabe Commonwealth American Wedding

radix sort Libya nuclear Panasonic plasma TV

SGML SARS outbread again Panasonic SD card

singular matrix Somalia terrorist haven Shiseido

stoplist download Song Meiling died Snoopy

support vector machine Spanish agents killed Iraq Sony VAIO V505D

TinyDB Staten island ferry crash SQL Sever

TREC collection Strong quake Philippines Suisse Programme

UML Benin plane crash The Pianist

zipf distribution Turks bomb synagogues Tungsten

Table XI. Queries used in the online experiment
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