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ABSTRACT
This paper proposes concentrated geo-privacy (CGP), a privacy no-

tion that can be considered as the counterpart of concentrated dif-
ferential privacy (CDP) for geometric data. Compared with the

previous notion of geo-privacy [1, 5], which is the counterpart of

standard differential privacy, CGP offers many benefits including

simplicity of the mechanism, lower noise scale in high dimensions,

and better composability known as advanced composition. The last
one is the most important, as it allows us to design complex mecha-

nisms using smaller building blocks while achieving better utilities.

To complement this result, we show that the previous notion of

geo-privacy inherently does not admit advanced composition even

using its approximate version. Next, we study three problems on

private geometric data: the identity query, 𝑘 nearest neighbors, and

convex hulls. While the first problem has been previously studied,

we give the first mechanisms for the latter two under geo-privacy.

For all three problems, composability is essential in obtaining good

utility guarantees on the privatized query answer.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
privacy, geometric data

ACM Reference Format:
Yuting Liang and Ke Yi. 2023. Concentrated Geo-Privacy. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623068

1 INTRODUCTION
Differential privacy (DP) is the de facto privacy model for protecting

personal information. Under DP, the output of a query is perturbed

randomly such that its probability distribution does not change

much on datasets that are “similar”. In standard DP, this similarity

is defined in terms of neighboring inputs:

Definition 1 (Differential Privacy [11]). Let 𝜀, 𝛿 ≥ 0. A randomized

mechanism 𝑀 : 𝑈 → 𝑉 is (𝜀, 𝛿)-differentially private, or simply
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(𝜀, 𝛿)-DP, if for any neighboring inputs 𝑥 ∼ 𝑥 ′ ∈ 𝑈 and any mea-

surable 𝑆 ⊆ 𝑉 ,

Pr[𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[𝑀 (𝑥 ′) ∈ 𝑆] + 𝛿.

Smaller values of 𝜀, 𝛿 correspond to better privacy. Typically, 𝜀 is

set to a constant, but may be set smaller for individual mechanisms

during compositions (as discussed later). Roughly speaking
1
, 𝛿 is

the probability with which 𝑀 breaches privacy, so it should be

negligible. In particular, the mechanism is said to satisfy pure-DP if

𝛿 = 0; the 𝛿 > 0 case is then called approximate-DP.
Depending on how the neighboring relationship ∼ is defined, we

arrive at different DP variants. In the central model of DP, 𝑥 ∼ 𝑥 ′
iff they differ by a single record. This models the situation where

there is a trusted data curator who collects and publishes privatized

query results. Alternatively, if we set 𝑥 ∼ 𝑥 ′ between all pairs of

distinct inputs, then the model becomes what is known as local
DP [15]. This corresponds to the scenario where each data owner

privatizes his/her input before sending it to the curator, who is

potentially malicious.

In local DP, any single message satisfying Definition 1 has little

utility, as the output distributions on any two inputs are required

to be indistinguishable. So all mechanisms under local DP has to

aggregate messages from a large number of users for the result

to be useful. However, for many applications involving geometric

data, e.g., the current or past locations of the user, we are interested

in obtaining some privatized version of the data on a per user

basis. The standard DP definition is thus not appropriate in such

scenarios.

1.1 From DP to GP
In standard DP

2
, two inputs 𝑥, 𝑥 ′ are either neighbors or not. Such

a binary relationship cannot capture the more quantitative rela-

tionships on geometric data. In the example above, requiring two

faraway points 𝑥, 𝑥 ′ (e.g., in different cities) to also have indistin-

guishable output distributions is likely an overkill. In seeing this,

Andrés et al. [1] and Chatzikokolakis et al. [5] extend the neigh-

boring relationship to a metric space (𝑈 , dist), and stipulate that

privacy should degrade gracefully as dist(𝑥, 𝑥 ′) increases. They
have only considered the pure case 𝛿 = 0, but their definition

extends to the approximate version, i.e., 𝛿 ≥ 0, in the natural way:

Definition 2 (Geo-Privacy
3
[1, 5]). Let 𝜀, 𝛿 ≥ 0. A randomized

mechanism𝑀 : 𝑈 → 𝑉 is (𝜀, 𝛿)-geo-private, or simply (𝜀, 𝛿)-GP, if

1
To be precise, the probabilistic interpretation is slightly stronger than the stated

definition, where it implies the definition and is implied by it up to a small loss in the

privacy parameters [23, 40].

2
For an account of differences between standard (𝜀, 𝛿 )-DP and other DP-related

definitions, the reader is referred to [10].

3
This notion is called geo-indistinguishability in [1] and𝑑𝜒 -privacy in [5], respectively.
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for any 𝑥, 𝑥 ′ ∈ 𝑈 and any measurable 𝑆 ⊆ 𝑉 ,

Pr[𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝜀 ·dist(𝑥,𝑥 ′ ) · Pr[𝑀 (𝑥 ′) ∈ 𝑆] + 𝛿.

Note that (𝜀, 0)-GP incorporates both central DP and local DP

by choosing an appropriate distance function dist(·, ·). To recover

the former, we use the Hamming metric
4
; for the latter, we use the

discrete metric dist(𝑥, 𝑥 ′) = 1 for all 𝑥 ≠ 𝑥 ′. However, the power
of GP lies in the flexibility in choosing a distance function suitable

for the input domain𝑈 . For example, when 𝑈 = R𝑑 , the Euclidean
metric dist(𝑥, 𝑥 ′) := ∥𝑥 − 𝑥 ′∥2 is arguably a more appropriate

distance function than the Hamming or the discrete metric. Note

that in terms of privacy, GP is at least as strong as DP for all 𝑥, 𝑥 ′

such that dist(𝑥, 𝑥 ′) ≤ 1, while weaker as dist(𝑥, 𝑥 ′) becomes larger

than 1. This is also why the 𝜀 parameter in GP measures the privacy

loss per unit distance, as explained in [1, 5]. However, it is exactly

due to this weakening of privacy (for faraway inputs) that allows

GP to enjoy higher utility. In particular, due to the use of the discrete

metric in local DP, the data collected from any single user has little

utility by definition; only the aggregated result from many users

may yield some useful information. In contrast, GP mechanisms

offer much better utility. For example, the noise scale of the Laplace

mechanism, the canonical GP mechanism, is
5 �̃� (𝑑) for the identity

query (see Section 2.3 for details).

1.2 Our Proposal: CGP
We propose a new definition of geo-privacy using Rényi diver-

gences, which we call concentrated geo-privacy (CGP):

Definition 3 (Concentrated Geo-Privacy). Let 𝜌 ≥ 0. Amechanism

𝑀 : 𝑈 → 𝑉 satisfies 𝜌-concentrated-geo-privacy, or simply 𝜌-CGP,

if for any 𝑥, 𝑥 ′ ∈ 𝑈 and all 𝛼 > 1

𝐷𝛼 (M(𝑥)∥M(𝑥 ′)) ≤ 𝛼𝜌 · dist(𝑥, 𝑥 ′)2 .

In the definition above,M(𝑥) andM(𝑥 ′) are the output distri-
butions of the mechanism on 𝑥 and 𝑥 ′, respectively, and 𝐷𝛼 (·∥·)
denotes the Rényi divergence of order 𝛼 (see Section 2.2 for the

detailed definition). Our definition can be considered as the counter-

part and generalization of concentrated differential privacy (CDP) [3]
in the geometric setting. Note that the definition of CGP stipulates

that the Rényi divergence grows quadratically as dist(𝑥, 𝑥 ′). This
is due to the relationship between the privacy parameter 𝜀 used in

GP and the 𝜌 used in CGP (see Lemma 3.6 and 3.7). More precisely,

we show that the privacy of 𝜌-CGP is at least as strong as that of

(�̃� (√𝜌), 𝛿)-GP, except for faraway points (see Lemma 3.7 for the

formal statement). Correspondingly, 𝜌 measures the privacy loss

per unit distance squared.

Compared with GP, CGP offers the following benefits:

(1) The canonical mechanism under CGP is the Gaussian mech-

anism, which is much easier to implement than the Laplace

mechanism in 𝑑 ≥ 2 dimensions.

(2) The noise scale of the Gaussian mechanism is �̃� (
√
𝑑), while

that of the Laplace mechanism is �̃� (𝑑).
4
This follows from the group privacy property of DP [13]. However, (𝜀, 𝛿 )-GP under

the Hamming metric is stronger than (𝜀, 𝛿 )-DP, as the group size allowed in DP group

privacy is limited to𝑂 (log(1/𝛿 )/𝜀 ) for 𝛿 > 0.

5
The �̃� ( ·) notation suppresses dependency on 𝜀, 𝜌 , and polylogarithmic factors in

𝑛,𝑑, 1/𝛿, 1/𝛽 .

(3) Gaussians have many nice properties, in particular, linear-

ity. Many geometric measurements are assumed to have

some Gaussian noise already. Then the linearity of Gaus-

sians makes it easy to add more noise, if needed, to achieve

any desired level of privacy.

(4) CGP admits advanced composition, i.e., the noise scale is

proportional to

√
𝑘 as opposed to 𝑘 for GP, in any adaptive

𝑘-fold composition.

Point (4) above requires some elaboration. Composition theorems

are an important tool for privacy-preserving data analytics, as they

allow us to ask multiple queries, possibly adaptively, on the same

input under a given privacy budget. Furthermore, it makes the

modular design of complex mechanisms easy, as we can combine

smaller building blocks while tracking the overall privacy loss.

Indeed, one of the most important reasons why (𝜀, 𝛿 > 0)-DP is

of interest is that it allows advanced composition [13], while basic

composition (i.e., noise scale grows linearly in 𝑘) is the best one

can do under pure-DP.

However, prior work on GP [1, 5] has omitted the 𝛿 > 0 case in

Definition 2. In fact, our initial goal was to derive an advanced com-

position theorem for GP. In failing to do so, we actually proved that

basic composition is the best possible for GP under the Euclidean

metric, even for 𝛿 > 0 (see Theorem 3.5). This may have explained

why [1, 5] did not consider the 𝛿 > 0 case.

The intuitive reasonwhy (𝜀, 𝛿)-DP admits advanced composition,

but (𝜀, 𝛿)-GP (under the Euclidean metric) does not, is the following.

The advanced composition theorem for DP [13] actually consists

of two terms
6
:

𝜀 =
√︁

2𝑘 log(1/𝛿) · 𝜀′ + 𝑘𝜀′ (𝑒𝜀
′
− 1), (1)

where 𝜀′ is the privacy parameter for each of the 𝑘 mechanisms

and 𝜀, 𝛿 are the privacy parameters of the composed mechanism.

For the typical parameter regime 𝜀 ≤ 𝑂 (1), we need to set 𝜀′ =

𝑂

(
𝜀/

√︁
𝑘 log(1/𝛿)

)
, so that the second term is dominated by the first,

yielding the square-root growth often quoted for advanced compo-

sition: 𝜀 = �̃� (
√
𝑘 · 𝜀′). However, in Definition 2 where 𝜀 is replaced

by 𝜀 ·dist(𝑥, 𝑥 ′), (1) should hold for all values of 𝜀 ·dist(𝑥, 𝑥 ′), which
is unbounded. Thus, the second term will eventually dominate as

𝑥, 𝑥 ′ get farther away from each other, breaking this square-root

(actually, any sub-linear) relationship. It is possible to fix this issue

by adding a third privacy parameter Δ to limit dist(𝑥, 𝑥 ′) (see Defi-
nition 6), but our CGP definition using Rényi divergences solves

the problem in a more elegant way using a single parameter 𝜌 .

1.3 Problems under GP and CGP
In Section 4, we develop GP and CGPmechanisms for queries where

the input is an 𝑛-tuple of points in R𝑑 . Such a tuple may represent

a trajectory of a user, a collection of points visited, or the features

of objects belonging to the user. This setting corresponds to the

local model, where each user privatizes his/her data before sending

it to a malicious data curator. Prior works under GP [1, 25, 39] have

only studied the identity query or applied post-processing to it. In

this paper, in addition to the identity query, we have also designed

algorithms for the 𝑘 nearest neighbor (𝑘NN) and the convex hull

6
We use log to denote the natural logarithm with base 𝑒 throughout this paper.
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problem. Both these problems can be solved using the identity

query with post-processing, but our new algorithms offer much

better utility. Our algorithms can be made to satisfy either GP or

CGP, but thanks to the benefits of CGP, there are some polynomial

improvements in the utility as we switch from GP to CGP:

(1) For the identity query, the GP algorithm has an error of

�̃� (𝑑𝑛), while the CGP algorithm has error �̃� (
√
𝑑𝑛).

(2) For the 𝑘NN problem, the GP algorithm has an error of �̃� (𝑘),
while the CGP algorithm has error �̃� (

√
𝑘). Both error bounds

hold for any 𝑑 .

(3) For the two-dimensional convex hull problem, the GP algo-

rithm has an error of �̃� (
√︁
𝜔 (𝑥)+1), while the CGP algorithm

has an error of �̃� (𝜔 (𝑥)1/3 + 1), where 𝜔 (𝑥) denotes the di-
ameter (the farthest distance between any two points) in 𝑥 .

The gap reduces in higher dimensions, though.

Finally, we performed a set of experiments using trajectory data.

The results have confirmed the utility improvement of our 𝑘NN

and convex hull algorithms over the baseline method, as well as

the difference between the GP and the CGP versions.

1.4 Related Work
While [1, 5] are the most related to our work, privacy over geo-

metric data has attracted much attention in the literature, with

the following works also relevant. [25] privatizes each location on

the trajectory under GP, and applies post-processing steps on the

privatized trajectory for travel time prediction. [39] privatizes a

collection of points in R2
and performs 𝑘-means clustering on the

privatized data. [41] proposes a variant of DP by defining the neigh-

boring relationship between two points within a given distance

of 𝑟 . However, their definition does not impose any relationship

between the privacy and the distance, as GP and CGP do. Another

definition more closely related to standard DP is differential privacy

on 𝛿-location set [38], which requires a location set 𝑋𝛿 to be given

in advance at each timestamp 𝑡 . 𝑋𝛿 is the set of locations such that

with probability 1 − 𝛿 , the user is at one of the locations in 𝑋𝛿 at

timestamp 𝑡 . 𝑋𝛿 defines neighborhood in the sense that every pair

of locations in 𝑋𝛿 needs to satisfy the standard DP requirement.

Many problems on geometric data have been studied under

the central DP model. However, for the privatized output to have

any utility, the query must have low sensitivity, i.e., the maximum

amount of change in the query output under an (arbitrary) change

in one record. Examples of such queries include range counting
7

[20, 31, 32], Tukey depth
8
[2, 16, 22], and the mean

9
[19, 24]. How-

ever, problems like 𝑘NN or convex hull have unbounded sensitivity:

For the former, observe that a 𝑘NN query degenerates into the max-

imum problem in one dimension when the query point is at +∞,
which already has unbounded sensitivity. For the latter, moving a

point to ∞ will cause the convex hull to enlarge infinitely. Note

that [2, 22] only return some point inside the convex hull while

7
Given a collection of points and a range space, e.g., all halfspaces or axis-parallel

rectangles, the problem is to release a privatized data structure from which the number

of points inside each range can be approximately counted.

8
Given a set of points, the Tukey depth of a given point 𝑝 is the minimum number of

points on one side of a hyperplane that contains 𝑝 . The vertices on the convex hull

thus has Tukey depth 1.

9
For the mean problem to have low sensitivity, we need to further assume that the

domain is bounded, e.g., the unit ball.

[16] aims at producing an approximate convex hull in terms of

the Tukey depth. Their algorithms do not return an approximate

convex hull in terms of geometric distances, which is only possible

under GP or CGP, which restrict (more precisely, lower the privacy

requirement of) such large changes in the locations of the points.

There are several works for privatizing trajectory data in the

central DP model [6, 17, 18]. There, the input is a database of tra-

jectories and two inputs are considered neighbors if they differ in

a single trajectory. These works aim to generate a collection of

synthetic trajectories resembling the original collection in distribu-

tion. To this end, they construct a privatized representation of the

empirical distribution of chains of locations via private spatial de-

composition techniques [8] which ultimately privatizes counts [12].

The problem has also been studied in the local DP model where

the input consists of a single trajectory [9]. However, their mech-

anisms do not actually satisfy the local DP requirement, since as

mentioned, no mechanism can offer meaningful utility under local

DP. By relaxing the privacy model to GP or CGP, our algorithms

return privatized trajectories with meaningful utility guarantees.

2 PRELIMINARIES
2.1 Notation
Any (nontrivial) mechanism𝑀 : 𝑈 → 𝑉 under differential privacy

must be randomized. More formally, such a randomized mechanism

is a mapM : 𝑈 → D(𝑉 ), where D(𝑉 ) denotes the space of all

probability distributions over 𝑉 . We shall use uppercase letters

in scripts to denote probability distributions, e.g.,M(𝑥) denotes
the output probability distribution of mechanismM on input 𝑥 .

The same letter in uppercase (without scripts) represents a random

variable drawn from this distribution, i.e.,𝑀 (𝑥) is a random variable

drawn fromM(𝑥). The same letter in lowercase will be used to

denote the corresponding probability density function (pdf), i.e.,

the pdf ofM(𝑥) is𝑚(𝑥) (·).

2.2 Differential Privacy
In addition to Definition 1, another popular variant for DP is based

on Rényi divergences:

Definition 4 (Rényi Divergences [34, 37]). Let P,Q be distribu-

tions on domain 𝑅 with pdf 𝑝 (·) and 𝑞(·), respectively. The Rényi
divergence of order 𝛼 ∈ (0, 1) ∪ (1,∞) is defined as

𝐷𝛼 (P∥Q) =
1

𝛼 − 1

log

(∫
𝑅

𝑝 (𝑦)𝛼𝑞(𝑦)1−𝛼𝑑𝑦
)
.

The max-divergence is

𝐷∞ (P∥Q) = lim

𝛼→∞
𝐷𝛼 (P∥Q) = sup

𝑦∈𝑅
log

(
𝑝 (𝑦)
𝑞(𝑦)

)
.

The following properties of Rényi divergences are well known:

Lemma 2.1 (Properties of Rényi divergences [37]). For 𝛼 ≥ 1,
Rényi divergences satisfy the following properties:

(1) [Monotonicity] 𝐷𝛼 (P∥Q) ≤ 𝐷𝛼 ′ (P∥Q) for 1 ≤ 𝛼 ≤ 𝛼 ′ ≤
∞.

(2) [Additivity] 𝐷𝛼 (P1×· · ·×P𝑘 ∥Q1×· · ·×Q𝑘 ) =
∑𝑘
𝑗=1

𝐷𝛼 (P𝑗 ∥Q 𝑗 )
for pairs of probability distributions (P𝑗 ,Q 𝑗 ) on 𝜎-algebraF𝑗 ,
𝑗 ∈ [𝑘].
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(3) [Data Processing Inequality] 𝐷𝛼 (𝑃 |G ∥Q |G ) ≤ 𝐷𝛼 (P∥Q)
for any sub-𝜎-algebra G ⊆ F .

(4) [Gaussian Distributions] 𝐷𝛼
(
N(𝜇1, 𝜎

2𝐼𝑑×𝑑 )∥N (𝜇2, 𝜎
2𝐼𝑑×𝑑 )

)
=

𝛼 ∥𝜇1−𝜇2 ∥2
2

2𝜎2
for 𝜇1, 𝜇2 ∈ R𝑑 .

Concentrated differential privacy is defined in terms of Rényi

divergences:

Definition 5 (Concentrated Differential Privacy
10

[3]). Let 𝜌 ≥ 0.

A mechanism𝑀 : 𝑈 → 𝑉 satisfies concentrated differential privacy,

denoted 𝜌-CDP, if for any neighboring inputs 𝑥 ∼ 𝑥 ′ ∈ 𝑈 , any
measurable 𝑆 ⊆ 𝑉 , and all 𝛼 > 1,

𝐷𝛼 (M(𝑥)∥M(𝑥 ′)) ≤ 𝛼𝜌.

It is known that the privacy guarantee of CDP sits between that

of pure and approximate DP [3]:

Lemma 2.2 (Relationship between DP definitions [3]). Let
𝑀 be a randomized mechanism. Then

(1) if𝑀 is (𝜀, 0)-DP, then it is also 𝜌-CDP where 𝜌 = 1

2
𝜀2;

(2) if𝑀 is 𝜌-CDP, then it is also (𝜀, 𝛿)-DP, where 𝜀 = 𝜌+
√︁

4𝜌 log(1/𝛿)
for all 𝛿 > 0.

The above relationships imply that 𝜀 and 𝜌 are related quadrati-

cally in the typical parameter regime 𝜀 ≤ 𝑂 (1).
We can also characterize (𝜀, 𝛿)-DP in terms of themax-divergence.

Lemma 2.3 (Characterization of Differential Privacy [13]).

Let 𝜀, 𝛿 ≥ 0. A randomized mechanism 𝑀 is (𝜀, 𝛿)-differentially
private iff

𝐷𝛿∞ (M(𝑥)∥M(𝑥 ′)) ≤ 𝜀 and 𝐷𝛿∞ (M(𝑥 ′)∥M(𝑥)) ≤ 𝜀,
where

𝐷𝛿∞ (P∥Q) := sup

𝑆⊆𝑅,Pr[𝑃∈𝑆 ]>𝛿
log

(
Pr[𝑃 ∈ 𝑆] − 𝛿

Pr[𝑄 ∈ 𝑆]

)
,

for all 𝑥 ∼ 𝑥 ′.

For a query 𝑔 : 𝑈 → 𝑉 = R𝑑 , the simplest mechanism for

achieving DP is to add noise drawn from a distribution with scale

proportional to its sensitivity Δ𝑔 to each dimension of the true

query answer:

Lemma 2.4 (CanonicalDPmechanisms [3, 11]). Let𝑔 : 𝑈 → R𝑑

such that Δ𝑔 := sup𝑥∼𝑥 ′ ∥𝑔(𝑥) − 𝑔(𝑥 ′)∥𝑝 < ∞ exists. Then the
mechanism𝑀 (𝑥) := 𝑔(𝑥) + 𝑏 · [𝑍1, · · · , 𝑍𝑑 ]𝑇 is

1. [Laplace mechanism] 𝜀-DP for 𝑝 = 1, where 𝑏 =
Δ𝑔
𝜀 and

𝑍 𝑗 ∼ Lap(1) for 𝑗 ∈ [𝑑];
2. [Gaussian mechanism] 𝜌-CDP for 𝑝 = 2, where 𝑏 =

Δ𝑔√
2𝜌

and
𝑍 𝑗 ∼ N(0, 1) for 𝑗 ∈ [𝑑].

Note that the noise scales are proportional to 1/𝜀 and 1/√𝜌 ,
respectively, echoing the quadratic relationship between 𝜀 and 𝜌 .

Lemma 2.5 (Compositions of DP mechanisms [3, 13]). Let 𝑀1,
· · · ,𝑀𝑘 be DP mechanisms. Let𝑀 be a 𝑘-fold adaptive composition
of the𝑀𝑗 ’s. Then𝑀 is

10
More commonly known as zero-concentrated differential privacy. Note that there

is a related two-parameter definition (𝜇, 𝜏 )-mCDP, also known by the name mean-
concentrated differential privacy [14], where (𝜏2/2, 𝜏 )-mCDP implies 𝜏2/2-CDP [3].

(1) (𝜀, 𝛿)-DP, where 𝜀 :=
∑
𝑗∈[𝑘 ] 𝜀 𝑗 and 𝛿 :=

∑
𝑗∈[𝑘 ] 𝛿 𝑗 , if each

𝑀𝑗 is (𝜀 𝑗 , 𝛿 𝑗 )-DP for 𝑗 ∈ [𝑘];
(2) (𝜀, 𝑘𝛿 ′ + 𝛿)-DP for all 𝛿 > 0, where 𝜀 :=

√︁
2𝑘 log(1/𝛿)𝜀′ +

𝑘𝜀′ (𝑒𝜀′ − 1), if each𝑀𝑗 is (𝜀′, 𝛿 ′)-DP for 𝑗 ∈ [𝑘];
(3) 𝜌-CDP, where 𝜌 :=

∑
𝑗∈[𝑘 ] 𝜌 𝑗 , if each 𝑀𝑗 is 𝜌 𝑗 -CDP for 𝑗 ∈

[𝑘].

Note that composition theorems are usually applied in the op-

posite direction, namely, for a given total privacy budget 𝜀, how

to allocate it to the 𝑘 mechanisms. Thus, the factor-𝑘 growth in 𝜀

in Lemma 2.5 (1) implies that the noise scale of each mechanism

is 𝑘 times larger than that from a single invocation of the mecha-

nism. For this reason, it is often referred to as basic composition. In
contrast, (2) is termed advanced composition, as it yields a (quasi)
square root growth. However, advanced composition leads to a

𝛿 > 0 for the composed mechanism, even if each individual 𝑀𝑗

satisfies pure DP. In (3), the privacy loss grows linearly in terms of

𝜌 . But since 𝜌 = Θ̃(𝜀2), the growth in terms of 𝜀, or equivalently the

noise scale, is still square root. In fact, by combining with Lemma

2.2, when each𝑀𝑗 is the Laplace (or any pure-DP) mechanism or

the Gaussian mechanism, the composition result implied by (3) is

no worse than that of (2).

2.3 Geo-Privacy
Now suppose the output space is also a metric equipped with dis-

tance function dist𝑉 (·, ·). A query 𝑔 : 𝑈 → 𝑉 is 𝐾-Lipschitz if

dist𝑉 (𝑔(𝑥), 𝑔(𝑥 ′)) ≤ 𝐾 · dist(𝑥, 𝑥 ′) for all 𝑥, 𝑥 ′ ∈ 𝑈 . A canonical

mechanism for achieving 𝜀-GP is the following, which can be con-

sidered as the instantiation of the exponential mechanism [28] with

dist𝑉 (𝑔(𝑥), 𝑦) as the utility score for 𝑦 ∈ 𝑉 :

Lemma 2.6 ([5]). Let 𝑔 : 𝑈 → 𝑉 be 𝐾-Lipschitz. The mechanism
that, on input 𝑥 , draws a 𝑦 ∈ 𝑉 from a distribution with pdf ∝
𝑒−

𝜀
𝐾
·dist𝑉 (𝑔 (𝑥 ),𝑦) , is 𝜀-GP.

However, Lemma 2.6 does not lend itself to an efficient imple-

mentation. Andrés et al. [1] considered the special case where

𝑈 = 𝑉 = R2
(under the Euclidean metric) and 𝑔(𝑥) = 𝑥 (which is

1-Lipschitz), namely, one would like to privatize a single point in

R2
, and showed that Lemma 2.6 instantiates into the planar Laplace

mechanism [1]. In Appendix A, we further show how this can be

extended to 𝑑 dimensions.

By arguments similar to those for standard DP, a basic composi-

tion theorem can be proved for GP.

Lemma 2.7 (Basic composition for GP
11

[1]). Let𝑀𝑗 be (𝜀 𝑗 , 𝛿 𝑗 )-
GP for 𝑗 = 1, . . . , 𝑘 , and let𝑀 be a 𝑘-fold adaptive composition of the
𝑀𝑗 ’s. Then𝑀 is (𝜀, 𝛿)-GP, where 𝜀 :=

∑
𝑗∈[𝑘 ] 𝜀 𝑗 and 𝛿 :=

∑
𝑗∈[𝑘 ] 𝛿 𝑗 .

3 CONCENTRATED GEO-PRIVACY
The definition of CGP is given in Definition 3. In this section, we

analyze its various properties.

11
[1] only proved the theorem for the pure case 𝛿 𝑗 = 0, but extension to 𝛿 𝑗 > 0 is

straightforward.
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3.1 The Gaussian Mechanism
The Gaussian mechanism is the canonical mechanism for CDP. We

can extend it to CGP for queries 𝑔 : 𝑈 → R𝑑 equipped with the

Euclidean metric after factoring in the Lipschitz constant:

Theorem 3.1. Let 𝑔 : 𝑈 → R𝑑 be a 𝐾-Lipschitz function. Then
the mechanism 𝐺 defined by 𝐺 (𝑥) := 𝑔(𝑥) + 𝐾√

2𝜌
𝑍 , where 𝑍 ∼

N(0, 𝐼𝑑×𝑑 ), is 𝜌-CGP.

Proof. Let 𝑥, 𝑥 ′ ∈ 𝑈 , let G(𝑥) and G(𝑥 ′) denote the distribu-
tions of 𝐺 (𝑥) and 𝐺 (𝑥 ′), respectively. For 𝛼 > 1,

𝐷𝛼
(
G(𝑥)∥G(𝑥 ′)

)
= 𝐷𝛼

(
N

(
𝑔(𝑥), 𝐾

2

2𝜌
𝐼𝑑×𝑑

) �����
�����N (

𝑔(𝑥 ′), 𝐾
2

2𝜌
𝐼𝑑×𝑑

))
=
𝛼𝜌

𝐾2
∥𝑔(𝑥) − 𝑔(𝑥 ′)∥2

2
(By Lemma 2.1 (4))

≤ 𝛼𝜌 dist(𝑥, 𝑥 ′)2 .

□

Compared with the 𝑑-dimensional planar Laplace distribution,

N(0, 𝐼𝑑×𝑑 ) is a distribution much easier to draw from: just generate

each coordinate from the standard Gaussian. Furthermore, the noise

scale (i.e., ∥𝐺 (𝑥) − 𝑔(𝑥)∥2) of the Gaussian mechanism is �̃� (
√
𝑑)

with high probability assuming 𝐾 = 1, while that of the Laplace

mechanism is �̃� (𝑑) (see Appendix A).

3.2 Compositions
We can show that our notion of CGP enjoys the same (adaptive)

composition property as CDP. We only state and prove the result

for composing two mechanisms (proof follows similar arguments

as those in [29] and is included in Appendix B); a simple induction

leads to𝑘-fold compositions. Consequently, by Lemma 3.1, the noise

scale of each mechanism is

√
𝑘 times larger than that on a single

mechanism.

Theorem 3.2. Let𝑀1 : 𝑈 → 𝑉1 be 𝜌1-CGP, let𝑀2 : 𝑈 ×𝑉1 → 𝑉2

be 𝜌2-CGP w.r.t. its first argument. Then the mechanism 𝑀 : 𝑈 →
𝑉1 ×𝑉2 defined by𝑀 (𝑥) = (𝑀1 (𝑥), 𝑀2 (𝑥,𝑀1 (𝑥)) is (𝜌1 + 𝜌2)-CGP.

Note that if 𝜌2 = 0 in Lemma 3.2, which means that 𝑀2 (𝑥,𝑦1)
does not depend on 𝑥 , then the lemma degenerates into the post-

processing property of CGP, which also follows from property (3)

of Lemma 2.1.

A negative result on the composability of (𝜀, 𝛿)-GP. It turns out
that basic composition (Lemma 2.7) is the best we can do for GP,

i.e., the privacy loss in a 𝑘-fold composition has to grow linearly in

𝑘 , even if the composed mechanism is allowed to have 𝛿 > 0. This

stands in contrast with (𝜀, 𝛿)-DP, where advanced composition the-

orems are known to achieve an �̃� (
√
𝑘) growth12 for any negligible

𝛿 > 0.

To formalize this result, we first note that (𝜀, 𝛿)-GP can also be

characterized by Rényi divergences, by replacing 𝜀 with 𝜀 ·dist(𝑥, 𝑥 ′)
in the characterization of standard DP:

12
Thus, composition results tighter than that of Dwork and Roth [13] under standard

(𝜀, 𝛿 )-DP (e.g., [21, 30]) also do not have counterparts under (𝜀, 𝛿 )-GP.

Lemma 3.3. Amechanism𝑀 : 𝑈 → 𝑉 is (𝜀, 𝛿)-GP iff for all𝑥, 𝑥 ′ ∈
𝑈 , 𝐷𝛿∞ (M(𝑥)∥M(𝑥 ′)) ≤ 𝜀 · dist(𝑥, 𝑥 ′) and 𝐷𝛿∞ (M(𝑥 ′)∥M(𝑥)) ≤
𝜀 · dist(𝑥, 𝑥 ′).

For a negative result, it suffices to consider the special case 𝑈 =

𝑉 = R with 𝑔(𝑥) = 𝑥 , where we use the canonical GP mechanism in

Lemma 2.6. In this case, on every input 𝑥 , the mechanism returns an

output𝑀 (𝑥) drawn from a distributionM(𝑥) with pdf𝑚(𝑥) (𝑦) ∝
𝑒−𝜀 · |𝑦−𝑥 | .

Lemma 3.4. Let each𝑀𝑗 : R→ R be the 𝜀-GP mechanism defined
above. Define𝑀 = (𝑀1 (𝑥), · · · , 𝑀𝑘 (𝑥)) for any 𝑘 ≥ 2. Then for any
𝜀 > 0, 0 ≤ 𝛿 ≤ 1

4
, 0 < 𝜆 < 1, 𝑥 ∈ R, there is 𝑥 ′ ∈ R such that

𝐷𝛿∞ (M(𝑥)∥M(𝑥 ′)) > (1 − 𝜆)𝑘𝜀 · ∥𝑥 − 𝑥 ′∥.

Proof. Let 𝑥 ′ = 𝑥 − Δ where Δ := 2

𝜀𝜆
log(𝑘). Let 𝑠 be a point

between 𝑥 ′ and 𝑥 given by 𝑠 := 𝑥 − 𝜆
2
Δ, let 𝑆∗ := {(𝑦1, · · · , 𝑦𝑘 ) ∈

R𝑘 : 𝑦 𝑗 ≥ 𝑠 ∀𝑗 ∈ [𝑘]}. Let 𝑌 = (𝑌1, · · · , 𝑌𝑘 ), 𝑌 ′ = (𝑌 ′1 , · · · , 𝑌
′
𝑘
) be

random vectors corresponding to 𝑀 (𝑥) and 𝑀 (𝑥 ′), respectively.
Then Pr[𝑌 ∈ 𝑆∗] = Π 𝑗∈[𝑘 ] Pr[𝑌𝑗 ≥ 𝑠] = (1 − 1

2
𝑒−𝜀

𝜆
2
Δ)𝑘 = (1 −

1

2𝑘
)𝑘 ≥ 1

2
and Pr[𝑌 ′ ∈ 𝑆∗] = Π 𝑗∈[𝑘 ] Pr[𝑌 ′

𝑗
≥ 𝑠] = ( 1

2
𝑒−𝜀 (1−

𝜆
2
)Δ)𝑘 .

Thus,

𝐷𝛿∞ (M(𝑥)∥M(𝑥 ′)) = max

𝑆⊆R:Pr[𝑌 ∈𝑆 ]>𝛿
log

(
Pr[𝑌 ∈ 𝑆] − 𝛿

Pr[𝑌 ′ ∈ 𝑆]

)
≥ log

(
Pr[𝑌 ∈ 𝑆∗] − 𝛿

Pr[𝑌 ′ ∈ 𝑆∗]

)
,

𝑒𝐷
𝛿
∞ (M(𝑥 ) ∥M(𝑥 ′ ) ) ≥ Pr[𝑌 ∈ 𝑆∗] − 𝛿

Pr[𝑌 ′ ∈ 𝑆∗] =
(1 − 1

2
𝑒−𝜀

𝜆
2
Δ)𝑘 − 𝛿

( 1
2
𝑒−𝜀 (1−

𝜆
2
)Δ)𝑘

≥ 1/2 − 𝛿
(1/2)𝑘𝑒−𝑘𝜀 (1−𝜆/2)Δ

≥ 1

4

2
𝑘𝑒𝑘𝜀 (1−𝜆/2)Δ > 𝑒𝑘𝜀 (1−𝜆) ∥𝑥−𝑥

′ ∥ .

□

Combining Lemma 3.3 and 3.4, we obtain:

Theorem 3.5. For any 𝜀 > 0, 0 ≤ 𝛿 ≤ 1

4
, 0 < 𝜆 < 1, and any 𝑘 ≥

2, there is an (𝜀, 0)-GP mechanism𝑀 such that its 𝑘-fold composition
does not satisfy ((1 − 𝜆)𝑘𝜀, 𝛿)-GP.

As a negative result, Theorem 3.5 does not preclude the possibil-

ity that a particular GP mechanism in a particular metric space may

have better composability. In fact, a general impossibility result is

not true, since a GP mechanism under the discrete metric satisfies

local DP, for which advanced composition holds. Nevertheless, the

negative result means that one cannot use GP mechanisms as black

boxes to compose a more complex GP mechanism with a privacy

loss better than linear. In particular, this is the case for the canonical

GP mechanism in Lemma 2.6.

3.3 Relationships between GP and CGP
In terms of the relationship between GP and CGP, we have a partial

analogue of Lemma 2.2 in geo-privacy.

Lemma 3.6. Any (𝜀, 0)-GP mechanism is also 𝜀
2

2
-CGP.
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Proof. It has been shown in [3] that given 𝑒−𝜀0 ≤ 𝑝 (𝑦)
𝑞 (𝑦) ≤ 𝑒

𝜀0
for

all𝑦, then 𝑒 (𝛼−1)𝐷𝛼 (P ∥Q) ≤ 𝑒 (𝛼−1)𝛼 𝜀0
2

2 for all 𝛼 > 1. Let 𝑥, 𝑥 ′ ∈ 𝑈 .

Let 𝜀0 := 𝜀 · dist(𝑥, 𝑥 ′), then 𝑒−𝜀0 ≤ 𝑚 (𝑥 ) (𝑦)
𝑚 (𝑥 ′ ) (𝑦) ≤ 𝑒𝜀0

, which im-

plies 𝑒 (𝛼−1)𝐷𝛼 (M(𝑥 ) ∥M(𝑥 ′ ) ) ≤ 𝑒 (𝛼−1)𝛼 𝜀0
2

2 = 𝑒 (𝛼−1)𝛼 𝜀
2 ·dist(𝑥,𝑥 ′ )2

2 .

I.e. 𝐷𝛼 (M(𝑥)∥M(𝑥 ′)) ≤ 𝛼 𝜀
2

2
· dist(𝑥, 𝑥 ′)2 for all 𝛼 > 1. □

However, 𝜌-CGP does not imply �̃� (√𝜌, 𝛿)-GP: If it did, we would
be able to compose 𝑘 𝜀-GP mechanisms, which also satisfy 𝑂 (𝜀2)-
CGP by Lemma 3.6, into an 𝑂 (𝑘𝜀2)-CGP mechanism by Theorem

3.2, hence an (�̃� (
√
𝑘𝜀, 𝛿)-GP mechanism, violating Theorem 3.5.

Fundamentally, it is exactly due to this weakening in privacy that

gives CGP the better composability.

Nevertheless, below we show that this weakening in privacy

only happens for faraway inputs. Specifically, we show that CGP is

at least as strong as the following natural relaxation of (𝜀, 𝛿)-GP:

Definition 6 ((𝜀, 𝛿,Δ)-GP). Let 𝜀, 𝛿 ≥ 0 and Δ > 0. A mechanism

𝑀 : 𝑈 → 𝑉 is (𝜀, 𝛿,Δ)-GP, if for any measurable 𝑆 ⊆ 𝑉 and any

𝑥, 𝑥 ′ ∈ 𝑈 satisfying dist(𝑥, 𝑥 ′) ≤ Δ,

Pr[M(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 ·dist(𝑥,𝑥 ′ )
Pr[M(𝑥 ′) ∈ 𝑆] + 𝛿.

Note that the original (𝜀, 𝛿)-GP definition is the special case

where Δ = ∞.

Lemma 3.7. Any mechanism𝑀 that is 𝜌-CGP is also (𝜀, 𝛿,Δ)-GP,
for any 𝜀, 𝛿,Δ such that 𝜀 ≥ 𝜌Δ + 2

√︁
𝜌 log(1/𝛿).

Plugging in typical values of 𝜀 = 1, 𝛿 = 10
−10

, Lemma 3.7 implies

that the privacy of CDP with 𝜌 ≈ 0.01 is at least as strong as that

of (𝜀, 𝛿,Δ ≈ 10)-GP. Note that for dist(𝑥, 𝑥 ′) ≥ 10, the privacy

provided by GP between 𝑀 (𝑥) and 𝑀 (𝑥 ′) is already negligible:

The adversary can distinguish between 𝑥 and 𝑥 ′ with probability

1 − 𝑒−10
. So weakening it further will not introduce any noticeable

differences. The proof of Lemma 3.7 uses a similar derivation as that

in [3] and can be found in Appendix C, along with an illustration

of the relationship in Fig. 6.

An additional note on (𝜀, 𝛿)-GP vs. (𝜀, 𝛿)-DP. One of the main

advantages of standard (𝜀, 𝛿 > 0)-DP is that it allows advanced

composition of (𝜀, 𝛿 ≥ 0)-DP mechanisms, which is not possible for

(𝜀, 𝛿)-GP in general as we’ve shown in the negative result above. In

addition, standard (𝜀, 𝛿 > 0)-DP admits natural mechanisms such

as the Gaussian mechanism. Below we give a similar construction

as in the proof of Lemma 3.4 which shows that adding constant

Gaussian noise will not achieve (𝜀, 𝛿)-GP. Thus, currently we do

not know of any mechanism that satisfies (𝜀, 𝛿 > 0)-GP but not

𝜀-GP.

Lemma 3.8. Fix 𝜀 > 0 and 1

4
> 𝛿 ≥ 0. Let 𝑀 : R → R be the

mechanism defined by𝑀 (𝑥) := 𝑥 + 𝜎𝑍 , where 𝑍 ∼ N(0, 1) and 𝜎 =

𝜎 (𝜀, 𝛿) > 0 is any constant which may depend on 𝜀 and 𝛿 . Fix 𝑥 ∈ R.
Then there is 𝑥 ′ ∈ R such that 𝐷𝛿∞ (M(𝑥)∥M(𝑥 ′)) > 𝜀∥𝑥 − 𝑥 ′∥.

Proof. Let 𝑥 ′ = 𝑥 − Δ for some Δ > 0 to be decided, let 𝑆∗ :=

{𝑦 ∈ R : 𝑦 ≥ 𝑥}. Then Pr[𝑀 (𝑥) ∈ 𝑆∗] = 1

2
. Let 𝑍 ∼ N(0, 𝜎2),

then Pr[𝑍 ≥ Δ] ≤ 𝑒−
Δ2

2𝜎2
by Lemma E.2. Thus, Pr[𝑀 (𝑥 ′) ∈ 𝑆∗] =

Pr[𝑀 (𝑥 ′) − 𝑥 ′ ≥ Δ] = Pr[𝑍 ≥ Δ] ≤ 𝑒
− Δ2

2𝜎2
. Now choose Δ >

max(4𝜀𝜎2, ln 4

𝜀 ), then

𝑒𝐷
𝛿
∞ (M(𝑥 ) ∥M(𝑥 ′ ) ) ≥ Pr[𝑀 (𝑥) ∈ 𝑆∗] − 𝛿

Pr[𝑀 (𝑥 ′) ∈ 𝑆∗]

≥ 1/2 − 𝛿

𝑒
− Δ2

2𝜎2

≥ 1

4

𝑒
Δ2

2𝜎2 >
1

4

𝑒2𝜀Δ > 𝑒𝜀 ∥𝑥−𝑥
′ ∥ ,

where the second last inequality is due to Δ > 4𝜀𝜎2
and the last

inequality is due to Δ > ln 4

𝜀 . □

4 APPLICATIONS
So far we’ve only described basic mechanisms for GP and CGP,

where both require the function to be Lipschitz. In general, differen-

tiable functions with bounded first-order derivatives are Lipschitz.

Some examples are: point functions such as computing the mean,

median and general linear maps; functions which deal with distance

such as (min or max) distance or projection of a point to a line or

collection of points (see also Lemma E.1). However, many functions

of broad interest - such as identifying the nearest neighbor and

computing the convex hull - cannot be easily posed as such. For

these functions, we have to design multi-step algorithms which

leverage composition and more advanced technical tools, as will be

demonstrated in our applications.

In this section, we develop mechanisms for queries where the

input is an 𝑛-tuple of points, i.e., the input domain is 𝑈 = (R𝑑 )𝑛 .
For simplicity, we focus on the 𝑑 = 2 case; extension to 𝑑 > 2

dimensions is briefly discussed at the end of each subsection.

Both GP and CGP require a definition of the distance function

dist(·, ·). Let 𝑥 = (𝑥1, · · · , 𝑥𝑛) and 𝑥 ′ = (𝑥 ′
1
, · · · , 𝑥 ′𝑛) be two tu-

ples of points, where each 𝑥𝑖 , 𝑥
′
𝑖
∈ R2

for 𝑖 ∈ [𝑛]. While the

Euclidean distance is often the default distance function in R2
,

there are different ways to combine 𝑛 Euclidean distances into

one. The most natural ones are: dist∞ (𝑥, 𝑥 ′) := max𝑖 dist(𝑥𝑖 , 𝑥 ′𝑖 ),
dist1 (𝑥, 𝑥 ′) :=

∑
𝑖 dist(𝑥𝑖 , 𝑥 ′𝑖 ), and dist2 (𝑥, 𝑥 ′) :=

√︃∑
𝑖 dist(𝑥𝑖 , 𝑥 ′𝑖 )2.

Among these, dist∞ provides the strongest privacy guarantee and is

also the distance function adopted by [1]. In the remaining sections,

we work mainly with dist∞ and also briefly discuss dist1 and dist2

in Appendix H.

4.1 Technical Lemmas
The utility analyses in the later subsections depend on some tech-

nical lemmas, whose proofs are deferred to Appendix E. The first

lemma characterizes the magnitude of ∥𝑥 − 𝑥 ∥, where 𝑥 ∈ R2
, and

𝑥 is the privatization of 𝑥 obtained from either the planar Laplace

mechanism or Gaussian mechanism (see Appendix A for the case

𝑑 ≥ 2).

Lemma 4.1 (Generalized Gamma Distribution [35, 36]). Let

𝐺 ∼ G(𝜆, 𝑘, 𝑝), which has pdf 𝑔(𝑟 ) = 𝑝/𝜆𝑘
Γ (𝑘/𝑝 ) 𝑟

𝑘−1𝑒−(𝑟/𝜆)
𝑝
for 𝑟 ∈

(0,∞), where Γ : R≥0 → R is the gamma function defined by
Γ(𝑧) =

∫ ∞
0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 . Then E[𝐺] = 𝜆 Γ (𝑘/𝑝+1/𝑝 )

Γ (𝑘/𝑝 ) and Pr[𝐺 ≤ 𝑟 ] =
𝛾 (𝑘/𝑝,(𝑟/𝜆)𝑝 )

Γ (𝑘/𝑝 ) , where 𝛾 : R≥0 × R≥0 → R defined by 𝛾 (𝑧, 𝑣) =∫ 𝑣
0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 is the lower incomplete gamma function.
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Recall the Lambert W function [7], which computes the inverse

of the function 𝑓 (𝑤) := 𝑤𝑒𝑤 . We have the following inequality

from [4], which will be used for bounding the growth of ∥𝑥 − 𝑥 ∥
when 𝑥 is obtained from the planar Laplace mechanism.

Lemma 4.2 ([4]). Let 𝑓 −1 (·) be the Lambert W function. For𝑢 > 0,
we have

−1 −
√

2𝑢 − 𝑢 < 𝑓 −1 (−𝑒−𝑢−1) < −1 −
√

2𝑢 − 2𝑢/3.

The analysis in Section 4.3 involves the random variable 𝑌 :=

𝑍 +𝑊 , where 𝑍 ,𝑊 are i.i.d. Lap(𝑏) random variables. We will use

the following technical results:

Lemma 4.3. Let 𝑍 ,𝑊 ∼ Lap(𝑏), and 𝑌 := 𝑍 +𝑊 . Then for 1 >

𝛽 > 0 with probability 1 − 𝛽 , |𝑌 | ≤ 𝑏
(√︁

2 log(1/𝛽) + log( 1

𝛽
)
)
.

Lemma 4.4. Given 𝑦 ∈ R, suppose we draw a 𝑉 ∼ Lap(2𝑏) until
𝑉 ≤ 𝑦. Let 𝑟 (𝑦) be the number of draws given 𝑦 and let 𝑅 = 𝑟 (𝑌 ),
where 𝑌 := 𝑍 +𝑊 and 𝑍 ,𝑊 ∼ Lap(𝑏). Then E[𝑅] ≤ 4.

4.2 The Identity Query
The first problem we consider is the identity query 𝑔(𝑥) := 𝑥 , i.e.,

we wish to privatize the entire tuple of 𝑛 points.

GP mechanism with dist∞. With dist∞, Lemma 2.6 requires us

to sample a 𝑦 from the pdf𝑚(𝑥) (𝑦) ∝ 𝑒−𝜀 max𝑖 ∥𝑦𝑖−𝑥𝑖 ∥
, which does

not resemble any well-known distribution. Thus, implementing this

would be difficult (a weakness typical of the exponential mecha-

nism). To get around this difficulty, one can use privacy composition

to privatize each 𝑔𝑖 : (R2)𝑛 → R2
defined by 𝑔𝑖 (𝑥) = 𝑥𝑖 , which is

1-Lipschitz with respect to dist∞, using the 2-dimensional Laplace

mechanism [1]. However, [1] did not give any utility analysis of

this mechanism. We provide one below.

Lemma 4.5. Let 𝐺 : R2 → R2 be the 𝜀-GP mechanism which on
input 𝑥 draws a 𝑦 ∈ R2 from a distribution with pdf ∝ 𝑒−𝜀 ∥𝑥−𝑦 ∥ .
Then with probability at least 1 − 𝛽 ,

∥𝐺 (𝑥) − 𝑥 ∥ ≤ 𝑂
(

1

𝜀
log

1

𝛽

)
.

Proof. The following identities of the lower incomplete gamma

function can be easily derived:

𝛾 (1, 𝑣) =
∫ 𝑣

0

𝑒−𝑡𝑑𝑡 = 1 − 𝑒−𝑣,

𝛾 (𝑧 + 1, 𝑣) = 𝑧𝛾 (𝑧, 𝑣) − 𝑣𝑧𝑒−𝑣, 𝑧 > 0.

Let 𝑅 denote the random variable ∥𝐺 (𝑥) −𝑥 ∥. Now 𝑅 ∼ G(1/𝜀, 2, 1)
and by Lemma 4.1,

Pr[𝑅 > 𝑟 ] = 1 − Pr[𝑅 ≤ 𝑟 ]

= 1 − 𝛾 (2, 𝑟𝜀)
Γ(2) = 1 − 𝛾 (1, 𝑟𝜀) − 𝑟𝜀𝑒

−𝑟𝜀

1

= 1 − (1 − 𝑒−𝑟𝜀 − 𝑟𝜀𝑒−𝑟𝜀 ) = (1 + 𝑟𝜀)𝑒−𝑟𝜀 .
We want to find 𝑟 so that the above probability is at most 𝛽 . We

will solve (1+𝑦)𝑒−𝑦 = 𝛽 for 𝑦 ≥ 0 via the Lambert W function 𝑓 −1

where 𝑓 (𝑤) := 𝑤𝑒𝑤 . We can write

−𝛽 = (−1 − 𝑦)𝑒−𝑦 = (−1 − 𝑦)𝑒−1−𝑦𝑒1

− 𝛽
𝑒
= (−1 − 𝑦)𝑒−1−𝑦 .

Then we can set 𝑤 = −1 − 𝑦 ≤ −1, where 𝑤 = 𝑓 −1 ( −𝛽𝑒 ). Using
the inequality −1 −

√
2𝑢 − 𝑢 < 𝑓 −1 (−𝑒−𝑢−1) from Lemma 4.2 for

𝑢 = log(1/𝛽) > 0, we have 𝑦 = −𝑤 − 1 <
√︁

2 log(1/𝛽) + log(1/𝛽).
I.e. 𝑟 < 1

𝜀 (
√︁

2 log(1/𝛽) + log(1/𝛽)) . □

Theorem 4.6. Let 𝐺 : (R2)𝑛 → (R2)𝑛 be defined by 𝐺 (𝑥) =
(𝐺1 (𝑥1), · · · ,𝐺𝑛 (𝑥𝑛)), where each 𝐺𝑖 (𝑥𝑖 ) returns a 𝑦𝑖 ∈ R2 from a
distribution with pdf ∝ 𝑒−

𝜀
𝑛
∥𝑥𝑖−𝑦𝑖 ∥ , for 𝑖 ∈ [𝑛]. Then 𝐺 is 𝜀-GP and

with probability at least 1 − 𝛽 ,

dist∞ (𝐺 (𝑥), 𝑥) ≤ 𝑂
(
𝑛
𝜀 log

𝑛
𝛽

)
.

Proof. Follows from Lemmas 2.7, 4.5, and a union bound. □

CGP mechanism with dist∞. Under dist∞, we simply apply use

CGP composition and apply the Gaussian mechanism on each

𝑔𝑖 (𝑥) = 𝑥𝑖 , i.e., adding a noise drawn from

√︁
𝑛/2𝜌 · N (0, 1) to

each coordinate of each point. Below, we analyze its error in terms

of dist∞:

Lemma 4.7. Let 𝐺 : R2 → R2 be the 𝜌-CGP mechanism defined
by 𝐺 (𝑥) := 𝑥 + 1√

2𝜌
𝑍 where 𝑍 ∼ N(0, 𝐼2×2). Then with probability

at least 1 − 𝛽 , we have ∥𝐺 (𝑥) − 𝑥 ∥ ≤
√︁

log(1/𝛽)/𝜌.

Proof. Let 𝑅 denote the random variable ∥𝐺 (𝑥) − 𝑥 ∥. Then
𝑅 ∼ G(1/√𝜌, 2, 2) and by Lemma 4.1

Pr[𝑅 > 𝑟 ] = 1 − Pr[𝑃 ≤ 𝑟 ]

= 1 −
𝛾 (1, (√𝜌𝑟 )2)

Γ(1) = 1 − (1 − 𝑒−𝜌𝑟
2

) = 𝑒−𝜌𝑟
2

.

Setting the above probability to be 𝛽 gives 𝑟 =
√︁

log(1/𝛽)/𝜌 . □

Theorem 4.8. Let 𝐺 : (R2)𝑛 → (R2)𝑛 be defined by 𝐺 (𝑥) =
(𝐺1 (𝑥1), · · · ,𝐺𝑛 (𝑥𝑛)), where𝐺𝑖 (𝑥𝑖 ) := 𝑥𝑖+

√
𝑛√
2𝜌
𝑍𝑖 and𝑍𝑖 ∼ N(0, 𝐼2×2),

for 𝑖 ∈ [𝑛]. Then 𝐺 is 𝜌-CGP and with probability at least 1 − 𝛽 ,

dist∞ (𝐺 (𝑥), 𝑥) ≤
√︃
𝑛 log(𝑛/𝛽 )

𝜌 .

Proof. Follows from Lemmas 3.2, 4.7, and a union bound. □

We see that the CGP mechanism is an �̃� (
√
𝑛)-factor better than

the GP mechanism.

Extension to 𝑑 dimensions. All the mechanisms above extend to

𝑑 dimensions straightforwardly using the 𝑑-dimensional Laplace

and Gaussian mechanism, respectively. Correspondingly, the utility

gap between GP and CGP enlarges to �̃� (
√
𝑑𝑛).

4.3 𝑘 Nearest Neighbors
Given a query point 𝑝 ∈ R2

and a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ (R2)𝑛 ,
the 𝑘 nearest neighbors (𝑘NN) query returns the 𝑘 indices of the

points in 𝑥 that are the nearest to 𝑝 . This could be useful in applica-

tions where 𝑥 represents the locations visited by a user, say, in the

past 𝑙 days, and the data collector wishes to know if and when s/he

has gotten into the proximity of a point 𝑝 of interest (or danger).

Note that for modularity, we define the problem so that only the

indices of the 𝑘 nearest neighbors are returned; if their locations

are also needed (e.g., for computing the distance to 𝑝), then one
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can reserve part of the privacy budget to privatize these 𝑘 locations

using the mechanism from Section 4.2.

For the 𝑘NN query, the canonical GP or CGP mechanism cannot

be applied, as it is not Lipschitz. In fact, while we can still use dist∞
for the input domain, it is not even clear what distance function

to use for the output domain. As a simple baseline algorithm, we

can privatize the entire 𝑥 using the mechanisms from Section 4.2.

Then finding the 𝑘 nearest neighbors of 𝑝 becomes just a post-

processing step. However, as shown in Section 4.2, this baseline

method has an error of �̃� (𝑛/𝜀) and �̃� (
√︁
𝑛/𝜌) under GP and CGP,

respectively. Below we develop an algorithm whose error depends

(linearly or square-root) only on 𝑘 , while the dependency on 𝑛 will

be logarithmic.

The sparse vector technique. As a technical tool, we first show
that the sparse vector technique (SVT) [13], originally designed under
standard DP, can be adapted to satisfy 𝜀-GP, hence 𝜌-CGP for 𝜌 =

𝜀2/2, which can be of independent interest.

Under GP or CGP, we are given a (possibly infinite) sequence of

𝐾-Lipschitz queries 𝑔1, 𝑔2, . . . with range in R. The goal of SVT is

to find the (index of the) first query whose output exceeds a given

threshold 𝑇 . The details are given in Algorithm 1, in which we flip

the goal, i.e., try to find the first query whose output is below 𝑇 .

This does not introduce any real difference but makes our 𝑘NN

algorithm more natural. The proof that Algorithm 1 satisfies 𝜀-GP

is similar to the DP version [13, 26] and is included in Appendix D

for completeness.

Algorithm 1 Sparse Vector Technique

Input: 𝑥 ∈ 𝑈 ; 𝜀; 𝑇 ; 𝐾 ; 𝑔1, 𝑔2, · · · where each 𝑔 𝑗 is 𝐾-Lipschitz
Output: variable-length sequence 𝑦1, 𝑦2, · · ·
1: 𝜀1 ← 𝜀/2, 𝜀2 ← 𝜀/2
2: draw𝑊 ∼ Lap(𝐾/𝜀1)
3: for 𝑗 = 1, · · · do
4: draw 𝑉𝑗 ∼ Lap(2𝐾/𝜀2)
5: if 𝑔 𝑗 (𝑥) +𝑉𝑗 ≤ 𝑇 +𝑊 then
6: output 𝑦 𝑗 = ⊤ and HALT
7: else
8: output 𝑦 𝑗 = ⊥
9: end if
10: end for

Nearest neighbor. We first present an algorithm for finding the

nearest neighbor, i.e., the case 𝑘 = 1. For 𝑘 > 1, we will iteratively

invoke it 𝑘 times to find the 𝑘 nearest neighbors. For generality, we

describe our nearest neighbor algorithm as one that tries to find

the nearest neighbor among a given subset of𝑚 points in 𝑥 .

The starting observation is that the function 𝑔𝑖 (𝑥 ;𝑝) := ∥𝑥𝑖 − 𝑝 ∥
is 1-Lipschitz. Below, we show that shortest distance ℎ(𝑥 ;𝑝) :=

min𝑗 𝑔 𝑗 (𝑥 ; 𝑝) is also 1-Lipschitz. This allows us to first obtain a

privatized ℎ(𝑥 ;𝑝). Then with this privatized shortest distance as 𝑇 ,

we use SVT to cycle through the points in 𝑥 , using their distances to

𝑝 as the queries. When the SVT terminates, a point whose distance

close to 𝑇 will be identified with high probability.

Lemma 4.9. Let 𝑔 𝑗 : 𝑈𝑛 → R be 𝐾-Lipschitz (using dist∞ on 𝑈𝑛)
for each 𝑗 ∈ [𝑚]. Then ℎ(𝑥) = min𝑗∈[𝑚] 𝑔 𝑗 (𝑥) is also 𝐾-Lipschitz.

Proof. Let 𝑥, 𝑥 ′ ∈ (𝑈 )𝑛 . Let 𝑗∗ := arg min𝑗∈[𝑚] 𝑔 𝑗 (𝑥) and 𝑙∗ :=

arg min𝑗∈[𝑚] 𝑔 𝑗 (𝑥 ′). Then

ℎ(𝑥) − ℎ(𝑥 ′) = 𝑔 𝑗∗ (𝑥) − 𝑔𝑙∗ (𝑥 ′) ≤ 𝑔𝑙∗ (𝑥) − 𝑔𝑙∗ (𝑥 ′)
≤ 𝐾 ∥𝑥𝑙∗ − 𝑥 ′𝑙∗ ∥ ≤ 𝐾 · dist∞ (𝑥, 𝑥 ′),

and

ℎ(𝑥 ′) − ℎ(𝑥) = 𝑔𝑙∗ (𝑥 ′) − 𝑔 𝑗∗ (𝑥) ≤ 𝑔 𝑗∗ (𝑥 ′) − 𝑔 𝑗∗ (𝑥)
≤ 𝐾 ∥𝑥 ′𝑗∗ − 𝑥 𝑗∗ ∥ ≤ 𝐾 · dist∞ (𝑥, 𝑥 ′).

Combining the inequalities above, |ℎ(𝑥) −ℎ(𝑥 ′) | ≤ 𝐾 · dist∞ (𝑥, 𝑥 ′).
□

The private nearest neighbor (PNN) algorithm is described in

Algorithm 2. In line 2, we assume the output of SVT is the index

corresponding to the position of ⊤. The notation ¯𝑙𝑚 denotes the

(𝑙 mod𝑚)-th index in 𝐼 , so that it cycles through the𝑚 indices in

𝐼 . We use 𝑥𝐼 to denote the subset of points indexed by 𝐼 . Since line

1 is 𝜀/3-GP and line 2 is 2𝜀/3-GP, Algorithm 2 is 𝜀-GP.

Algorithm 2 Private Nearest Neighbor (PNN)

Input: 𝑥 ∈ (R2)𝑛 ; 𝑝 ∈ R2
; 𝐼 ⊆ [𝑛], |𝐼 | =𝑚; 𝜀; (optional) 𝛾0 ≥ 0

Output: index of the privatized nearest neighbor in 𝐼

1: 𝑇 ← ℎ(𝑥𝐼 ;𝑝) + 𝑍 + 𝛾0, 𝑍 ∼ Lap( 3𝜀 )
2: 𝑡 ← SVT(𝑥, 2𝜀/3,𝑇 , 𝐾 = 1, 𝑔′

1
, 𝑔′

2
, . . . ), 𝑔′

𝑙
:= 𝑔¯𝑙𝑚

(· ;𝑝)
3: return 𝑡𝑚

Nowwe show that the PNN algorithm has an error of𝑂 ( 1𝜀 log
𝑚
𝛽
)

with probability 1 − 𝛽 , i.e., the returned nearest neighbor is at most

this much farther away than the true nearest neighbor. Note that

this is optimal up to a logarithmic factor, since the PNN query

degenerates into the identity query when 𝑚 = 1, which has an

error of 𝑂 ( 1𝜀 log
1

𝛽
).

We first prove a looser but simpler result:

Theorem 4.10. Fix any 0 < 𝛽 < 1, and let𝛾 := 𝛾1+𝛾2, where𝛾1 :=

3

𝜀

(√︂
2 log

(
𝑚+1
𝛽

)
+ log

(
𝑚+1
𝛽

))
and 𝛾2 := 6

𝜀 log

(
𝑚+1
𝛽

)
. Set 𝛾0 = 𝛾

in Algorithm 2, then it outputs a 𝑡𝑚 such that 𝑔𝑡𝑚 (𝑥) ≤ ℎ(𝑥) + 2𝛾

with probability at least 1 − 𝛽 . The algorithm terminates in 𝑂 (𝑚)
time with probability 1 − 𝛽 .

Proof. Let𝑊 , 𝑉1,𝑉2, · · · be the sequence of Laplace random

variables in the SVT call. Let 𝑡∗ := arg min𝑗∈[𝑚] 𝑔 𝑗 (𝑥). When SVT

visits 𝑡∗, it halts if 𝑉𝑡∗ ≤𝑊 + 𝑍 + 𝛾0. We have Pr [|𝑊 + 𝑍 | ≤ 𝛾1] ≥
1 − 𝛽/(𝑚 + 1) by Lemma 4.3, and Pr

[
max𝑗∈[𝑚] |𝑉𝑗 | ≤ 𝛾2

]
≥ 1 −

𝑚𝛽/(𝑚 + 1) by the Laplace tail bound and a union bound, i.e.,𝑉𝑡∗ ≤
max𝑗∈[𝑚] |𝑉𝑗 | ≤𝑊 + 𝑍 + 𝛾0 with probability 1 − 𝛽 . Consequently,
we have simultaneously that (1) SVT halts the first time it visits 𝑔𝑡∗

or earlier; (2) 𝑔𝑡 (𝑥) +𝑉𝑡 ≤ 𝑇 +𝑊 , hence

𝑔𝑡 (𝑥) ≤ 𝑇 +𝑊 −𝑉𝑡 = ℎ(𝑥) + 𝑍 + 𝛾0 +𝑊 −𝑉𝑡
≤ ℎ(𝑥) + |𝑍 +𝑊 | + |𝑉𝑡 | + 𝛾0

≤ ℎ(𝑥) + 𝛾1 + 𝛾2 + 𝛾0 = ℎ(𝑥) + 2𝛾 .

□
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The optional parameter 𝛾0 is used to control the trade-off be-

tween the error and running time of the algorithm. In Theorem

4.10, we set 𝛾0 = 𝛾 so that the SVT terminates within the first cycle

of 𝑥 but the error is doubled. Below, we give a more refined anal-

ysis, showing that setting 𝛾0 = 0 will not increase the asymptotic

running time while reducing the error.

Theorem 4.11. Fix any 0 < 𝛽 < 1, and 0 < 𝛽1, 𝛽2, 𝛽3 such that

𝛽1+𝛽2+𝛽3 = 𝛽 . Let𝛾 := 𝛾1+𝛾2, where𝛾1 := 3

𝜀

(√︂
2 log

(
1

𝛽1

)
+ log

(
1

𝛽1

))
and 𝛾2 := 6

𝜀 log

(
4𝑚
𝛽2𝛽3

)
. Set 𝛾0 = 0 in Algorithm 2, then it outputs a

𝑡𝑚 such that 𝑔𝑡𝑚 (𝑥) ≤ ℎ(𝑥) + 𝛾 with probability at least 1 − 𝛽 . The
algorithm runs in expected 𝑂 (𝑚) time.

Proof. Let 𝑡∗ := arg min𝑗∈[𝑚] 𝑔 𝑗 (𝑥) and 𝑡 be the index (which
is a random variable) returned by the SVT call. Let 𝑘 be posi-

tive integer. Then when SVT visits 𝑘𝑡∗: it halts if 𝑉𝑘𝑡∗ ≤ 𝑊 + 𝑍 .
By Lemma 4.4, the expected number of times 𝑡∗ is visited is at

most 4, hence the expected running time is 𝑂 (𝑚). Moreover, by

Markov’s inequality, with probability at least 1 − 𝛽2 the number of

times 𝑡∗ is visited is at most 4/𝛽2. I.e. 𝑡 ≤ 4𝑚/𝛽2. We also have

Pr

[
max𝑗≤4𝑚/𝛽2

|𝑉𝑗 | ≤ 𝛾2

]
≤ 1 − 𝛽3 and Pr[|𝑍 +𝑊 | ≤ 𝛾1] ≥

1 − 𝛽1. Thus, by a union bound, we have with probability at least

1 − (𝛽1 + 𝛽2 + 𝛽3):
𝑔𝑡𝑚 (𝑥) ≤ 𝑇 +𝑊 −𝑉𝑡 = ℎ(𝑥) + 𝑍 +𝑊 −𝑉𝑡

≤ ℎ(𝑥) + |𝑍 +𝑊 | + max

𝑗≤4𝑚/𝛽2

|𝑉𝑗 |

≤ ℎ(𝑥) + 𝛾1 + 𝛾2 = ℎ(𝑥) + 𝛾 .
□

Remark: We can in fact even set 𝛾0 < 0, which would further

reduce the error at the cost of a longer running time. Theoretically,

the running time would increase exponentially in |𝛾0 |, in the patho-

logical case where all points in 𝑥 but the nearest neighbor are very

far away from 𝑝 . On most typical instances, however, the running

time is still close to linear with a 𝛾0 < 0.

𝑘 nearest neighbors. Now, to find the 𝑘 nearest neighbors of 𝑝 ,

we simply invoke Algorithm 2 𝑘 times, as shown in Algorithm 3.

It follows from Theorem 3.2 that Algorithm 3 is 𝜌-CGP. We can

similarly obtain an 𝜀-GP version of the algorithm by replacing line

3 of the algorithm with 𝑡 = PNN(𝑥, 𝑝, 𝐼 𝑗−1, 𝜀/𝑘).

Algorithm 3 𝑘-Private Nearest Neighbors (𝑘-PNN)

Input: 𝑝 ∈ R2
; 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ (R2)𝑛 ; 𝑘 ∈ Z>0; 𝜌

Output: 𝐽 ⊆ [𝑛]
1: 𝐼0 ← [𝑛], 𝐽0 ← ∅
2: for 𝑗 = 1, · · · , 𝑘 do
3: 𝑡 ← PNN(𝑥, 𝑝, 𝐼 𝑗−1,

√︁
2𝜌/𝑘)

4: 𝐽 𝑗 ← 𝐽 𝑗−1 ∪ {𝑡}
5: 𝐼 𝑗 ← 𝐼 𝑗−1 \ {𝑡}
6: end for
7: return 𝐽 = 𝐽𝑘

The error of the 𝑘-PNN is 𝑂

(√︁
𝑘/𝜌 log(𝑛/𝛽)

)
, as shown in the

following theorem.

Theorem 4.12. Fix 1 > 𝛽 > 0, let 𝛾 := 15

√
𝑘√

2𝜌
log((4𝑛 + 2)/𝛽) +

3

√
𝑘√
𝜌

√︁
log((4𝑛 + 2)/𝛽). Fix 1 ≤ 𝑗 ≤ 𝑘 , let 𝑡 𝑗 ∈ 𝐽 be the index corre-

sponding to the 𝑗 th nearest neighbor output by Algorithm 3. Let 𝑡∗
𝑗
be

the true 𝑗 th nearest neighbor. Then with probability at least 1 − 𝛽 ,

∥𝑥𝑡 𝑗 − 𝑝 ∥ ≤ ∥𝑥𝑡∗𝑗 − 𝑝 ∥ + 𝛾 .

Proof. By Theorem 4.11, with 𝜀 𝑗 =
√︁

2𝜌/𝑘 , 𝛽1 = 𝛽3 = 𝛽/(4𝑛+2)
and 𝛽2 = 4𝑛𝛽/(4𝑛 + 2), we have with probability at least 1 − 𝛽 ,
𝑔𝑡 𝑗 = ∥𝑥𝑡 𝑗 − 𝑝 ∥ ≤ min𝑖∈[𝑛]\𝐽𝑗−1

∥𝑥𝑖 − 𝑝 ∥ + 𝛾 . It remains to show

min𝑖∈[𝑛]\𝐽𝑗−1
∥𝑥𝑖 −𝑝 ∥ ≤ ∥𝑥𝑡∗

𝑗
−𝑝 ∥. Let 𝐽 ∗

𝑗−1
= {𝑡∗

1
, · · · , 𝑡∗

𝑗−1
} be the

set of indices containing the true 𝑗 − 1 nearest neighbors. If 𝐽 𝑗−1 =

𝐽 ∗
𝑗−1

then min𝑖∈[𝑛]\𝐽𝑗−1
∥𝑥𝑖 − 𝑝 ∥ = ∥𝑥𝑡∗

𝑗
− 𝑝 ∥; otherwise there is 𝑡∗

𝑙

where 1 ≤ 𝑙 ≤ 𝑗 − 1 which is not in 𝐽 𝑗−1, then min𝑖∈[𝑛]\𝐽𝑗−1
∥𝑥𝑖 −

𝑝 ∥ ≤ ∥𝑥𝑡∗
𝑙
− 𝑝 ∥ ≤ ∥𝑥𝑡∗

𝑗
− 𝑝 ∥. □

On the other hand, the error of the 𝜀-GP version of the algorithm

has an error of 𝑂 (𝑘/𝜀 · log(𝑛/𝛽)). The proof is similar and omitted.

Extension to 𝑑 dimensions. Both the GP and CGP algorithms for

the 𝑘NN problem extend to 𝑑 dimensions verbatim, as the function

𝑔𝑖 (𝑥) = ∥𝑥𝑖 − 𝑝 ∥2 is 1-Lipschitz in any dimensions, so the noise

required does not depend on 𝑑 . Consequently, the error guarantee

remains the same for any 𝑑 .

4.4 Convex Hull
In the last application, we are interested in releasing a privatized

convex hull of a collection of points. Given a tuple𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈
(R2)𝑛 , let CONV(𝑥) denote the convex hull of the points in 𝑥 . As
in the 𝑘NN algorithm, we first privately find a set of 𝑘 indices

𝐴 ⊆ [𝑛]. Let 𝑥𝐴 be the subset of points indexed by 𝐴. Then we

release a privatized 𝑥𝐴 , denoted 𝑥𝐴 , and compute CONV(𝑥𝐴) as a
post-processing step. However, unlike the 𝑘NN problem where 𝑘

is given, here 𝑘 is an internal parameter that controls the balance

of two sources of errors: A large 𝑘 will make CONV(𝑥𝐴) close to
CONV(𝑥) but enlarge the gap between CONV(𝑥𝐴) and CONV(𝑥𝐴)
as the noise injected in 𝑥𝐴 is �̃� (

√
𝑘) by Theorem 4.8. These two

sources of errors must be quantified in order to find an optimal 𝑘 .

Finding 𝐴 privately. We first consider the problem of, for a given

𝑘 , how to privately find a subset of 𝑘 points, indexed by 𝐴, so that

CONV(𝑥𝐴) is as close to CONV(𝑥) as possible. The intuition is that

we want to include in 𝐴 those points that are near the boundary of

CONV(𝑥). Meanwhile, the points selected to 𝐴 should not be too

close to each other, so as to maximize their coverage. Thus, the idea

is to find “equally” spaced points near the boundary of CONV(𝑥).
We do so in three steps:

(1) Let 𝑐 (𝑥) be the center of 𝑥 , whose coordinates are the mid-

points between the smallest and largest coordinates in each

dimension. In Appendix F we show that 𝑐 (·) is
√

2-Lipschitz,

so we can invoke the Gaussian mechanism to obtain a priva-

tized 𝑐 .

(2) Next, we identify a privatized and large enough radius �̃�

so that a circle of radius �̃� around 𝑐 encloses 𝑥 . This is

done by applying the Gaussian mechanism on the function

𝑔(𝑥) := max𝑖∈[𝑛] ∥𝑥𝑖 − 𝑐 ∥ = −min𝑖∈[𝑛] (−∥𝑥𝑖 − 𝑐 ∥), which
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is 1-Lipschitz by Lemmas E.1 and 4.9. Then we enlarge it by

�̃� (1) so that it encloses all points in 𝑥 with high probability.

(3) Finally, we place 𝑘 points equally spaced on the boundary of

the circle, and find the nearest neighbor in 𝑥 to each of the 𝑘

points, using the PNN algorithm from the previous section.

The detailed private convex hull (PCH) algorithm is given in

Algorithm 4. We use a privacy budget of
2

3
𝜌0 for line 2, and

1

3
𝜌0

for line 3. The 𝑘 calls of PNN at line 8 consume a total of (𝜌 − 𝜌0)
privacy budget. So the whole algorithm satisfies 𝜌-CGP.

Algorithm 4 Private Convex Hull (PCH)

Input: 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ (R2)𝑛 ; 𝑘 ; 𝜌 ; 𝛽
Output: 𝐴 ⊆ [𝑛]
1: 𝜌0 ← 𝜌/20, 𝜌1 ← (𝜌 − 𝜌0)/𝑘
2: 𝑐 ← 𝑐 (𝑥) + 𝑍𝑐 , 𝑍𝑐 ∼ N(0, 3

2𝜌0

𝐼2×2)
3: �̃� ← max𝑖 (∥𝑥𝑖 − 𝑐 ∥) +

√︁
3 log(2/𝛽)/𝜌0 + 𝑍𝑅 , 𝑍𝑅 ∼ N(0, 3

2𝜌0

)
4: 𝐴← ∅;
5: for 𝑗 = 1, · · · , 𝑘 do
6: 𝜃 𝑗 ← 2𝜋 ( 𝑗−1)

𝑘

7: 𝑃 𝑗 ← 𝑐 + [�̃� cos(𝜃 𝑗 ), �̃� sin(𝜃 𝑗 )]𝑇
8: 𝑎 𝑗 ← PNN(𝑥, 𝑃 𝑗 , {1, · · · , 𝑛},

√
2𝜌1)

9: 𝐴← 𝐴 ∪ {𝑎 𝑗 }
10: end for
11: return 𝐴

To bound the difference between CONV(𝑥𝐴) and CONV(𝑥),
we will show that a small expansion of CONV(𝑥𝐴) will enclose
CONV(𝑥). This is formalized using the Minkowski sum. Recall for

two sets of vectors 𝑉 ,𝑉 ′ ⊆ R𝑑 , their Minkowski sum is: 𝑉 +𝑉 ′ :=

{𝑣 + 𝑣 ′ : 𝑣 ∈ 𝑉 , 𝑣 ′ ∈ 𝑉 ′}, while 𝑉 − 𝑉 ′ is defined such that

(𝑉 − 𝑉 ′) + 𝑉 ′ = 𝑉 . Let B𝑟 denote the ball of radius 𝑟 centered

at the origin, and let 𝜔 (𝑥) := max𝑖, 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥ be the diameter of 𝑥 .

Lemma 4.13. Let𝐴 = PCH(𝑥, 𝑘, 𝜌, 𝛽) be the output of Algorithm 4
and 𝑥𝐴 := {𝑥𝑎 𝑗 }𝑎 𝑗 ∈𝐴 . Then with probability at least 1 − 𝛽 ,

CONV(𝑥𝐴) ⊆ CONV(𝑥) ⊆ CONV(𝑥𝐴) + B𝛾 ,

where 𝛾 = 𝑂

(√
𝑘 log(𝑛/𝛽 )√

𝜌
+ 𝜔 (𝑥 )

𝑘

)
.

We first show that, given a large enough circle which encloses

all points in 𝑥 , the set of nearest neighbors in 𝑥 of 𝑘 equally spaced

points on the boundary of the circle provides a good approxima-

tion to CONV(𝑥). Let 𝑉 ∗ denote the indices of the set of vertices
of CONV(𝑥), and let 𝑝 : [0, 2𝜋] → R2

be a function defined by

𝑝 (𝜃 ; 𝑟, 𝑜) := 𝑜 + [𝑟 cos(𝜃 ), 𝑟 sin(𝜃 )]𝑇 .

Lemma 4.14. Let 𝐶 = (𝑜, 𝑅) be a circle of radius 𝑅 centered at
𝑜 which encloses all points in 𝑥 . Let 𝑘 be a positive integer, and let
𝑃1, · · · , 𝑃 𝑗 be 𝑘 equally spaced points on the boundary of 𝐶 , where
𝑃 𝑗 := 𝑝 (2𝜋 ( 𝑗 − 1)/𝑘 ;𝑅, 𝑜) for 𝑗 ∈ [𝑘]. Let𝑉𝑘 := {arg min𝑖∈[𝑛] ∥𝑥𝑖 −
𝑃 𝑗 ∥ : 𝑗 ∈ [𝑘]} be the set of nearest neighbors to the 𝑘 points. Then
for any 𝑣 ∈ 𝑉 ∗ \𝑉𝑘 , there is 𝑢 ∈ 𝑉𝑘 such that 𝑥𝑢 is at a distance of at
most 𝛾2 := 2𝜋

𝑘
𝑅 from 𝑥𝑣 .

Proof. Let 𝑣 ∈ 𝑉 ∗ \ 𝑉𝑘 . Recall a point 𝑥𝑖 in 𝑥 is a vertex of

CONV(𝑥) if there is a hyperplane (a line in R2
) that separates 𝑥 𝑗

from the rest of 𝑥 ; or equivalently, there is a hyperplane that just

touches 𝑥𝑖 such that all of 𝑥 are on the same side of the hyperplane.

Let ℎ(𝑥𝑣) denote such a hyperplane for 𝑥𝑣 . By construction, there

are no points between ℎ(𝑥𝑣) and the boundary of 𝐶; if there were

such a point, it would be crossed by ℎ(𝑥𝑣) before 𝑥𝑣 , contradicting
the definition of ℎ(𝑥𝑣). Consider a line perpendicular to ℎ(𝑥𝑣) ex-
tended from 𝑥𝑣 until it meets the boundary of𝐶 , let 𝑝∗𝑣 = 𝑝 (𝜃∗𝑣 ;𝑅, 𝑐)
denote this point of intersection, for some 𝜃∗𝑣 ∈ [0, 2𝜋]. Then 𝑝∗𝑣 is
on the boundary between the points 𝑃𝑙 and 𝑃𝑙+1 for some 𝑙 ∈ [𝑘].
Without loss of generality, assume 𝑝∗𝑣 lies closer to 𝑃𝑙 on the bound-

ary. Then ∥𝑃𝑙 − 𝑝∗𝑣 ∥ ≤ 1

2
· 2𝜋�̃�

𝑘
. Let 𝑙∗ := arg min𝑖∈[𝑛] ∥𝑃𝑙 − 𝑥𝑖 ∥.

Next, we will show that 𝑥𝑙∗ is at most a distance of 𝛾2 from 𝑥𝑣 , and

since 𝑥𝑙∗ ∈ 𝑉𝑘 , it is the 𝑥𝑢 desired in the lemma.

To this end, consider the triangle with vertices (𝑥𝑣, 𝑃𝑙 , 𝑥𝑙∗ ). Let
𝑎 := ∥𝑃𝑙 −𝑥𝑣 ∥, 𝑏 := ∥𝑃𝑙 −𝑥𝑙∗ ∥ and 𝑐 := ∥𝑥𝑣 −𝑥𝑙∗ ∥. Let 𝜑 ∈ [0, 𝜋] be
the angle between the edges 𝑥𝑣𝑃𝑙 and 𝑥𝑙∗𝑃𝑙 . By the law of cosines,

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(𝜑), which is maximized when cos(𝜑) is
minimized and 𝑏 is maximized. Since cos(𝜑) is strictly decreasing

for 𝜑 ∈ [0, 𝜋], 𝑐 is maximized when 𝜑 is as large as possible without

crossing ℎ(𝑥𝑣). Also, 𝑏 = ∥𝑃𝑙 − 𝑥𝑙∗ ∥ = min𝑖∈[𝑛] ∥𝑃𝑙 − 𝑥𝑖 ∥ ≤ ∥𝑃𝑙 −
𝑥𝑣 ∥ = 𝑎. Thus, 𝑐 is at most equal to the distance between 𝑥𝑣 and

the other point where a circle of radius 𝑎 centered at 𝑃𝑙 intersects

ℎ(𝑥𝑣), which can be obtained by mirroring 𝑥𝑣 about a line that is

perpendicular to ℎ(𝑥𝑣) and crosses 𝑃𝑙 (see Fig. 1 for an illustration).

Thus 𝑐 is at most 2 · ∥𝑃𝑙 − 𝑝∗𝑣 ∥ ≤ 2𝜋
𝑘
𝑅 = 𝛾2. □

Now, to prove Lemma 4.13, it remains to show that the set of

indices 𝐴 returned by Algorithm 4 is a good approximation to 𝑉𝑘 .

Proof of Lemma 4.13. By the Gaussian tail bound with proba-

bility at least 1−𝛽/2, max𝑖 ∥𝑥𝑖 − 𝑐 ∥ ≤ �̃� ≤ 𝜔 (𝑥)+𝑂
(√︁

log(1/𝛽)/𝜌
)
.

Then, a circle𝐶 centered at 𝑐 with radius �̃� encloses all of the points

in 𝑥 . The analysis below is conditioned upon this happening. By

Lemma 4.14, with 𝑃 𝑗 := 𝑝 (2𝜋 ( 𝑗 − 1)/𝑘 ; �̃�, 𝑐) for 𝑗 ∈ [𝑘] and 𝑉𝑘 :=

{arg min𝑖∈[𝑛] ∥𝑥𝑖 −𝑃 𝑗 ∥ : 𝑗 ∈ [𝑘]}, then for each 𝑣 ∈ 𝑉𝑘 \𝑉 ∗ we can
find𝑢 ∈ 𝑉𝑘 such that 𝑥𝑢 is at a distance of at most𝛾2 = 2𝜋

𝑘
�̃� from 𝑥𝑣 .

Let 𝛾1 :=
15 log(2(4𝑛+2)𝑘/𝛽 )+3

√
2 log(2(4𝑛+2)𝑘/𝛽 )√

2𝜌1

= 𝑂 (
√
𝑘 log(𝑛/𝛽 )√

𝜌
).

Note thatmax𝑗∈[𝑘 ] ∥𝑥𝑎 𝑗 −𝑥 𝑗∗ ∥ ≤ 𝛾1 with probability at least 1−𝛽/2,
which follows from Theorem 4.12 and a union bound, where 𝑗∗ :=

arg min𝑖∈[𝑛] ∥𝑃 𝑗 − 𝑥𝑖 ∥ corresponds to the true nearest neighbor of

𝑃 𝑗 . Thus, for each 𝑣 ∈ 𝑉 ∗, there is 𝑎𝑢 ∈ 𝐴 such that ∥𝑥𝑎𝑢 − 𝑥𝑣 ∥ ≤

∥𝑥𝑎𝑢 − 𝑥𝑢 ∥ + ∥𝑥𝑢 − 𝑥𝑣 ∥ ≤ 𝛾1 + 𝛾2 = 𝑂

(√
𝑘 log(𝑛/𝛽 )√

𝜌
+ 𝜔 (𝑥 )

𝑘

)
. □

Finding the convex hull privately. We first run Algorithm 4 with,

say, half of the privacy budget. Then, we use the other half of

budget to privatize the points 𝑥𝐴 using the algorithm from Section

4.2, denoted 𝑥𝐴 . More precisely, for each 𝑎 ∈ 𝐴, we release 𝑥𝑎 :=

𝑥𝑎 + 1√
𝜌/𝑘
· N (0, 𝐼2×2). Finally, we return CONV(𝑥𝐴).

We can also bound the error of CONV(𝑥𝐴) in terms of the

Minkowski sum:

Lemma 4.15. With probability at least 1 − 𝛽 ,
CONV(𝑥𝐴) − B𝛾3

⊆ CONV(𝑥) ⊆ CONV(𝑥𝐴) + B𝛾 ,

where 𝛾 = 𝑂

(√
𝑘 log(𝑛/𝛽 )√

𝜌
+ 𝜔 (𝑥 )

𝑘

)
and 𝛾3 = 𝑂

(√
𝑘 log(𝑘/𝛽 )√

𝜌

)
.
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Figure 1: Illustration of the position of 𝑥𝑙∗ in Lemma 4.14.

Proof. Let𝛾1 :=
15 log(4(4𝑛+2)𝑘/𝛽 )+3

√
2 log(4(4𝑛+2)𝑘/𝛽 )√

𝜌1

and𝛾2 :=

2𝜋�̃�/𝑘 . Let 𝑥𝐴 ⊆ 𝑥 be the collection of "anchor" points correspond-

ing to the indices in 𝐴. Following the arguments in the proof of

Theorem 4.13, with probability 1− 𝛽/2, CONV(𝑥𝐴) ⊆ CONV(𝑥) ⊆
CONV(𝑥𝐴)+B(𝛾1+𝛾2 ) . Let𝛾3 :=

√
2𝑘 log(2𝑘/𝛽 )√

𝜌
, thenmax𝑗∈[𝑘 ] ∥𝑥𝑎 𝑗−

𝑥𝑎 𝑗 ∥ ≤ 𝛾3 with probability at least 1 − 𝛽/2. Thus,
CONV(𝑥𝐴) − B𝛾3

⊆ CONV(𝑥𝐴) ⊆ CONV(𝑥𝐴) + B𝛾3
.

By a union bound, together we have with probability 1 − 𝛽 ,
CONV(𝑥𝐴) − B𝛾3

⊆ CONV(𝑥𝐴) ⊆ CONV(𝑥) ⊆ CONV(𝑥𝐴) + B𝛾 ,
where 𝛾 = 𝛾1 + 𝛾2 + 𝛾3.

□

Setting 𝑘 . Tominimize the error, we can choose 𝑘 so as to balance

the two terms

√
𝑘 log(𝑛/𝛽 )√

𝜌
and

𝜔 (𝑥 )
𝑘

, yielding 𝑘 =

(
𝜔 (𝑥 )√𝜌
log(𝑛/𝛽 )

)
2/3

.

One caveat is that we cannot use 𝜔 (𝑥) directly as it is private

information. So we replace it with �̃�, which is larger than 𝜔 (𝑥) by
an additive 𝑂

(√︁
log(1/𝛽)/𝜌

)
term. Plugging this value of 𝑘 into

Lemma 4.15, we obtain:

Theorem 4.16. The private convex hull algorithm above satisfies
𝜌-CGP. It returns an 𝑥𝐴 such that with probability at least 1 − 𝛽 ,

CONV(𝑥𝐴) − B𝛾 ⊆ CONV(𝑥) ⊆ CONV(𝑥𝐴) + B𝛾 ,

where 𝛾 = 𝑂
©­«

(
𝜔 (𝑥 )+

√
log(1/𝛽 )/𝜌

)
1/3

log
2/3 (𝑛/𝛽 )

𝜌1/3
ª®¬ = �̃�

(
𝜔 (𝑥)1/3 + 1

)
.

Note that the extra �̃� (1) term, resulting from the technical re-

placement of 𝜔 (𝑥) with �̃�, is actually unavoidable: In the extreme

case where 𝑥 consists of just one point, we have 𝜔 (𝑥) = 0 while

the convex hull problem degenerates into the identity query, which

must have �̃� (1) error.
The algorithm can also be made to satisfy 𝜀-GP. Similar to the

𝑘NN problem, the 𝜀-GP version of the algorithm can only use basic

composition to allocate the privacy to the 𝑘 PNN queries in Algo-

rithm 4, as well as for privatizing the 𝑘 points in 𝑥𝐴 . This leads to

an overall error of 𝑂

(
𝑘 log(𝑛/𝛽 )

𝜀 + 𝜔 (𝑥 )
𝑘

)
, which is �̃�

(√︁
𝜔 (𝑥) + 1

)
after balancing these two terms similarly as above.

Remark 1: If 𝜔 (𝑥) > Ω̃(𝑛3/2), i.e., the point set is very sparse

(relative to the unit distance), then the optimal value of 𝑘 would be

greater than 𝑛. In this case, the algorithm essentially degenerates

into the naive algorithm that privatizes all 𝑛 points and then com-

putes the convex hull. Then the 𝑂 (𝜔 (𝑥)/𝑘) terms goes away, and

the error just becomes �̃� (
√
𝑛), same as that for the identity query.

For the GP version, the error is then �̃� (𝑛).
Remark 2: In the analysis above, we simply balanced the two

error terms for finding a good 𝑘 . This gets the asymptotic result

right. In our implementation, we derive the precise constant coeffi-

cients in the error expression of Lemma 4.15, and minimize it by

setting its derivative to 0 to find an optimal 𝑘 .

Extending to 𝑑 dimensions. Algorithm 4 can be generalized to

work in 𝑑 dimensions as follows: (1) find a privatized center 𝑐 , by

computing the midpoint of each dimension, which is

√
𝑑-Lipschitz

(alternatively, the 𝑑-dimensional mean can be used, and computing

the mean is 1-Lipshitz); (2) find a privatized and large enough

radius �̃�, by computing max𝑖∈[𝑛] ∥𝑥𝑖 − 𝑐 ∥, which is 1-Lipschitz;

(3) place 𝑘 “evenly spaced” points on the hypersphere of radius

�̃� centered at 𝑐 and find their private nearest neighbors; and (4)

release the 𝑘 nearest neighbors by adding Gaussian noise of scale

�̃� (
√
𝑑𝑘) and compute their convex hull. Omitting the details, we can

show that the total error becomes �̃�

(√
𝑑𝑘 + 𝜔 (𝑥)/𝑘1/(𝑑−1)

)
, which

minimizes to �̃�

(
𝜔 (𝑥)

𝑑−1

𝑑+1 𝑑
1

𝑑+1 + 1

)
. The error of the GP version is

�̃�

(
𝜔 (𝑥)

𝑑−1

𝑑 𝑑
1

𝑑 + 1

)
.

5 EXPERIMENTS
We perform experiments on a dataset containing mobility traces of

taxi cabs [33]. The dataset contains approximately 500 trajectories

which were collected over 30 days in the Bay Area of San Francisco.

Most (> 95%) of these trajectories contain 5000 − 30000 points

with an average of 20000 points. Each trajectory corresponds to

one collection of points in (R2)𝑛 . We convert the GPS coordinates

into R2
coordinates via the Mercator projection, with meters (m)

being the units of distance. As argued in [1, 5], the choice of the

distance unit is unimportant as all it matters is 𝜀 · dist(𝑥, 𝑥 ′) (𝜌 ·
dist(𝑥, 𝑥 ′)2 for CGP). If for example kilometers are used, we can

just scale up 𝜀 by a factor of 10
3
(resp. scale up 𝜌 by a factor of

10
6
). Also, mechanisms employing different distance units can be

composed after converting to the same distance unit. The values

of 𝜌 used in these experiments are in the range [5 · 10
−8, 5 · 10

−4],
corresponding to 𝜀 values in the range of approximately 0.002 (i.e.

2 per 1000m) to 0.2 (i.e. 2 per 10m). We also include the same set of

experiments for larger privacy budgets (𝜌 ranging from 10
−4

to 1)
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in Appendix G. The code for all the experiments can be found at:

https://github.com/hkustDB/ConcentratedGeoPrivacy.

We examine the error with respect to various parameter settings.

The parameters of interest are the number of input points (𝑛), pri-

vacy level (𝜌) and the number of neighbors (𝑘). When we compare

𝜌-CGP algorithms with 𝜀-GP algorithms, we advantage the latter

with a larger privacy budget using the relationship described in

Lemma 3.7 with 𝛿 = 10
−10

and 𝜀Δ ≥ 10. Following the discussion

after Lemma 3.7, the differences in the privacy guarantees between

GP and CGP are thus negligible. In each experiment, we randomly

select 50 collections of points and we sample 𝑛 points from each

collection to be used as inputs to the algorithms. If a collection has

less than 𝑛 points, all of its points will be used. Each experiment

is repeated 25 times and we report the mean, the 25th and 75th

percentiles. We group the experiments by application as follows:

The identity query (Fig. 2). We evaluate the algorithms which

privatize each location with (𝜀/𝑛)-GP (GP Basic) and (𝜌/𝑛)-CGP
(CGP Basic), respectively. We report both the max error on a single

point and the ℓ2 error across the entire tuple.
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(d) 𝜌 = 0.00005.

Figure 2: Releasing a collection of points : error with respect
to privacy level (top) and to tuple size (bottom).

Both algorithms have smaller error as the privacy budget 𝜌

increases and have larger error as the number of points 𝑛 increases.

When 𝑛 is held fixed, the error of GP Basic is close to

√
𝑛 times that

of CGP Basic, as can be seen in Fig. 2. This is consistent with our

utility analysis in Section 4.2.

𝑘 nearest neighbors (Fig. 3, 4). We compareAlgorithm 3 (CGP PNN)

and its 𝜀-GP variant (GP PNN) against the baseline algorithms

GP Basic and CGP Basic. In each experiment, a query point 𝑝 is

generated uniformly at random from a list of coordinates composed

of the centers of all 1m × 1m squares that are crossed by some

trajectory. The error is computed as the sum of distances of the

output neighbors (to the query point), normalized by that of the

true (non-private) nearest neighbors.
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Figure 3: Nearest neighbor: error with respect to privacy level,
fixing 𝑛 = 20000.
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Figure 4: Nearest neighbor: error with respect to tuple size,
fixing 𝜌 = 0.00005.

Across all of the plots in Fig. 3 and 4, we see that for small 𝑘 , the

PNN algorithms perform better, consistent with our analysis. As 𝑘

increases, CGP Basic starts to outperform GP PNN and eventually

CGP PNN, since their errors scale with 𝑘 and

√
𝑘 , respectively, and

logarithmically in 𝑛. On the other hand, CGP Basic scales with

√
𝑛

and is independent of 𝑘 . GP Basic has the worst error, since it scales

with 𝑛.

Convex hull (Fig. 5). We compare Algorithm 4 (CGP PCH) and

its 𝜀-GP variant (GP PCH) against the baseline algorithms GP Basic

and CGP Basic. We compute the convex hulls from the privatized

https://github.com/hkustDB/ConcentratedGeoPrivacy
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points returned by these algorithms. The PCH algorithms return 𝑘

points, while the baseline algorithms return𝑛 points. The parameter

𝑘 is set as described in Section 4.4, which has a different value in

CGP PCH and GP PCH. We also round it to the range [16, 128] for
efficiency reasons. The utility is measured by the Jaccard similarity

index between the privatized convex hull and the true convex hull

(higher is better):

Jacc (CONVH(𝑀 (𝑥),CONVH(𝑥))

=
𝜇 (CONVH(𝑀 (𝑥)) ∩ CONVH(𝑥))
𝜇 (CONVH(𝑀 (𝑥)) ∪ CONVH(𝑥)) ,

where 𝜇 (𝐶) is the area enclosed by the edges of 𝐶 .
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Figure 5: Convex hull : error with respect to privacy level
(left) and to tuple size (right).

All four algorithms have better performance as 𝜌 increases; in the

high privacy regime (lower privacy budget), the baseline algorithms

have little utility, and GP Basic has essentially no utility even for

the highest privacy budget considered. The baseline algorithms,

especially GP Basic, lose utility as the number of points 𝑛 increases,

since the area enclosed by the noisy convex hull becomes larger due

to a smaller privacy budget being allotted to each point. The PCH

algorithms do not suffer from this issue and maintain consistently

high utility as 𝑛 increases. While the CGP version of the PCH

algorithm has some advantage over the GP version, the gap is

not large. Indeed, while the difference is a polynomial �̃� (𝜔 (𝑥)1/6)
theoretically, it is not as significant on real datasets.

6 CONCLUDING REMARKS
We have shown that CGP offers many benefits over GP, including

simplicity of the mechanism, lower noise scale in high dimensions,

and better composability. This potentially opens a door for more

problems on private geometric data to be studied. One particularly

interesting direction is when the input 𝑥 is an (unordered) set of
𝑛 points as opposed to an (ordered) 𝑛-tuple. Between point sets,

popular metrics include the earth mover distance or the Hausdorff

distance. Other metric spaces, such as curves using the Fréchet

distance, or even non-geometric data such as strings using the edit

distance, can also be studied under the CGP framework, and are of

potential interest.
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A THE 𝑑-DIMENSIONAL LAPLACE MECHANISM
The magnitude 𝑅 can be simulated by rejection sampling [27]. See full version at: https://arxiv.org/abs/2305.19756.

B PROOF FOR CGP COMPOSITION
See full version at: https://arxiv.org/abs/2305.19756.

C PROOF FOR RELATIONSHIP BETWEEN CGP AND (𝜀, 𝛿,Δ)-GP
See full version at: https://arxiv.org/abs/2305.19756.

10 10 10 9 10 8 10 7 10 6 10 5

102

103

= 0.07
= 0.09
= 0.11

(a) Values of Δ at various levels of 𝛿 .

10 10 10 9 10 8 10 7 10 6 10 5

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

= 1000
= 500
= 50

(b) Values of 𝜀 at various levels of 𝛿 .

Figure 6: (𝜀, 𝛿,Δ)-GP implied by 𝜌-CGP, fixing 𝜌 = 0.00005.

D PROOF FOR 𝜀-GP VARIANT OF SPARSE VECTOR TECHNIQUE
See full version at: https://arxiv.org/abs/2305.19756.

E TECHNICAL LEMMAS AND MISSING PROOFS
Lemma E.1. Let (𝑈0, dist𝑈0

), (𝑈1, dist𝑈1
) and (𝑈2, dist𝑈2

) be metric spaces. Let 𝑔1 : 𝑈0 → 𝑈1 and 𝑔2 : 𝑈1 → 𝑈2 be Lipschitz with constants
𝐾1 and 𝐾2 respectively.

(1) [Composition] ℎ : 𝑈0 → 𝑈2 defined by ℎ(𝑥) := 𝑔2 (𝑔1 (𝑥)) is (𝐾1𝐾2)-Lipschitz;
(2) [Linear maps] ℎ : 𝑈0 → 𝑈1 defined by ℎ(𝑥) = 𝑎 · 𝑔1 (𝑥) + 𝑏 is (𝐾1 · |𝑎 |)-Lipschitz if𝑈1 is a real vector space, for any 𝑎 ∈ R and 𝑏 ∈ 𝑈1.

Lemma E.2 (Univariate Gaussian tail bound). Let 𝑍 ∼ N(0, 𝜎2). Then Pr[𝑍 > 𝑡] ≤ 𝑒−
𝑡2

2𝜎2 for all 𝑡 ≥ 0.

Lemma E.3. Let 𝑙 (𝜇, 𝑏) (·) denote the pdf of a Laplace random variable with mean 𝜇 and scale 𝑏. For any shift 𝑠 ∈ R in the mean and for any
𝑦 ∈ R: 𝑙 (𝜇, 𝑏) (𝑦) ≤ 𝑒 |𝑠 |/𝑏 · 𝑙 (𝜇 + 𝑠, 𝑏) (𝑦).

Lemma E.4. Let 𝑍 ,𝑊 be i.i.d. Lap(𝑏) random variables. Then the pdf of 𝑌 := 𝑍 +𝑊 is given by 1

4𝑏2
(𝑏𝑒−|𝑦 |/𝑏 + |𝑦 |𝑒−|𝑦 |/𝑏 ) for 𝑦 ∈ R.

Lemma E.5. Let 𝑌 be a random variable with pdf 1

4𝑏2
(𝑏𝑒−|𝑦 |/𝑏 + |𝑦 |𝑒−|𝑦 |/𝑏 ) for 𝑦 ∈ R, where 𝑏 > 0. Then |𝑌 | ≤ 𝑏

(√︁
2 log(1/𝛽) + log( 1

𝛽
)
)

with probability 1 − 𝛽 .

Lemma E.6 (Lemma 4.3). Let 𝑍 ,𝑊 ∼ Lap(𝑏), and 𝑌 := 𝑍 +𝑊 . Then for 1 > 𝛽 > 0, with probability 1 − 𝛽 , |𝑌 | ≤ 𝑏
(√︁

2 log(1/𝛽) + log( 1

𝛽
)
)
.

Lemma E.7 (Lemma 4.4). Given 𝑦 ∈ R, suppose we draw a𝑉 ∼ Lap(2𝑏) until𝑉 ≤ 𝑦. Let 𝑟 (𝑦) be the number of draws given 𝑦 and let 𝑅 = 𝑟 (𝑌 ),
where 𝑌 := 𝑍 +𝑊 and 𝑍 ,𝑊 ∼ Lap(𝑏). Then E[𝑅] ≤ 4.

For missing proofs, see full version at: https://arxiv.org/abs/2305.19756.

F PROOF FOR LIPSCHITZNESS OF COMPUTING THE CENTER
Lemma F.1. Let ℎ𝑙 : (R2)𝑛 → R be defined by ℎ𝑙 (𝑥) = max𝑖∈[𝑛] 𝑥𝑖,𝑙 . Let 𝑔𝑙 : (R2)𝑛 → R be defined by 𝑔𝑙 (𝑥) = max𝑖∈[𝑛] (−𝑥𝑖,𝑙 ), where 𝑥𝑖,𝑙

denotes the 𝑙th coordinate of 𝑥𝑖 for 𝑙 = 1, 2. Let 𝑐 : (R2)𝑛 → R2 be defined by 𝑐 (𝑥) = 1

2
(ℎ1 (𝑥) − 𝑔1 (𝑥), ℎ2 (𝑥) − 𝑔2 (𝑥)). Then 𝑐 is

√
2-Lipschitz.

For missing proofs, see full version at: https://arxiv.org/abs/2305.19756.

G EXPERIMENTS IN THE LOW PRIVACY REGIME
See full version at: https://arxiv.org/abs/2305.19756.

H METRICS FOR THE CENTRAL MODEL
See full version at: https://arxiv.org/abs/2305.19756.
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