
BITSHIELD: Defending Against Bit-Flip Attacks on
DNN Executables

Yanzuo Chen†, Yuanyuan Yuan†∗, Zhibo Liu†, Sihang Hu‡, Tianxiang Li‡, Shuai Wang†∗
†The Hong Kong University of Science and Technology, ‡Huawei Technologies

†{ychenjo,yyuanaq,zliudc,shuaiw}@cse.ust.hk, ‡{husihang,litianxiang4}@huawei.com

Abstract—Recent research has demonstrated the severity and
prevalence of bit-flip attacks (BFAs; e.g., with Rowhammer tech-
niques) on deep neural networks (DNNs). BFAs can manipulate
DNN prediction and completely deplete DNN intelligence, and
can be launched against both DNNs running on deep learning
(DL) frameworks like PyTorch, as well as those compiled into
standalone executables by DL compilers. While BFA defenses
have been proposed for models on DL frameworks, we find them
incapable of protecting DNN executables due to the new attack
vectors on these executables.

This paper proposes the first defense against BFA for DNN
executables. We first present a motivating study to demonstrate
the fragility and unique attack surfaces of DNN executables.
Specifically, attackers can flip bits in the .text section to alter
the computation logic of DNN executables and consequently
manipulate DNN predictions; previous defenses guarding model
weights can also be easily evaded when implemented in DNN
executables. Subsequently, we propose BITSHIELD, a full-fledged
defense that detects BFAs targeting both data and .text sections
in DNN executables. We novelly model BFA on DNN executables
as a process to corrupt their semantics, and base BITSHIELD on
semantic integrity checks. Moreover, by deliberately fusing code
checksum routines into a DNN’s semantics, we make BITSHIELD
highly resilient against BFAs targeting itself. BITSHIELD is
integrated in a popular DL compiler (Amazon TVM) and is
compatible with all existing compilation and optimization passes.
Unlike prior defenses, BITSHIELD is designed to protect more
vulnerable full-precision DNNs and does not assume specific
attack methods, exhibiting high generality. BITSHIELD also
proactively detects ongoing BFA attempts instead of passively
hardening DNNs. Evaluations show that BITSHIELD provides
strong protection against BFAs (average mitigation rate 97.51%)
with low performance overhead (2.47% on average) even when
faced with fully white-box, powerful attackers.

I. INTRODUCTION

In recent years, the demand for deep learning (DL) ap-
plications in practical settings has escalated, leading to the
widespread adoption of deep neural network (DNN) models
across a diverse array of computing platforms from cloud
servers to embedded devices. To date, an emerging trend is
to use DL compilers to compile DNN models from high-level

∗Corresponding authors.

specifications into optimized machine code tailored for various
hardware backends [5], [44], [31]. Consequently, rather than
being interpreted in frameworks like PyTorch, DNN models
can be built into a “standalone” binary format, allowing
their direct execution on CPUs, GPUs, or other hardware
accelerators. The deployment of DNN executables has notably
increased on mobile devicess [33], [17], [35], [32] and cloud
computing environments [2], [47].

Existing research has demonstrated that bit-flip attacks
(BFAs) enabled by DRAM rowhammer (RH) attacks [23] are
effective in manipulating DNN predictions [15], [37], [48]
by flipping bits in model weights. While previous works are
mostly conducted on DNN models running on DL frameworks
like PyTorch, it is unsurprising that DNN executables com-
piled from DNN models should have similar attack surfaces
since they also rely on model weights to make predictions.
Importantly, our exploration has identified attack surfaces in
the .text section of DNN executables, where computation
logic (e.g., when to terminate a loop) is implemented.1 Similar
attacks are also noted by recent research in parallel [6]. By
flipping bits in the .text section, BFA can be conducted
more stealthily and effectively without tampering with model
weights. This is unique to DNN executables in the standalone
formats (details in Sec. II), imposing a new and demanding
challenge to secure DNNs in reality.

Despite existing efforts to develop defenses against DNN-
targeting BFA [14], [26], [46], [30], [3], [29], [27], they
are often limited to quantized model weights and assume
specific attack pipelines of BFA, overlooking considerable
attack chances (as evaluated and compared in Sec. VIII and
Sec. IX). Also, migrating them from highly dynamic DL
frameworks to protect DNN executables is often impractical,
e.g., Aegis [46] implements a multi-exit DNN structure that
generates non-deterministic computation graphs and cannot be
compiled into executables. Even worse, previous defenses are
designed to only protect model weights, never considering
BFA attack surfaces as we identified in the .text section
of DNN executables. Due to the “standalone” nature of DNN
executables, BFAs targeting the .text section (i.e., code-
based) are particularly threatening, as the .text section also
contains the codebase of the defense mechanism itself (e.g.,
some checkers [30]). That is, previous defenses are evadable

1As expected, DNN weights are typically stored in the .rodata section
of a DNN executable in the ELF format. To ease reading, we refer .rodata
as “data sections” in the rest of the paper.

Network and Distributed System Security (NDSS) Symposium 2025
24 - 28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.231463
www.ndss-symposium.org

by flipping certain bits in their own implementations in the
.text section (e.g., a jmp instruction in a checksum-based
defense), as will be shown in Sec. III.

Given the urgency of protecting DNN executables against
BFAs and the challenges in doing so, we advocate the fol-
lowing five key requirements for a full-fledged defense. 1)
Generic: be agnostic to the attack pipeline and types of DNNs;
2) Unified: consider both code- and weights-targeting BFAs;
3) Post-hoc: do not modify the original DNN or require
retraining; 4) Self-defending: defend against BFAs that exploit
the defense implementation itself (e.g., bypass an integrity
check); and 5) Low overhead: introduce minimal runtime
overhead to ease real-world deployment.

We propose the first defense against BFAs on DNN exe-
cutables, BITSHIELD, that meets the above five requirements.
We model BFA as a process that results in corrupted DNN
semantics and propose a novel concept — semantic integrity
guard (SIG) — to detect both weights- and code-targeting
BFAs by monitoring anomalous decision processes of DNN
(Sec. VI). Focusing on the outcome of BFAs, SIG is ver-
satile and does not assume how attackers identify the bits
to flip. Moreover, BITSHIELD implements a self-defending
mechanism by tightly coupling SIG’s computation with code
integrity: it uses the code checksum as a “key” to decode (“un-
mask”) correct operands required by SIG’s semantic capture
process (see Sec. VI-B). Consequently, it is hardly feasible
for attackers to induce the intended flips while still producing
the correct “key” (code checksum) to silence SIG alarms.
BITSHIELD is also a proactive defense: it detects ongoing BFA
attempts on-the-fly instead of merely passively hardening the
model like many existing works.

BITSHIELD is designed as extra passes during the com-
pilation process, which is agnostic to and does not modify
the compiled DNN models. We implement BITSHIELD on
top of a production DL compiler, Amazon TVM [5]; that
said, BITSHIELD is also portable to other DL compilers with
no technical hurdles (see Sec. IX). We evaluate BITSHIELD
with nine popular large-scale DNNs and datasets, and consider
three fully white-box attacker types with state-of-the-art BFA
capabilities: two code-based attackers (with aggressive and
stealthy variants) and one weights-based attacker. We also
assess BITSHIELD under a range of RH environments and
attack surface (e.g., percentage of vulnerable bits with their flip
directions) of major DRAM manufacturers. Our main results
and contributions are summarized as follows:

• We for the first time mitigate BFAs on DNN executables,
a class of rapidly emerging DNN applications yet still
exposed to BFA risks. We present a full-fledged defense,
BITSHIELD, that considers both weights- and code-based
BFAs, is not limited to certain attack pipelines or DNN
types, and proactively detects ongoing BFA attempts.

• BITSHIELD is based on the novel concept of semantic
integrity to capture anomalous semantics induced by
weights- and code-based BFAs. BITSHIELD achieves
self-defense by fusing code checksum with DNN seman-

DL frameworks

DL compilers

Input: Model & weights

Interpret Computational
graph

External libraries
(e.g., operator

implementations)

Execute

Lower
Optimize

Intermediate
representation

Compile 📄⚙
DNN Executable

Output: Model
predictions

Fig. 1. Comparing DNN models on DL frameworks and as executables.

tics. BITSHIELD is post-hoc and can protect pre-trained
DNN executables without retraining.

• Evaluations against three adaptive, white-box attackers
show that BITSHIELD mitigates 97.51% of active BFA
attempts with only 2.47% overhead; BITSHIELD is highly
practical for production use.

Artifact: Code and data in this paper are publicly available
at https://sites.google.com/view/bitshield-exe.

II. PRELIMINARIES AND RELATED WORK

A. DNN Models and DNN Executables

DNN Models and DL Frameworks. Mathematically, an n-
layer DNN model F can be viewed as fn ◦ fn−1 ◦ · · · ◦ f1,
a sequence of progressively propagated non-linear functions
fi (1 ≤ i ≤ n). Each fi can be generally formulated as
fi : y = A(W,x), where x and y are its input and output,
respectively. W is the model weights and is formed during
training. A is a composite function of matrix operations. For
instance, A can be a convolution followed by a ReLU activa-
tion function, or a simple matrix multiplication, depending on
fi’s implementation. Both A and W can affect the output y
when fi takes x.

As shown in the upper row in Fig. 1, DNN models
conventionally run in DL frameworks such as PyTorch and
TensorFlow, where the model computational graph is con-
structed dynamically by interpreting its high-level definition
and then executed (possibly after just-in-time compilation) by
the framework’s runtime. Certain low-level operations (e.g.,
matrix multiplication and convolution) may also be offloaded
to external kernel libraries such as cuDNN [7] on GPUs and
MKL-DNN [18] on CPUs.
DNN Executables and DL Compilers. Due to the high
demand for deploying DNNs on diverse hardware platforms,
DNN models are increasingly compiled into standalone exe-
cutables that can be directly executed (or invoked by other
programs) on target devices. Typically, a DNN executable
is self-contained and does not rely on runtimes or offload
computation to external libraries; all operators needed by the
model are embedded in the .text region of the executable,
often in specialized, optimized, and fused forms. This is shown
in the lower row in Fig. 1.

To compile a high-level DNN model into an executable,
modern DL compilers first import its computation graph from

2

https://sites.google.com/view/bitshield-exe

DL frameworks and then parse the graph into an intermediate
representation (IR) for optimizations. High-level, platform-
agnostic IRs (e.g., Relay IR [43]) are often graph-based,
specifying the model’s computation flow. Platform-aware IRs
(e.g., TVM’s TIR) specify how the model is implemented on
a specific hardware backend and facilitate hardware-specific
optimizations. The final executable is generated by compiling
the optimized IR into machine code, often with the help of
a backend compiler (e.g., LLVM [25]). Recent research and
industry practices have highlighted the real-world usage of DL
compilers and DNN executables [5], [44], [31], [19]. The TVM
community has received code contributions from companies
including Amazon, Facebook, Microsoft, and Qualcomm [9].
DL compilers are increasingly vital to boost DL on CPUs and
other heterogeneous hardware backends [2], [47].

B. Bit-Flip Attacks (BFAs)

Rowhammer Attacks. A well-known issue of modern DRAM
devices is the disturbance error: repeatedly accessing one
DRAM row brings voltage toggling to DRAM word lines, such
that the capacitor charge of DRAM cells in the neighboring
rows is leaked more quickly. As a result, the memory cell will
lose its state (i.e., a bit is flipped) if the remaining charge is
insufficient before the next refresh.

Rowhammer attack (RH) [23] exploits the above DRAM
disturbance error and empowers recent BFAs. Intuitively, for
a target memory cell, RH first carefully identifies a set of
neighboring rows as the aggressor rows, and then “hammers”
them via frequent row activations. This way, even if attackers
do not have direct access to the target bit, they can still flip its
value (from 0 to 1 or vice versa). Over the years, researchers
have demonstrated the attack on a wide range of memory
modules, including DDR3 [23], DDR4 [20], DDR5 [21], and
ECC memory [8].

BFAs Towards DNNs. BFAs have been demonstrated as
effective in manipulating DNNs. BFAs can deplete DNN
intelligence [15], [37], [40], [48] similarly to adversarial
examples [12]. However, BFAs are more severe since they
can cause the model to “globally” produce undesired outputs,
i.e., for nearly all inputs instead of just one. BFAs can also
be launched to inject backdoors (i.e., targeted BFAs) [4], [38],
[39], such that the DNN gives certain predictions for specific
inputs while retaining the original predictions for other inputs.

Since exploiting DL frameworks running in Python runtime
is challenging due to the dynamic and obscure memory
management [6], existing BFAs towards DNNs primarily
flip bits in model weights [48], [36]. Given that billions of
weight bits may exist and RH attacks are inherently costly,
identifying vulnerable bits whose flips can effectively affect
DNN predictions is critical. For example, DeepHammer [48]
localizes bits in active neurons having large gradients, whereas
ProFlip [4] searches for salient neurons.

C. Defenses Against DNN BFAs

Existing defenses towards (weights-based) BFAs can be
categorized into two groups.

Model Enhancements. One group of defenses aims to im-
prove the resilience of DNN models against BFAs by trans-
forming the model structure or weights. Since quantization can
bring better robustness against BFAs targeting model weights,
recent works [41], [14] propose binarized DNNs, where model
weights and layer outputs are either +1 or −1, to significantly
increase the difficulty to launch BFAs. Also, to specifically
defend targeted BFAs, Aegis [46] proposes a dynamic multi-
exit structure, where the DNN’s inference terminates early at
certain layers for some inputs, such that BFAs flipping bits in
subsequent layers will not affect DNN predictions.

While these defenses are effective when training a BFA-
resilient DNN from scratch, applying them to a well-trained
DNN requires retraining, which is costly in practice and can
induce precision drifting between the original and hardened
DNNs. Precision drifting (or other unaligned behaviors) in-
curred by hardening techniques may be likely exploitable, as
shown by recent research [34], [10]. Moreover, they are in-
applicable to DNN executables: quantization does not notably
improve the resilience of these executables, as pointed out by
existing works [6] and our study in Sec. III. Aegis, on the
other hand, requires dynamic features unsupported by current
DL compilers (e.g., adding dynamic exits) and cannot be built
into DNN executables.2

Weight Integrity. Another line of defense is checking the
integrity of model weights at runtime [29], [3], [30], [22].
These schemes often pre-compute a ground truth signature
(e.g., a checksum) for the model weights before deployment,
and compare it with the signature derived from the weights
at runtime. Ideally, since any modifications to the weights can
lead to mismatched signatures, these defenses are supposed to
defend against all weights-based BFA attempts.

Nevertheless, since DNN executables are standalone bina-
ries, the signature comparison routine, which is implemented
as extra functions in the .text section, cannot always protect
DNN executables as the routine itself can also be attacked by
BFAs. E.g., attackers can evade the check by only flipping one
bit in the comparison routine, as illustrated in Sec. III.

III. BFA VECTORS IN DNN EXECUTBALES

To motivate our defense design, we first demonstrate the
new and pervasive BFA attack vectors in DNN executables.
Holistically, given that DL compilers guarantee functional
equivalence before and after compilation and do not alter
model weight values, one could expect DNN executables
to inherit the same BFA vectors (i.e., model weights) as
the original high-level models. Our exploration confirms this
weight-based BFA vector in DNN executables (see weights-
based BFA evaluation in Sec. VIII).

However, further investigation reveals that DNN executables
also introduce a new and more severe BFA opportunity, which
is unique to DNN executables and is not present in their

2We note that Aegis also has a slightly different defense objective of
protecting both targeted and untargeted BFAs.

3

TABLE I
DISTRIBUTION OF VULNERABLE BITS IN OUR SURVEYED DNN

EXECUTABLES. Q DENOTES QUANTIZED MODELS.

Model Dataset %Acc #Bits #Vuln %Vuln %Pin
1 ResNet50 CIFAR10 87.69 343248 12070 3.52 72.17
2 ResNet50 MNIST 99.23 343248 13156 3.83 92.82
3 ResNet50 Fashion 88.46 343248 14223 4.14 96.91
4 ResNet50 ImageNet 70.10 459808 22008 4.79 45.30
5 GoogLeNet CIFAR10 86.15 972440 28926 2.97 74.68
6 GoogLeNet MNIST 99.23 972440 30401 3.13 80.28
7 GoogLeNet Fashion 90.00 972440 24381 2.51 82.88
8 DenseNet121 CIFAR10 81.54 1451256 40514 2.79 79.39
9 DenseNet121 MNIST 99.23 1451256 45369 3.13 72.56
10 DenseNet121 Fashion 93.08 1451256 44800 3.09 76.97
11 Q-ResNet50 CIFAR10 86.90 728712 15846 2.17 93.61
12 Q-GoogLeNet CIFAR10 84.60 1384904 11588 0.84 91.30
13 Q-DenseNet121 CIFAR10 78.50 2666280 13944 0.52 88.69
14 Avg. - - - - 2.88 80.53

1) #Bits denotes the total number of bits in the .text section.
2) #Vuln. is the number of vulnerable bits identified, %Vuln denotes the
percentage of vulnerable bits in the total bits, i.e., #Vuln/#Bits.
3) %Pin indicates the percentage vulnerable bits that pins most of the model’s
output label to a specific one.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Location in .text

0

2

4

%
Vu

ln
. B

its

Fig. 2. The distribution heatmap of vulnerable bits in DNN executables.

original high-level models. This new attack vector is code-
based BFA, where attackers can flip bits in the .text section
of the executable to manipulate the model’s behavior. We now
show how BFA exploits the .text section and also evades
existing defenses based on integrity checks.

Table I lists our studied DNNs and their accuracy. We pick
these models (ResNet50, GoogLeNet, and DenseNet121) due
to their representative model structures and wide adoption in
various real-world scenarios. We train these DNNs on diverse
datasets (CIFAR10, MNIST, Fashion-MNIST, and ImageNet)
and compile them into executables using TVM (version 0.9.0),
one widely-used DL compiler maintained by Apache Software
Foundation. We include all model/dataset combinations with
sufficiently high accuracy (above 70%) in our study to ensure
a good representation of real-world use cases. We addition-
ally include three cases with quantized models (quantized
ResNet50, GoogLeNet, and DenseNet121) to study the effect
of quantization on code-based BFAs.

Single-Bit Corruption. We first study, in general, how vul-
nerable these compiled executables are when faced with code-
based BFAs. For each executable, we run a full scan over the
bits in its .text section and record the model’s inference
results before and after flipping each bit individually. For this
survey, we only consider a bit vulnerable if flipping it causes
the model’s inference accuracy to drop to the level of a random
guess. Later in our evaluation (Sec. VIII), we set the criterion
for successful attacks to be an accuracy drop of 3% or more,
in order to fully assess our defense. As shown in Table I,
we find that each of the studied DNN executables has 11,588
to 45,369 vulnerable bits (on average 2.88% of the bits in the
.text section), and flipping any of them completely corrupts

idiv esi
leave ;; releases stack frame
ret ;; return to caller
lea r15d, [rdi + 0x1]
imul r15d, eax

idiv esi
mov ebx, eax
lea r15d, [rdi + 0x1]
imul r15d, eax

F7 FE
89 C3
44 8D 7F 01
44 0F AF F8

0x98
0x9A
0X9C
0xA0

F7 FE
C9
C3
44 8D 7F 01
44 0F AF F8

0x98
0x9A
0X9B
0xA0
0XA4

(a) Assembly code before BFA.

(b) Assembly code after BFA.

Addr Opcode bytes x86 assembly instructions

Fig. 3. A code-based BFA example.

the model’s inference ability. This illustrates the severity of
code-based BFAs, as more than 20 flips are often needed in
weights-based BFAs for the same attack goal [48].

Widespread Vulnerable Bits. We also report that the vul-
nerable bits exist throughout the .text section of the DNN
executables, as shown in Fig. 2. This corresponds to the
observation that vulnerable bits that can be exploited by code-
based BFAs are widely distributed in different layers of the
model, which is in sharp contrast to the case of weights-based
BFAs where the vulnerable bits typically concentrate in the
first or last few layers of a model [37], [48]. This also implies
that an effective defense against code-based BFAs must not
assume the locations of vulnerable bits.

Untargeted & Targeted. Besides depleting DNN intelligence,
we also find that targeted BFAs are highly achievable via code-
based BFAs. As reported in Table I, a large portion of the vul-
nerable bits in our surveyed executables (on average 80.53%)
can turn most predictions into a certain one (a fixed label),
potentially enabling the attacker to manipulate the model’s
behavior in a targeted manner. This is reasonable as the .text
section encodes the essential computation procedures of a
DNN executable. Consider the flip shown in Fig. 3 where a
single bit is flipped at address 0x9A, causing a mov instruction
to be replaced with a leave instruction followed by a ret;
the new instructions will unconditionally return to the current
function’s callee, discarding any succeeding computation. If
this flip happens inside a classifier layer, it is possible that the
layer’s output will just be a chunk of untouched calloc-ed
memory, leading to an all-zero output and a fixed prediction.

Quantization. By cross-comparing the results of quantized
DNNs (11-13th rows) and their floating-point counterparts
(1st, 5th, and 8th rows) in Table I, we note that the effec-
tiveness and exploitability of code-based BFAs do not exhibit
notable differences in DNN executables with and without
quantization. Overall, this is in stark contrast to the case of
weights-based attacks, where quantization can significantly
reduce the effectiveness of BFAs [37], [48]. Thus, previous
defenses by quantizing or binarizing DNNs can hardly defend
against code-based BFAs on DNN executables.

Evading Integrity Checks. A serious concern brought by
code-based BFAs is their ability to manipulate defenses: due
to the standalone nature of DNN executables, these defenses

4

are also implemented in the .text section. Note that this
issue is distinct from the “white-box” attacks considered in
previous works [30], [46], which exploit defects in a defense’s
design. In the case of code-based BFA, even theoretically
secure defenses such as comparing checksums may be evaded
if attackers flip certain critical bits in the checks. Consider
Fig. 3 again as a simple example: if there is a checksum
comparison after the address 0xA4, the comparison will
always be bypassed after the flip.

IV. THREAT MODEL

DNN Executables. Our defense aims to protect DNN exe-
cutables compiled by DL compilers. It does not assume any
specific types of DNNs and is agnostic to compiler’s imple-
mentations. Without loss of generality, we consider general
floating-point DNNs.

Attacker’s Targets. While prior DNN BFA and defense works
mainly focus on model weights of DNNs, we argue this is
insufficient for DNN executables since attackers can also flip
the code bits in the executable’s .text section; this generally
leads to effective and efficient exploitation (see Sec. III). Thus,
we assume that attackers can target both the weights and code
bits in the victim executable, with the end goal of manipulating
the victim DNN’s behaviors (e.g., downgrading its prediction
accuracy or pinning the output to a specific class).

Although DNN’s intermediate activations or output vectors
can be manipulated by BFA in theory, they are generally
not the target of DNN-targeting BFA [15], [37], [40], [48].
Recall, as introduced in Sec. II-B, that BFA differs from
adversarial example attacks [12] in that it globally modify
DNN predictions for nearly all inputs; this requires the flipped
bits to “remain flipped” across different inputs. Intermediate
activations and output vectors, being frequently updated and
overwritten during (every) inference of the DNN, cannot be
used to fulfill the persistent requirement. Moreover, manipu-
lating them also requires a specialized attack plan for each
DNN input, which downgrades BFA’s global attack to a per-
input attack. As such, these input-level BFAs are impractical
(since launching rowhammer attack is costly) and much less
attractive to attackers.

Attacker’s Strategy. We assume attackers can flip any desired
bit (in data and .text sections) as long as it can be flipped by
any generic RH techniques using available memory templates.
We do not assume specific attack pipeline or profiling strategy
(e.g., flipping bits in active neurons or deep layers) of BFAs.

Attacker’s Knowledge. We consider severe and represen-
tative white-box attackers with full knowledge of 1) the
DNN executable, including the model structure, weights, and
compilation configurations of the executables, and 2) our
defense, including the design and implementation details of
BITSHIELD. This means that attackers can attempt to evade
detection by attacking BITSHIELD itself, e.g., by flipping bits
in the defense’s implementation in the .text section of the
executable. Moreover, we assume that attackers can carefully
choose the flipped bits so that the DNN executable does not

crash during BFA; otherwise, developers and maintainers can
easily notice the BFA. We give more details on the three
attacker variants in Sec. VIII-B.
Defense Objectives. Consistent with prior works to defend
against BFAs [46], [30], [27], [28], we aim to substantially
lower the attack success rate on DNNs protected by our
defense. Additionally, we aim to provide a proactive defense
that can detect ongoing attacks, a rather undesired outcome for
RH-based attackers who often strive to remain stealthy. From
this perspective, we use the terms “detection” and “mitigation”
interchangeably in the rest of this paper.

V. REQUIREMENTS AND CONSIDERATIONS

Based on our exploration of prior BFA defenses (Sec. II-C),
findings of code-based BFAs on DNN executables (Sec. III),
and the strong attacker we assume in Sec. IV, we identify
the following key requirements and considerations for a full-
fledged defense against BFA on DNN executables.
¬ Generic: A defense should be applicable to different DNNs
and attack pipelines. Prior defenses often assume BFAs adopt
certain strategies to search for bits to flip, which can overlook
vulnerabilities if different profiling approaches are used. Other
defenses may also be limited to quantized DNNs, leaving
floating-point DNNs, which are more prevalent and more
fragile to weights-based BFAs, unprotected.
 Unified: We expect a defense to mitigate both weights-
and code-based BFAs. Previous defenses primarily aim at
degrading attackers’ ability to search for bits to flip, namely
they focus on the “source” of BFAs. We argue that this is
less practical in defending new BFA vectors (as it requires
separately modeling each BFA source), especially given the
growing trend of more aggressive optimizations in DNN
executables which may expose new BFA chances in the
future. In contrast, our defense focuses on the “outcome” of
BFA, i.e., whether the model’s prediction is manipulated, and
characterizes it via the DNN’s decision process.
® Post-hoc: Users should be able to apply a defense to a pre-
trained DNN (executable) in a post-hoc manner. This is vital
given the increasing demand of large pre-trained DNNs in
specialized tasks. Some previous defenses design new DNN
structures to mitigate BFAs, which require retraining model
weights, bringing considerable cost. The output DNN also
often has inconsistent predictions with the original one, which
may introduce new security concerns [10], [34] and also suffer
from lower accuracy.
¯ Self-defending: Since code-based BFAs can simultaneously
tamper the defense when conducting an attack, a defense
needs to be able to protect itself. Here, an attacker not only
exploits defects in a defense’s design (as we consider a
white-box attack), but is also able to modify its low-level
implementation. As a result, even those rigorously secure
defenses (e.g., checksum comparison) can be easily evaded
at negligible costs. Consistent with our defense objectives
mentioned above, we do not aim to fully eliminate the chance
of such attacks. Rather, we expect to detect an ongoing BFA

5

that attacks our defense and greatly lower the success rate of
bypassing our defense.

° Low overhead: Considering that DNN executables are often
adopted in latency-sensitive applications, it is desired to reduce
the overhead of a defense as much as possible. Our defense,
with careful optimizations (see Sec. VI-A), is comparable to
adding an additional layer into the DNN (a DNN often has
dozens or hundreds of layers). Its incurred overhead in practice
is negligible and much lower than previous tools, as evaluated
in Sec. VIII and Sec. IX.

VI. DESIGN

We first briefly introduce how BITSHIELD meets the five
requirements in Sec. V. We then present implementation and
optimization details in Sec. VI-A and Sec. VI-B.

Intuitions. Essentially, predictions of a DNN (executable) are
made based on a decision process which is jointly decided by
the code logic and model weights. In that sense, both code-
and weights-based BFAs can be viewed as attacks breaking the
normal decision process, regardless of how the attacker iden-
tified the bits to flip. Moreover, independent of the attacker’s
goal (i.e., untargeted or targeted BFA), a successful BFA, when
viewed from a specific input’s perspective, is reflected as a
different and incorrect prediction. The root cause is essentially
the anomalous decision process. Therefore, to design a generic
(¬) and unified () BFA defense, the decision process of the
protected DNN (executable) should be monitored and checked
for anomalies. Similar to “program semantics” formulated in
conventional software, this paper deems a DNN’s decision
process for each input as its semantics.

Note that, unlike previous defenses that often assume the
attacker’s profiling strategy, monitoring the DNN’s semantics
focuses on the consequence of BFA attacks (without accessing
the ground truth prediction) and is therefore agnostic to the
attacker’s profiling and the attack source. No matter where
the BFA is conducted (e.g., towards shallow layers or deep
layers, towards weights or .text), or how the flipped bits
are identified (e.g., via large gradients or salient neurons), it
will be detected with high probability as long as it successfully
changes the DNN’s prediction.

Hardening Workflow. Fig. 4(a) depicts the procedure to
compile DNN executables with BITSHIELD. We first insert an
initial SIG into the model as additional computational graph
nodes to detect BFA-caused anomalous semantics; see the
formulation and design in Sec. VI-A. SIG’s additional cost
is negligible (°) considering the number of nodes already
present in the graph (e.g., 649 in ResNet50). After the graph is
transformed into lower-level IRs, we add self-defense to SIG,
which detects BFAs that attempt to corrupt SIG’s implemen-
tation in the .text section (¯).

This is done by fusing code checksum into SIG’s com-
putation process: as shown in Fig. 4(b), we apply a trans-
formation (“masking”) to SIG’s operands using the ground
truth code checksum obtained at compile time. At runtime,
BITSHIELD dynamically applies the inverse transformation

(“unmasking”) using the actual code checksum calculated on-
the-fly (whenever the protected DNN takes an input). If the
checksums mismatch, the transformation pair will not cancel
out, leading to corrupted SIG computation and thus an alarm;
see Sec. VI-B. Moreover, we also ensure that the masking
process is implemented with static primitive operations, so
they can be optimized and fused with other operators by DL
compilers, increasing the work needed for attackers to flip all
the desired bits.
Compiler-Based Design and Application Scope. BITSHIELD
is implemented as extra passes in a DL compiler. Overall,
the design choice of compiler-based protection ensures that
BITSHIELD has maximized generalizability, is compatible
with all existing compilation and deployment workflows, and
can be applied to protect DNNs of various tasks supported by
existing DL compilers. Apparently, this procedure is post-hoc
(®) and does not require modifying existing DNN structure or
weights, or retraining/fine-tuning the DNN under protection.

Without loss of generality, we focus on classification DNN
in the following technical presentation. The classification DNN
is also the primary target of existing BFA works [15], [37],
[40], [48]. That said, BITSHIELD does not assume any DNN
task or implementations; it applies to any DNNs as long as
they can be compiled by the de facto DL compilers (e.g.,
TVM); see discussions in Sec. IX.

A. DNN Semantics and Integrity Guard

Capturing DNN Decisions. As discussed above, no matter
how and where the BFA is conducted, it essentially breaks
the normal decision process of the DNN, which is deemed
as the semantics of DNNs. Thus, the first key problem is
how to capture the decision process of a DNN when it makes
the prediction y = F (x). Here, y is a vector where the i-
th element denotes the probability of x belonging to the i-th
class. As mentioned in Sec. II-A, a DNN is a composition
of multiple non-linear functions; the high non-linearity makes
it challenging to represent the decision process. However,
inspired by the fact that a randomly initialized DNN’s decision
process can be trained into a valid one under the guidance of
gradients, we can represent this process during runtime by
inversely measuring how a model’s output can be turned back
into a random guess.

To achieve this, we first prepare a vector u that has the
same size as y, but with elements all equal (i.e., = 1/|u|),
representing equal probability for all classes, or a randomly
guessed label. We then compute the distance between u and y.
Since both u and y are vectors of probabilities, we follow the
common practice [24], [16] and use the Kullback-Leibler (KL)
divergence DKL to measure their distance. Finally, similar
to conventional back propagation of DNNs, we propagate
DKL(u, y) through the last layer fn to the first layer f1 and
compute the gradients g. The gradients g encode the infor-
mation for adjusting the DNN’s decision process to transform
the prediction y back into a random guess u. Formally, let gi
denote the gradients propagated to the i-th layer of weights
wi. We then have

6

High-level DNN models

Lower to Relay IR

Lower to TIR

Inject canary stubs:
Insert stub code (to be replaced later
via binary patching) in every layer
@layer = primfn(handle) -> ()
 buffer_map = {w: Buffer(w_0)}
 canary_stub[200]
 // Layer computation below
 for (i: int32, 0, 128) {
 // Omitted...

Enhance SIG for self-defense by
fusing code checksum:
Insert static masking primitives &
dynamic unmasking function
@sig = primfn(handle) -> ()
 x = hooked_layer.out
 for (&xelem in x) {
 call_prim(mask, xelem)
 }
 call_func(unmask, x)
 // SIG computation omitted

ReLU

Dense

Conv

Out

In

ReLU

Conv

SIG Indicator

Insert initial SIG

Relay IR

Run existing optimizations & compile

📄⚙
DNN Executable

Checksum ground truth

Canary Implementation

Insert via binary patching Output

SIG Indicator

Conv+ReLU Conv+ReLU Dense

Canary instances

In final protected executable:
• SIG detects code- & weights-based BFA
• SIG self-defends by distributing masking

primitives and requiring unmasking
• Canaries halt the execution early upon

detecting corrupted code

(a) The compilation pipeline with BITSHIELD. (b) Using the protected model for inference.

Input

code_cksum()

Unmask function

Enhanced SIG

∂DKL+Norm

TIR

Mask primitives

Fig. 4. An overview of the process of using BITSHIELD to harden DNNs and the execution of the protected DNN executable. SIG is configured to hook
into the last two layers in this example.

g = {gn, . . . , g1}, gi =
∂DKL(u, y)

∂fn(·)
. . .

∂fi(·)
∂wi

. (1)

Deciding Normal Semantics. With the above process, we
obtain g, gradients representing the “path” from valid pre-
dictions to random ones, and rely on this metric to depict the
semantics of the DNN. We deem an anomalous g a flag of
anomalous DNN decision processes — this forms the basis of
our semantic integrity guard (SIG). To further decide whether
a g is anomalous, we require a reference set G characterizing
different normal semantics. Since DNNs are data-driven and
their decision logic is formed by the training data, we expect
the decision procedures over training data to be normal ones.
Thus, for a DNN F , we construct G as the set of all g
computed over the training data according to Eq. 1.

Then, whenever the DNN is making a prediction and having
the corresponding semantics g∗, we can compare g∗ with
elements in G to decide whether it is anomalous. The standard
way is leveraging probability density to estimate how likely
g∗ follows the distribution G and accordingly check if g is
normal. However, as clarified in Sec. IV, DNN executables
are often deployed in latency-sensitive scenarios; estimating
probability density is undesirable due to the high overhead.
Instead, we can scope the normal “boundary” of G and check
if a runtime semantics g∗ falls outside the boundary. The
boundary can be decided by the maximum and minimum
`1-norm of all g ∈ G. Accordingly, if a user input’s g∗

falls outside the boundary of G, we consider it anomalous,
suggesting ongoing BFA. Note that when viewed from the
probability density perspective, g∗ lying outside the boundary
of G indicates that it is unlikely to follow the distribution of
G. In that sense, we view our `1-norm-based detection as a
lightweight approximation of the probability density.
Semantic Integrity Guard (SIG). SIG is implemented as
additional nodes on the protected DNN executable’s computa-
tional graph to calculate gradients. Before deploying a DNN
executable, we first insert SIG into the executable. Then, we

feed each training input into the executable and compute its
semantic g according to Eq. 1. We simultaneously record the
minimum, maximum, and average `1-norm values of all g,
denoted as Gmin, Gmax, and Gavg, respectively.

Considering that diverse real-word inputs at runtime may
produce semantics whose `1-norm values fall outside the range
[Gmin, Gmax], we expand the lower and upper bounds as
L = Gmin − e · (Gavg − Gmin) and U = Gmax + e ·
(Gmax −Gavg), respectively, with e as a configurable factor.
We set e to 0.3 in the main experiments. Overall, BITSHIELD’s
performance is resilient to the choice of e if its value is
within a reasonable range (see Sec. VIII-D2). At runtime,
when the DNN executable is processing a user input x∗, we
deem its semantic g∗ normal (the executable is not under BFA)
only when L ≤ ||g∗||1 ≤ U ; the comparison can be simply
implemented by the user.
Optimizations. In practice, we find it often unnecessary to
back propagate all layers, whose cost is comparable to an
additional inference of the DNN executable. Our tentative
explorations show that propagating only the last layer fn to
compute gn offers sufficient defense capabilities while largely
reducing the performance overhead (see our evaluations in
Sec. VIII-C). This observation is consistent to empirical evi-
dences in prior work [45], which show that deeper layers in
DNNs are more related to the decision process.

B. Achieving Self-Defense

As shown in Sec. III, since DNN executables are stan-
dalone, defense mechanisms are implemented in the .text
section as extra code chunks. This implies that the defense’s
implementation is also vulnerable to BFAs. The SIG scheme
introduced in Sec. VI-A is no exception. Thus, we aim to
further introduce another defense mechanism to achieve self-
defense, as introduced below.
Vanilla Design. The direct way is to check if contents in
the .text section is tampered, by pre-computing the code

7

x = hooked_layer.out
for (&xelem in x) {

call_prim(mask, xelem)
}

for (i: int, 0, 32) {
for (j: int, 0, 20) {

tir.reinterpret(x[i,j,0], uint)
mask(x[i,j,0], stub_cksum)
tir.reinterpret(x[i,j,0], float)
// More instances omitted...
tir.reinterpret(x[i,j,15], uint)
mask(x[i,j,15], stub_cksum)
tir.reinterpret(x[i,j,15], float)

}
}

(a) Masking implemented in IR.

(b) Masking operations after optimizations. (c) Masking operations distributed
into the SIG layer (highlighted).

Replaced via binary patching

Compiled
ASM

Fig. 5. The process to distribute the masking operation across the SIG layer.

checksum and comparing it with the runtime code checksum
whenever the DNN executable is invoked. However, per our
preliminary study and observation in Sec. III, simple checksum
comparisons can be trivially evaded by only flipping a few bits
in the .text section; this only brings negligible extra hurdle
to launch a successful BFA.
Fusing Code Checksum with SIG. The above issue appears
to be a chicken-and-egg dilemma that is hard to address.
However, we identify a unique opportunity to solve it by fusing
the code checksum into SIG’s computation process (and thus
the executable’s computational graph). The intuition is that,
if the code checksum is corrupted, we expect to amplify and
propagate the corruption in the DNN’s execution process and
eventually reflect it via the DNN’s semantics.

Without loss of generality, we use o = W ? v as a
simplified representation of SIG’s computation, where W
is the weights, v is a runtime variable (e.g., intermediate
gradients), and ? denotes any operation involved in SIG
computation. We can rewrite the computation equivalently as
o = M−1(c∗,M(c0,W)) ? v. Here, M and M−1 are a
pair of weight transformation (masking) function and inverse
(unmasking) function that ensure M−1(c∗,M(c0,W)) = W
only when c∗ = c0. The c0 is the ground truth checksum of
the .text section pre-computed at compile time, and c∗ is
the .text section’s checksum calculated at runtime during
inference. We choose M that significantly transforms the
weights to maximize the chance of a successful detection: in
such a case, incorrectly unmasked weights (e.g., due to wrong
code checksum caused by bit flips being used) effectively
cause an artificial and intended amplification of the ongoing
attack, which will likely lead to incorrect computation results
in SIG’s semantic characterization. In practice, we find XOR
operation to be a good choice for M.
Distributing the Transformations. To further combat BFAs
that attack the above transformation process, we leverage com-
piler’s optimizations to distribute M’s implementation. Since
the masking function M only takes W and the ground truth
code checksum c0 (obtained at compile time), we implement
M statically using IR primitives. As a result, the compiler’s
optimization passes will expand M’s implementation into a

series of primitive operations distributed across the SIG layer.
The unmasking operation M−1, in contrast, is implemented
as a dynamic tensor-oriented function to support runtime code
checksum calculation (see Fig. 4).

We illustrate the distribution process of M in Fig. 5,
where the masking operation is implemented as high-level
IR primitives in Fig. 5(a). After the compiler’s lowering and
optimization passes (e.g., loop unrolling, operator fusion), the
IR primitives are expanded into lower-level instructions and
fused with other operations wherever possible (Fig. 5(b)), and
finally appear distributed across the SIG layer (Fig. 5(c)).
This distribution process greatly decreases the probability for
attackers to flip all required bits to evade the defense, because
any incorrect unmasking propagates the error, and skipping
the SIG as a whole also results in corrupted semantics.

Checksum Revisited: A Checksum Canary. In principle, if
the DNN executable’s code logic (implemented in the .text
section) is modified or corrupted by BFAs, any subsequent
computation will be subject to contingencies and may lead
to unexpected results. It is therefore desirable to halt the
computation as soon as possible to mitigate the potential
damage. In this regard, inconsistent checksums can quickly
expose tampered .text section, as long as the comparison
itself is not attacked. Thus, while we do not (and cannot)
directly rely on code checksum comparisons to detect BFAs,
we hope to use them as an early stop mechanism upon
detecting any corruption in the .text section.

We achieve this by leveraging checksum comparison as a
canary: we insert checks with pre-computed checksum ground
truth values before every layer of the DNN executable, as
shown back in Fig. 4(b). Whenever the protected DNN exe-
cutable runs for inference, the canaries compute the checksum
of the executable’s .text section and compare it with the pre-
computed value; if the two mismatch, BITSHIELD destructs
the DNN execution by inducing an intentional crash, conse-
quently exposing the attack. Specifically, the pre-computed
“ground truth” checksum is embedded as a literal into the
canaries using standard binary editing techniques immediately
after compilation ends. The crash is achieved by issuing an
instruction (e.g., the INT instruction on x86) to halt the
program. We choose Adler-32 [1] as our checksum algorithm
for its simplicity and low performance overhead. The same
checksum algorithm is also used when fusing code checksum
into SIG’s computation.

VII. ANALYSIS OF ATTACK MITIGATION

Before presenting the empirical evaluations in Sec. VIII,
we first provide the following analytical discussions on BIT-
SHIELD as well as the potential BFA threats from various
perspectives. Our analysis is depicted in Fig. 6.

As introduced in Sec. VI, BITSHIELD generally delivers
a two-stage defense for DNN executables. First, our code
checksum canary acts as an early responder and halts the
executable if mismatched checksums of the .text section is
detected. This mitigates BFAs tampering the .text section

8

.text .rodata (weights)

👹 Attacker
①

②
❌

❌
③

SIG Protection
Canary Protection
DNN Executable

SIG

❌

Fig. 6. Different attack types and their mitigation by BITSHIELD components.

(and thus the DNN computation logic); we illustrate the canary
protection as ¬ in Fig. 6.

Adaptive attackers may succeed in evading the checksum
comparison by flipping the correct bit(s), e.g., as shown in
the example in Sec. III. This is also considered in our design:
during the DNN executable’s computation, our SIG checks
the semantics (i.e., the decision process) of the DNN. Since
computations of the SIG is fused with the code checksum via
masking and unmasking operations, such an adaptive attack
attempt will still be reflected as anomalous semantics and
detected by SIG. We show this as in Fig. 6.

Weights-based BFA attackers primarily attempt to flip bits
in the data sections of the DNN executable, where weights
are stored. Overall, if the model weights are tampered, it can
also be detected by SIG via anomalous DNN semantics. This
is shown as ® in Fig. 6.

We admit there exists a potential risk that attackers may
evade our defense. As mentioned above, we distribute the
masking/unmasking operations across a wide range of primi-
tive operations. To evade our defense, a successful BFA must
additionally flip bits to 1) bypass the canary, 2) tamper SIG’s
computation, and 3) manipulate all distributed masking/un-
masking operations, where the attacker may also need to adjust
all intermediate values already masked with the ground truth
code checksum. This significantly increases the difficulty of
finding suitable memory templates for RH. Considering the
fact that vulnerable bits in DRAM typically exist in a scattered
pattern [13], we believe the chance of a successful BFA is
extremely low, if not impossible. We further validate this in
Sec. VIII using adaptive attackers, and also demonstrate the
negligible overhead of BITSHIELD.

VIII. EVALUATION

In this section, we conduct a comprehensive evaluation of
BITSHIELD to assess its effectiveness and efficiency. We de-
scribe our experimental platform in Sec. VIII-A and introduce
the different attacker types we consider in Sec. VIII-B. We
then consider three research questions (RQs) in our evaluation:

• RQ1: How much performance overhead does BITSHIELD
introduce in protected executables?

• RQ2: How effective is BITSHIELD in mitigating different
types of BFAs?

• RQ3: How do different components and parameter con-
figurations of BITSHIELD contribute to its effectiveness?

TABLE II
THE DRAM PLATFORMS WE SIMULATE, WITH EACH PLATFORM’S

DEGREE OF VULNERABILITY EXPRESSED AS THE NUMBER OF
VULNERABLE BITS PER MILLION BITS OF DRAM. THE PERCENTAGE OF

“0→1” FLIPS AMONG ALL FLIPPABLE BITS IS ALSO REPORTED.
Platform Name A B C D E

Vuln. bits per 1M bits 0.16 0.39 3.04 26.40 64.54
%“0→1” 51.15 48.89 50.59 50.75 51.16

We answer RQ1 and RQ2 in Sec. VIII-C and provide more in-
sights to the results by presenting a comparison with previous
defenses in Sec. VIII-E. We answer RQ3 in Sec. VIII-D.

A. Platform Setup

We first describe how we set up our experimental platform,
including the DNN executables we use and the RH environ-
ment we simulate. We use a server with an AMD Ryzen
Threadripper 3970X 32-core processor and 256GB of RAM
running Ubuntu 22.04 for our experiments.

DNN Executables. We use the same executables as in our
attack surface survey in Sec. III (excluding executables for
quantized models), including 3 popular large-scale DNN mod-
els and 3 commonly used datasets. The detailed statistics of
the executables are reported in Table I.

RH Environment. We run our attack experiments in a
simulated RH environment, which allows us to assess our
defense under stronger attackers without being limited by real-
world factors like DRAM module types and RH techniques
used. To this end, we adopt the vulnerability survey results
for DDR4 DRAM from Blacksmith [20], which reports the
number of vulnerable bits and their flip directions (i.e., 0→1 or
1→0) for 40 DRAM modules from 4 different manufacturers.
This survey is representative of the vulnerability of DDR4
memory modules under the state-of-the-art RH techniques.
Prior research also shows that vulnerable bits in DRAM tend
to have a uniform distribution [13]. Thus, we configure our
simulated RH environment to have different percentages of
vulnerable bits matching the survey results, and use these
configurations to assess our defense on platforms with different
degrees of vulnerability to RH attacks.

Table II shows the DRAM vulnerability data we collected
from Blacksmith [20], where A∼D represent the average data
from four different manufacturers, Micron, Hynix, Kingston,
and Samsung, respectively, and E is the most vulnerable
DRAM product among all 40 tested. We use these five plat-
forms as the simulated RH environments in our evaluation. In
the Blacksmith survey, the authors sweep over a 256MB region
on each DRAM module to find flippable bits. We use the same
setting to set up the memory region for our simulated attackers
to obtain memory templates; according to our preliminary
experiment on real DDR4 DRAM, it takes about 17.5 hours for
a real-world attacker to finish the sweep, which we consider
reasonably time-consuming. For each platform, we instantiate
50 DRAM modules with different random seeds to repeat the
experiments, and average the results for analysis. In reality, RH
attackers would also be constrained by the memory templating

9

and massaging techniques (see Sec. II-B) they employ [48],
[42]; we allow arbitrary template reuse and assume 100%
success rate for memory massaging in our evaluation to
simulate the worst-case scenario for our defense.

B. Attacker Profiles
We consider two variants of code-based attackers and one

traditional weights-based attacker in our evaluation. We first
describe the goal and capabilities of the attackers, and then
introduce each attacker type in detail.

1) Attacker Capabilities and Success Criteria: All our
attackers are fully white-box, meaning they have full knowl-
edge of the victim DNN executable (including the code and
weights), the concrete details of our defense mechanism, and
the memory templates available on the victim system. We
model the launching of each attack as a two-phase process:
first, the attacker can perform local profiling using the white-
box knowledge of the victim executable, our defense, and
the memory templates to generate an attack plan containing a
chain of bits to flip. Then, bits in the victim executable are
flipped according to the attack plan, and the evaluation metrics
are collected. The attackers’ end goal is to induce a drop in
the inference accuracy of the victim executable without being
detected or causing any crash. We follow prior work [30] to
set the success criterion: we consider a drop of 3% or more
in accuracy as a successful attack.

2) Code-Based Attackers: We consider two types of code-
based attackers: aggressive and stealthy, representing different
strategies of selecting the flipped bits. In each code-based BFA
experiment, we use either the aggressive or stealthy attacker to
generate 50 attack plans for each victim executable; as will be
seen in Sec. VIII-C, both attackers launch effective single- and
multi-bit attacks, and BITSHIELD is successful in detecting
and mitigating them.

Algorithm 1: Attack plan generation for the aggressive
code-based attacker (whitebox, adaptive).

Input: Victim executable e, victim host’s memory templates T
1 B ← {}
2 foreach bit b in e’s .text section do
3 if flipping b does not trigger BITSHIELD & acc. drop ≥ 3%

then
4 B ← B ∪ {b}
5 B ← {b ∈ B : flippable(T , b)}
6 T ∗ ← {t ∈ T : t overlaps with SIG checksums}
7 if T ∗ suffices to bypass SIG then
8 yield SIG bypass plan
9 L← sorted(B, descending accuracy drop)

10 foreach bit b in L do
11 yield attack plan {b} ; // Single-bit attack
12 for l← 2 to |L| do
13 P ← {}
14 foreach bit b in L do
15 if |P ∪ {b}| = |{instruction of b : b ∈ P ∪ {b}}| then
16 P ← P ∪ {b}
17 break if |P| ≥ l & acc. drop ≥ 3%
18 yield attack plan P ; // Multi-bit attack

Aggressive Attacker. As mentioned in Sec. III, an attacker
can induce bit flips in the .text section of a DNN exe-
cutable to degrade its inference accuracy, frequently to the

level of random guesses. This type of attacker represents a
malicious actor trying to leverage this observation to launch
attacks straightforwardly. We show the attack plan generation
algorithm for the aggressive code-based attacker in Alg. 1.
During local profiling (lines 1–6), the attacker iterates over all
bits in the victim executable’s .text section and records the
impact of flipping each bit on the accuracy of the executable.

To simulate a fully whitebox attacker trying to bypass our
defense, bits that are unflippable on the victim host due to the
lack of memory templates, or bits that will trigger our defense
if flipped, are not recorded or used in attacks. Also, the attacker
searches for memory templates that may be used to tamper the
ground truth checksum values embedded in SIG. In case the
attacker gathers enough templates to modify the embedded
checksums at will, a flipping plan to bypass SIG can be
generated to increase the attack success rate (line 8). To create
plans to achieve the objective of accuracy degradation, the
recorded bits are then sorted by their impact on the accuracy
(line 9). We then first generate single-bit attack plans (lines 10–
11), where each plan contains a single bit to flip from the
sorted list. Multi-bit attack plans are also generated (lines 12–
18) to evaluate BITSHIELD’s robustness against more complex
attacks: each plan contains the most effective (aggressive)
bit(s) from the list such that the attack goal is reached while
the number of flips and crash probability are minimized.
Stealthy Attacker. A stealthy attacker aims to decrease the
victim model’s accuracy without causing too large accuracy
drops: instead of trying to flip the most effective vulnerable
bit(s) in an attack, this attacker tries to flip less effective ones,
as long as the criterion of a 3% accuracy drop for a successful
attack is met. We propose a straightforward way to simulate
this attacker: similar to the aggressive attacker in Alg. 1, the
attacker scans the victim executable’s .text section during
local profiling to record vulnerable bits. For an attack plan,
however, the attacker selects the least effective (stealthy) bit(s)
among those causing at least a 3% accuracy drop, instead of
the most effective ones.

3) Weights-Based Attacker: For the weights-based at-
tacker, we simulate a strong adversary proposed by Rakin
et al. [37]; we use the default values for the parameters in
this attacker. During local profiling, the attacker conducts a
gradient-based vulnerable bit search consisting of three steps:
in-layer search, cross-layer search, and progressive iteration.
In an in-layer search for a DNN model f , the nb (by default
1) most vulnerable bits in a layer are found by calculating
the gradient of the loss function L w.r.t. all the bits B in
the layer’s weights and selecting the nb bits with the largest
absolute gradient values: B̂ = Topnb

|∇BL(f(x), y)|, where
x is the input, y is the ground-truth label, and Topnb

returns
the nb bits with the largest absolute gradient values. Every bit
b̂ ∈ B̂ is then flipped by XORing it with a mask to maximize
the total loss.

Once the new loss after the flips is calculated and recorded,
they are undone (for later steps). The in-layer step is repeated
for all layers in the DNN to form a cross-layer search, and
only the nb most vulnerable bits across all layers are actually

10

TABLE III
PERFORMANCE OVERHEAD OF BITSHIELD BY COMPARING UNPROTECTED

(VANILLA) AND PROTECTED EXECUTABLES.
Model Vanilla (ms) Protected (ms) Overhead (%)

ResNet50

CIFAR10 21.07 21.63 2.66
MNIST 21.39 21.79 1.87
Fashion 21.39 21.90 2.38

ImageNet 33.21 35.94 8.22
Avg. 24.27 25.32 4.33

GoogLeNet

CIFAR10 55.59 56.13 0.97
MNIST 55.90 56.14 0.43
Fashion 55.93 56.29 0.64

Avg. 55.81 56.19 0.68

DenseNet121

CIFAR10 22.10 22.71 2.76
MNIST 22.07 22.64 2.58
Fashion 22.11 22.60 2.22

Avg. 22.09 22.65 2.52
Avg. - - 2.47

flipped at the end. The attacker can increment nb and retry
after the cross-layer search until the attack goal or maximum
number of iterations (by default 20) is reached. The set of bits
selected to be flipped at the end of the iteration denotes the
attack plan for the victim executable.

Note that we consider a powerful white-box attacker who
tries to evade our defense with full knowledge of BITSHIELD’s
mechanisms. Hence, the weights-based attacker avoids flipping
the bits which have the most influence on the SIG output (as
determined by their gradients). Unlike prior defenses assuming
a fixed percentage of unflipped bits [30], our attacker is more
stealthy by dynamically increasing the fraction of evaded
bits (i.e., unflipped to avoid being detected) in each search
iteration if the attack is detected, until reaching a maximum
fraction; we evaluate BITSHIELD towards different maximum
evasion fractions in Sec. VIII-C3. Other variants of weights-
based BFAs, e.g., T-BFA [39] where the Rowhammer-specific
instance [48] is restricted to flipping one bit per page, are
omitted as they represent more constrained attackers.

C. RQ1&2: Defense Results of BITSHIELD

1) Performance Overhead: We measure the performance
overhead of BITSHIELD on the protected executables by
recording the inference time of each executable using TVM’s
built-in benchmark utility. Results are reported in Table III,
where the “Vanilla” and “Protected” columns show the infer-
ence time of an executable before and after being protected by
BITSHIELD, respectively, and the “Overhead” column shows
the percentage increase in inference time with protection.
Our defense brings a very low performance overhead to
the DNN executables, with an average overhead of 2.47%;
indicating that BITSHIELD is suitable for deployment even in
performance-critical production systems.

We observe no obvious difference between the overheads
of different models when trained on the same dataset. Specifi-
cally, in the cases of ResNet50 and DenseNet121, BITSHIELD
shows similar levels of overhead (2.30% vs. 2.52%), despite
DenseNet121 having double the number of layers compared
to ResNet50 and a 4.23× larger .text region. This indicates
that BITSHIELD scales well with complex models and large
executables. On the other hand, ResNet50 trained on ImageNet

has the highest overhead of all cases (8.22%), primarily due
to its larger last layer as a result of increased number of
classes, which produces more computational workload for
SIG. However, when compared to cases with other datasets,
we find that a 100× increase in the number of classes only
brings a 3.57× higher overhead, and the overhead is still low in
its absolute value. This case demonstrates that BITSHIELD is
also scalable with the complexity of datasets with a reasonable
scaling coefficient.

2) Attacking Vanilla Executables: We evaluate the ef-
fectiveness of our defense against the attackers described in
Sec. VIII-B by measuring their attack success rate (ASR),
as well as the average accuracy drop induced by those suc-
cessful attacks. We first show the attack results on vanilla
(unprotected) executables averaged over all simulated DRAM
platforms in Table IV. For all the unprotected vanilla executa-
bles, all attackers achieve high ASRs (98.75% on average).
However, we notice that code-based attackers have higher
ASRs than weights-based attackers, indicating that the former
may have looser requirements for available memory templates
and pose a more serious threat to DNN executables; this also
underlines the importance of defending against code-based
attackers on these compiled models.

In terms of accuracy drops, weights-based and aggressive
code-based attackers both cause large accuracy drops, greatly
reducing the executables’ inference capabilities. The stealthy
code-based attacker, on the other hand, causes smaller accu-
racy drops (as designed in Sec. VIII-B2); the high ASR of
the aggressive and stealthy attackers shows the possibility of
inducing varying degrees of damage to the victim executable
via code-based BFA.

3) Attacking Protected Executables: Table V shows the
attack results on executables protected by BITSHIELD, where
the ASRs are reduced to 2.49% on average.3 We observe
that BITSHIELD successfully mitigate all attacks from code-
based attackers (including single- and multi-bit attacks) and
92.52% of attacks from the weights-based attacker on average.
Given that all the attackers are adaptive adversaries actively
trying to bypass our defense (Sec. VIII-B), we consider this
a strong and encouraging result. We also confirm that, in all
experiment runs on all platforms, no attacker is able to find
sufficient memory templates (T ∗ in Alg. 1) to tamper SIG’s
distributed masking/unmasking operations. On the other hand,
we notice that even if the weights-based attacker is successful,
the accuracy drop caused by the attack is significantly reduced
(only dropping to 54.10% on average) and the attacker can no
longer degrade the model to a random guesser. We provide
the comparison with previous defenses in Sec. VIII-E.

Following Sec. VIII-B3, we also evaluate BITSHIELD w.r.t.
different evasion fractions set by the weights-based attacker.
Results are plotted in Fig. 7, where the average values for
the metrics (lines) as well as their 95% confidence inter-
vals (shaded regions) are shown. We observe that, when the

3To understand the ASR rate, we conduct a standard hypothesis test to
determine the confidence level of the result. We report that at the ASR of
2.49%, BITSHIELD can mitigate 91.5% of attacks with 99% confidence.

11

TABLE IV
ATTACK RESULTS ON VANILLA DNN EXECUTABLES WITHOUT PROTECTION.

Attack Success Rate (%)

Attacker Type ResNet50 GoogLeNet DenseNet121 Avg.CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion
Aggressive code-based 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Stealthy code-based 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Weights-based 98.80 91.60 94.00 96.00 98.80 92.40 96.80 98.00 97.20 98.80 96.24

Avg. 99.60 97.20 98.00 98.67 99.60 97.47 98.93 99.33 99.07 99.60 98.75
Accuracy after Attack (%)

Attacker Type ResNet50 GoogLeNet DenseNet121 Avg.CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion
Aggressive code-based 18.09 13.85 15.31 2.59 12.11 11.80 12.61 11.98 13.31 15.26 12.69

Stealthy code-based 82.17 89.90 78.54 63.46 72.30 82.44 83.75 74.19 91.83 85.14 80.37
Weights-based 18.26 11.07 10.17 2.94 12.95 10.28 10.45 10.79 11.40 11.17 10.95

TABLE V
ATTACK RESULTS ON DNN EXECUTABLES PROTECTED BY BITSHIELD.

Attack Success Rate (%)

Attacker Type ResNet50 GoogLeNet DenseNet121 Avg.CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion
Aggressive code-based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Stealthy code-based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Weights-based 16.00 1.20 3.20 6.40 24.80 1.60 1.20 2.80 12.80 4.80 7.48

Avg. 5.33 0.40 1.07 2.13 8.27 0.53 0.40 0.93 4.27 1.60 2.49
Accuracy after Attack (%)

Attacker Type ResNet50 GoogLeNet DenseNet121 Avg.CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion
Aggressive code-based - - - - - - - - - - -

Stealthy code-based - - - - - - - - - - -
Weights-based 66.35 45.64 31.25 51.54 74.84 90.00 68.72 40.00 37.31 35.38 54.10

0.0 0.2 0.4 0.6 0.8 0.9
Max. Evasion Fraction

0

20

40

60
70

Va
lu

e
(%

)

Accuracy after Attack
Attack Success rate

Fig. 7. The attack success rate and model accuracy after attack under different
maximum evasion fraction settings for the weights-based attacker.

weights-based attacker does not try to evade detection (in
which case it declines to a non-adaptive attacker) or only
tries to evade a small fraction of SIG-affecting weight bits,
BITSHIELD can effectively mitigate almost all the attacks
(with an attack success rate close to 0%).

On the other hand, when the evasion fraction is set to 0.9,
the average attack success rate raises to 15.29%, with its 95%
confidence interval also slightly expanded (where its upper
bound is still under 30%). Additionally, we observe that the
inference accuracy remains quite consistent across all evasion
settings after attack, with just minor fluctuations. It tends to
stabilize at approximately the average value of 53.28%. This
indicates that it is substantially difficult for adaptive weights-
based attackers to completely deplete the inference intelligence
of a model protected by BITSHIELD.

D. RQ3: Ablation Studies

1) Defense Components: To study the effectiveness of
BITSHIELD’s various defense components, we show in Ta-
ble VI a breakdown of the attack outcomes of all three attack-

TABLE VI
BREAKDOWN OF THE ATTACK OUTCOMES ON PROTECTED

RESNET50(RN), GOOGLENET(GN), AND DENSENET121(DN).

Attacker Outcome Models Sum
(Proportion)RN GN DN

Code-based

Profiling failed 422 1062 862 2346 (31.28%)
SIG 386 342 526 1254 (16.72%)

Canary 1049 96 112 1257 (16.76%)
Accuracy 143 0 0 143 (1.91%)
Success 0 0 0 0 (0%)

Weights-based

Profiling failed 49 24 15 88 (1.17%)
SIG 884 657 684 2225 (29.67%)

Accuracy 0 0 0 0 (0%)
Success 67 69 51 187 (2.49%)

Sum 3000 2250 2250 7500 (100.00%)

ers on the protected executables. Here, “Success” indicates the
number of successful attacks, and the other labels show the
number of failed attacks due to different root causes: “Profiling
failed” means that the adaptive attacker fails to find attackable
vulnerable bits during the local profiling phase (Sec. VIII-B1),
possibly due to lack of memory templates usable under the
defense. “SIG” and “Canary” (i.e., our code checksum ca-
nary) mark the attacks detected by the corresponding defense
components, respectively. “Accuracy” stands for cases where
the attacker’s flipping plan does not cause enough accuracy
drop compared to their objective, and can be the case if the
attacker falls back to worse attack plans due to the defense.

For both weights- and code-based attackers, BITSHIELD
increases the difficulty for them to search for attackable bits
on protected DNN executables, as indicated by failed attacks
falling under the “Profiling failed” category. For attackers that
manage to find attackable bits locally, we find that BITSHIELD
is able to detect most of the attacks at runtime as well,
as shown by the number of failed attacks detected by the

12

TABLE VII
EFFECTS OF DIFFERENT e VALUES.

e Model FA (%) MF (%) ∆ASR (%)
Code-based Weights-based Avg.

0.0 ResNet50 0.00 6.93 0.00 0.00 0.00
GoogLeNet 0.20 6.16 0.00 0.00 0.00

0.3 ResNet50 0.00 1.32 - - -
GoogLeNet 0.00 0.01 - - -

0.4 ResNet50 0.00 0.81 0.00 0.00 0.00
GoogLeNet 0.00 0.00 0.00 0.00 0.00

0.5 ResNet50 0.00 0.37 0.00 0.00 0.00
GoogLeNet 0.00 0.00 0.00 0.00 0.00

0.6 ResNet50 0.00 0.27 0.00 0.00 0.00
GoogLeNet 0.00 0.00 0.00 0.00 0.00

1.0 ResNet50 0.00 0.00 0.00 0.00 0.00
GoogLeNet 0.00 0.00 0.00 +8.00 +4.00

1) ResNet50 and GoogLeNet are trained on CIFAR10 and MNIST datasets.
2) FA: false alarm of test inputs, MF: mis-flag of inputs from other datasets.
3) ∆ASR: changed ASR w.r.t. e = 0.3 in main experiments.

defense components. One illustrative example is the ResNet50
case, where there are relatively more successful local profiling
attempts to find attackable bits than in the others, but the
majority of these attacks are still detected by BITSHIELD at
runtime, resulting still in a low number of successful attacks
(67 out of 3,000).

In addition, as described in Sec. VI, our code checksum
canary acts as an “early responder” to attacks while SIG is
the “catch-all” even if the canary is bypassed by the attacker
in an earlier stage (e.g., due to being skipped, as mentioned in
Sec. III). This is consistent with the observation from Table VI
that a larger number of attacks are detected by SIG when
compared to the canary. In all cases, we notice that both
defense components are involved and necessary to effectively
detect BFAs, which shows the effectiveness of our multi-
component design.

2) Normal Datasets and e in SIG: As mentioned in
Sec. VI-A, SIG provides a user-configurable parameter e to
expand the captured normal semantic range derived from G;
in our main experiments, we set it to a predefined value
0.3. In this section, we run additional experiments to explore
the effect of different values for e on the performance of
BITSHIELD. We use ResNet50 trained on CIFAR10 and
GoogLeNet trained on MNIST as the models and set e to
varying values from 0.0 to 1.0. The RH environment is set
to platform E from Table II, representing the most vulnerable
DRAM module.

We report in Table VII the false alarm (FA) rate by feeding
the protected model the test split of the dataset it is trained
on and checking if SIG raises any alarm. We find e = 0.0
to be a too low value, as it raises the FA rate to 0.2% for
GoogLeNet; other cases have no FA, meaning that legitimate
users are never affected. The ∆ASR is evaluated by running
the same white-box attackers from Sec. VIII-B and recording
how different BFAs’ ASRs change w.r.t. e = 0.3 in the main
experiments. We observe that the ∆ASR is 0 (no difference)
in most cases, indicating that varying e does not significantly
impact the attack detection capability of SIG, but too large
values (i.e., the last row in Table VII, where e = 1.0) may
result in overlooked attacks.

TABLE VIII
COMPARISON WITH PRIOR DEFENSES ON ADAPTIVE WEIGHTS-BASED

ATTACKS. ONLY WEIGHTS-BASED ATTACKS ARE CONSIDERED, AS NONE
OF THE PREVIOUS METHODS PROTECT AGAINST CODE-BASED BFAS.

Work Method Performance
overhead (%)

Acc.
loss (%)

Mitigation
rate (%)

Aegis [46] Enhance structure NA (< 0) 1.24 63.76
DeepAttest [3] Fingerprint 7.20 ≤ 0.09 90.00
NeuroPots [30] Enhance weights + fingerprint 3.93 1.38 100.00
Ours Semantic integrity 2.47 NA (0) 92.52

Moreover, since SIG leverages the protected DNN’s training
data to decide normal semantics, we also evaluate SIG’s
reaction to (legitimate) inputs that are dissimilar to the training
data: we run CIFAR10 models on MNIST inputs and vice
versa, plus 10 classes of images from ImageNet [11]. While
such cross-dataset inputs indicate inappropriate usages of the
DNN, we use them to assess SIG’s resilience to more diverse
real-world inputs. The mis-flag rates (MF) w.r.t. varied e are
reported in Table VII. We observe that SIG flags very few of
these inputs, and the MF rate is close to 0 except for e = 0.0.
We however note that these flags do not cause performance
overhead or model crashes, as the code in .text is intact
and its checksum is unchanged. We conclude that 0.3∼0.6 is
a suitable range for e in most cases with 0.3 being a reasonable
default; users can adjust it to fit their specific needs.

E. Comparison with Previous Defenses

In this section, BITSHIELD is compared with recent, state-
of-the-art defenses employing different design principles.
Since all existing defenses are designed for weights-based
attacks and cannot provide protection against code-based ones
(and also may not be implementable on DNN executables),
we compare BITSHIELD with them on weights-based attacks.
We aim to provide more insights into the performance and
effectiveness of various methods in this field.

As mentioned in Sec. II-C, existing defenses generally
fall into two categories: (1) new or enhanced DNN imple-
mentations (fine-tuning model weights or transforming model
structures for better BFA robustness), e.g., Aegis [46] converts
the protected model into a dynamic multi-exit DNN; and (2)
weight integrity monitoring (deriving a checksum value from
the model weights and comparing it with the ground truth),
e.g., DeepAttest [3] which calculates a fingerprint from the
monitored model weights. Note that while DeepAttest also
fine-tunes the model weights, it requires this step to embed
the fingerprint into the model weights, not for improving the
model’s BFA robustness. Finally, NeuroPots [30] represents a
new, hybrid approach where weight enhancements and weight
fingerprinting are combined. We thus compare BITSHIELD
with these three defenses. Note that the weights-based attack-
ers here are also adaptive adversaries attempting to evade the
defenses.

Our comparison is based on the performance overhead,
accuracy loss (brought to the protected model by the defense),
and the mitigation rate against adaptive attackers with defense
evasion capabilities. Results are presented in Table VIII. We
report that DeepAttest, NeuroPots, and BITSHIELD have sim-

13

ilar mitigation rates of weights-based attacks, with NeuroPots
being slightly higher than the others. In terms of runtime
overhead, BITSHIELD is the lowest among all defenses with
non-negative overheads; Aegis reports a negative overhead on
average because many inputs are able to exit the inference
process early after its multi-exit transformation, but the gener-
ality of this result may not be guaranteed. As all three methods
other than ours require modifications to the protected model
weights, they also slightly degrade the model’s accuracy,
where NeuroPots brings an average accuracy loss of 1.38%.
Our method does not cause accuracy loss because it is post-
hoc and does not modify model weights.

IX. DISCUSSION

Extensibility. We discuss the extensibility of BITSHIELD from
various perspectives. First, the current evaluation of this paper
only considers DNNs for classification tasks. We clarify that
current DL compilers primarily support these DNNs and have
incomplete support for other DNNs, e.g., those for natural
language processing (NLP) which involve recurrent neural
networks (RNNs). Given that said, our SIG design should be
compatible with any DNN where gradients can be computed
(i.e., if they are trainable), and our canary operates at a lower
level where the DNN model has been compiled into a binary.
Thus, extending BITSHIELD to other types of DNN should
not be a concern.

Second, we implement BITSHIELD on TVM because it has
relatively complete support for instrumentation and extension
APIs. However, our design is generic and has no TVM-specific
dependencies; Glow [44], for example, also has its IR for
us to perform computational graph transformations, but it is
not mature and does not (yet) expose sufficient interfaces for
extension. Overall, compiling and accelerating DNN models
with hardware primitives is a very active research area; we
believe that BITSHIELD is portable to other systems with no
extra research challenge.

Besides, careful readers may question that there may exist
alternative or more expert strategies for the adaptive attackers
to implement. Nevertheless, this is a fundamentally challeng-
ing problem even for real-world attackers. Considering that,
for instance, past work attacking an executable’s code bits [13]
only found vulnerable bits through manual analysis but we use
an automated process (Sec. III), and that our adaptive attacker
successfully generates many attack plans partially bypassing
BITSHIELD’s components (Table VI), we believe that our
adaptive attackers are sufficiently strong in practice.
DoS Attacks via Adversarial Inputs. While BFAs aim to
manipulate DNN predictions for legitimate inputs, knowledge-
able readers may wonder if carefully crafted adversarial inputs
can be leveraged to launch DoS attacks on BITSHIELD (e.g.,
making BITSHIELD crash the protected executable constantly).
We clarify that such “DoS opportunity” does not exist in
BITSHIELD, as the canary module is only evoked when
the .text section is tampered, which is not possible with
adversarial inputs. Although adversarial inputs may be crafted
to trigger false alarms in SIG, these attempts, if at all possible,

only quickly expose the presence of the attacker without being
able to cause crashes or interrupt other normal users.

X. CONCLUSION

We propose the first general and unified BFA defense on
DNN executables, BITSHIELD, based on DNN semantics.
BITSHIELD is post-hoc, self-defending, and efficient. Eval-
uation on large-scale DNNs and diverse datasets against fully
white-box, adaptive attackers shows that BITSHIELD provides
strong BFA protection with low costs.

ACKNOWLEDGEMENT

The HKUST authors were supported in part by an
NSFC/RGC JRS grant under the contract N HKUST605/23
and an RGC CRF grant under the contract C6015-23G.

REFERENCES

[1] zlib – a massively spiffy yet delicately unobtrusive compression library.
https://www.zlib.net/.

[2] Amazon. Amazon SageMaker Neo uses Apache TVM for performance
improvement on hardware target. https://aws.amazon.com/sagemaker/
neo/, 2021.

[3] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz
Koushanfar. DeepAttest: An End-to-End Attestation Framework for
Deep Neural Networks. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pages 487–498.

[4] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip:
Targeted trojan attack with progressive bit flips. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7718–
7727, 2021.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX OSDI, pages 578–594, 2018.

[6] Yanzuo Chen, Zhibo Liu, Yuanyuan Yuan, Sihang Hu, Tianxiang Li, and
Shuai Wang. Unveiling signle-bit-flip attacks on dnn executables. arXiv
preprint arXiv:2309.06223, 2023.

[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[8] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
Exploiting correcting codes: On the effectiveness of ecc memory against
rowhammer attacks. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 55–71. IEEE, 2019.

[9] TVM Community. Tvm deep learning compiler joins
apache software foundation. https://tvm.apache.org/2019/03/18/
tvm-apache-announcement, 2019.

[10] Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini, Christopher A
Choquette-Choo, Matthew Jagielski, Milad Nasr, Eric Wallace, and
Florian Tramèr. Privacy side channels in machine learning systems.
USENIX Security, 2024.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In CVPR, pages
248–255. IEEE, 2009.

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[13] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 245–261.

[14] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and
Deliang Fan. Defending and Harnessing the Bit-Flip Based Adversarial
Weight Attack. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 14083–14091. IEEE.

14

https://www.zlib.net/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://tvm.apache.org/2019/03/18/tvm-apache-announcement
https://tvm.apache.org/2019/03/18/tvm-apache-announcement

[15] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and
Tudor Dumitras. Terminal brain damage: Exposing the graceless
degradation in deep neural networks under hardware fault attacks. In
USENIX Security Symposium, pages 497–514, 2019.

[16] Rui Huang, Andrew Geng, and Yixuan Li. On the Importance of
Gradients for Detecting Distributional Shifts in the Wild. In Advances
in Neural Information Processing Systems, volume 34, pages 677–689.
Curran Associates, Inc.

[17] Texas Instruments. The AM335x microprocessors support TVM.
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational Components/Machine Learning/tvm.html, 2021.

[18] Intel. MKL-DNN for scalable deep learning. https://software.intel.com/
en-us/articles/introducing-dnn-primitives-in-intelr-mkl, 2017.

[19] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma,
and Yida Wang. Efficient execution of quantized deep learning models:
A compiler approach. arXiv preprint arXiv:2006.10226, 2020.

[20] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. Blacksmith: Scalable rowhammering in the frequency
domain. In 2022 IEEE Symposium on Security and Privacy (SP), pages
716–734. IEEE, 2022.

[21] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej
Bölcskei, and Kaveh Razavi. {ZenHammer}: Rowhammer Attacks on
{AMD} Zen-based Platforms. pages 1615–1633.

[22] Mojan Javaheripi and Farinaz Koushanfar. Hashtag: Hash signatures for
online detection of fault-injection attacks on deep neural networks. In
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pages 1–9. IEEE, 2021.

[23] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping
bits in memory without accessing them: An experimental study of
dram disturbance errors. ACM SIGARCH Computer Architecture News,
42(3):361–372, 2014.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[26] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali
Chakrabarti. RADAR: Run-time Adversarial Weight Attack Detection
and Accuracy Recovery. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 790–795.

[27] Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. DeepDyve: Dynamic
Verification for Deep Neural Networks. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’20, pages 101–112. Association for Computing Machinery.

[28] Liang Liu, Yanan Guo, Yueqiang Cheng, Youtao Zhang, and Jun Yang.
Generating Robust DNN With Resistance to Bit-Flip Based Adversarial
Weight Attack. 72(2):401–413.

[29] Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent weight encoding-
based detection for bit-flip attack on neural network accelerators. In
Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1–8. ACM.

[30] Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and Shi Sha.
{NeuroPots}: Realtime Proactive Defense against {Bit-Flip} Attacks
in Neural Networks. pages 6347–6364.

[31] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Rammer:
Enabling holistic deep learning compiler optimizations with rtasks. In
14th USENIX OSDI, pages 881–897, 2020.

[34] Qi Pang, Yuanyuan Yuan, and Shuai Wang. MPCDiff: Testing and
repairing mpc-hardened deep learning models.. In NDSS, 2024.

[32] NXP. NXP uses Glow to optimize models for low-
power NXP MCUs. https://www.nxp.com/company/blog/
glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:
BL-OPTIMIZES-NEURAL-NETWORKS, 2020.

[33] OctoML. OctoML leverages TVM to optimize and deploy models. https:
//octoml.ai/features/maximize-performance/, 2021.

[35] Qualcomm. Qualcomm contributes Hexagon DSP improvements to
the Apache TVM community. https://developer.qualcomm.com/blog/
tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp,
2020.

[36] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-Flip Attack:
Crushing Neural Network With Progressive Bit Search. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages
1211–1220. IEEE.

[37] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack:
Crushing neural network with progressive bit search. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
1211–1220, 2019.

[38] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural
network attack with bit trojan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13198–
13207, 2020.

[39] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti,
and Deliang Fan. T-bfa: Targeted bit-flip adversarial weight attack.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7928–7939, 2021.

[40] Adnan Siraj Rakin, Yukui Luo, Xiaolin Xu, and Deliang Fan. Deep-dup:
An adversarial weight duplication attack framework to crush deep neural
network in multi-tenant fpga. In 30th USENIX Security Symposium,
2021.

[41] Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao, Chaitali Chakrabarti,
Yu Cao, Jae-sun Seo, and Deliang Fan. Ra-bnn: Constructing robust
& accurate binary neural network to simultaneously defend adversarial
bit-flip attack and improve accuracy. arXiv preprint arXiv:2103.13813,
2021.

[42] Kaveh Razavi, Ben Gras, Cristiano Giuffrida, Erik Bosman, Bart Pre-
neel, and Herbert Bos. Flip Feng Shui: Hammering a Needle in the
Software Stack. page 19.

[43] Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Logan Weber, Josh
Pollock, Luis Vega, Ziheng Jiang, Tianqi Chen, Thierry Moreau, and
Zachary Tatlock. Relay: A high-level compiler for deep learning. arXiv
preprint arXiv:1904.08368, 2019.

[44] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer
Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele,
Roman Levenstein, et al. Glow: Graph lowering compiler techniques
for neural networks. arXiv preprint, 2018.

[45] Philip Sperl, Ching-Yu Kao, Peng Chen, Xiao Lei, and Konstantin
Böttinger. DLA: Dense-Layer-Analysis for Adversarial Example De-
tection. pages 198–215. IEEE Computer Society.

[46] Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tianwei Zhang,
Qi Li, Zongpeng Li, Tao Wei, and Chao Zhang. Aegis: Mitigating
Targeted Bit-flip Attacks against Deep Neural Networks. In USENIX
Security 2023.

[47] Sally Ward-Foxton. Google and Nvidia Tie in MLPerf;
Graphcore and Habana Debut. https://www.eetimes.com/
google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#, 2021.

[48] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: Depleting
the Intelligence of Deep Neural Networks through Targeted Chain of Bit
Flips. In 29th USENIX Security Symposium (USENIX Security 20), pages
1463–1480.

15

https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://octoml.ai/features/maximize-performance/
https://octoml.ai/features/maximize-performance/
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#

	Introduction
	Preliminaries and Related Work
	DNN Models and DNN Executables
	Bit-Flip Attacks (BFAs)
	Defenses Against DNN BFAs

	BFA Vectors in DNN Executbales
	Threat Model
	Requirements and Considerations
	Design
	DNN Semantics and Integrity Guard
	Achieving Self-Defense

	Analysis of Attack Mitigation
	Evaluation
	Platform Setup
	Attacker Profiles
	Attacker Capabilities and Success Criteria
	Code-Based Attackers
	Weights-Based Attacker

	RQ1&2: Defense Results of BitShield
	Performance Overhead
	Attacking Vanilla Executables
	Attacking Protected Executables

	RQ3: Ablation Studies
	Defense Components
	Normal Datasets and e in SIG

	Comparison with Previous Defenses

	Discussion
	Conclusion
	References

