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ABSTRACT

Web search involves voluminous data streams that record millions

of users’ interactions with the search engine. Recently latent topics

in web search data have been found to be critical for a wide range

of search engine applications such as search personalization and

search history warehousing. However, the existing methods usually

discover latent topics from web search data in an offline and retro-

spective fashion. Hence, they are increasingly ineffective in the

face of the ever-increasing web search data that accumulate in the

format of online streams. In this paper, we propose a novel proba-

bilistic topic model, the Web Search Stream Model (WSSM), which

is delicately calibrated for handling two salient features of the web

search data: it is in the format of streams and in massive volume.

We further propose an efficient parameter inference method, the

Stream Parameter Inference (SPI) to efficiently train WSSM with

massive web search streams. Based on a large-scale search engine

query log, we conduct extensive experiments to verify the effec-

tiveness and efficiency of WSSM and SPI. We observe that WSSM

together with SPI discovers latent topics from web search streams

faster than the state-of-the-art methods while retaining a compara-

ble topic modeling accuracy.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process

General Terms

Design, Experimentation, Performance
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1. INTRODUCTION
Web search usage data [3] is the embodiment of millions of

search engine users’ underlying information needs. Researchers

have found that latent topics in web search data are effective for

improving the performance of a wide spectrum of search engine
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applications such as search personalization [6, 29], location-based

services [15], search history warehousing [18] and entity mining

[23]. Several probabilistic topic models have been developed to

discover latent topics from web search data in an offline and retro-

spective fashion [6, 15, 18, 23, 29]. However, as web search data

is essentially in the format of massive streams [10, 25], the existing

models are becoming ineffective due to their offline nature as well

as their limited capability of processing voluminous data.

Table 1: Web Search Stream of A Search Engine User

ID Search Query Clicked URLs

1 hotel chicago www.expedia.com/...

2 chicken run

3 chicken run movie www.imdb.com/...

4 fuji mountain tour www.japan-guide.com/...

5 fuji travel www.japanican.com/...

... ... ...

From the perspective of naturally modeling web search data, a

search engine user’s web search activities should be viewed as an

online stream of search sessions, which is referred to as a series

of consecutively submitted search queries and clicked URLs that

satisfy a single information need of a specific search engine user

[16]. For example, in Table 1, the user’s web search stream con-

tains infinite entries that are chronologically ordered and each en-

try contains a search query and its corresponding clicked URLs (if

any). The first entry itself forms a search session, the second and

third queries are of a search session while the fourth and the fifth

entries belongs to another search session. Besides viewing web

search data from a more natural perspective, the efficiency of train-

ing the model is another major concern when analyzing web search

data. For real-life applications, short response-time is usually crit-

ical [7] and latent topics need to be discovered from massive web

search streams by consuming fairly short time. Thus, it is neces-

sary to investigate how to develop an effective topic model and an

efficient parameter inference method, which collectively are able

to digest millions of web search streams in short time span while

still maintaining high topic modeling accuracy. The challenges are

essentially twofold:

1. Web search streams contain heterogeneous items (i.e., query

words and clicked URLs), hierarchical structures (i.e., search

sessions) and are dynamical evolving. How to design a model

that is able to effectively handle the above features is still an

open problem.

2. In the face of the voluminous size of web search data, train-

ing efficiency is critical for real-life applications. How to



design an efficient and accurate parameter inference method

that is workable on web search streams is rarely explored in

the literature.

To address the aforementioned challenges, we propose the Web

Search Stream Model (WSSM), a probabilistic topic model deli-

cately calibrated for discovering latent topics from massive web

search streams with high accuracy. WSSM captures the informa-

tion coherency within each search session and models the ternary

relations between search sessions, query words and clicked URLs

in a principled way. Besides discovering latent topics from web

search streams, WSSM is able to detect topic evolution over time.

Confronted with the massive size of web search streams, conven-

tional parameter inference methods such as collapsed Gibbs Sam-

pling (GS) [24] and Variational Bayes (VB) [2] are inefficient for

training WSSM because of their high computational cost. As GS

and VB typically require multiple iterations of scanning the en-

tire corpus of data and the complete topic space, their computa-

tional cost usually increases linearly with the data size, the number

of topics and the number of training iterations. In order to solve

this problem, we propose a fast parameter inference method named

Stream Parameter Inference (SPI). SPI utilizes the Web Search Ma-

trix (WSM) for reducing the amount of data need to be processed

by downstream operation. SPI further combines belief propagation

[20] with the stochastic gradient descent framework [4], which en-

sures that the parameter inference process converges to the station-

ary point of the likelihood function of WSSM by a series of online

gradient updates. In each iteration, SPI actively selects a fraction of

web search data and a part of the topic space for message updating

and passing, and this paradigm significantly speedups the parame-

ter inference process. Based on a real-life query log, we conduct a

series of evaluations to verify the effectiveness of WSSM and the

efficiency of SPI. We observe that WSSM demonstrates superior

capability of discovering latent topics from web search streams.

Compared with several existing parameter inference methods, SPI

is more efficient for training WSSM in term of both time and mem-

ory consumption.

The major contributions of this paper are summarized as follows:

• We propose a new probabilistic topic model, the Web Search

Stream Model (WSSM), to effectively discover latent top-

ics from massive web search streams. WSSM handles two

salient features of web search data: it is in the format of

streams and in massive volume.

• We develop a novel parameter inference algorithm, the Stream

Parameter Inference (SPI), to efficiently train WSSM. SPI is

built upon belief propagation and selects a fraction of web

search data and a part of the topic space to train WSSM with

both high efficiency and high accuracy.

• We conduct extensive experiments to compare WSSM and

SPI with several the state-of-the-art probabilistic topic mod-

els and parameter inference methods. The experimental re-

sults show that WSSM and SPI outperform their correspond-

ing baselines with respect to a variety of metrics.

The rest of the paper is organized as follows. We review the most

related work in Section 2. In Section 3, we discuss the assumptions

and generative process of the Web Search Stream Model (WSSM).

In Section 4, we discuss the technical details of Stream Parameter

Inference (SPI) such as how to utilize SPI to train web search data

within a time period as well as that within a span of time periods.

We present the experimental results in Section 5 and conclude the

paper in Section 6.

2. RELATED WORK
The present work is closely related to a wide range of exist-

ing works that apply probabilistic models to web search and mi-

croblog data. Probabilistic models have achieved promising per-

formance in different search engine applications. [27] proposed

a conditional random fields model for user intent learning from

search sessions. [5] proposed a hidden Markov model to facili-

tate context-aware search. [33] described an application of par-

tially observable Markov model to analyze a large-scale query log.

Among the diverse types of probabilistic models, topic models are

found to be an effective tool for query log analysis [6, 15, 17, 23].

For example, [17] proposed a topic-concept cube that supports on-

line multidimensional mining of query log. [34] presented a topic

model that captures latent structure of textual data and how the

structure changes over time. More recently, with the popularity

of microblogs, researchers are aware of the importance of analyz-

ing text streams in real-life applications. [19] presented a topic

model to track emerging events in microblog data such as tweets.

[13] presented an algorithm to model diversity phenomena in tweet

streams based on topical diversity and geographical diversity. [9,

8] described how to efficiently capture the statistics of stream data.

However, to the best of our knowledge, none of the existing tech-

niques are primarily proposed for processing massive web search

streams. Their capabilities are limited in term of the effectiveness

and the efficiency of topic discovery from web search data.

Besides designing effective probabilistic models, exploring effi-

cient training methods is also gaining momentum in recent years.

For instance, parallel Gibbs sampling [21] approximated the Gibbs

sampling process by synchronous updating of the global distri-

butions. Parallel variational Bayes [38] employed MapReduce to

scale the process of parameter inference. [1] presented a scalable

parallel framework for efficient inference in latent variable models

over streaming web-scale data. [31] described the collapsed vari-

ational Bayesian inference for Latent Dirichlet Allocation (LDA)

and showed that it is computationally efficient and more accurate

than its counterparts. While these parallel techniques demonstrate

promising performance, they typically require expensive parallel

hardware and the performance-to-price ratio remains unchanged.

[36, 37] represented LDA as a factor graph, which enables the clas-

sic loopy belief propagation for parameter estimation. [35] pro-

posed an approach to infer topic distribution for new documents in

a stream without retraining the model. These parameter interfer-

ence methods provides useful building blocks for efficient training

algorithms of probabilistic models. Hence, it is desirable to develop

an efficient parameter inference method that is highly calibred for

web search streams.

With the merits of existing probabilistic models and parameter

inference methods, none of them tackle the issue of efficiently dis-

covering latent topics from massive web search streams. To the

best of our knowledge, this work is the first one that systematically

investigates this problem and provides sound solutions. WSSM

is able to discover topics from massive web search streams with

high accuracy and SPI is able to train WSSM efficiently with supe-

rior performance. This work also contributes to many downstream

search engine applications which utilize topic modeling to analyze

massive web search data.

3. WEB SEARCH STREAM MODEL
As shown in Table 1, search sessions are not explicitly observ-

able in web search streams. Thus, we utilize the method proposed

in [14] to identify the search sessions from web search streams.

By considering the web search stream of a single user as a doc-



Table 2: Notation

Notation Description

D the number of documents
W the number of query words
U the number of URLs
K the number of search topics
d document
s search session
z search topic
w query word
u URL
θ multinomial distribution over topics
φ multinomial distribution over query terms
ψ multinomial distribution over URLs
α Dirichlet prior vector for θ
β Dirichlet prior vector for φ
δ Dirichlet prior vector for ψ

zk
d,s

the session s of document d

is assigned to topic k

zk
d,s,w

the query word w in session s of document d

is assigned to topic k

zk
d,s,u

the URL u in session s of document d

is assigned to topic k
nd,s,w the number of w in session s of document d
nd,s,u the number of u in session s of document d
τW the topically significant threshold of query words
τU the topically significant threshold of URLs
λD the proportion of documents for message passing
λK the proportion of topics for message passing

ument, the web search stream of each user is hierarchically orga-

nized as follows: each document contains several search sessions

and each search session contains several query words and clicked

URLs. To illustrate the underlying logic of the Web Search Stream

Model (WSSM), we present the notation in Table 2 and describe

the generative process of WSSM as follows:

1. for each topic k ∈ 1, ...,K

(a) draw a query word distribution φk ∼ Dirichlet(β);

(b) draw a URL distribution ψk ∼ Dirichlet(δ);

2. for each document d ∈ 1, ..., D

(a) draw topic distribution θd ∼ Dirichlet(α);

(b) for each session s in d

i. choose a topic z ∼Multinomial(θd);

ii. generate query words w ∼Multinomial(φz);

iii. generate URLs u ∼ Multinomial(ψz) if there ex-

ists URL in s;

The assumptions of generating the observed query words and

clicked URLs are detailed as follows. When conducting web search,

the user first decides the topic that is aligned with his or her current

information need and then selects some query words according to

the chosen topic to describe the information need. For each search

session, the user needs to decide whether to click some URLs to

satisfy the information need. The clicked URLs are chosen accord-

ing to the topic of the corresponding search session as well. We

impose the constrain that the query words and the clicked URLs

in the same search session should share the same topic, in order to

capture semantic coherency of each search session. It is worth men-

tioning that we do not explicitly create a variable to represent each

search query. The underlying reason is that creating variables for

search queries involves considerable memory consumption, which
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Figure 1: A Fragment of Factor Graph Representation of WSSM.

The query word set {w1, ...wm} and the clicked URL set

{u1, ..., un} belong to the search session s.

heavily impedes the scalability [15]. In fact, we find that utiliz-

ing search sessions, query words and URLs in the way defined by

WSSM works well in the face of massive web search streams. Es-

sentially, WSSM is a light-weight topic model which captures im-

portant ingredients in web search data but avoids complicated rela-

tions to facilitate processing massive web search streams.

Based on the generative process of WSSM, it is straightforward

to design parameter inference methods by collapsed Gibbs sam-

pling (GS) and variational Bayes (VB) [30]. However, in order

to achieve better efficiency, we view the topic modeling paradigm

of WSSM from a new perspective. We consider the topic model-

ing task of WSSM as a labeling problem and the objective is to

assign a set of topic labels, z = {zkd,s}, to explain the observed

data. Figure 1 interprets WSSM by a factor graph. The factors

θd, {φw1 , ..., φwm
} and {ψu1 , ..., ψun

} are denoted by squares.

Their connecting variable zd,s is denoted by a circle. The factor θd
connects topic labels on different search sessions within the same

document d, the factor φw connects topic labels on the query word

w but in different search sessions, and the factor ψu connects topic

labels on the URL u but in different search sessions. Integrating

out the parameters {θ, φ, ψ} based on the Dirichlet-Multinomial

conjugacy yields the following joint probability of WSSM:

P (n, z|α, β, δ) ∝

D
∏

d=1

K
∏

k=1

Γ(
∑Sd

s=1 z
k
d,s

+ αk)

Γ
(

∑K
k=1(

∑Sd

s=1 z
k
d,s

+ αk)
)

K
∏

k=1

W
∏

w=1

Γ(
∑D
d=1

∑Sd

s=1 nd,s,wz
k
d,s,w

+ βk)

Γ
(

∑W
w=1(

∑D
d=1

∑Sd

s=1 nd,s,wz
k
d,s,w

+ βk)
)

K
∏

k=1

U
∏

u=1

Γ(
∑D
d=1

∑Sd

s=1 nd,s,uz
k
d,s,u

+ δk)

Γ
(

∑U
u=1(

∑D
d=1

∑Sd

s=1 nd,s,uz
k
d,s,u

+ δk)
) =

D
∏

d=1

fθd (z(d,·), α)
W
∏

w=1

fφw
(n(·,·,w), z(·,·,w), β)

U
∏

u=1

fψu
(n(·,·,u), z(·,·,u), δ),

(1)

where fθd , fφw
and fψu

are the factor functions. Specifically,

z(d,·)={zd,s, zd,−s}, z·,·,w={zd,s,w, z(·,−s,w)} and z·,·,u=

{zd,s,u, z(·,−s,u)} denote subsets of the variables in Figure 1.



4. STREAM PARAMETER INFERENCE
In this section, we discuss the details of the Stream Parameter In-

ference (SPI). Section 4.1 presents the Web Search Matrix (WSM)

that is utilized to select the topically significant query words and

URLs from massive web search streams. Section 4.2 shows the

procedure of utilizing SPI to train WSSM with web search data in

a specific time period. Section 4.3 discusses the approach of apply-

ing SPI across a range of time periods.

4.1 Web Search Matrix
Given the massive size of web search streams and the demanding

requirement of efficiency in real-life search engine applications, it

is impractical to analyze every detail of these streams with WSSM.

WSSM relies on the co-occurrences of query words and URLs to

compose latent topics. Hence, the query words and URLs whose

occurrences are significant count for the major contents of latent

topics. In order to speed up the training process of WSSM, we

define the Web Search Matrix (WSM), which extends methods pro-

posed for capturing stream statistics [9] and helps to identify query

words and URLs that have potential to become the major contents

of latent topics. WSM works as an upstream subroutine of SPI

and it enjoys the advantages of efficient update and small memory

consumption.

A WSM denoted byA is represented by a two-dimensional array

with parameters (ε, l1, l2), where l1 is the number of rows and l2
is the number of columns. Each entry in A is initialized as zero

and l1 hash functions are chosen uniformly at random from a pair-

wise independent family. The parameter ε ∈ (0, 1) determines the

proportion of rows allocated for storing the information of query

words, i.e., {A[1, 1], ..., A[εl1, l2]} are utilized for storing the in-

formation of query words while {A[εl1 + 1, 1], ..., A[l1, l2]} are

utilized for storing the information of URLs. When a new entry of

web search data arrives, the search query is tokenized into query

words. For each query word w, its quantity cw is added to an entry

in each row that is less or equal to εl1 and the position of the en-

try is determined by the corresponding hash function. Specifically,

∀j, 1 ≤ j ≤ εl1,

A[j, hj(w)] = A[j, hj(w)] + cw. (2)

Similarly, the clicked URL u is updated for ∀j, εl1 + 1 ≤ j′ ≤ l1
as follows:

A[j′, hj′(u)] = A[j′, hj′(u)] + cu. (3)

For each WSM, we create a query-word heap and a URL heap

to store the topically significant query words and URLs. The fre-

quency of a query word w can be estimated by

min∀j,1≤j≤εl1A[j, hj(w)].

If the estimation is above the threshold of τWW , the query word

w is added to the query-word heap. The heap checks whether the

estimation for the word with lowest count is above threshold; if not,

it is deleted from the heap. The frequency of each query word can

be estimated by using time O(εl1). Every query word that occurs

more than τWW times is identified as topically significant query

word, and with probability (1− e−εl1), no query word whose fre-

quency is less than (τW−
e
l2
)W is identified as topically significant

query word. Similarly, the frequency of a URL u is estimated by

min∀j,εl1+1≤j≤l1A[j, hj(u)]

. If the estimation of u is above the threshold of τUU , it is added

to the URL heap. The frequency of a URL can be estimated from

a web search stream by using time O((1 − ε)l1). Every URL that

occurs more than τUU times is identified as topically significant

URL, and with probability (1 − e−(1−ε)l1), no URL whose count

is less than (τU −
e
l2
)U is identified as topically significant URL.

We proceed to prove the above arguments by focusing on query

words. The proof corresponding to URLs can be straightforwardly

obtained in a similar approach and it is skipped due to space limi-

tation. We assign the indicator Ii,j,k to 1 if (i 6= k) and hj(i) =
hj(k). According to pairwise independence of the hash functions,

the expectation of Ii,j,k is as follows:

E(Ii,j,k) ≤
1

l2
. (4)

SinceA[j, hj(i)] = frequency(wi)+
∑n

k=1 Ii,j,kfrequency(wk),
we then obtain the following inequality:

P [∀j , A[j, hj(i)] > frequency(wi) +
e

l2
W ] =

P [∀j , frequency(wi) +
n
∑

k=1

Ii,j,kfrequency(wk) >

frequency(wi) +
e

l2
W ] =

P [∀j ,
n
∑

k=1

Ii,j,kfrequency(wk) >
e

l2
W ] < e−εl1 .

(5)

Since the threshold is ever increasing, no topically significant query

word is omitted by checking estimated frequency when the fre-

quency of a query word increases. The probability of mistakenly

outputting a query word whose frequency is less than (τW −
e
l2
)W

is bounded by (1−e−εl1). The above discussion verifies the effec-

tiveness of WSM in efficiently discovering the topically significant

query words and URLs. The query-word heap and the URL heap

are represented in a space-efficient way by using two arrays. When

utilizing the WSM technique in SPI, we create a WSM instance for

each web search stream that corresponds to each search engine user

as well as a WSM instance for storing the global information of all

web search streams. In the downstream subroutines of SPI, we only

utilize the query words and URLs that are topically significant in

either the user’s WSM or the global WSM for parameter inference.

In this way, these subroutines handle much less web search data

and thus significant speedup performance can be achieved.

4.2 Parameter Inference for A Time Period
The above subsection describes the method of selecting the top-

ically significant query words and URLs. In this subsection, we

discuss how to conduct latent parameter inference based on the se-

lected query words and URLs within a time period. For topic mod-

eling purpose, we need to calculate the following probability:

P (zkd,s|z
k
d,−s,nd,−s, z

k
·,−s,w,n·,−s,w, z

k
·,−s,u,n·,−s,u), (6)

where −s denotes all session indices except s, and zd,−s, z·,−s,w
and z·,−s,u represent all possible topic assignments of neighboring

variables. The above probability is referred as the message µkd,s.
Using the Bayes’ rule and the joint probability of Equation (1),

we expand Equation (6) and obtain the following message update

formula:



µkd,s ∝
p(zkd,·,nd,·)

p(zkd,−s,nd,−s)

∏

w∈s

p(zk·,·,w,n·,·,w)

p(zk·,−s,w,n·,−s,w)

∏

u∈s

p(zk·,·,u,n·,·,u)

p(zk·,−s,u,n·,−s,u)

∝
µkd,−s + αk

∑

k′

(

µk
′

d,−s + αk′
)

Γ
(

∑

w′(n·,−s,w′µk·,−s,w′ + βw′)
)

Γ
(

∑

w′(n·,−s,w′µk
·,−s,w′ + βw′ + nd,s,w′)

)

∏

w∈s

(Γ(n·,−s,wµ
k
·,−s,w + βw + nd,s,w)

Γ(n·,−s,wµk·,−s,w + βw)

)

Γ
(

∑

u′(n·,−s,u′µk·,−s,u′ + βu′)
)

Γ
(

∑

u′(n·,−s,u′µk
·,−s,u′ + βu′ + nd,s,u′)

)

∏

u∈s

(Γ(n·,−s,uµ
k
·,−s,u + βu + nd,s,u)

Γ(n·,−s,uµk·,−s,u + βu)

)

.

(7)

After updating the messages, we normalize them by their corre-

sponding normalization factors. Then µkd,s,w and µkd,s,u, i.e., the

messages corresponding to the query word w and the URL u in the

session s are updated as follows:

µkd,s,w = µkd,s,u = µkd,s. (8)

The messages are passed from variables to factors, and in turn

from factors to variables for a predefined number of iterations or

convergence is achieved. It is worth mentioning that we only need

to pass messages whose corresponding nd,s,w or nd,s,u are not

zero. As n is very sparse in practice, Equation (7) is computa-

tionally efficient by sweeping only nonzero elements in n.

To efficiently train WSSM, we select a fraction of query words,

URLs, documents and topics for fast topic discovery. The basic

idea is to choose only the topically significant query words and

URLs, i.e., for each document, we select query words and URLs

which are either topically significant according to the global WSM

or topically significant in terms of the corresponding user’s WSM.

Then we select the best message update order based on the mes-

sage residuals {rkd,s}, which is the absolute difference between two

messages at successive iterations t and (t− 1):

rkd,s =
∣

∣

∣
µkd,s(t)− µ

k
d,s(t− 1)

∣

∣

∣
. (9)

By sequentially updating messages in a descending order of the

message residuals in each iteration, SPI converges faster to a fixed

point than those without considering the sorted order. The reason

is that updating messages with top largest residuals efficiently ac-

celerates the speed of convergence and the updated messages with

the largest residuals in turn influence their neighboring messages,

which contribute to fast convergence as well. After sorting the mes-

sage residuals, in each iteration we select a fraction of documents

for message updating and passing. For each document, we search

a fraction of topic space for message updating and passing. Sorting

the residuals in Equation (9) is computationally expensive because

the number of non-zero residuals is very large. In practice, we turn

to sorting the accumulated residuals at topics. We define the resid-

ual of a specific document d at topic k as follows:

rkd =
∑

s

rkd,s. (10)

Then the residual of the document d is calculated as follows:

rd =
∑

k

rkd . (11)

After each iteration, we sort rd in a descending order for all docu-

ments and select λDD documents with the largest residuals rd. We

then sort rkd in a descending order for each selected document, and

select the subset topics λKK with the largest residuals rkd . In the

following iteration, we update messages for the subset documents

λDD and the subset topics λKK, and thus save enormous time in

each iteration. At the first iteration, SPI scans the whole document

space and the topic space. In the remaining iterations, based on

residuals, SPI actively selects λKK topics for message updating

and passing. According to the selected λKK topics, we normalize

the local messages as follows:

µ̂kd,s(t) =
µkd,s(t)

∑

k
µkd,s(t)

×
∑

k

µ̂kd,s(t− 1), (12)

µ̂kd,s,w(t) =
µkd,s,w(t)

∑

k
µkd,s,w(t)

×
∑

k

µ̂kd,s,w(t− 1), (13)

µ̂kd,s,u(t) =
µkd,s,u(t)

∑

k
µkd,s,u(t)

×
∑

k

µ̂kd,s,u(t− 1), (14)

where µ̂kd,s(t − 1), µ̂kd,s,w(t − 1) and µ̂kd,s,u(t − 1) are the nor-

malized messages in the previous iteration, µ̂kd,s(t), µ̂
k
d,s,w(t) and

µ̂kd,s,u(t) are the normalized messages in the current iteration. At

negligible computational cost, the sorted residuals can be resorted

during message passing. If the residuals are in almost sorted order,

only a few swaps will restore the sorted order by the standard in-

sertion sort [22] and a lot of sorting time will be saved. Based on

the inferred messages, we estimate the latent parameters θ, φ and

ψ as follows:

θdk =
µkd,· + αk

∑

k′

(

µk
′

d,· + αk′
) . (15)

φkw =
µk·,·,w + βw

∑

w′

(

µk
·,·,w′ + βw′

) . (16)

ψku =
µk·,·,u + δu

∑

u′

(

µk
·,·,u′ + δu′

) . (17)

The technical details of SPI are presented in Algorithm 1. Query

words and URLs are selected for topic modeling if they are in the

global WSM instance or the user-specific WSM instance. At the

first iteration, SPI scans the entire corpus of web search data within

the time period, searches the complete topic space, computes and

sorts residuals. For the remaining iterations, SPI actively selects the

subset documents λDD and the subset topics λKK for message

updating and passing. After each iteration, SPI dynamically refines

and sorts residuals. SPI terminates when the convergence condition

is satisfied or the maximum iteration number is reached.



Algorithm 1 Stream Parameter Inference (SPI)

1: for each session s in each document d and each topic k do

2: µkd,s(0)← random initialization and normalization;

3: for query word w in the global WSM query-word heap or in

the user’s WSM query-word heap do

4: initialize µkd,s,w(0) according to µkd,s(0);
5: end for

6: for URL u in the global WSM URL heap or in the user’s

WSM URL heap do

7: initialize µkd,s,u(0) according to µkd,s(0);
8: end for

9: end for

10: for d ∈ [1, D] do

11: for k ∈ [1,K] do

12: compute µkd,s(1) by Equation (7);

13: compute µkd,s,w(1), µ
k
d,s,u(1);

14: compute rkd,s(1);
15: end for

16: sort rkd(1) by descending order;

17: select the top λKK topics;

18: end for

19: sort rd(1) by descending order;

20: select the top λDD documents;

21: for t← 2 to T do

22: for d ∈ [1, λDD] do

23: for k ∈ [1, λKK] do

24: compute µkd,s(t) by Equation (7);

25: compute µkd,s,w(t), µ
k
d,s,u(t);

26: compute rkd,s(t);
27: end for

28: sort rkd(t) by descending order;

29: select the top λKK topics;

30: end for

31: sort rd(t) by descending order;

32: select the top λDD documents;

33: end for

4.3 Parameter Inference for Time Periods
Algorithm 1 shows how to train WSSM by utilizing web search

data within a specific time period. In practice, web search data

comes in the form of streams. We can adapt Algorithm 1 into a

life-long algorithm that is able to process online web search steams.

Based on the timestamps of web search entries, we divide web

search stream data into several time periods. Hence, SPI takes

the input as a series of time periods, w ∈ [1,∞), u ∈ [1,∞),
b ∈ [1,∞), d ∈ [1, Db]. b is the index of the period and Db the

number of documents within the period. Note that the time period

index b, the word index w and the URL index u can reach infinity

in order to account for infinite web search data. In order to capture

the phenomenon of topic evolution, we update the parameters θ,

φ and ψ based on the information of the previous and the current

time periods. We update φ and ψ dynamically. For each time pe-

riod, SPI randomly initializes the messages µkd,s(b) and initializes

the sufficient statistics of the previous time period as follows:

∆k,w = n·,·,w(b− 1)µk·,·,w(b− 1). (18)

∆k,u = n·,·,u(b− 1)µk·,·,u(b− 1). (19)

Then the message updating formula is adapted as follows:

µkd,s ∝
µk
d,−s

(b) + αk
∑

k′

(

µk
′

d,−s
(b) + αk′

)

Γ
(

∑

w′ (n·,−s,w′ (b)µk
·,−s,w′ (b) + ∆k,w′ + βw′ )

)

Γ
(

∑

w′ (n·,−s,w′ (b)µk
·,−s,w′

(b) + ∆k,w′ + βw′ + nd,s,w′ )
)

∏

w∈s

(Γ(n·,−s,w(b)µk·,−s,w(b) + +∆k,w + βw + nd,s,w)

Γ(n·,−s,w(b)µk·,−s,w(b) + ∆k,w + βw)

)

Γ
(

∑

u′ (n·,−s,u′ (b)µk
·,−s,u′ (b) + ∆k,u′ + βu′ )

)

Γ
(

∑

u′ (n·,−s,u′ (b)µk
·,−s,u′

(b) + ∆k,u′ + βu′ + nd,s,u′ )
)

∏

u∈s

(Γ(n·,−s,u(b)µk·,−s,u(b) + ∆k,u + βu + nd,s,u)

Γ(n·,−s,u(b)µk·,−s,u(b) + ∆k,u + βu)

)

.

(20)

With the new message updating formula, we run Algorithm 1 on

the web search data in the current time period until convergence or

the maximum iteration number is reached. To make efficient I/O

from disk to memory, we load frequently visited entries of ∆ in

buffer to reduce reading and writing frequently visited statistics of

the previous time period. When a new query word or a new URL is

identified, we increment the vocabulary size by one. Incrementing

vocabulary size implies that the distribution φ and ψ are generated

by a Dirichlet distribution with increasing dimensions. However, it

does not change message updating very much when W and U are

large. In practice, the aforementioned heuristics of incrementing

vocabulary size works quite well for web search streams.

5. EXPERIMENTS
In this section, we evaluate the performance of WSSM and SPI

with a large-scale search engine query log. Section 5.1 describes

the experimental setup. Section 5.2 quantitatively evaluates WSSM

with several standard metrics. Section 5.3 presents the experimen-

tal results of SPI in terms of speedup performance. Section 5.4

gauges the memory consumption of SPI. Section 5.5 reports some

discovered topics and analyzes the phenomenon of topic evolution.

5.1 Experimental Setup
We utilize a three-month query log from a commercial search

engine to prepare the experimental data. The query log contains

approximately 53 million search sessions over 1,812,942 distinct

web search entries of 2,381,345 users. We fix the hyperparameters

as α = 2/K, β = 0.01 and δ = 0.01 like [24] and this set-

ting demonstrates fairly good empirical performance in our experi-

ments. For sampling based parameter inference methods, we report

the topic modeling results after 5000 iterations, which practically

ensures convergence in terms of perplexity that is a standard mea-

sure for evaluating the generalization of a probabilistic model [26].

Unless otherwise mentioned, when applying SPI to train WSSM,

we set λD and λK to 0.5. The aforementioned parameters strike a

good balance between efficiency and accuracy.

5.2 Quantitative Measures
A held-out dataset containing about eight thousand web search

stream entries is utilized to evaluate WSSM’s capability of pre-

dicting unseen query words in terms of perplexity [26]. Perplex-

ity is monotonically decreasing in the likelihood of the held-out

data. A lower perplexity indicates better generalization perfor-

mance. Specifically, perplexity is calculated by the following equa-

tion:
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Figure 2: Perplexity Comparison of Different Probabilistic Topic Models

Perplexityheld−out(M) = (
D
∏

d=1

Nd
∏

i=1

p(wi|M))

−1
∑

D

d=1
(Nd) , (21)

whereM is the model learned from the training process. The base-

lines we choose for this comparative experiment are six retrospec-

tive topic models (i.e., LDA [24], TOT [34], LATM [32], GeoFolk

[28], DSTM and RSTM [15]) and two topic models proposed for

stream data (i.e., Online-LDA [12] and Twitter-Model [13]). The

parameter inference methods of these models are those described

in the corresponding papers. In this experiment, for Online-LDA,

Twitter-Model and WSSM(SPI), we consider the web search data

of each day as a period. The result is presented in Figure 2(a),

from which we observe that WSSM demonstrates good capability

in predicting unseen data comparing with the baselines. For exam-

ple, when the number of latent topics is set to 1000, the perplexity

of LDA is 1009, that of TOT is 902, that of LATM is 847, that of

GeoFolk is 829. Compared with the other models, DSTM, RSTM

and WSSM(SPI) significantly reduces the perplexity and achieves

a perplexity around 360. Although WSSM achieves similar perfor-

mance as the state-of-the-art retrospective query log topic models

such as DSTM and RSTM, we will show that it consumes signifi-

cantly less time than the two counterparts.

The second metric aims to gauge how effective the proposed

models are in predicting the remaining query words after observ-

ing a portion of the user’s web search history. Suppose we observe

the query words w1:P from a user’s query log, we are interested

in finding which model provides a better predictive distribution

p(w|w1:P ) of the remaining query words. Specifically, we use each

user’s eighty percent of search queries as the training data and the

remaining twenty percent as the testing data. We use Equation (22)

to calculate the perplexity of the testing data. The comparison re-

sults are presented in Figure 2(b). We observe that WSSM(SPI)

demonstrates good capability to predicting the user’s future web

search data given the user’s search history. When the topic is set

to 500 and 90% of the web search data is set to be observed. LDA

demonstrates a perplexity of 621, LATM generates a perplexity of

551 and GeoFolk shows a perplexity of 554. WSSM(SPI) demon-

strates a perplexity of 152. This result shows that WSSM(SPI) has a

good capability of predicting the user’s web search given the user’s

web search history.

Perplexityportion(M) = (
D
∏

d=1

Nd
∏

i=P+1

p(wi|M, wa:P ))

−1
∑

D

d=1
(Nd−P ) .

(22)

Figures 2(c) and 2(d) show the held-out perplexity and predic-

tive perplexity with the increase of the data size of a period. Fig-

ure 2(c) shows the held-out perplexity when the topic amount is

fixed to 500. All the retrospective topic models show stable per-

plexity values since they can only be trained in an offline fashion.

Hence, the held-out perplexity of the retrospective models is not

sensitive to the change of the data size of a period. Online-LDA

demonstrates a lower perplexity when the data size of a period in-

creases because larger data size leads to better online gradient de-

scents for higher topic modeling accuracy. Although WSSM(SPI)

performs slightly worse when the data size of a period increases,

WSSM(SPI) achieves high topic modeling accuracy. Figure 2(d)

shows the predictive perplexity with the increase of the data size

of a period when K is set to 500 and 90% of the web search data

is observed. Again, all the retrospective topic models show stable

predictive perplexity. Online-LDA and Twitter-Model demonstrate

lower perplexity as the data size of a period increases while the

predictive perplexity of WSSM(SPI) goes slightly higher when the

data size of a period increases. However, WSSM(SPI) still main-

tains superior performance. These experimental results verify that

WSSM is a robust and effective topic model for web search streams

in terms of the topic modeling accuracy.

5.3 Speedup Performance
We proceed to gauge the efficiency of SPI and verify the speedup

effect of SPI by comparing it with other alternatives such as varia-

tional Bayes [2] (VB) and collapsed Gibbs sampling (GS) [11, 24].

In order to make fair comparison with the two counterparts, we

choose to train them all on the topically significant query words

and URLs that are obtained from WSM. Figure 3(a) shows the

training time with the increase of the data size of a period when

K is set to 500. The training time of WSSM(VB) and WSSM(SPI)

increases with the data size of a period, while the training time

of WSSM(GS) slightly decreases with the data size of a period.

The reason is that sampling based parameter inference methods

converge slightly faster at relatively larger data size of a period.

WSSM(SPI) runs much faster than the other two baselines even it

involves the additional cost of residual sorting. We observe that

WSSM(SPI) not only consumes the least training time but also is
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Figure 3: Speedup Evaluation of WSSM Trained by Different Parameter Inference Methods
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Figure 4: Speedup Comparison With Other Topic Models

the least insensitive to the change of the data size of a period. The

experimental result confirms that the proposed SPI algorithm can

work faster than the other two algorithms while retains a good ac-

curacy in topic modeling of massive web search data. Figure 3(b)

shows the consumed time of the three parameter inference meth-

ods as the topic amount K increases and the data size of a period is

fixed at 256MB. The training time of all the three parameter infer-

ence algorithms increases with K, since a larger topic space needs

to be scanned. We observe that the training time of GS and VB is

close to SPI when K is small but is much longer than that of SPI

when K becomes large. The major reason is that the other two pa-

rameter inference algorithms require visiting all documents and the

entire topic space, while SPI selectively chooses a subset of docu-

ments and a fraction of topic space. This result shows that GS and

VB are not promising candidates for fast topic modeling of massive

web search streams due to the tedious scanning process while SPI

can effectively avoid this drawback.

Figure 3(c) shows the held-out perplexity with increasing the

data size of a time period when K is fixed at 500. WSSM(VB)

demonstrates lower perplexity when the data size of a period in-

creases, because larger data size of period leads to more robust on-

line gradient descents for higher accuracy. However, WSSM(GS)

and WSSM(SPI) often perform worse when the data size of a pe-

riod increases, because smaller data size of a period helps correct

the global biases. In all cases, WSSM(SPI) achieves the lowest

predictive perplexity showing the highest topic modeling accuracy.

Figure 3(d) shows the predictive perplexity with the increase of

the data size of a period when topic amount is fixed to 500 and

90% web search data is observed. We find that this experimental

result is similar to that in Figure 3(c). WSSM(GS) demonstrates

lower perplexity when the data size of a period increases. How-

ever, WSSM(VB) and WSSM(SPI) often perform worse when the

data size of a period becomes larger. WSSM(SPI) achieves the low-

est predictive perplexity, showing that SPI keeps the highest topic

modeling accuracy with different data sizes of a period.

The above experimental results show that SPI is a promising

method for training WSSM. A natural question arises that whether

WSSM(SPI) outperforms the other topic models in terms of train-

ing efficiency. Figures 4(a) and 4(b) show the comparative results

of the time consumption of different models when the data size of

a period increases and the topic amount increases. In this evalu-

ation, all the baselines are trained on full web search data while

WSSM(SPI) is trained on the topically significant query words and

URLs. Figure 4(a) shows the training time of each topic model

when the topic amount is set to 500. The result demonstrates that

the efficiency of WSSM(SPI) is much better than the other topic

models. The underlying reasons are essentially threefold. First,

WSSM is a relatively light-weight topic model and does not in-

volve much complicated calculation. Second, WSSM(SPI) utilizes

WSM to reduce the web search data that need to be digested by the

downstream topic modeling process. Third, WSSM(SPI) reduces

the amount of documents and the scope of the topic space that need

to be scanned in each iteration. Figure 4(b) shows the consumed

time with the increase of the topic amount K when the data size of

a period is fixed at 256MB. The consumed time of all the involved

topic models is roughly liner in the number of topics. However,

the time increase of WSSM(SPI) is rather moderate and it demon-

strates significantly better scalability when the number of topics is

large.

5.4 Memory Consumption
In this subsection, we evaluate the memory consumptions of the

proposed techniques with about ten gigabytes web search data. Fig-

ure 5(a) shows the memory consumption of different probabilistic

topic models when we increase the data size of a period. The ret-

rospective topic models such as LDA need to process all the data

together and typically consume memory that is several times of the

size of the entire data. In contrast, the other three topic models can

take better advantage of the small data size of each period and con-

sume significantly less memory. This phenomenon shows that the

topic models that are specialized for streams are more capable of

processing large-scale web search data. For example, when the data

size of a period is set to 256MB, WSSM(SPI) typically consumes

about 310MB memory, which is much less than those consumed by

the retrospective topic models. Even compared with Online-LDA

and Twitter-Model, WSSM(SPI) also keeps the superiority in terms

of memory consumption. This result demonstrates that SPI can sig-

nificantly reduce the memory consumption by utilizing WSM. Fig-
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Figure 5: Performance Comparison in Terms of Memory

ure 5(b) shows the memory consumption of different topic models

when we fix the data size of a period at 256MB and increase the

topic amountK. The memory consumption of each topic model in-

creases linearly with the number of topics. However, Online-LDA,

Twitter-Model and WSSM(SPI) demonstrate the lowest consumed

memory when topic amount becomes larger, showing their superior

scalability in handling a large number of latent topics. Figures 5(c)

and 5(d) compare the memory consumption of different parameter

inference methods for training WSSM. The SPI algorithm always

consumes less memory than both GS and VB. These results again

verify the effectiveness of WSM, which only selects the topically

significant query words and URLs for downstream topic modeling.

Thus, SPI only needs to process a subset of the web search data that

is digested by the other two parameter inference methods.

5.5 Discovered Topics and Topic Evolution
The above subsections qualitatively gauge the performance of

WSSM and SPI. An informal but important measure of the success

of topic models is the plausibility of the discovered topics. By an-

alyzing the topic modeling results of WSSM, we observe that that

WSSM is able to obtain semantically meaningful topics by differ-

ent parameter inference methods. Table 3 shows the top ten words

of four topics extracted by VB, GS and SPI on the same dataset. We

see that all the three parameter inference methods can effectively

group semantically coherent query words together as topics, where

most of the top ten words are similar except the slightly different

word ranking. For example, in the topic Vehicle, the topics dis-

covered by the three parameter inference methods all contain query

words such as “car”, “wheel” “recall”, “engine” and “hybrid”. The

rankings of these query words are also similar across the topics dis-

covered by the three different methods. Based on these empirical

results, we find that the discovered topics are comparable among all

the three parameter inference algorithms. These results empirically

verify that utilizing SPI to train WSSM can achieve significantly

better efficiency than GS and VB without sacrificing topic model-

ing accuracy.

Besides effectively discovering latent topics from massive web

search streams, we can also identify the evolution of each topic by

comparing the topics that are discovered from different time pe-

riods. Table 4 shows an example (i.e., the topic Vehicle) of topic

evolution detected by the SPI algorithm. In this first time period,

the query word “car” is not in the top five words. As the web search

streams flow, in the second time period, the rank of “car” becomes

the fourth. In the third, fourth and fifth time periods, the query word

“car” is always ranked as top one in this topic. Similarly, the query

words “price” and “white”gradually become more and more im-

portant in the topic of Vehicle. Besides capturing the dynamic shift

of different word rankings, we can also observe the phenomenon

of word emergence and word perishment. In the fourth period, the

word “nissan” first appears in the topic of Vehicle and its rank in-

creases in the fifth period. On the other hand, the word “lexus”

becomes less important as more web search data is observed and

“lexus” totally disappears in the third period. This empirical result

shows that training WSSM via SPI with web search data of dif-

ferent time periods is able to detect the topic evolution over time.

The topic evolution provides a window of observing general web

dynamics and popularity of different entities on the web.

6. CONCLUSIONS
In this paper, we study the issue of efficiently discovering la-

tent topics from massive web search streams. We propose the Web

Search Stream Model and the Stream Parameter Inference , which

are critical for fast topic discovery from massive web search streams.

We conduct extensive experiments based on a large-scale search en-

gine query log in order to gauge the performance of the proposed

techniques. The experimental results show that WSSM is effective

to discover latent topics from voluminous web search streams and

SPI significantly accelerates the process of topic modeling while

keeping a superior topic modeling accuracy. In addition, we also

show that WSSM and SPI are able to reduce memory consumption

and capture the phenomenon of topic evolution as the web search

streams flow. In future work, a promising direction is to explore

more potential applications of the proposed techniques and inves-

tigate whether they can be transferred to related scenarios such as

microblog data analysis.
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