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ABSTRACT
Conjunctive queries with predicates in the form of comparisons that

span multiple relations have regained interest recently, due to their

relevance in OLAP queries, spatiotemporal databases, and machine

learning over relational data. The standard technique, predicate

pushdown, has limited efficacy on such comparisons. A technique

by Willard can be used to process short comparisons that are adja-

cent in the join tree in time linear in the input size plus output size.

In this paper, we describe a new algorithm for evaluating conjunc-

tive queries with both short and long comparisons, and identify

an acyclic condition under which linear time can be achieved. We

have also implemented the new algorithm on top of Spark, and our

experimental results demonstrate order-of-magnitude speedups

over SparkSQL on a variety of graph pattern and analytical queries.

CCS CONCEPTS
• Theory of computation→ Database query processing and
optimization (theory); • Information systems→ Join algorithms.
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1 INTRODUCTION
The asymptotically optimal running time for evaluating a query

is �̃� (𝑁 + OUT)1, where 𝑁 is the input size and OUT the output

size. This bound, which is often referred to as linear time, can be

considered instance-optimal, because one has to read the input

(assuming no indexes are pre-built) and write the output. Thus, a

fundamental problem in query processing is to identify the class of

queries that can be evaluated in linear time. A 40-year-old result

by Yannakakis [24] tells us that linear time can be achieved for 𝛼-

acyclic conjunctive queries (CQs), and recent negative results [3, 20]

suggest that this is also probably the best one can hope for.

1
The �̃� notation suppresses a log

𝑂 (1) 𝑁 factor.
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A CQ corresponds to a (natural) join-projection query in SQL.

Another important relational operator is selection. There are two

types of predicates used in a selection: those that involve attributes

from one relation, and those that span two or more relations. The

former can be trivially handled by scanning the relation in linear

time; alternatively, indexes can be pre-built over frequently queried

attributes to further reduce query processing time, on which there is

extensive literature. On the other hand, the second type of predicate

has received much less attention. The naive method for handling

this type of predicate is to first compute the join, and then filter

the join results with the predicate. A common query optimization

technique is predicate pushdown, where the predicate is pushed

right after the involved relations have been joined.

Note that if a type-2 predicate is an equality, it can be rewrit-

ten as a (natural) join condition, so we consider inequalities or

comparisons
2
. The following gives an example.

Example 1.1. Consider the following query with a type-2 predi-

cate, written in a rule-based form:

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4), 𝑥1 ≤ 𝑥3 .

This query (the CQ part) is 𝛼-acyclic. For the query plan (𝑅1 Z
𝑅2) Z 𝑅3, the predicate 𝑥1 ≤ 𝑥3 can be pushed to after 𝑅1 Z 𝑅2.

However, the running time of this query plan (with or without

predicate pushdown) is no longer linear, since the predicate may

make the output size significantly smaller than the join size. To

see this, just imagine the case where no join results satisfy the

predicate 𝑥1 ≤ 𝑥3. In this case, OUT = 0 but the intermediate join

size |𝑅1 Z 𝑅2 | can be as large as Ω(𝑁 2).
A simple idea [15, 23] to reduce the time to (near) linear is to

first push down the predicate, and then compute the sub-query

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑥1 ≤ 𝑥3

without computing the join 𝑅1 Z 𝑅2: Group the tuples in 𝑅1 and 𝑅2

by 𝑥2. For each group, sort the 𝑥1 values in ascending order. Then

for each 𝑥3, scan the sorted list until meeting some 𝑥1 > 𝑥3. The cost

is thus �̃� ( |𝑅1 | + |𝑅2 |), plus the actual size of the sub-query result,

hence linear. The last join with 𝑅3 preserves linearity following the

same argument
3
as in [24]. □

The predicate 𝑥1 ≤ 𝑥3, as we define more formally in Section 4,

is a short comparison. The following example features a long one:

Example 1.2. Suppose we change the predicate 𝑥1 ≤ 𝑥3 to 𝑥1 ≤
𝑥4 in Example 1.1:

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4), 𝑥1 ≤ 𝑥4 .

Note that a long comparison like 𝑥1 ≤ 𝑥4 cannot be pushed down.

By decomposing the query to multiple parts, each plugged into an

2
In this paper, we consider ≠ as inequality and ≤,<, ≥,> as comparisons.

3
More rigorously, dangling tuples in 𝑅1 and 𝑅2 should be removed by semijoins before

computing the sub-query.
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appropriately chosen generalized hypertree decomposition (GHD) [9]
and combined with the idea from Example 1.1, Khamis et al. [15]

are able to reduce the running time of this query to �̃� (𝑁 1.5 +OUT),
but it is not clear if the algorithm is practical. □

In this paper, we improve the running time of the query above

to linear. More precisely, after �̃� (𝑁 )-time preprocessing, our algo-

rithm can enumerate the query results with constant delay (for-

mal definition given in Section 4.2). This immediately implies

�̃� (𝑁 + OUT) total time; in addition, it means that the Boolean

query (i.e., deciding if the query result is empty) can be answered

in �̃� (𝑁 ) time.

Our techniques are not restricted to this particular query. We are

able to achieve linear time for a natural class of acyclic conjunctive
queries with comparisons (CQCs). On a high level, we require the

relations to satisfy the 𝛼-acyclicity condition as in [24], while the

comparisons should be Berge-acyclic, another popular definition
of acyclicity for hypergraphs. The formal definition is given in

Section 4, followed by our main algorithm for full CQCs described

in Section 5. We extend this algorithm to handle non-full CQCs (i.e.,

join-selection-projection queries) in Section 6. For queries outside

this class, in Section 7, we show how to combine with the GHD

framework to obtain improved running times over [15].

Our algorithm consists of a series of reductions, each reducing

the “length” of a long comparison, until it becomes a short one. In

some sense, Khamis et al. [15] also try to reduce the length, but

they only use the GHD framework, which groups multiple relations

into bags, inevitably leading to superlinear running times. The

key in the reductions is that we cannot just rewrite the query, but

also transform the data (in linear time). The transformation will

happen twice: once in the reduction, and once in “unwinding” the

reduction.

Besides asymptotic improvements, our algorithm is also very

practical. In fact, the transformations use some standard relational

operations that are supported in all DBMSs. To verify its practical

performance, we implement our algorithm in Spark, which gives us

the additional benefits of parallelism, scalability, and fault tolerance.

Our implementation uses only standard RDD operations without

any modification to the Spark core. Experimental results (Section 8)

show that our algorithm offers an order-of-magnitude improvement

over SparkSQL, especially for queries with highly selective type-2

predicates.

2 RELATEDWORK
Selection, projection, and join are the 3 most fundamental oper-

ators in relational databases, forming the backbone of most SQL

queries. While conjunctive queries (i.e., queries composed of joins

and projections) and type-1 predicates for selection have been stud-

ied extensively in the literature, type-2 predicates have received

little attention, despite their frequent appearances in OLAP queries

and spatiotemporal databases. Recently, they have regained interest,

with several papers [11, 15, 21] addressing the issue. In particular,

Khamis et al. [15] make a good case by showing that many machine

learning tasks over relational data can be formulated as queries

with type-2 comparisons.

The idea in Example 1.1 is perhaps the first technique (other

than predicate pushdown) for dealing with type-2 comparisons. It

was proposed by Willard [23], who also generalized it to 𝛼-acyclic

CQs with multiple comparisons, but all comparisons must be short.

The recent works [11, 15, 21] extended Willard’s algorithm in vari-

ous ways. Idris et al. [11] study the dynamic version of the prob-

lem; in the static setting, their algorithm is essentially the same as

Willard’s
4
. Tziavelis et al. [21] study ranked enumeration of full

acyclic CQCs with only short comparisons; their algorithm for the

unranked version also achieves �̃� (𝑁 +OUT) time. All these papers

[11, 21, 23] only consider short comparisons. Khamis et al. [15] com-

bine GHDs and Willard’s technique to handle long comparisons as

shown in Example 1.2, but the running time is superlinear (more

examples comparing our result and [15] are provided in Section

7). They also generalize their framework to handle aggregation

queries, which are important for machine learning tasks.

Another common relational operator is the union. As observed

by Carmeli and Kröll [5], the union of CQs is no harder than the

constituting CQs, and the same observation holds for the union

of CQCs. The interesting discovery in [5] is that certain unions

of CQs are actually easier than the CQs. Thus, our algorithm can

potentially solve some unions of CQCs in linear time even if the

constituting CQCs are hard (i.e., not acyclic), which is an interesting

future direction.

Koutris et al. [16] and Khamis et al. [13] study CQs with in-

equalities (≠). Such a predicate, e.g., 𝑥1 ≠ 𝑥4, can be written as the

disjunction of two comparisons: 𝑥1 < 𝑥4 ∨ 𝑥1 > 𝑥4, which turns

the query into a union of CQCs. Then by the argument above, our

algorithm can also handle such queries. However, they are inter-

ested in the combined complexity where the query size is not taken

as a constant. Under this setting, this simple conversion results in

exponentially (in the number of inequalities) many CQCs, thus our

result is not directly comparable to theirs.

3 PRELIMINARIES
3.1 Conjunctive Queries with Comparisons
We follow the notation in [1]. Let [𝑛] = {1, . . . , 𝑛}. Let 𝑹 be a

relational database. A conjunctive query with comparison (CQC) has
the form

𝑎𝑛𝑠 (𝑦) ← 𝑅1 (𝑥1), . . . , 𝑅𝑛 (𝑥𝑛),𝐶1, . . . ,𝐶𝑚 (1)

where 𝑅1, 𝑅2, . . . are relations in 𝑹, and 𝑥1, . . . , 𝑥𝑛 are their vari-

ables/attributes. We use 𝑣𝑎𝑟 (𝑞) = 𝑥1 ∪ · · · ∪ 𝑥𝑛 to denote the set

of variables appearing in the body of the query 𝑞. Without loss of

generality, we assume that there are no self-joins; for queries with

self-joins, one can always make logical copies of the relation. It is

required that the output attributes 𝑦 ⊆ 𝑣𝑎𝑟 (𝑞). If 𝑦 = 𝑣𝑎𝑟 (𝑞), the
query is said to be full; in this case we may omit writing the head

𝑎𝑛𝑠 (𝑦). Let dom(𝑥) be the domain of variable 𝑥 , and let dom(𝑥)
be the Cartesian product of all dom(𝑥)’s for 𝑥 ∈ 𝑥 . Each 𝐶 𝑗 , for

𝑗 ∈ [𝑚], is a comparison of the form 𝑓𝑗 (𝑥𝑎 𝑗
) ≤ 𝑔 𝑗 (𝑥𝑏 𝑗

), where 𝑎 𝑗
(resp. 𝑏 𝑗 ) ∈ [𝑛], and 𝑓𝑗 (resp. 𝑔 𝑗 ) is a function mapping dom(𝑥𝑎 𝑗

)
(resp. dom(𝑥𝑏 𝑗

)) to R.
Examples 1.1 and 1.2 are simple examples of full CQCs. Below

we give a more complicated, non-full CQC.

4
Actually, as stated, the result in [11] is worse than Willard’s when there are two or

more comparisons between two relations, but this can be fixed.



Example 3.1. The query

𝑎𝑛𝑠 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥7) ←𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3, 𝑥7),
𝑅3 (𝑥2, 𝑥3, 𝑥4, 𝑥5), 𝑅4 (𝑥3, 𝑥6), 𝑅5 (𝑥3, 𝑥8),
𝐶1 : 𝑥1 − 𝑥2 ≤ 𝑥3𝑥4 + 2,

𝐶2 : min{2𝑥2, 𝑥7} ≤ 𝑥6, 𝐶3 : 𝑥2 ≤ 𝑥8

fits the definition of a CQC by setting 𝑎1 = 1, 𝑓1 (𝑥1) = 𝑥1 − 𝑥2, 𝑏1 =

3, 𝑔1 (𝑥3) = 𝑥3𝑥4 + 2; 𝑎2 = 2, 𝑓2 (𝑥2) = min{2𝑥2, 𝑥7}, 𝑏2 = 4, 𝑔2 (𝑥4) =
𝑥6; 𝑎3 = 3, 𝑓3 (𝑥3) = 𝑥2, 𝑏3 = 5, 𝑔3 (𝑥5) = 𝑥8. □

Note that for a comparison 𝐶 𝑗 , the indices 𝑎 𝑗 , 𝑏 𝑗 of the two

involved relations might not be unique. For instance, for the query

above, 𝑎3 could also be 1 or 2. In general, 𝑎 𝑗 (resp. 𝑏 𝑗 ) can be any

𝑖 such that the variables in 𝑓𝑗 (resp. 𝑔 𝑗 ) are contained in 𝑥𝑖 . After

fixing any valid 𝑎 𝑗 , 𝑏 𝑗 , we say that 𝐶 𝑗 is incident to 𝑅𝑎 𝑗
and 𝑅𝑏 𝑗

.

While we consider comparisons incident to two relations in the

bulk of the paper, we show how comparisons involving more than

two relations can be handled in Section 7 (cf. Example 7.2).

We now define the semantics of CQCs. Given a set of variables

𝑥 , a tuple 𝑡 over 𝑥 is an assignment of values from dom(𝑥) to 𝑥 . For
any 𝑦, define 𝑡 (𝑦) as the tuple restricted to the variables in 𝑦. Given
a CQC 𝑞 in the form of (1), the query results of 𝑞 on a database

instance 𝑹 are:

𝑞(𝑹) =
𝑡 (𝑦)

������
𝑡 is a tuple over 𝑣𝑎𝑟 (𝑞),
𝑡 (𝑥𝑖 ) ∈ 𝑅𝑖 (𝑥𝑖 ) ∀𝑖 ∈ [𝑛],
𝑓𝑗 (𝑡 (𝑥𝑎 𝑗

)) ≤ 𝑔 𝑗 (𝑡 (𝑥𝑏 𝑗
)) ∀𝑗 ∈ [𝑚]

 . (2)

The restriction of considering only comparisons in the form of

𝑓𝑗 (𝑥𝑎 𝑗
) ≤ 𝑔 𝑗 (𝑥𝑏 𝑗

) is without loss of generality: the comparison

𝑓𝑗 (𝑥𝑎 𝑗
) ≥ 𝑔 𝑗 (𝑥𝑏 𝑗

) can be written as −𝑓𝑗 (𝑥𝑎 𝑗
) ≤ −𝑔 𝑗 (𝑥𝑏 𝑗

); the
comparison 𝑓𝑗 (𝑥𝑎 𝑗

) < 𝑔 𝑗 (𝑥𝑏 𝑗
) can be written as 𝑓𝑗 (𝑥𝑎 𝑗

) + 𝜀 ≤
𝑔 𝑗 (𝑥𝑏 𝑗

) for infinitesimally small 𝜀5. An inequality 𝑓𝑗 (𝑥𝑎 𝑗
) ≠ 𝑔 𝑗 (𝑥𝑏 𝑗

)
can be written as 𝑓𝑗 (𝑥𝑎 𝑗

) > 𝑔 𝑗 (𝑥𝑏 𝑗
) ∨ 𝑓𝑗 (𝑥𝑎 𝑗

) < 𝑔 𝑗 (𝑥𝑏 𝑗
). Note

that this converts a CQC into a union of disjoint CQCs. This does

not affect the asymptotic running time, since the query size is

taken as a constant. Alternatively, since an inequality predicate

usually has high selectivity, it will be more efficient to evaluate the

CQC ignoring these inequalities first and only check them during

enumeration. This works better in practice, although the theoretical

running time cannot be guaranteed.

When the variables of 𝑓𝑗 (𝑥𝑎 𝑗
) and 𝑔 𝑗 (𝑥𝑏 𝑗

) are understood from

the context, given a tuple 𝑡 whose attributes contain 𝑥𝑎 𝑗
and/or 𝑥𝑏 𝑗

,

we often simply write 𝑓𝑗 (𝑡), 𝑔 𝑗 (𝑡) instead of 𝑓𝑗 (𝑡 (𝑥𝑎 𝑗
)), 𝑔 𝑗 (𝑡 (𝑥𝑏 𝑗

)).
Two syntactically different CQCsmay be semantically equivalent.

For instance, the query in Example 3.1 will remain semantically the

same if 𝐶1 is changed to 𝑥1 − 2 ≤ 𝑥2 + 𝑥3𝑥4, which might change

the incident relations of 𝐶1 (although in this example, it doesn’t).

As a more subtle example, 𝐶2 can be rewritten as a disjunction

2𝑥2 ≤ 𝑥6 ∨ 𝑥7 ≤ 𝑥6, so the query is equivalent to the union of two

CQCs, both of which could be syntactically easier than the original

query. The query containment problem for CQCs, even when all

comparisons are between two variables (e.g., 𝐶3 in Example 3.1)

is already Π
𝑝

2
-complete [22]. Thus in this paper, we just focus on

evaluating a CQC as given.

5
The use of an infinitesimally small 𝜀 is for theoretical convenience. All our algorithms

work if ≥ (≤) is replaced by < (>) directly. In the implementation, we use an abstract

comparator and instantiate it with the actual comparison operator in the query.

3.2 Orthogonal Range Searching
We will make use of some classical results on orthogonal range

searching. Let (S, ⊕) be a commutative semigroup, where S is the
ground set and ⊕ is its “addition” operator. Let 𝑃 be a set of𝑁 points

in 𝑑-dimensional space, where each point 𝑝 ∈ 𝑃 is associated with

a weight𝑤 (𝑝) ∈ S. There are two versions of the problem. In the

aggregation version, one aims at building a data structure on 𝑃 such

that for any orthogonal query rectangle 𝐵, the sum
⊕

𝑝∈𝑃∩𝐵 𝑤 (𝑝)
can be returned efficiently. In the reporting version, the goal is to

report all points in 𝑃 ∩ 𝐵. Multi-dimensional range trees can be

used to solve both versions [4, 6]. In particular, all our queries will

be one-sided, i.e., the constraint is in the form of (−∞, 𝑥] or [𝑥,∞)
in each dimension. For such queries, a range tree with fractional

cascading [7] can be built in𝑂 (𝑁 log
max{𝑑−1,1} 𝑁 ) time so that any

aggregation query can be answered in𝑂 (log
max{𝑑−1,1} 𝑁 ) time and

any reporting query can be answered in𝑂 (log
max{𝑑−1,1} 𝑁+|𝑃∩𝐵 |)

time.

3.3 Complexity Measures
We adopt the standard RAMmodel of computation and measure the

running time in terms of data complexity, i.e., the query size |𝑄 | is
treated as a constant, while using the input size𝑁 =

∑
𝑖 |𝑅𝑖 (𝑥𝑖 ) | and

output size OUT = |𝑞(𝑹) | as asymptotic parameters. Note that OUT

can be much smaller than that of the CQ without the comparisons.

We also require a linear-space index structure that can support

key lookups in constant time, and enumerate all tuples correspond-

ing to a given key with constant delay. A standard implementation

of such an index is a hash table [8], which can also be built in

expected linear time.

4 ACYCLICITY OF CQCS
4.1 Acyclic CQs and CQCs
The acyclicity of a CQ 𝑞 is defined by the 𝛼-acyclicity of its rela-
tion hypergraph, denoted R(𝑞). The vertices of R(𝑞) correspond to

the variables and its hyperedges correspond to the relations. For

example, Figure 1(a) shows the relation hypergraph of the query in

Example 3.1. The CQ is said to be acyclic if R(𝑞) is 𝛼-acyclic, i.e.,
the relations of 𝑞 admit a join tree. A join tree is a tree 𝑇 with 𝑛

vertices corresponding to the relations {𝑅𝑖 (𝑥𝑖 )}𝑖 . For any 𝑖, 𝑗 ∈ [𝑛],
let 𝑃𝑇 (𝑖, 𝑗) denote the unique path between 𝑖 and 𝑗 in the join tree

𝑇 . It is required that 𝑥𝑖 ∩ 𝑥 𝑗 ⊆ 𝑥𝑘 for every node 𝑘 ∈ 𝑃𝑇 (𝑖, 𝑗). Join
trees are not unique, and we use T (𝑞) to denote the set of all valid

join trees of 𝑞. One can use the GYO algorithm [1, 10, 25] to find

all its join trees. For example, Figure 1(b) and 1(c) give two possible

join trees of the query in Example 3.1.

For a CQC 𝑞, we consider a second hypergraph, called its com-
parison hypergraph, which is defined after fixing a join tree 𝑇 of

𝑞. After fixing 𝑇 , for each comparison 𝐶 𝑗 , we set its two incident

relations 𝑅𝑎 𝑗
, 𝑅𝑏 𝑗

such that among all valid (𝑎 𝑗 , 𝑏 𝑗 ) pairs, 𝑃𝑇 (𝑎 𝑗 , 𝑏 𝑗 )
is the shortest. For instance, for comparison 𝐶3 in Example 3.1, we

would set 𝑎3 = 3, 𝑏3 = 5 if using the join tree in Figure 1(b), while

set 𝑎3 = 2, 𝑏3 = 5 if using the join tree in Figure 1(c). A comparison

is said to be short if it is incident to two adjacent nodes of the join

tree, otherwise, long.
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Figure 1: Relational hypergraph, join trees, and comparison hypergraph for
the query in Example 3.1.

𝐸1 𝐸3

𝐸2

𝑅1(𝑥1, 𝑥2, 𝑥3)

𝑅2(𝑥1, 𝑥4, 𝑥5)

𝑅3(𝑥2, 𝑥6, 𝑥7)

𝑅4(𝑥3, 𝑥8, 𝑥9)

(a) Join tree

𝐸1

𝐸2

𝐸3

𝐶3

𝐶1

𝐶2

(b) Comparison Hyper-

graph

Figure 2: Join tree and comparison hyper-
graph for query in Example 4.1.

Then the comparison hypergraph of 𝑞 induced by a given join

tree 𝑇 , denoted as C(𝑞,𝑇 ), is defined as follows. The vertices of

C(𝑞,𝑇 ) correspond to the edges of 𝑇 , while its hyperedges corre-

spond to the comparisons in 𝑞. More precisely, a vertex in C(𝑞,𝑇 ),
namely an edge (𝑢, 𝑣) of 𝑇 , belongs to a hyperedge of C(𝑞,𝑇 ),
namely a comparison 𝑓𝑗 (𝑥𝑎 𝑗

) ≤ 𝑔 𝑗 (𝑥𝑏 𝑗
), if (𝑢, 𝑣) ∈ 𝑃𝑇 (𝑎 𝑗 , 𝑏 𝑗 )

(abusing notation, we use 𝑃𝑇 to denote either the set of nodes or

the set of edges on the path depending on the context). Thus, a

short comparison becomes a singleton hyperedge in C(𝑞,𝑇 ), and a

self-comparison, i.e., one where 𝑎 𝑗 = 𝑏 𝑗 , becomes an empty hyper-

edge. Meanwhile, some vertices in C(𝑞,𝑇 ) may not belong to any

hyperedge.

Figure 1(d) shows the comparison hypergraph of the CQC in

Example 3.1 after fixing the join tree in Figure 1(b).

We say that a CQC 𝑞 is acyclic, if its relation hypergraph R(𝑞) is
𝛼-acyclic, and there exists a join tree 𝑇 such that C(𝑞,𝑇 ) is Berge-
acyclic. Such a𝑇 is said to support the comparisons in 𝑞. Recall that

a hypergraph is Berge-acyclic if and only if there is at most one

simple path between any two vertices. Recall that the vertices in

C(𝑞,𝑇 ) are the edges of𝑇 , so the Berge-acyclicity of C(𝑞,𝑇 ) means

that there is at most one way to go from any one edge of 𝑇 to

another edge via a sequence of steps, where each step is covered by

a comparison. Berge-acyclicity is more restrictive than 𝛼-acyclicity:

the former implies the latter, but not vice versa. Note that singleton

and empty hyperedges (i.e., short and self comparisons) do not

affect the Berge-acyclicity of a hypergraph.

Examples 1.1, 1.2, 3.1 are all acyclic CQCs; below we give one

that is not.

Example 4.1. The query

𝑎𝑛𝑠 (𝑥1, 𝑥2, 𝑥3) ←𝑅1 (𝑥1, 𝑥2, 𝑥3), 𝑅2 (𝑥1, 𝑥4, 𝑥5),
𝑅3 (𝑥2, 𝑥6, 𝑥7), 𝑅4 (𝑥3, 𝑥8, 𝑥9),
𝐶1 : 𝑥4 ≤ 𝑥6, 𝐶2 : 𝑥7 ≤ 𝑥8, 𝐶3 : 𝑥9 ≤ 𝑥5

is not an acyclic CQC, although its relational hypergraph is acyclic,

as witnessed by the join tree in Figure 2(a), which is in fact the only

possible join tree. However, the comparison hypergraph induced

by this join tree is Figure 2(b), which is not Berge-cyclic. □

Given an acyclic CQC 𝑞 and a join tree 𝑇 supporting its compar-

isons, consider the induced comparison hypergraph C(𝑞,𝑇 ). Each
edge (𝑢, 𝑣) in 𝑇 corresponds to a vertex in C(𝑞,𝑇 ), and we use

𝑑 (𝑢, 𝑣) to denote its degree in C(𝑞,𝑇 ), i.e., the number of hyper-

edges of C(𝑞,𝑇 ) that contain (𝑢, 𝑣). The degree of C(𝑞,𝑇 ) is the
maximum degree of all (𝑢, 𝑣) ∈ 𝑇 , and we define the degree of 𝑞 as

the minimum degree of C(𝑞,𝑇 ) over all join trees 𝑇 supporting the

comparison of 𝑞, denoted as 𝑑𝑞 . For example, the degree of CQC

in Example 3.1 is 1, with the join tree in Figure 1(b) being the 𝑇

that attains the minimum degree of C(𝑞,𝑇 ). On the other hand, the

join tree in Figure 1(c) would lead to a C(𝑞,𝑇 ) of degree 2 (the edge

between 𝑅2 and 𝑅3 would be contained in two hyperedges). The

degree of 𝑞, as well as the supporting join tree 𝑇 , can be found by

enumerating all possible join trees of 𝑞 using the GYO algorithm.

This takes time exponential in the size of the query, but indepen-

dent of the size of the data. Henceforth, we assume that the degree

of 𝑞 and the supporting join tree 𝑇 are given.

Finally, it is easy to see that an 𝛼-acyclic CQ is just a special

acyclic CQC of degree 0 by our definition.

4.2 Constant-delay Enumeration
Acyclic full CQs can be evaluated in �̃� (𝑁 + OUT) time by the

well-known Yannakakis algorithm [24]. This algorithm has been

extended to perform constant delay enumeration (CDE) [3]. A CDE

data structure is one that can be built, ideally in �̃� (𝑁 ) time, from

which the query results 𝑞(𝑹) can be enumerated (without repe-

tition) with constant delay, i.e., the time between the start of the

enumeration process and enumerating the first result in 𝑞(𝑹), the
time between enumerating any two consecutive results, and the

time between the last result and the end of the enumeration process

are all bounded by a constant. In this paper, we relax the require-

ment slightly, by allowing the delay to be �̃� (1). Note that a CDE
data structure immediately leads to an �̃� (𝑁 +OUT)-time algorithm

for computing 𝑞(𝑹), but not necessarily vice versa.

The design of the CDE algorithm is based on the simple ob-

servation that, after the Yannakakis algorithm has completed the

semi-join reductions that remove all dangling tuples, every remain-

ing tuple is guaranteed to produce at least one join result. Thus,

the join results 𝑞(𝑹) can be enumerated with constant delay by

performing a pre-order traversal along the join tree 𝑇 equipped

with appropriate hash tables. However, the algorithm fails on CQCs,

because the semi-join reductions cannot ensure that the tuples will

satisfy the comparisons. Thus, during the enumeration process,

some tuples that do not satisfy the comparisons need to be skipped,

breaking the �̃� (1)-delay requirement.

Example 4.2. Figure 3(a) illustrates the issue for the query in

Example 1.2 using the join tree 𝑅1-𝑅2-𝑅3. The tuples in white are

those after the semijoin reduction. However, the tuple (3, 2) in 𝑅1,

(2, 1) in 𝑅2, and (1, 0) in 𝑅3 do not appear in any valid query results

due to the predicate 𝑥1 ≤ 𝑥4. If these tuples are not skipped during
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Figure 3: A running example for the query in Example 4.2.

the enumeration, this could lead to an 𝑂 (𝑁 )-delay. For example,

starting from the tuple (2, 1) in 𝑅2, the pre-order traversal has to

check all tuples in 𝑅1 against (1, 0) in 𝑅3 without enumerating any

valid query results. □

5 FULL ACYCLIC CQCs
In this section, we address the issue in Example 4.2 and present a

CDE algorithm for a full acyclic CQC 𝑞. Our algorithm will use a

series of reductions. For each reduction 𝑞 → 𝑞′, 𝑹 → 𝑹 ′, we will
ensure that

(1) 𝑞′ is still an acyclic CQC;

(2) 𝑹 ′ can be computed from 𝑹 in �̃� (𝑁 ) time; and

(3) given a CDE structure of 𝑞′(𝑹 ′) and some other data struc-

tures on 𝑹 that can be built in �̃� (𝑁 ) time, we can enumerate

𝑞(𝑹) with delay �̃� (1);
The base case is when 𝑞 has only one relation and no comparisons,

for which the CDE structure is just the relation itself.

The simplest reduction is to remove all self-comparisons (i.e.,

type-1 predicates). For this reduction, 𝑞′ is just 𝑞 after dropping all

self-comparisons, while 𝑹 ′ is 𝑹 after filtering each relation with

all the self-comparisons on that relation. This clearly satisfies the

three properties above. Wewill always perform this reduction when

applicable. Thus, when describing the other reduction rules below,

we may assume that 𝑞 has no self-comparisons. Other reductions

will each remove one relation from 𝑞, thus it takes at most 2(𝑛 − 1)
reductions to reach the base case for a CQC over 𝑛 relations. As

𝑛 is taken as a constant, the overall preprocessing cost would be

�̃� (𝑁 ) and the enumeration delay would be �̃� (1).

5.1 Reducible Relations
Given an acyclic CQC 𝑞 and a join tree𝑇 , a leaf node (relation) 𝑅 is

one with only one neighbor in 𝑇 . That neighbor is called its parent,
denoted 𝑅𝑝 .

We will always perform a reduction from a reducible relation,
defined as follows.

Definition 5.1. For an acyclic CQC 𝑞 and a join tree𝑇 supporting

its comparisons, a relation 𝑅 is reducible if (1) 𝑅 is a leaf in 𝑇 ; and

(2) 𝑅 is incident to at most one long comparison.

The following structural result is important for our development.

Lemma 5.2. Given any acyclic CQC 𝑞 and any join tree 𝑇 support-
ing its comparisons, there exists a reducible relation.

Proof. The lemma is trivially true if 𝑞 has only two relations,

since there are no long comparisons. When 𝑇 has at least 3 nodes,

it is easy to see that𝑇 must have a substructure shown in the figure

below, where the nodes in 𝑹𝑠 are all leaves, |𝑹𝑠 | ≥ 1, 𝑅𝑝 is their

common parent, and 𝑅𝑔 is another node adjacent to 𝑅𝑝 , but not in

𝑹𝑠 . Note that 𝑅𝑔 might also be a leaf. We will show that at least one

node in 𝑹𝑠 is reducible.

Rp

Rg
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First, if there is a node in 𝑹𝑠 with at most one long comparison,

then that node is reducible by definition. Below, we show that the

other case, i.e., every node in 𝑹𝑠 has ≥ 2 long comparisons, is not

possible.

Recall that the comparison hypergraph C(𝑞,𝑇 ) is Berge-acyclic.
In C(𝑞,𝑇 ), a hyperedge corresponds to a comparison and a vertex

in C(𝑞,𝑇 ) corresponds to an edge in 𝑇 . Let C′ be the subgraph of

C(𝑞,𝑇 ), whose vertices are just (𝑅𝑔, 𝑅𝑝 ) and (𝑅𝑝 , 𝑅𝑠 ) for all 𝑅𝑠 ∈
𝑹𝑠 , and whose hyperedges are only those corresponding to long

comparisons. Berge-acyclicity is monotone, i.e., any subgraph of a

Berge-acyclic hypergraph is still Berge-acyclic, so C′ is also Berge-

acyclic (note that 𝛼-acyclicity is not monotone).

Consider the following cases:

Case (1): At least two long comparisons (hyperedges) from 𝑹𝑠
contain the vertex (𝑅𝑔, 𝑅𝑝 ). This contradicts the Berge-acyclicity
of C′, since that would cause each edge on the join tree to be

connected to at least two comparisons, and each comparison to be

connected to at least two edges, making the comparison hypergraph

C′ Berge-cyclic.
Case (2): No long comparisons (hyperedges) from 𝑹𝑠 contain

the vertex (𝑅𝑔, 𝑅𝑝 ). This implies that |𝑹𝑠 | ≥ 2, while each long

comparison is between two nodes in 𝑹𝑠 . Now consider the subgraph

of C′ containing only the vertices (𝑅𝑝 , 𝑅𝑠 ) for all 𝑅𝑠 ∈ 𝑹𝑠 and these
long comparisons. Each hyperedge (now an ordinary edge) contains

just two vertices while every vertex has degree ≥ 2, so this becomes

an ordinary graph with |𝑹𝑠 | vertices and ≥ |𝑹𝑠 | edges, which must

cyclic, contradicting the Berge-acyclicity of C′ again.
Case (3): Exactly one long comparison from 𝑹𝑠 contains the

vertex (𝑅𝑔, 𝑅𝑝 ). Similar to Case (2), consider the subgraph of C′
containing only the vertices (𝑅𝑝 , 𝑅𝑠 ) for all 𝑅𝑠 ∈ 𝑹𝑠 and the long

comparisons in 𝑹𝑠 . The only difference is that one node has degree



≥ 1 while the rest has degree ≥ 2. Nevertheless, this still means

that there are at least |𝑹𝑠 | edges, as needed for the contraction. □

Let 𝑅 be a reducible relation. We apply different reductions de-

pending on the number of incident comparisons on 𝑅, as described

below.

5.2 No Incident Comparisons
If 𝑅 has no incident comparisons, then we perform a standard semi-

join reduction as in the Yannakakis algorithm, i.e., we replace 𝑅𝑝
with 𝑅′𝑝 := 𝑅𝑝 ⋉ 𝑅 and then remove 𝑅. The correctness of this

reduction has been proved in [3], but we rephrase the arguments

under our framework, i.e., it satisfies the three properties stated at

the beginning of Section 5. Property (1) follows from the fact that

𝑇 ′ = 𝑇 − {𝑅} is a valid join tree of 𝑞′. Property (2) is obvious. For

property (3), suppose we have a CDE structure for 𝑞′(𝑹 ′). Note that
𝑅 is not in 𝑹 ′, but the semijoin ensures that every query result in

𝑞′(𝑹 ′) can join with at least one tuple in 𝑅. Thus, after enumerating

a tuple 𝑡 ′ from 𝑞′(𝑹 ′), all we have to do is to enumerate 𝑅 Z 𝑡 ′.
This can be done with constant delay by building a hash table on 𝑅

using 𝑧 := 𝑣𝑎𝑟 (𝑅) ∩𝑣𝑎𝑟 (𝑅𝑝 ) as the key. This hash table is the “other

data structures” needed in property (3), which can be built in𝑂 (𝑁 )
time.

5.3 One Incident Comparison
Suppose 𝐶 : 𝑓 (𝑣𝑎𝑟 (𝑅)) ≤ 𝑔(𝑥𝑏 ), for some 𝑏 ∈ [𝑛], is the only

comparison incident to 𝑅, which may be either long or short. Define

𝑅′𝑝 (𝑣𝑎𝑟 (𝑅𝑝 ),mf) :=

{(
𝑡𝑝 , min

𝑡 ∈𝑅,𝑡Z𝑡𝑝≠∅
𝑓 (𝑡)

)�����𝑡𝑝 ∈ 𝑅𝑝 } , (3)

where mf is a new helper attribute. We perform the reduction:

• 𝑹 → 𝑹 ′: replace 𝑅𝑝 with 𝑅′𝑝 ;
• 𝑞 → 𝑞′: drop 𝑅, and replace 𝐶 with 𝐶 ′ : mf ≤ 𝑔(𝑥𝑏 ).

Note that since mf is an attribute in 𝑅′𝑝 , comparison 𝐶 ′ is now
between 𝑅′𝑝 and 𝑅′

𝑏
. If 𝐶 is a short comparison, 𝐶 ′ will become a

self-comparison. If so, we will apply the self-comparison-removal

reduction immediately.

Now we argue for the correctness of this reduction.

Property (1): Property (1) follows from the same reason as in

Section 5.2. The only difference is that the reduction in Section 5.2

does not change the attributes of any relation, while here we have

added a new attribute mf to 𝑅′𝑝 . But since this new attribute does

not appear in any other relation, 𝑇 ′ = 𝑇 − {𝑅} is still a valid join

tree of 𝑞′. The comparison hypergraph C(𝑞,𝑇 ) is still Berge-acyclic,
because the reduction removes one edge from 𝑇 and shortens one

comparison. This corresponds to removing one node from C(𝑞,𝑇 )
and shrinking a hyperedge. So C(𝑞′,𝑇 ′) is still Berge-acyclic due
to monotonicity.

Property (2): To achieve property (2), we cannot compute 𝑅′𝑝 by

definition. Instead, we first hash 𝑅 using 𝑧 := 𝑣𝑎𝑟 (𝑅) ∩ 𝑣𝑎𝑟 (𝑅𝑝 ) as
the key. For each unique key 𝑧 = 𝜅, we keep the minimum 𝑓 (𝑡)
over all tuples 𝑡 ∈ 𝑅 such that 𝑡 (𝑧) = 𝜅 . Then, for each 𝑡𝑝 ∈ 𝑅𝑝 , we
can look up the hash table to find the corresponding value for mf .

This process takes 𝑂 ( |𝑅 | + |𝑅𝑝 |) time.

Property (3): Suppose we have a CDE structure for 𝑞′(𝑹 ′). We,

in addition, create a hash table on 𝑅 using 𝑧 as the key, and the

value associated with 𝑧 = 𝜅 is a list of tuples 𝑡 ∈ 𝑅 such that 𝑡 (𝑧) =
𝜅, stored in the increasing order of 𝑓 (𝑡). This hash index can be

computed in 𝑂 ( |𝑅 | log |𝑅 |) time. After enumerating a query result

𝑡 ′ ∈ 𝑞′(𝑹 ′), we look up the hash index for the list associated with

𝜅 = 𝑡 ′(𝑧). Since 𝑡 ′ must satisfy the comparison mf ≤ 𝑔(𝑣𝑎𝑟 (𝑅′))
in 𝑞′, while the first tuple 𝑡 in the list has 𝑓 (𝑡) = mf , 𝑡 Z 𝑡 ′ must

be a valid query result of 𝑞(𝑹), which will be enumerated (to be

technically correct, we should enumerate 𝜋𝑣𝑎𝑟 (𝑞) (𝑡 Z 𝑡 ′) to project
out the helper attribute mf). Then, we scan the list in the increasing

order of 𝑓 (·), enumerating 𝑡 Z 𝑡 ′ for every 𝑡 in the list until we

encounter a 𝑡 with 𝑓 (𝑡) > 𝑔(𝑡 ′). When this happens, we stop the

enumeration and move on to the next tuple from 𝑞′(𝑹 ′).
We need to show that the enumeration algorithm above is sound

and complete. The soundness is obvious. For completeness, con-

sider any query result 𝑟 ∈ 𝑞(𝑹). Let 𝜅 = 𝑟 (𝑧), 𝑡 = 𝑟 (𝑣𝑎𝑟 (𝑅)), and
𝑡 ′ = 𝑟 (𝑣𝑎𝑟 (𝑞′)) Z (mf = min𝑠∈𝑅,𝑠 (𝑧)=𝜅 𝑓 (𝑠)). Note that 𝑡 ∈ 𝑅.

Because 𝑟 satisfies𝐶 , i.e., 𝑓 (𝑡) ≤ 𝑔(𝑡 ′), and 𝑓 (𝑡) ≥ 𝑡 ′(mf), we have
𝑡 ′(mf) ≤ 𝑔(𝑡 ′), i.e., 𝑡 ′must satisfy𝐶 ′. Thus 𝑡 ′ ∈ 𝑞′(𝑹 ′), so it will be
enumerated from the CDE structure of 𝑞′(𝑹 ′). When this happens,

𝑡 will be retrieved from the list associated with 𝜅 and 𝑟 = 𝑡 Z 𝑡 ′

will be enumerated.

To see that the delay is 𝑂 (1), observe that for every 𝑡 ′ ∈ 𝑞′(𝑹 ′),
we examine𝑘+1 tuples in the list while enumerating𝑘 query results,

for some 𝑘 ≥ 1. Thus, the delay is 𝑂 (1). Note that it is important

to ensure 𝑘 ≥ 1; otherwise, we may see an unbounded number of

𝑡 ′ ∈ 𝑞′(𝑹 ′) without enumerating any query result from 𝑞(𝑹).

For the symmetric case where 𝐶 is 𝑓 (𝑥𝑎) ≤ 𝑔(𝑣𝑎𝑟 (𝑅)) for some

𝑎 ∈ [𝑛], we change min 𝑓 (𝑡) to max𝑔(𝑡) in (3), and the list asso-

ciated with each 𝑧 = 𝜅 will be stored in the decreasing order of

𝑔(·).

Example 5.3. Figure 3(b) illustrates how the reduction works on

the query in Example 1.2. Suppose we reduce 𝑅1 first (the other re-

ducible relation is𝑅3). This appends helper attributemf1 to𝑅2 while

removing the tuple (1, 2) in𝑅2. Supposewe reduce𝑅3 next (we could

also reduce 𝑅2, which is now reducible). This appends mf2 to 𝑅2. Af-

ter this step, the comparison becomes a self-comparison mf1 ≤ mf2.

The next immediate reduction checks this self-comparison on 𝑅2,

removing the tuple (2, 1). Now we have reached the base case with

only 𝑅2 and no comparisons.

To enumerate the query results, we rewind the reductions. After

enumerating each tuple from 𝑅2 (in this example, only one tuple

remains in 𝑅2), we first find all tuples in 𝑅1 with 𝑥2 = 2 and 𝑥1 ≤ 2.

By using the hash table of 𝑅2 on 𝑥2 and visiting the tuples in sorted

order of 𝑥1, these tuples can be retrieved with constant delay. Then,

for each partial join result from 𝑅1 Z 𝑅2, we find all join tuples in

𝑅3. For the last step, no more comparison needs to be checked. □

5.4 Two or More Incident Comparisons
Now we consider the general case. Let 𝑅 be a reducible relation
with 𝑑 ≥ 2 incident comparisons, which include at most one

long comparison. Let 𝐶1, . . . ,𝐶𝑑 be the 𝑑 comparisons incident

on 𝑅. Without loss of generality, we assume each 𝐶 𝑗 has the form

𝑓𝑗 (𝑣𝑎𝑟 (𝑅)) ≤ 𝑔 𝑗 (𝑥𝑏 𝑗
), where 𝑏 𝑗 ∈ [𝑛] for each 𝑗 ∈ [𝑑]. If any 𝐶 𝑗



[𝑥3𝑥4𝑥5]
1 2 1

1 4 1

2 2 1

[𝑥1𝑥2𝑥3]
1 3 1

2 2 1

4 1 1

5 2 2

[𝑥5𝑥6]
1 1

1 2

2 3

[mf1𝑥3𝑥4𝑥5]
2 1 2 1

1 1 4 1

⊥ 2 2 1

𝑥3 → (𝑥1, 𝑥2)

1

(1, 3)

(2, 2)

(4, 1)

2 (5, 2)

[𝑥5𝑥6]
1 1

1 2

2 3

[mf1𝑥3𝑥4𝑥5mf2]
2 1 2 1 2

1 1 4 1 2

⊥ 2 2 1 ⊥

𝑥3 → (𝑥1, 𝑥2)

1

(1, 3)

(2, 2)

(4, 1)

2 (5, 2)

[𝑥5𝑥6]
1 1

1 2

2 3

[𝑥1𝑥2𝑥3𝑥4𝑥5mf2]
4 1 1 4 1 2

[𝑥5𝑥6]
1 1

1 2

2 3

[𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6]
4 1 1 4 1 2

Figure 4: A running example for the query in Example 5.4

has the form 𝑓𝑗 (𝑥𝑎 𝑗
) ≤ 𝑔 𝑗 (𝑣𝑎𝑟 (𝑅)), the case can be handled sym-

metrically. Suppose 𝐶1 is the only comparison that might be long,

while𝐶2, . . . ,𝐶𝑑 are all short comparisons. The reduction is similar

to the one-incident-comparison case. Define

𝑅′𝑝 (𝑣𝑎𝑟 (𝑅𝑝 ),mf) :=

{(
𝑡𝑝 , min

𝑡 ∈𝑅,𝜎𝐶
2
∧···∧𝐶𝑑

𝑡Z𝑡𝑝≠∅
𝑓1 (𝑡)

)�����𝑡𝑝 ∈ 𝑅𝑝
}
,

(4)

where mf is a new helper attribute. Note that 𝐶2, . . . ,𝐶𝑑 are all

short comparisons, i.e., they are between 𝑡 and 𝑡𝑝 , so the selection

condition in (4) is well defined. In particular, if for a 𝑡𝑝 ∈ 𝑅𝑝 , no 𝑡
satisfies the condition under the min, 𝑡𝑝 will not be included in 𝑅′𝑝 .

The reduction is defined as:

• 𝑹 → 𝑹 ′: replace 𝑅𝑝 with 𝑅′𝑝 ;
• 𝑞 → 𝑞′: drop 𝑅 and 𝐶2, · · · ,𝐶𝑑 , and replace 𝐶1 with 𝐶 ′

1
:

mf ≤ 𝑔1 (𝑥𝑏1
).

Again, 𝐶 ′
1
may be a self-comparison (if 𝐶1 is short), which would

be immediately removed next.

Property (1) follows from the same reasoning as in Section 5.3.

However, it requires more work to achieve property (2) and (3).

Property (2): To compute 𝑅′𝑝 efficiently, we as before first hash 𝑅

on 𝑧. However, unlike the one-incident-comparison case, here it is

no longer sufficient to just keep the minimum 𝑓 (𝑡) for each unique

key 𝑧 = 𝜅 , due to the additional comparison conditions𝐶2∧· · ·∧𝐶𝑑
imposed on 𝑡 Z 𝑡𝑝 in (4). Instead, we treat each tuple 𝑡 ∈ 𝑅 as a

(𝑑 − 1)-dimensional point 𝑝 (𝑡) := (𝑓2 (𝑡), · · · , 𝑓𝑑 (𝑡)) with weight

𝑤 (𝑡) := 𝑓1 (𝑡). For each tuple 𝑡𝑝 ∈ 𝑅𝑝 , we treat it as an orthogonal

range query𝐵(𝑡𝑝 ) := (−∞, 𝑔2 (𝑡𝑝 )]×· · ·×(−∞, 𝑔𝑑 (𝑡𝑝 )]. Now, we see
that themf value for each 𝑡𝑝 ∈ 𝑅𝑝 is exactly the answer to the range-

aggregation query 𝐵(𝑡𝑝 ) on the points {𝑝 (𝑡) | 𝑡 ∈ 𝑅, 𝑡 Z 𝑡𝑝 ≠ ∅},
where we use min as the semigroup addition.

This observation immediately leads to the following algorithm to

compute 𝑅′𝑝 : We, as before, hash 𝑅 on 𝑧. For each unique key 𝑧 = 𝜅 ,

we build a (𝑑−1)-dimensional orthogonal range searching structure

on {𝑝 (𝑡) | 𝑡 ∈ 𝑅, 𝑡 (𝑧) = 𝜅}. The cost to build these range searching

structures is 𝑂 ( |𝑅 | log
max{𝑑−2,1} |𝑅 |). Next, for each 𝑡𝑝 ∈ 𝑅𝑝 , we

perform a range-min query on {𝑝 (𝑡) | 𝑡 ∈ 𝑅, 𝑡 (𝑧) = 𝑡𝑝 (𝑧)}, which
takes time 𝑂 ( |𝑅𝑝 | log

max{𝑑−2,1} |𝑅 |) in total.

Property (3): Suppose we have a CDE structure for 𝑞′(𝑹 ′). We

in addition create a hash table on 𝑅 using 𝑧 as the key, and the

value associated with 𝑧 = 𝜅 is a 𝑑-dimensional orthogonal range

searching structure on {𝑝 (𝑡) | 𝑡 ∈ 𝑅, 𝑡 (𝑧) = 𝜅}, where 𝑝 (𝑡) is now a

𝑑-dimensional point 𝑝 (𝑡) := (𝑓1 (𝑡), · · · , 𝑓𝑑 (𝑡)). The cost of building
these structures is 𝑂 ( |𝑅 | log

max{𝑑−1,1} |𝑅 |). After enumerating a

𝑡 ′ ∈ 𝑞′(𝑹 ′), we perform a range-reporting query on the range

searching structure associated with 𝜅 = 𝑡 ′(𝑧) using range �̂�(𝑡 ′) =
(−∞, 𝑔1 (𝑡 ′)]×· · ·×(−∞, 𝑔𝑑 (𝑡 ′)]. For each 𝑡 reported, we enumerate

𝑡 Z 𝑡 ′.
The soundness and completeness of this enumeration algo-

rithm follow from similar reasons as in Section 5.3. To bound

the delay, the key observation is that each range-reporting query

�̂�(𝑡 ′) must return at least one tuple. Specifically, the tuple 𝑡min =

arg min𝑡 ∈𝑅,𝑡 (𝑧)=𝑡 ′ (𝑧) 𝑓 (𝑡) must be inside the range, i.e., it satisfies

all the constraints 𝑓𝑗 (𝑡) ≤ 𝑔 𝑗 (𝑡 ′). To see this, let 𝑡 ′𝑝 = 𝑡 ′(𝑣𝑎𝑟 (𝑅′𝑝 )) ∈
𝑅′𝑝 and 𝑡𝑝 = 𝑡 ′𝑝 (𝑣𝑎𝑟 (𝑅𝑝 )) ∈ 𝑅𝑝 . Note that 𝑡 ′𝑝 just has one extra at-

tribute mf compared with 𝑡𝑝 . When constructing 𝑅′𝑝 , we performed

a range-min query with 𝐵(𝑡𝑝 ) on {𝑡 ∈ 𝑅 | 𝑡 (𝑧) = 𝑡 ′(𝑧)}. Recall
that𝐶2, . . . ,𝐶𝑑 are all short comparisons, so 𝑔 𝑗 (𝑡 ′) = 𝑔 𝑗 (𝑡𝑝 ), which
means that �̂�(𝑡 ′) is the same as 𝐵(𝑡𝑝 ) except that the former has

an extra constraint 𝑓1 (𝑡) ≤ 𝑔1 (𝑡 ′). Furthermore, 𝑡 ′𝑝 (mf) takes the
minimum 𝑓1 (𝑡) among all tuples in {𝑡 ∈ 𝑅 | 𝑡 (𝑧) = 𝑡 ′(𝑧)}. Thus,
if 𝑡min were outside �̂�(𝑡 ′), no other tuple would be inside. This

means that 𝐵(𝑡𝑝 ) would have been empty, in which case 𝑡 ′𝑝 would

not have been included in 𝑅′𝑝 and 𝑡 ′ would not be enumerated

from 𝑞′(𝑹 ′). Therefore, the range query spends 𝑂 (log
𝑑−1 |𝑅 | + 𝑘)

time to enumerate 𝑘 query results for some 𝑘 ≥ 1. So the delay is

𝑂 (log
𝑑−1 |𝑅 |).

Example 5.4. Consider the following query with 2 incident com-

parisons on 𝑅1:

𝑅1 (𝑥1, 𝑥2, 𝑥3) Z 𝑅2 (𝑥3, 𝑥4, 𝑥5) Z 𝑅3 (𝑥5, 𝑥6), 𝑥1 ≤ 𝑥4, 𝑥2 < 𝑥6

Figure 4 shows a running example of this query. Suppose we

reduce 𝑅1 first. We first build a 1D range searching structure on 𝑅1

for each unique 𝑥3 such that, given any 𝑡 = (𝑥3, 𝑥4, 𝑥5) ∈ 𝑅2, we

can find the minimum 𝑥2 in 𝑅1 with a matching 𝑥3 while satisfying

the comparison 𝑥1 ≤ 𝑥4. This becomes the helper attribute mf1 in

𝑅2. Note that the tuple (2, 2, 1) in 𝑅2 has mf1 =⊥ as no tuple in 𝑅1

satisfies 𝑥3 = 2 and 𝑥1 ≤ 𝑥4. Now we drop 𝑅1 and 𝑥1 ≤ 𝑥4, while

rewriting 𝑥2 < 𝑥6 into mf1 < 𝑥6. Next, we reduce 𝑅3 as in the one-

incident-comparison case, which will append mf2 to 𝑅2. Now we

drop 𝑅3 and rewrite mf1 < 𝑥6 into a self-comparison mf1 < mf2,

reaching the base case.

To enumerate the query results, we rewind the reductions. Start-

ing from each tuple in 𝑅2, we first find all join tuples in 𝑅1 with a

matching 𝑥3 while satisfying 𝑥1 ≤ 𝑥4, using the range searching

structures. Then, for each partial join result in 𝑅1 Z 𝑅2, we find all

join tuples in 𝑅3 using a hash table and visiting the tuples in sorted

order of 𝑥6.



5.5 Putting Things Together
For a given acyclic CQC 𝑞 and a join tree 𝑇 supporting its com-

parisons, we perform a series of reductions, each on an arbitrarily

chosen reducible relation 𝑅. It should be clear that 𝑑 , the number

of comparisons incident to 𝑅 is never larger than 𝑑𝑞 , the degree of

𝑞. This is because each reduction reduces one leaf node of 𝑇 , and

shrinks one long comparison, while dropping a number of short

comparisons.

To analyze the total cost, recall the following results from the

previous subsections.

(1) if 𝑑 = 0, the preprocessing takes 𝑂 (𝑁 ) time, and the enu-

meration delay is 𝑂 (1);
(2) if 𝑑 = 1, the preprocessing takes 𝑂 (𝑁 log𝑁 ) time, and enu-

meration delay is 𝑂 (1);
(3) if 𝑑 ≥ 2, the preprocessing takes 𝑂 (𝑁 log

𝑑−1 𝑁 ) time, and

enumeration delay is 𝑂 (log
𝑑−1 𝑁 ).

After a series of reductions, the preprocessing times and the enu-

meration delays add up. But since the query size is considered as a

constant, this does not affect the asymptotic result, summarized as

follows.

Theorem 5.5. A full acyclic CQC 𝑞 with degree 𝑑𝑞 can
be enumerated with delay 𝑂 (log

max{𝑑𝑞−1,0} 𝑁 ) delay after
𝑂 (𝑁 log

𝑑𝑞−I(𝑑𝑞 ≥2) 𝑁 ) preprocessing time6.

Corollary 5.6. A full acyclic CQC 𝑞 can be computed in �̃� (𝑁 +
OUT) time.

5.6 Hard Queries
In this section, we argue that the neither the 𝛼-acyclicity condi-

tion for the relational hypergraph nor the Berge-acyclicity of the

comparison graph can be removed, if one aims at the �̃� (𝑁 + OUT)
running time for CQCs. For the first condition, it is well known that

if a CQ is not 𝛼-acyclic, it must be at least as hard as the triangle

query, which has a lower bound:

Theorem 5.7 ([20]). The triangle query

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥1, 𝑥3)

requires time Ω(𝑁 4/3−𝜀 ) for every constant 𝜀 > 0 when OUT ≥ 𝑁 ,
under the 3SUM conjecture.

Since CQs are special CQCs, a CQC whose relational hypergraph

is not 𝛼-acyclic is thus at least as hard as the triangle query. For the

second condition, consider the following query:

Example 5.8. Consider the query

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4),𝐶1 : 𝑥1 ≤ 𝑥4,𝐶2 : 𝑥1 ≥ 𝑥4 .

It is clear that its relational hypergraph is 𝛼-acyclic. It has only one

join tree 𝑇 : 𝑅1-𝑅2-𝑅3. On this join tree, its comparison hypergraph

has two hyperedges, both containing the two edges of 𝑇 . Note that

this comparison hypergraph is 𝛼-acyclic but not Berge-acyclic. On

the other hand, it is easy to see that this query is equivalent to the

triangle query. □

6I( ·) is the indicator function.

The query above implies that the second condition cannot be

dropped or relaxed to 𝛼-acyclicity. Note that, however, this only

means that some CQCs not satisfying our acyclic conditions are

hard (i.e., cannot be solved in �̃� (𝑁 + OUT) time). It does not mean

that every CQC not satisfying our acyclic conditions is hard. In

fact, if we change 𝐶2 in Example 5.8 to 𝑥1 ≤ 𝑥4 + 1, this will

make the query easy as 𝐶2 has become a redundant comparison,

although syntactically, it is still not acyclic by our definition. This

means that our acyclic condition is a sufficient, but not necessary,

condition for a CQC to be easy. In practice, one may use some query

rewrite rules to take care of some common cases, e.g., removing

redundant comparisons, rewriting or decomposing a comparison

(see the discussion following Example 3.1), and see if the resulting

CQC is acyclic.

6 NON-FULL CQCs
We consider non-full CQCs in this section. We use 𝑞(𝑹) to denote

the results of evaluating 𝑞 on 𝑹 when the output attributes are the

given 𝑦, and 𝑞∗ (𝑹) to denote the full query results, i.e., when the

output attributes are 𝑣𝑎𝑟 (𝑞).

Free-connex CQs. A naive way to evaluating such a non-full CQ

or CQC 𝑞 is to first compute 𝑞∗ (𝑹), and then perform a (distinct)

projection. This would take time �̃� (𝑁 + |𝑞∗ (𝑅) |), assuming 𝑞∗ is
acyclic. However, as OUT = |𝑞(𝑅) | ≪ |𝑞∗ (𝑹) | due to the projection,
this method can lead to running times much longer than neces-

sary. It does not guarantee any bounded-delay enumeration, either.

Ideally, like on full queries, one would want �̃� (1)-delay after �̃� (𝑁 )-
time preprocessing for non-full queries as well. Unfortunately, this

is not achievable when the output attributes can be an arbitrary

subset of 𝑣𝑎𝑟 (𝑞), even without comparisons. In fact, the query

𝑎𝑛𝑠 (𝑥1, 𝑥3) ← 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3) already encompasses Boolean

matrix multiplication, and the best algorithm for this problem is

not significantly better than the naive algorithm above. Neverthe-

less, the literature has identified a subclass of non-full CQs that

can be enumerated with �̃� (1) delay after �̃� (𝑁 )-time preprocessing,

known as free-connex CQs [3, 12].

There are a number of equivalent definitions of free-connex CQs,

and we adopt the following one. Given a CQ 𝑞 on an database 𝑹, we
can add an auxiliary relation 𝑅𝑖 := 𝜋𝑧𝑅𝑖 to 𝑹 and correspondingly

the atom 𝑅𝑖 (𝑧) to 𝑞, where 𝑧 is any subset of 𝑣𝑎𝑟 (𝑅𝑖 ). It is obvious
that adding such a relation does not change the query results. We

thus obtain an extended query after adding any number of such

auxiliary relations. A CQ 𝑞 is free-connex if it has an extended query

𝑞 that admits a join tree 𝑇 with a designated root node, such that

(1) all nodes 𝑅 ∈ 𝑇 where 𝑣𝑎𝑟 (𝑅) ⊆ 𝑦 form a connected component

in 𝑇 containing its root (they are said to form the connex subset),
and (2) 𝑦 = ∪𝑅𝑣𝑎𝑟 (𝑅) where the union is over all 𝑅 in the connex

subset.

Free-connex CQCs. We extend the definition above to CQCs. Sim-

ilarly, a CQC 𝑞 is first extended to some 𝑞 by adding any number

of auxiliary relations. We say that 𝑞 is a free-connex CQC if 𝑞 has a

join tree 𝑇 that, in addition to conditions (1) and (2) above, also sat-

isfies (3) C(𝑞,𝑇 ) is Berge-acyclic (i.e.,𝑇 supports 𝑞). When deciding

the incident relations of each comparison, we as before choose the

(𝑎 𝑗 , 𝑏 𝑗 ) pair such that 𝑃
𝑇
(𝑎 𝑗 , 𝑏 𝑗 ) is the shortest in 𝑇 . Note that this



Connex Subset

𝑅2(𝑥2, 𝑥3, 𝑥7)

𝑅3(𝑥2, 𝑥3, 𝑥4, 𝑥5)

𝑅1(𝑥1, 𝑥2)

𝑅4(𝑥3, 𝑥6) 𝑅3(𝑥2, 𝑥3, 𝑥4)

𝑅5(𝑥3, 𝑥8)

Figure 5: A free-connex join tree for the extended query.

means that some of the comparisons will be incident to the auxiliary

relations. The degree of a free-connex CQC 𝑞, still denoted as 𝑑𝑞 ,

is the minimum degree of C(𝑞,𝑇 ) over all join trees 𝑇 supporting

some extended query 𝑞 of 𝑞. Note that a free-connex CQ is just a

special free-connex CQC with degree 0.

Example 6.1. The query from Example 3.1 is a free-connex CQC,

with an extended query being

𝑎𝑛𝑠 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥7) ←𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥2, 𝑥3, 𝑥4)
𝑅3 (𝑥2, 𝑥3, 𝑥4, 𝑥5), 𝑅4 (𝑥3, 𝑥6), 𝑅5 (𝑥3, 𝑥8)
𝐶1 : 𝑥1 − 𝑥2 ≤ 𝑥3𝑥4 + 2,

𝐶2 : min{2𝑥2, 𝑥7} ≤ 𝑥6, 𝐶3 : 𝑥2 ≤ 𝑥8,

and the supporting join tree 𝑇 is shown in Figure 5, whose degree

is 1. Note that when using this join tree, 𝐶1 is incident on 𝑅1 and

the auxiliary relation 𝑅3. □

Given a free-connex CQC 𝑞, we first extend it to 𝑞 as described

above. As argued earlier, 𝑞 and 𝑞 have the same query answer, so it

suffices to describe how to solve 𝑞. To simplify notation, below we

still use 𝑞 to denote the extended query, and 𝑇 its supporting join

tree.

We follow the same framework as for full acyclic CQCs, and

perform a series of reductions. Note that for a full query, the join

tree𝑇 does not have a designated root, but it does for a free-connex

query by definition. A reducible relation in this case is still defined

as a leaf relation in𝑇 that has at most one incident long comparison.

As 𝑇 is rooted, its root is not a leaf by definition (unless 𝑇 has only

one node), so it is not reducible even if it has only one incident

long comparison. Nevertheless, although Lemma 5.2 is stated for

unrooted join trees, it is straightforward to verify that the proof

also works for rooted join trees, and a reducible relation still exists

for any free-connex CQC.

As before, each reduction will remove one reducible rela-

tion. Given a reducible relation 𝑅 with 𝑑 incident comparisons

𝐶1, · · · ,𝐶𝑑 , we perform the same reduction as in Section 5.4, and

we show below how the 3 properties are satisfied. First, property

(1) shall be changed into “𝑞′ is a free-connex CQC”. This follows
easily from the fact that if 𝑅 is in the connex subset, so is its parent

𝑅𝑝 . Property (2) still holds because we use the same algorithm to

compute 𝑹 ′.

To preserve property (3), we need to differentiate the cases de-

pending on whether 𝑅 belongs to the connex subset or not. Recall

that 𝑅 belongs to the connex subset iff 𝑣𝑎𝑟 (𝑅) ⊆ 𝑦.

Case (1): 𝑅 belongs to the connex subset. For this case, we build

the same data structures, and then use the same algorithm to enu-

merate 𝑞(𝑹) from a CDE structure for 𝑞′(𝑹 ′).
Case (2): 𝑅 does not belong to the connex subset. In this case, we

can actually show that 𝑞(𝑹) = 𝑞′(𝑹 ′), thus property (3) is trivially

satisfied without the need to build additional data structures and

further enumeration.

If 𝑅 does not belong to the connex subset, then 𝑞′ has the same

output variables 𝑦 as 𝑞. Consider the full queries 𝑞∗ and 𝑞′∗ corre-
sponding to 𝑞 and 𝑞′, respectively. We know that property (3) holds

on 𝑞∗ and 𝑞′∗, which implies that 𝜋𝑦𝑞
∗ (𝑹) = 𝜋𝑦𝑞

′∗ (𝑹 ′). Thus, we
have 𝑞(𝑹) = 𝜋𝑦𝑞

∗ (𝑹) = 𝜋𝑦𝑞
′∗ (𝑹 ′) = 𝑞′(𝑹 ′), as desired.

Therefore, the complexity of free-connex CQCs is the same as

that of full acyclic CQCs. In practice, free-connex CQCs can be

evaluated even faster due to the simplification in case (2) above.

Theorem 6.2. A free-connex CQC 𝑞 with degree 𝑑𝑞 can
be enumerated with delay 𝑂 (log

max{𝑑𝑞−1,0} 𝑁 ) delay after
𝑂 (𝑁 log

𝑑𝑞−I(𝑑𝑞 ≥2) 𝑁 ) preprocessing time.

7 GENERAL CQCs
7.1 Generalized Hypertree Decompositions
Generalized hypertree decompositions (GHDs) [9] provide a powerful
framework for dealing with general CQs [14] and CQCs [15]. By

putting multiple relations into a bag, GHDs convert a non-acyclic
or non-free-connex query into an acyclic free-connex one. The

overhead is a larger preprocessing time, since each bag must be

precomputed. Thus, one should use the GHD that minimizes the

maximumprecomputation time over all bags, which leads to various

definitions of width.
More formally, Khamis et al. [15] show that a CQC 𝑞 can be

enumerated with �̃� (1) delay after �̃� (𝑁width(𝑞) ) preprocessing time,

where

width(q) = min

T∈G(𝑞)
max

𝑣∈T
𝑤 (𝑣) .

Here, G(𝑞) denotes the set of all GHDs of 𝑞 that has only short

comparisons, and 𝑤 (𝑣) is the width of a bag 𝑣 in the GHD T . By
using our algorithm to compute the GHD, we achieve �̃� (1) delay
after �̃� (𝑁width∗ (𝑞) ) preprocessing time, where

width∗ (q) = min

T∈G∗ (𝑞)
max

𝑣∈T
𝑤 (𝑣),

where G∗ (𝑞) is now the set of GHDs of 𝑞 that meet our acyclic

conditions. Since G(𝑞) ⊆ G∗ (𝑞), width∗ (𝑞) ≤ width(𝑞) for any 𝑞.
The actual improvement depends on the query 𝑞, as well as𝑤 (𝑣),
which in turns depends on the given degree constraints of the input

(including cardinality constraints, functional dependencies, and PK

constraints). The exact definition of𝑤 (𝑣) is very technical; below

we illustrate the improvements on a few representative examples.

Example 7.1. Consider the following CQC:

𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4), 𝑅4 (𝑥4, 𝑥5),
𝐶1 : 𝑥1 ≤ 𝑥4,𝐶2 : 𝑥1 ≥ 𝑥5 .



This CQC is not acyclic (the comparison hypergraph is not Berge-

acyclic). One valid GHD is 𝑢1 = {𝑅1, 𝑅2}, 𝑢2 = {𝑅3}, 𝑢3 = {𝑅4}.
On this GHD, 𝐶1 is incident to 𝑢1 and 𝑢2, 𝐶2 is incident to 𝑢1

and 𝑢3, so the comparison hypergraph is now Berge-acyclic. After

precomputing 𝑅1 Z 𝑅2, the query becomes an acyclic CQC, which

can be handled by our algorithm. The preprocessing time increases

to �̃� (𝑁 + |𝑅1 Z 𝑅2 |), which is �̃� (𝑁 2) in the worst case. If 𝑥2 is a

primary key (PK) of 𝑅1 or 𝑅2, then the preprocessing time becomes

�̃� (𝑁 ). On the other hand, this GHD cannot be used in [15]. They

can only use 𝑢1 = {𝑅1}, 𝑢2 = {𝑅2, 𝑅3, 𝑅4}; 𝑢1 = {𝑅1, 𝑅2}, 𝑢2 =

{𝑅3, 𝑅4}; or 𝑢1 = {𝑅1, 𝑅2, 𝑅3}, 𝑢2 = {𝑅4}, all of which lead to �̃� (𝑁 2)
preprocessing time, even if 𝑥2 is a PK. □

Example 7.2. Consider the following CQC, which finds all “dumb-

bells” in a graph, whose edges are stored in a relation 𝑅 (see Figure

6(b) for the hypergraph representation). We impose a comparison

involving the weights associated with the edges of the two triangles

that make up the dumbbell.

𝑅(𝑥1, 𝑥2,𝑤1), 𝑅(𝑥2, 𝑥3,𝑤2), 𝑅(𝑥1, 𝑥3,𝑤3), 𝑅(𝑥3, 𝑥4),
𝑅(𝑥4, 𝑥5,𝑤4), 𝑅(𝑥5, 𝑥6,𝑤5), 𝑅(𝑥4, 𝑥6,𝑤6),
𝑤1𝑤2𝑤3 ≤ 𝑤4𝑤5𝑤6 .

This CQC is not acyclic due to two reasons: (1) the relational

hypergraph is not 𝛼-acyclic, and (2) the comparison is not in the

required formwhere either side should be defined on variables from

one relation. Nevertheless, we can group the 7 relations (actually,

7 logical copies of the same physical relation) into 3 bags: two

triangles and the “handle” of the dumbbell. Each triangle join can be

computed in𝑂 (𝑁 1.5) time [19], after which we apply our algorithm

on the GHD, which is the same as Example 4.2, by treating𝑤1𝑤2𝑤3

and𝑤4𝑤5𝑤6 as new attributes of the two triangle bags. On the other

hand, this CQC requires �̃� (𝑁 2) time to preprocess in [15]. □

To keep the presentation accessible, we have only stated the

general result where a single GHD is used. It has been shown

[14, 15, 18] that the width can be further reduced by using multiple

GHDs. Our algorithm offers improvements in this case as well.

Example 7.3. Revisit the query in Example 7.1. As mentioned, if

there is no key constraint, our algorithm has �̃� (𝑁 2) preprocessing
time. It turns out that by decomposing the relations and using

different GHDs for different parts, this can be further improved.

For a variable 𝑥 and a tuple 𝑡 , let deg𝑅 (𝑡, 𝑥) = |𝜎𝑥=𝑡 (𝑥) (𝑅) | be the
degree of 𝑡 in 𝑅 with respect to 𝑥 . We partition the tuples of 𝑅2

into the heavy ones and light ones: the former have deg𝑅2

(𝑡, 𝑥2) ≥√
𝑁 while the latter deg𝑅2

(𝑡, 𝑥2) <
√
𝑁 . For the light 𝑅2 (together

with 𝑅1, 𝑅3, 𝑅4 in full), we use the same GHD 𝑢1 = {𝑅1, 𝑅2}, 𝑢2 =

{𝑅3}, 𝑢3 = {𝑅4} from Example 7.1. But now all tuples in 𝑅2 are light,

so we have |𝑅1 Z 𝑅2 | ≤ 𝑁 1.5
. For the heavy 𝑅2, we use the GHD

𝑢1 = {𝑅1}, 𝑢2 = {𝑅2, 𝑅3}, 𝑢3 = {𝑅4}. Because there are at most

√
𝑁

heavy values on 𝑥2, we can bound |𝑅2 Z 𝑅3 | by 𝑁 1.5
as well. Thus,

the total preprocessing time is �̃� (𝑁 1.5). Note that by setting 𝑅4

to an identity relation (i.e., 𝑥4 = 𝑥5), this CQC degenerates into

the triangle query in Example 5.8. This implies that the �̃� (𝑁 1.5)
preprocessing time cannot be improved unless the triangle query

can be improved, which is considered unlikely.

However, for this query, multiple GHDs do not help the algo-

rithm of [15] because neither GHD used above is allowed in [15].

Interestingly, multiple GHDs do help them when 𝑥2 is a PK of 𝑅2

to reduce the time to �̃� (𝑁 1.5). However, as we see in Example 7.1,

our algorithm can achieve �̃� (𝑁 ) time with just one GHD in this

case. □

The last example is on a non-full query:

Example 7.4. The following query is a non-full version of Exam-

ple 7.1:

𝑎𝑛𝑠 (𝑥2, 𝑥4) ←𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4), 𝑅4 (𝑥4, 𝑥5),
𝐶1 : 𝑥1 ≤ 𝑥4,𝐶2 : 𝑥1 ≥ 𝑥5 .

This query cannot be handled by our algorithm in Section 6

for two reasons: (1) the comparison hypergraph is not Berge-

acyclic, and (2) it is not free-connex. However, we can use the

GHD 𝑢1 = {𝑅1}, 𝑢2 = {𝑅2, 𝑅3}, 𝑢3 = {𝑅4}, which fixes the two

issues simultaneously. The extended query of this GHD has an

auxiliary relation 𝑢2 (𝑥2, 𝑥4), which forms the free-connex subset.

The preprocessing time increases to �̃� (𝑁 + |𝑅2 Z 𝑅3 |), which is

linear if 𝑥3 is a PK of 𝑅2 or 𝑅3. In this case, the best time achievable

in [15] is still �̃� (𝑁 1.5) while using two GHDs. □

7.2 Projection Expansion
Example 7.5. Consider the following non-full CQC:

𝑞 : 𝑎𝑛𝑠 (𝑥2, 𝑥4) ←𝑅1 (𝑥1, 𝑥2, 𝑥3), 𝑅2 (𝑥3, 𝑥4, 𝑥5), 𝑥1 < 𝑥5 .

It is an acyclic CQC but not free-connex. Under the GHD frame-

work, we would have to put 𝑅1 and 𝑅2 into one bag, thus this degen-

erates into the naive algorithm that first computes the full query,

followed by a projection onto 𝑥2, 𝑥4. However, a better approach is

to first compute the query

𝑞′ : 𝑎𝑛𝑠 (𝑥2, 𝑥3, 𝑥4) ←𝑅1 (𝑥1, 𝑥2, 𝑥3), 𝑅2 (𝑥3, 𝑥4, 𝑥5), 𝑥1 < 𝑥5,

using our algorithm in Section 6, and then project onto 𝑥2, 𝑥4. Note

that after adding 𝑥3 to the output attributes, 𝑞
′
is now a free-connex

CQC, so our algorithm can compute it in time �̃� (𝑁 + |𝑞′(𝑹) |),
whereas using naive algorithm has running time of �̃� (𝑁 + |𝑞∗ (𝑹) |),
where 𝑞∗ is the full query of 𝑞, where all attributes are output

attributes. They are both larger than the true output size OUT =

|𝑞(𝑹) |, but the former is certainly smaller on many instances. □

This simple optimization, which we call projection expansion, can
be plugged into the GHD framework to handle more complicated

queries. More generally, if the CQC associated with a bag of the

GHD is acyclic but non-free-connex, we add a minimally necessary

set of attributes to the projection so that the query becomes free-

connex, and apply our algorithm in Section 6 instead of computing

the full bag.

7.3 Pre-grouping
If the CQC associated with a GHD bag is non-acyclic, projection

expansion cannot be applied. For this case, we design another opti-

mization technique to avoid computing the full bag.

Example 7.6. Consider the following query:

𝑎𝑛𝑠 (𝑥2, 𝑥4) ←𝑅1 (𝑥1, 𝑦1, 𝑥2, 𝑥3), 𝑅2 (𝑥3, 𝑥4, 𝑥5, 𝑦5), 𝑥1 ≤ 𝑥5, 𝑦1 ≤ 𝑦5 .

Compared with Example 7.5, the comparison hypergraph of this

query is not Berge-acyclic as it has two long comparisons. Making

𝑥3 an output attribute does not help.



To deal with this query, we group the tuples in 𝑅1 by (𝑥2, 𝑥3). For
each group, we build a 2D range query structure on the (𝑥1, 𝑦1) pairs.
Then we compute 𝐽 = 𝜋𝑥2,𝑥3

𝑅1 Z 𝑅2. For each (𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑦5) ∈
𝐽 , we check if the range (−∞, 𝑥5] × (−∞, 𝑦′

5
] contains any (𝑥1, 𝑦1)

pair in the range query structure associated with the group (𝑥2, 𝑥3).
If yes, we enumerate (𝑥2, 𝑥4). The cost is thus �̃� (𝑁 + |𝐽 |). This is
always is better than computing the full join, followed by checking

the comparisons and projecting onto 𝑥2, 𝑥4, which has cost �̃� (𝑁 +
|𝑅1 Z 𝑅2 |). Note that we could also do the grouping on 𝑅2, which

leads to a cost of |𝑅1 Z 𝜋𝑥3,𝑥4
𝑅2 |. The better plan can be chosen

using some join size estimation technqiues. □

8 EXPERIMENTS
8.1 Experimental Setup

Prototype implementation. We have implemented our algorithms

in a system prototype on top of Spark [26], which we call SparkCQC.
SparkCQC contains three components: a (standard) SQL parser, a

query optimizer, and a core library. Recall that in each step of

the reduction, we are free to choose any reducible relation. Our

optimizer enumerates all possible reduction orders and tries to find

the best plan.

The core library is written in Scala and contains functions that

use standard RDD operations to implement the reduction/enumera-

tion procedures described in the paper. This allows us to inherit all

the benefits of Spark: good scalability through distributed process-

ing, dynamic workload balancing, fault-tolerance, and the ability

to work with a variety of data sources and sinks. For example, we

could run a graph pattern query (with comparisons) over a graph

stored in GraphX, or feed the query results of a CQC directly to

Spark ML without writing to disk.

As a practical optimization, we did not use the multi-dimensional

range searching structures. These data structures are needed to

guarantee theoretical �̃� (𝑁 +OUT) time, but we find that the hidden

constant and logarithmic factors outweigh their benefits. Thus, we

implemented a simpler 1D alternative: For the reduction phase,

if there are two or more incident comparisons, we only choose

one to perform the reduction while ignoring the rest; during the

enumeration phase, we check all the neglected comparisons.

Query processing engines compared. We compare our algorithms

with SparkSQL [2] and PostgreSQL. In order to get a sense of the

hidden constant and logarithmic factors in the �̃� (𝑁 +OUT) bound,
for each query, we measured the time to read the input data from

disk and write the output to disk. This I/O cost can be considered as

the minimum cost required to answer the query. We also compare

with the unranked version of [21] (called “Any-K”). Their algorithm

only supports full CQCs with short comparisons, so we can only

compare it on Query 6.

Experimental environment. All experiments were performed on

a machine equipped with two Intel Xeon 2.1GHz processors each

having 12 cores/24 threads, 416 GB memory, and 4x 4TB HDDs.

The 4 HDDs were run over a RAID 5 with approximately 600MB/s

read/write speed. The machine runs Linux, with Scala 2.12.13. The

Spark version is 3.0.1 and the PostgreSQL version is 9.2.24. Each

query was evaluated 10 times with each engine and we report the

average running time. We ran each experiment with a 24-hour limit.

8.2 Datasets and Queries
We tested 5 graph pattern queries and 3 analytical queries described

below. Figure 6 and Table 1 highlight their structures and charac-

teristics.

Graph pattern queries. For graph pattern queries, we use some

real graphs from SNAP (Stanford Network Analysis Project) [17].

Some statistics of these graphs are given in Table 2. We store the

edges as a relation G(src,dst), so a graph pattern query can be

formulated as a CQ with self-joins on G. We created two other

relations O(node,deg), I(node,deg) that store the out-degrees

and in-degrees of the nodes, respectively. The degrees will be used

in the comparisons.

Q1 (SQL shown below) finds all length-3 paths (A, B, C, D)
from the graph, such that the degree of A is less than the degree of

D. This is an instantiation of Example 1.2
7
.

SELECT G1.src as A, G2.src as B,
G3.src as C, G3.dst as D
FROM G G1, G G2, G G3, O O1, O O2
WHERE G1.dst = G2.src AND G2.dst = G3.src
AND G1.src = O1.node AND G3.dst = O2.node
AND O1.deg < O2.deg

For Q2, we perform the dumbbell query in Example 7.2. As

mentioned, after first computing the two triangle queries (actually,

we just need to compute it once), the query becomes Q1.

Q3 adds one more comparison to Q1, which requires the out-

degree of B to be less than the in-degree of D. The added comparison

is a short one, which preserves the acyclicity of the CQC, but turns

it into a degree-2 query.

Q4 is a non-full version of Q1, where the output variables are set

to C,D. Note that in SQL, this corresponds to changing the SELECT
clause to SELECT DISTINCT G3.src as C, G3.dst as D.

Q5 is a non-full query featuring two long comparisons.

Analytical queries. We tested 3 analytical queries on TPC-E data.

TPC-E is an online transaction processing benchmark that models

a financial brokerage house.

Q6 (SQL shown below) is a self-join on the Trade relation that

stores the trading information of customers. It finds all pairs of

transactions that make a ≥20% profit within 90 days. Note that

the two transactions must be made by the same customer (CA_ID)
on the same stock (S_SYMB) for the profit to make sense. This is a

degree-3 CQC. This query has only short comparisons, so it can

be handled by Willard’s algorithm [23] and Any-K [21]. Actually,

our algorithm degenerates into Willard’s algorithm on this query.

However, we find that using 3-dimensional range query structures

has poor practical performance, and the 1D alternative described

above works better as verified by our experiments.

SELECT * FROM Trade T1, Trade T2
WHERE T1.TT = "BUY" and T2.TT = "SALE" and
T1.CA_ID = T2.CA_ID and T1.S_SYBM = T2.S_SYMB
and T1.T_DTS <= T2.T_DTS
and T1.T_DTS + interval '90' day >= T2.T_DTS

7
Strictly speaking, this is a query over 5 relations, but we first compute G1ZO and

G3ZO to turn the query into Example 1.2 for all query engines.

8
For Q1 and Q3, all attributes are output attributes. The comparison between 𝑐3 and

𝑐4 only applies for Q3.
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Figure 6: The relational hypergraphs of queries. The dashed lines show the comparisons; solid dots are output attributes.

and T1.T_TRADE_PRICE*1.2 < T2.T_TRADE_PRICE

Q7 (SQL shown below) is also a self-join on the Trade relation, It
finds all distinct pairs of customer and stock, such that the customer

(CA_ID) had traded the stock (S_SYMB) at least three times, and the

interval of each trade should be at least 90 days.

SELECT DISTINCT T1.CA_ID, T1.S_SYMB FROM
Trade T1, Trade T2, Trade T3
WHERE T1.S_SYMB = T2.S_SYMB
and T2.S_SYMB = T3.S_SYMB and
T1.CA_ID = T2.CA_ID and T2.CA_ID = T3.CA_ID
and T1.T_DTS + interval '90' day < T2.T_DTS
and T2.T_DTS + interval '90' day < T3.T_DTS

From TPC-E data, we created a new temporal relation

Hold(CK,SK,ST,ET). Each row indicates that a customer (CK) holds
a security (SK) from start time (ST) to end time (ET). Q8 (SQL shown
below) finds all pairs of customers who hold common securities

within 10 days, as well as the number of such common securities.

This is an instantiation of Example 7.6, where we can apply the

pre-grouping technique. This technique actually answers the non-

full query where the output attributes are H1.CK,H2.CK,H1.SK, so
we just need another group-by aggregation to obtain the distinct

count on H1.SK.

SELECT H1.CK, H2.CK, COUNT(DISTINCT H1.SK)
FROM Hold H1, Hold H2 WHERE H1.SK = H2. SK
and H1.ST < H2.ET - interval '10' day
and H2.ST < H1.ET - interval '10' day
and H1.CK <> H2.CK GROUP BY H1.CK, H2.CK

acyclic free-connex full degree aggregation

𝑄1 ✓ ✓ ✓ 1

𝑄2 ✓ ✓ 1

𝑄3 ✓ ✓ ✓ 2

𝑄4 ✓ ✓ 1

𝑄5 ✓ ✓ 1

𝑄6 ✓ ✓ ✓ 3

𝑄7 ✓ ✓ 1

𝑄8 ✓ 2 ✓

Table 1: Characteristics of queries

8.3 Experimental Results
Running time comparison. Figure 7 shows the running times of

the three systems on all tested queries. Q2 requires finding all the

triangles first, so we only tested it on the smallest graph; the other

graph pattern queries were tested on the 3 larger graphs. On the

largest graph wiki, we used 16 workers; other experiments were

done with a single worker. Missing results indicate that the system

did not finish within the 24-hour time limit.

From the results, we can draw the following observations. (1)

SparkCQC provides a speedup from 9x to 68x compared with Spark

SQL, and 3x to 237x compared with PostgreSQL, even not consider-

ing some runs which did not finish within 24 hours. (2) In many

cases, the running time of SparkCQC is close to the I/O time, which

indicates that the constant factor in �̃� (𝑁 + OUT) is actually quite

small. (3) For Q8, the I/O time is much smaller, because Q8 is an

aggregation query with a small output size. (4) For most queries,

PostgreSQL has better performance than SparkSQL on a single

worker, but SparkSQL will run faster with more workers.

Name Edges L3 Q1 Q3

Bitcoin 24,186 42,848,068 19,325,823 5,261,622

Epinions 508,837 3.7 × 10
9

2.0 × 10
9

1.2 × 10
9

Google 5,105,039 849,058,944 383,455,057 250,921,321

Wiki 28,511,807 2.4 × 10
11

1.6 × 10
11

9.0 × 10
10

Table 2: Graphs and their characteristics (L3 is the number
of length-3 paths)

Selectivity. The selectivity of the comparison predicates is an

important parameter for our algorithms, which directly affects

OUT. However, it does not have a major impact on SparkSQL or

PostgreSQL, as they cannot push down the predicates, except the

short comparison in Q3.

We performed a set of experiments to verify this claim using

Q1–Q3. We changed the comparisons in these queries to the form

𝑓 (𝑥) + 𝑘 ≤ 𝑔(𝑦), which leads to various selectivities by controlling

the value of 𝑘 . The experiment results are shown in Figure 8, where

measure the selectivity as the ratio between OUT and the query

size when 𝑘 = 0. First, from the results we see that the running

time of SparkCQC scales almost linearly as the selectivity, which is

in turn proportional to OUT, which is expected as the algorithm

runs in �̃� (𝑁 + OUT) time and the output size often dominates the

running time. On the other hand, SparkSQL and PostgreSQL cannot

benefit from the smaller output size as claimed.

Parallel query processing. To verify the benefit of parallelism

(among many others) of building our system on top of Spark, we

assigned more cores to each system and re-ran Q1–Q3. The results

are shown in Figure 9. As we can see, SparkCQC and SparkSQL

obtain almost linear speedups as we increase the parallelism. This

reflects another nice property of our algorithm that it is easily

parallelizable as it does its most of work on a per-key basis. However,

PostgreSQL cannot benefit much from multiple cores.

Efficiency of the 1D alternative. To verify the efficiency of the 1D

alternative, we ran Query 6 under all systems, and the results are

shown in Figure 10. We note that using the range trees has worse

performance than SparkSQL, which does the equi-join first and

checks the comparisons later. On the other hand, the 1D alternative

achieves a 15% improvement. Any-K has an even worse perfor-

mance than SparkSQL, as its log factor is larger than Willard’s.
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Figure 8: Processing times under different selectivity.
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Query optimization. Regardless of the reduction order, our algo-

rithm always has running time �̃� (𝑁+OUT), but the hidden constant
might differ for different plans. In the last set of experiments, we

examine this difference with Q3, which has two reduction orders:

Plan 1 reduces 𝑅1 first while Plan 2 reduces 𝑅3 first. In Figure 8(c)

and 9(c), we see that Plan 1 is roughly better than Plan 2 by around

a factor of 2 (or less). The reason is probably the following. In Plan

1, the first reduction is 1D, after which we obtain a query with

two short comparisons, which is a 2D problem, and the last step is

another 1D problem. In Plan 2, the first reduction is 2D, then we

solve a 1D problem, but the last step is another 2D problem. Thus,

our optimizer uses the simple heuristic that chooses the plan with

the minimum “total dimensionality”.

9 FUTUREWORK
There are interesting directions, both theoretical and practical, to

extend this work. Theoretically, it is an intriguing question if our

techniques can be applied to aggregation queries with comparisons.

Currently, such queries can only have short comparisons [15]; long

comparisons can only be dealt with using GHDs, leading to super-

linear time. In practice, cost-based optimization can be added to our

optimizer that chooses the optimal query plan (both reduction order

and whether to use multi-dimensional range searching structures)

based on actual data. It is also possible to merge SparkCQC into

SparkSQL, as both translate SQL into RDD operations which are

then executed by the same Spark core.
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