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ABSTRACT
While most work on differential privacy has focused on protect-

ing the privacy of tuples, it has been realized that such a simple

model cannot capture the complex user-tuple relationships in many

real-world applications. Thus, user differential privacy (user-DP)

has recently gained more attention, which includes node-DP for

graph data as a special case. Most existing work on user-DP has

only studied the sum estimation problem. In this work, we design a

general DP mechanism for any monotonic function under user-DP

with strong optimality guarantees. While our general mechanism

may run in super-polynomial time, we show how to instantiate an

approximate version in polynomial time on some common mono-

tonic functions, including sum, 𝑘-selection, maximum frequency,

and distinct count. Finally, we conduct experiments on all these

functions and the results show that our framework is more general

and obtains better results in many cases.
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1 INTRODUCTION
Differential privacy (DP) has become the mainstream privacy stan-

dard due to its strong protection of individual users’ information.

It guarantees that the outputs of a DP mechanism on neighboring
datasets, i.e., two datasets that differ only in one user’s data, are

statistically indistinguishable. Most existing work on differential

privacy has considered the simple case where the dataset is given

in a tabular form and each user possesses exactly one tuple in the

table, thus two neighboring datasets differ by one tuple. In this case,
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there is a bijection betweenU, the space of users, and T , the space
of tuples, so there is no distinction between user-level differential

privacy (or simply, user-DP) and tuple-level differential privacy

(tuple-DP).

In many applications, however, the relationship between the

users and the tuples is more complicated than a simple bijection; in

these cases user-DP becomes a more general notion than tuple-DP.

First, a user may have multiple tuples in the dataset, which is a

common scenario in practice as there is often significant skewness

in data possession [2, 25]. In this case, the bijection between U
and T becomes a one-to-many relationship. Note that DP should

protect all the tuples belonging to any one user, i.e., two datasets

are neighboring if one can be obtained from the other by deleting

any subset of tuples of any one user. One can further generalize

this relationship to be many-to-many, which models the case where

each tuple is jointly contributed by a group of users and a user may

contribute to multiple tuples. The canonical instantiation of this

setting is counting the number of edges (or some graph pattern like

triangles) of a graph under node-DP [6, 7, 15]. For this problem, the

users are the nodes while the tuples are the edges (resp. triangles),

and each edge (resp. triangle) is contributed by its two (resp. three)

endpoints. Similarly, DP should protect all tuples contributed by

any one user (solely or jointly with other users); indeed, node-DP

defines neighboring instances as two graphs where one can be

obtained from the other by deleting any subset of edges incident

to one node. Finally, each group of users may jointly contribute

more than one tuple; for graph data, this models the situation

where multiple edges exist between a pair of nodes, each possibly

associated with a different attribute value.

1.1 A General Model for User-DP
We use the following formalization to capture all the cases above.

LetU be the universe of all users and T the universe of all tuples,

both of which are public and possibly infinite. For an integer ℓ ≥ 1,

we use

(U
≤ℓ
)
to denote the set of all subsets ofU of size at most ℓ . A

dataset, or an instance, is a mapping 𝑉 :

(U
≤ℓ
)
→ TN, i.e., it maps

each subset of no more than ℓ users to a multiset of tuples, repre-

senting the data jointly contributed by these users. Any instance 𝑉

should have finite size, which is defined as

|𝑉 | =
∑

𝑥 ∈(U≤ℓ)
|𝑉 (𝑥) |,

where |𝑉 (𝑥) | denotes the cardinality of the multiset 𝑉 (𝑥). We also

use X𝑉 ⊆
(U
≤ℓ
)
to denote the set of subsets of users mapped to
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non-empty multisets, i.e.,

X𝑉 =

{
𝑥 ∈

(
U
≤ ℓ

)
: 𝑉 (𝑥) ≠ ∅

}
,

and useU𝑉 ⊆ U for the set of users with nonzero contributions,

i.e.,

U𝑉 = {𝑢 ∈ U : ∃𝑥 ∈ X𝑉 , 𝑢 ∈ 𝑥}.
Neighboring instances are defined as follows. For any two non-

identical instances 𝑉 and 𝑉 ′, we say that 𝑉 contains 𝑉 ′, denoted
𝑉 ′ ⪯ 𝑉 , if 𝑉 ′(𝑥) ⊆ 𝑉 (𝑥) for any 𝑥 ∈

(U
≤ℓ
)
. We say that 𝑉 ′ is a

down neighbor of 𝑉 if 𝑉 ′ ⪯ 𝑉 and there exists a user 𝑢 ∈ U, called

the witness, such that all the differences between 𝑉 and 𝑉 ′ are
contributed by 𝑢, i.e., for any 𝑥 ∈

(U
≤ℓ
)
,

𝑉 ′(𝑥) ⊊ 𝑉 (𝑥) ⇒ 𝑢 ∈ 𝑥 .

Then,𝑉 and𝑉 ′ are neighboring instances if one is a down neighbor

of the other, denoted as 𝑉 ∼ 𝑉 ′ or 𝑉 ∼𝑢 𝑉 ′, where 𝑢 is the witness.

The distance, 𝑑 (𝑉 ,𝑉 ′), between two instances is defined as the

length of the shortest sequence (𝑉0 = 𝑉 ,𝑉1, . . . ,𝑉𝑑 = 𝑉 ′) such that

𝑉𝑖−1 ∼ 𝑉𝑖 for all 𝑖 = 1, . . . , 𝑑 .

After neighboring instances are defined, user-DP follows the

standard definition of differential privacy, i.e., a mechanism 𝑀 is

𝜀-DP if

Pr[𝑀 (𝑉 ) = 𝑦] ≤ 𝑒𝜀 · Pr[𝑀 (𝑉 ′) = 𝑦],
for any 𝑉 ∼ 𝑉 ′ and any output 𝑦.

Our user-DP model captures all the aforementioned scenarios as

special cases:

• If we set ℓ = 1 and restrict |𝑉 (𝑥) | ∈ {0, 1} for every 𝑢 ∈
U, then the model degenerates into tuple-DP. In this case,

|U𝑉 | = |X𝑉 | = |𝑉 |.
• The one-to-many case corresponds to ℓ = 1 while |𝑉 (𝑥) |
can be arbitrarily large (but still finite). For this case, |U𝑉 | =
|X𝑉 | ≤ |𝑉 |.
• Edge counting under node-DP can be incorporated by set-

ting ℓ = 2 and defining 𝑉 ({𝑢, 𝑣}) := {1} if there is an edge

between 𝑢 and 𝑣 , while 𝑉 (𝑥) := ∅ for all other 𝑥 . For this
case, |U𝑉 | is the number of nodes and |X𝑉 | = |𝑉 | is the
number of edges in the graph.

• For triangle (or any other graph pattern) counting, we define

𝑉 ({𝑢, 𝑣,𝑤}) := {1} if 𝑢, 𝑣,𝑤 form a triangle, and 𝑉 (𝑥) := ∅
for all other 𝑥 . For this case, |U𝑉 | is the number of nodes

and |X𝑉 | = |𝑉 | is the number of triangles in the graph. Note

that |𝑉 | is not really the same as the size of the input graph.

Nevertheless, as we will only differentiate between polyno-

mial and super-polynomial running times, this polynomial

difference in input size is not a concern.

• Many real problems on graph data rely on not only the

topology of the graph, but also some additional attributes. For

example, an edge (𝑢, 𝑣) may represent a transaction between

the two users, and multiple transactions involving different

products may exist between the same pair of users. This

can be captured in our model by defining, e.g., 𝑉 ({𝑢, 𝑣}) :=

{product A, product B, product C}. In this more general case,

we have |X𝑉 | ≤ |𝑉 |.
• Our model can also capture data structures more compli-

cated than a graph. In general, the user-tuple relationship

can take the form of a hypergraph: Each group 𝑥 of up to ℓ

nodes (users) corresponds to a hyperedge, and 𝑉 (𝑥) speci-
fies the multiset of attribute values contributed jointly by 𝑥 .

Examples include transactions that involve more than two

parties (e.g., buyer, seller, and intermediary), or documents

with multiple co-authors, etc.

Please see Section 6 for more concrete problems that can be

formulated in our user-DP model. In fact, in Appendix A, we show

that our model is equivalent to the user-DP model defined for

relational databases with foreign key constraints [10, 18]. However,

our user-DPmodel is more mathematically concise without needing

to introduce the jargon from relational databases.

1.2 Monotonic Functions
The user-DP model above only concerns about privacy; for utility,

we need to define what one wants to compute from 𝑉 . For this

purpose, it is convenient to take T = N, i.e., each𝑉 (𝑥) is a multiset

of natural numbers. This is without loss of generality, since any

tuple can be encoded as a number. We use [𝑛] to denote the set

{0, 1, ..., 𝑛}. Let 𝑆 (𝑉 ) = ⊎
𝑥 𝑉 (𝑥) be the multiset of all data, and

𝑆 (𝑉 ,𝑢) = ⊎
𝑥 ∋𝑢 𝑉 (𝑥) the data contributed (solely or in part) by

user 𝑢. Note that for ℓ = 1, 𝑆 (𝑉 ) = ⊎
𝑢 𝑆 (𝑉 ,𝑢); for ℓ ≥ 2, we have

Supp(𝑆 (𝑉 )) = Supp(⊎𝑢 𝑆 (𝑉 ,𝑢)) but the multiplicities in the latter

are generally higher.

For a given 𝑓 : NN → [𝐷], we wish to design an 𝜀-DP mecha-

nism𝑀 to approximate 𝑓 (𝑉 ) := 𝑓 (𝑆 (𝑉 )). The assumption on such

a 𝐷 given a priori is a mild one, as all our utility bounds will de-

pend on 𝐷 logarithmically. Also, we consider a running time to be

polynomial if it is a polynomial in |𝑉 |, 1

𝜀 , log𝐷 . We require 𝑓 to be

monotonic, i.e., for any two multisets 𝑆 ′ ⊆ 𝑆 , we have 𝑓 (𝑆 ′) ≤ 𝑓 (𝑆).
Monotonicity is a basic property of many commonly encountered

functions; all functions covered in Section 5 are monotonic. Excep-

tions exist, such as the mean of 𝑆 (𝑉 ), but it can be computed from

the sum

∑
𝑡 ∈𝑆 (𝑉 ) 𝑡 and the count |𝑆 (𝑉 ) | = |𝑉 |, both of which are

monotonic. Finally, by symmetry, all our results hold if monotonic-

ity is defined as 𝑆 ′ ⊆ 𝑆 implying 𝑓 (𝑆 ′) ≥ 𝑓 (𝑆).

1.3 Down Neighborhood Optimality
The main challenge under user-DP is that nearly every non-trivial

𝑓 has large sensitivity, which is defined as Δ𝑓 := max𝑉∼𝑉 ′ |𝑓 (𝑉 ) −
𝑓 (𝑉 ′) |. Even for the simple counting function 𝑓 (𝑉 ) = |𝑉 | with
ℓ = 1, we already have Δ𝑓 = 𝐷 , by taking 𝑉 (·) ≡ ∅, and setting 𝑉 ′

to be the same as 𝑉 except 𝑉 ′({𝑢}) = {1, 2, . . . , 𝐷} for some user 𝑢.

This makes worst-case optimality meaningless: Simply invoking the

standard Laplace mechanismwith noise calibrated to Δ𝑓 /𝜀 = 𝐷/𝜀 is
already worst-case optimal, since this amount of noise is necessary

to protect this particular pair of neighboring instances. However,

this noise magnitude clearly eliminates any utility.

Thus, most mechanisms under user-DP add instance-specific

noise [8, 17, 18, 22, 25] with magnitude much smaller than Δ𝑓
on most typical instances. However, the theoretical justification

of their superiority over the naive worst-case optimality had re-

mained an open problem. The strongest notion of optimality is

instance optimality. Unfortunately, as pointed out by Asi and Duchi

[3], instance optimality is impossible to achieve (see Section 3.2 for

details), who then proposed a natural relaxation, where we do not
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compare 𝑀 against the best mechanism tailor-designed for each

instance𝑉 itself (which can always be perfect), but against the best

mechanism 𝑀 ′ that must do well in a small neighborhood of 𝑉

within distance 𝜌 . This neighborhood optimality avoids the issue

of a large Δ𝑓 for certain problems, but does not address the issue

caused by user-DP. Still consider the counting function above. As

long as 𝑓 (𝑉 ) ≤ 𝐷/2 (which is the typical case as we often set 𝐷

conservatively large), then 𝑉 will have a neighbor 𝑉 ′ such that

𝑓 (𝑉 ′) = 𝐷 and |𝑓 (𝑉 ) − 𝑓 (𝑉 ′) | ≥ 𝐷/2. Then, even the best 𝑀 ′

designed just for 𝑉 and 𝑉 ′ has to inject noise Ω(𝐷), so the trivial

Laplace mechanism above is also neighborhood optimal. Equiva-

lently speaking, on most instances under user-DP, neighborhood

optimality is the same as worst-case optimality, both of which are

meaningless.

Recently, Dong et al. [10] proposed to restrain the neighborhood

in order to obtain a meaningful notion of optimality under user-DP,

referred as down neighborhood optimality. The formal definition is

given in Section 3.2, but we give the intuition below. Again consider

the counting function. The problem with neighborhood optimality

manifested above is that almost every typical instance 𝑉 has a bad

neighbor 𝑉 ′ with |𝑓 (𝑉 ) − 𝑓 (𝑉 ′) | = Ω(𝐷), which makes achiev-

ing neighborhood optimality too easy, hence meaningless. It is

observed that this bad neighbor𝑉 ′ must contain𝑉 , namely, it is an

up neighbor. The idea is thus to exclude all such up neighbors when

considering the best𝑀 ′, which now only needs to work well on 𝑉

and its down neighborhood of distance 𝜌 . For the counting function,

it can be shown that such a best𝑀 ′ can inject noise proportional to

max𝑢 |𝑆 (𝑉 ,𝑢) | instead of𝑂 (𝐷). Thus, a down neighborhood optimal
𝑀 must match this, possibly up to some ratio 𝑐 , known as the opti-
mality ratio. This is much more meaningful, as max𝑢 |𝑆 (𝑉 ,𝑢) | ≪ 𝐷

on most typical 𝑉 . But it is also more challenging, since we use the

same𝑀 to compare with all different𝑀 ′, each designed specifically

for each different instance 𝑉 (and its down neighborhood).

1.4 Our Results
The user-DP mechanism of [10] only works for the counting func-

tion and the sum function, which are actually equivalent under

user-DP. In this paper, we design a general user-DP mechanism

(Section 4) based on a shifted version of the inverse sensitivity

mechanism [3, 4]. It works with any monotonic function 𝑓 , and

achieves down neighborhood optimality with both 𝜌 and 𝑐 being

at most 𝑂 ( 1𝜀 log𝐷).
Without any assumptions on 𝑓 other than monotonicity, our

general mechanism runs in |𝑉 |𝑂 (
1

𝜀
log𝐷)

time. Next, we investigate

a number of fundamental functions of interest, and show how to

instantiate the general framework so that it runs in polynomial time.

In doing so, we not only need to exploit the special properties of

each function, in some cases we also have to work with an approx-

imate version of the general mechanism. Nevertheless, we show

that the approximation does not degrade the down neighborhood

optimality by more than a constant factor (for constant ℓ); in fact,

for certain functions, we are able to tighten up the analysis and

improve either 𝜌 or 𝑐 to 𝑂 (1) or even 1. Specifically, we obtain the

following results (details given in Section 5):

(1) Sum/count: Our mechanism runs in polynomial time and

achieves 𝜌 = 1 and 𝑐 = 𝑂 ( 1𝜀 log𝐷). The previous mechanism

[10] achieves (1,𝑂 ( 1𝜀 log𝑅 log log𝑅))-down neighborhood

optimality, where 𝑅 is a given upper bound on

∑
𝑡 ∈𝑆 (𝑉 ,𝑢) 𝑡 .

Since 𝑅 ≤ 𝐷 , these two results are incomparable.

(2) 𝑘-selection: For a given 𝑘 , the function 𝑓 returns the 𝑘-

th largest value in 𝑆 (𝑉 ). An approximate version of our

mechanism can run in polynomial time and achieve 𝜌 =

𝑂 ( ℓ𝜀 log𝐷), 𝑐 = 𝑂 ( ℓ𝜀 log𝐷). For the special case 𝑘 = 1, i.e.,

finding the maximum value, 𝑐 can be reduced to 𝑂 (1). For
this problem, the previous mechanism [27] only works for

the case ℓ = 1 and it does not offer any optimality guarantee.

By symmetry, the mechanism also works for finding the 𝑘-th

smallest value.

(3) Frequency moments: Let 𝜓𝑖 (𝑉 ) be the multiplicity of 𝑖 in

𝑆 (𝑉 ). For some integer 𝑘 ≥ 1, the 𝑘-th frequency moment is

defined as 𝐹𝑘 (𝑉 ) =
∑
𝑖 𝜓𝑖 (𝑉 )𝑘 , which is an important statis-

tic on the frequency distribution, and extensively studied in

the literature [1]. Note that 𝐹1 (𝑉 ) = |𝑉 |. We show how to

achieve 𝜌 = 1, 𝑐 = 𝑂 ( 1𝜀 log𝐷) in polynomial time for any

integer 𝑘 ≥ 1.

(4) Distinct count: The function returns |Supp(𝑆 (𝑉 )) |, which
can also be considered as 𝐹0 (𝑉 ). Our general mechanism

has 𝜌 = 𝑂 ( 1𝜀 log𝐷), 𝑐 = 𝑂 ( 1𝜀 log𝐷), but it runs in super-

polynomial time.We design amore efficient version that runs

in polynomial time and show that it satisfies DP. Although

we cannot give an optimality guarantee, it performs well in

the experiments.

(5) Maximum frequency: The function returnsmax𝑖 𝜓𝑖 (𝑉 ), which
can also be considered as 𝐹∞ (𝑉 ). For this function, our gen-
eral mechanism has optimality guarantee but it runs in super-

polynomial time. We also show how to implement its approx-

imate version in polynomial time but without an optimality

guarantee. As a further application, the maximum degree of

a graph under node-DP can be formulated as a maximum

frequency problem, by setting 𝑉 ({𝑢, 𝑣}) := {𝑢, 𝑣} for each
edge (𝑢, 𝑣).

2 RELATEDWORK
The general user-DP model described in Section 1.1 has previously

been adopted by [7, 10, 18, 25], but they frame their model as SPJA

queries in a relational database with foreign-key constraints. Our

formulation is equivalent to theirs, but is more mathematically con-

cise without relying on any background knowledge on relational

databases. They have mostly focused on the sum/count function,

which is a very special case of monotonic functions. A few other

specific monotonic functions, such as distinct count, have been stud-

ied in [7, 10, 27], but they do not generalize to arbitrary monotonic

functions.

Various special cases of the general user-DP model have been

studied in the literature. The case ℓ = 1 has drawn particular at-

tention. Recall that ℓ = 1 implies that different users’ data are

disjoint, but users may contribute different amounts of data. A

common technique for this case is the truncation mechanism. For

count, each 𝑉 (𝑥) is truncated to have size min{𝜏, |𝑉 (𝑥) |} for some

truncation threshold 𝜏 ; for sum, 𝑉 (𝑥) is truncated to have sum

min{𝜏,∑𝑡 ∈𝑉 (𝑥) 𝑡}. After truncation, Δ𝑓 can be bounded, then a

standard mechanism, such as Laplace or Gaussian, can be applied.
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A key technical issue is thus how to pick an optimal truncation

threshold. Various threshold-selection techniques have been pro-

posed [2, 13, 18, 25, 27], but they only work for the sum/count

function. Similar problems have also been studied in statistical

machine learning on private data [5, 12, 19, 20]. They typically

assume that each |𝑉 (𝑥) | is already bounded, and data in the𝑉 (𝑥)’s
are i.i.d. samples from some distribution. We do not make these

assumptions.

Moving from ℓ = 1 to ℓ ≥ 2 presents another challenge that is

caused by the interdependence of the users. In particular, the (naive)

truncation mechanism above no longer works, as the users’ data

cannot be truncated independently. Node-DP, which is a special case

of user-DP where each𝑉 (𝑥) is restricted to contain only one value,

has received a lot of attention in private graph analytics [6, 9, 15, 24].

Note that we always have ℓ ≥ 2 for node-DP problems, although

the specific value of ℓ depends on the particular graph problem. For

example, ℓ = 2 for edge counting, maximum degree, and degree

distribution; ℓ = 3 for triangle counting, which also generalizes to

counting any graph pattern with ℓ nodes. As we have seen, all these

problems are special cases of our results, except degree distribution.

Our current framework only supports a monotonic 𝑓 with a scalar

output. It would be interesting to see if it can be extended to vector-

valued functions such as the degree distribution.

3 PRELIMINARIES
3.1 Differential Privacy
The canonical DP-mechanism for a scalar-valued function 𝑓 is the

Laplace mechanism. Let Δ𝑓 denote the sensitivity of the function

𝑓 , i.e.,

Δ𝑓 = max

𝑉∼𝑉 ′
|𝑓 (𝑉 ) − 𝑓 (𝑉 ′) |,

the Laplace mechanism adds noise sampled from the Laplace distri-

bution with scale
Δ𝑓
𝜀 .

Theorem 3.1 (The LaplaceMechanism [11]). The Laplacemech-
anism outputs𝑀 (𝑉 ) = 𝑓 (𝑉 ) + Lap( Δ𝑓𝜀 ) on instance 𝑉 . It preserves
𝜀-differential privacy.

A more general DP mechanism that allows an arbitrary output

range R is the exponential mechanism:

Definition 1 (The Exponential Mechanism [21]). Given an in-

stance 𝑉 and an output range R, the exponential mechanism as-

signs a utility score 𝑠 (𝑉 , 𝑟 ) for each possible output 𝑟 ∈ R, and
samples the output with probability proportional to exp( 𝜀𝑠 (𝑉 ,𝑟 )

2Δ𝑠 ),
where Δ𝑠 is the sensitivity of the utility score, i.e.,

Δ𝑠 = max

𝑟 ∈R
max

𝑉∼𝑉 ′
|𝑠 (𝑉 , 𝑟 ) − 𝑠 (𝑉 ′, 𝑟 ) |.

Theorem 3.2. The exponential mechanism preserves 𝜀-differential
privacy, and with probability at least 1− 𝛽 , the output𝑀 (𝑉 ) satisfies

𝑠 (𝑉 ,𝑀 (𝑉 )) ≥ OPT𝑠 (𝑉 ) −
2Δ𝑠

𝜀
ln

(
|R |
𝛽

)
,

where OPT𝑠 (𝑉 ) = max𝑟 ∈R 𝑠 (𝑉 , 𝑟 ).

To instantiate the exponential mechanism for a given 𝑓 , a popular

choice is to set the utility score as the inverse sensitivity of 𝑓 :

Definition 2 (Inverse Sensitivity [3]). Given an output 𝑟 ∈ R, the
inverse sensitivity len(𝑉 , 𝑟 ) measures the shortest distance from 𝑉

to an instance 𝑉 such that 𝑓 (𝑉 ) = 𝑟 , i.e.,

len(𝑉 , 𝑟 ) = min

𝑉 ∈V
{𝑑 (𝑉 ,𝑉 ) : 𝑓 (𝑉 ) = 𝑟 }.

It should be clear that as long as𝑑 (·, ·) takes non-negative integer
values and forms a metric, then Δlen(·, 𝑟 ) ≤ 1 for any 𝑟 . This yields

the inverse sensitivity mechanism (Algorithm 1). The privacy and

utility guarantee follow from Theorem 3.2.

Algorithm 1: Inverse
Input :The instance 𝑉 , a function 𝑓 , an output range R,

and the privacy budget 𝜀

Output :A privatized 𝑓 (𝑉 )
Invoke the exponential mechanism with

𝑠 (𝑉 , 𝑟 ) = −len(𝑉 , 𝑟 ).

One important property of differential privacy is the composition

theorem, which allows one to design DP mechanisms in a modular

fashion.

Theorem 3.3 (Basic Composition Theorem [11]). Let𝑀 be an
adaptive composition of𝑀1, ..., 𝑀𝑘 , where each𝑀𝑖 is 𝜀𝑖 -differential
private, then mechanism𝑀 is (∑𝑘

𝑖=1
𝜀𝑖 )-differential private.

3.2 Neighborhood Optimality and Down
Neighborhood Optimality

Let M be the class of all 𝜀-differential private mechanisms. For

a given function 𝑓 , the 𝜌-neighborhood lower bound [3] at 𝑉 is

defined as
1

L(𝑉 , 𝜌) := inf

𝑀′∈M
max

𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤𝜌
inf

{
𝜉 : Pr[|𝑀 ′(𝑉 ) − 𝑓 (𝑉 ) | ≤ 𝜉] ≥ 2

3

}
,

(1)

i.e., it is the minimax constant-probability error bound achievable

by any 𝜀-DP mechanism𝑀 ′ in the 𝜌-neighborhood of 𝑉 . Note that

the
2

3
probability in (1) is not important; it can be replaced by any

constant between
1

2
and 1.

Definition 3 (Neighborhood Optimality). An 𝜀-differential private

mechanism𝑀 is (𝜌, 𝑐)-neighborhood optimal if for any instance 𝑉 ,

Pr[|𝑀 (𝑉 ) − 𝑓 (𝑉 ) | ≤ 𝑐 · L(𝑉 , 𝜌)] ≥ 2

3

,

where 𝑐 is called the optimality ratio.

It should be clear that smaller values of 𝜌, 𝑐 correspond to stronger

notions of optimality. The two extreme cases 𝜌 = 0 and 𝜌 = ∞
correspond to instance optimality andworst-case optimality, respec-

tively. However, if 𝜌 = 0, then for any 𝑉 there is a trivial, perfectly

private mechanism𝑀 ′(·) ≡ 𝑓 (𝑉 ). This means that L(𝑉 , 0) = 0 for

all 𝑉 , but it is impossible for any𝑀 to match this lower bound on

all𝑉 . So instance-optimality is unattainable, and one can only hope

for a small (constant or logarithmic) 𝜌 .

1
Asi and Duchi [3] defined L using the expected error E[ |𝑀′ (𝑉 ) − 𝑓 (𝑉 ) | ]; here we
use a constant-probability version to be consistent with the upper bounds. These two

versions of L only differ by a constant factor.
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User-DP, however, poses a problem for neighborhood optimality.

Recall the argument in Section 1.3 on the simple counting function

and ℓ = 1. Because a user may contribute an arbitrarily large 𝑉 (𝑥),
we have L(𝑉 , 1) = Ω(𝐷) for any 𝑉 with 𝑓 (𝑉 ) ≤ 𝐷/2. This means

that even (1, 𝑐)-neighborhood optimality already degenerates into

worst-case optimality, i.e., neighborhood optimality does not offer

a smooth spectrum between instance optimality and worst-case

optimality.

To address the issue, Dong et al. [10] proposed a simple fix:

restrict the neighborhood in (1) so that only instances contained in

𝑉 are considered, i.e., L is redefined as

L(𝑉 , 𝜌) := inf

𝑀′∈M
max

𝑉 ,𝑉 ⪯𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤𝜌
inf

{
𝜉 : Pr[|𝑀 ′(𝑉 ) − 𝑓 (𝑉 ) | ≤ 𝜉] ≥ 2

3

}
.

(2)

Down neighborhood optimality is the same as in Definition 3

except that (2) is used for L, which will be used as the default

definition of L from now on. Down neighborhood optimality offers

a more meaningful instance-specific optimality under user-DP. For

the counting function under ℓ = 1, it can be shown that L(𝑉 , 1) =
Θ(max𝑢 |𝑆 (𝑉 ,𝑢) |), which exactly captures the hardness of each

instance 𝑉 : If 𝑉 contains a user with a large |𝑆 (𝑉 ,𝑢) |, then it is

necessary to inject more noise to protect the privacy of this user; if

|𝑆 (𝑉 ,𝑢) | ∈ {0, 1}, then user-DP degenerates into tuple-DP and𝑂 (1)
noise suffices. The challenge, of course, is to match this optimal

noise level in a DP fashion. In particular, max𝑢 |𝑆 (𝑉 ,𝑢) | cannot be
used directly as it is sensitive information.

3.3 Downward Local Sensitivities
The definition of L is not easy to work with. Below we introduce a

lower bound on L as a proxy; later we will design mechanisms to

match this lower bound instead.

Definition 4 (Downward Local Sensitivity). Given an 𝑓 and an

instance 𝑉 , the downward local sensitivity of 𝑓 at 𝑉 is

DS(𝑉 ) = max

𝑉 ′,𝑉∼𝑉 ′,𝑉 ′⪯𝑉
|𝑓 (𝑉 ) − 𝑓 (𝑉 ′) |,

and its downward local sensitivity at distance 𝑘 is

DS
(𝑘) (𝑉 ) = max

𝑉 ,𝑉 ⪯𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤𝑘
DS(𝑉 ) .

In particular, DS
(0) (𝑉 ) = DS(𝑉 ).

A lower bound on L is given below:

Theorem 3.4. For any 𝜀 ≤ ln 2, any 𝑓 , 𝜌 , and 𝑉 , L(𝑉 , 𝜌) ≥
1

2
DS
(𝜌−1) (𝑉 ).

Proof. The proof is based on the idea in [26]. Let

𝑉1 = argmax

𝑉 ,𝑉 ⪯𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤𝜌−1

DS(𝑉 ),

and

𝑉2 = argmax

𝑉 ′,𝑉1∼𝑉 ′,𝑉 ′⪯𝑉1

|𝑓 (𝑉1) − 𝑓 (𝑉 ′) |,

so that DS
(𝜌−1) (𝑉 ) = DS(𝑉1) = |𝑓 (𝑉1) − 𝑓 (𝑉2) |. Let 𝑀 (·) be an

𝜀-differential private mechanism, and for 𝑏 = 1 or 2, define

G𝑏 = {𝑟 ∈ R : |𝑟 − 𝑓 (𝑉𝑏 ) | <
1

2

DS(𝑉1)}.

Algorithm 2: ShiftedInverse
Input :The instance 𝑉 , a monotonic function

𝑓 : V → [𝐷], the privacy budget 𝜀, and failure

probability 𝛽

Output :A privatized 𝑓 (𝑉 )
𝜏 ← ⌈ 2𝜀 ln(𝐷+1

𝛽
)⌉;

for 𝑗 ∈ [2𝜏] do
Compute

ˇ𝑓 (𝑉 , 𝑗) = min𝑉 ,𝑉 ⪯𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤ 𝑗 𝑓 (𝑉 );
end
For 𝑟 ∈ [𝐷], set 𝑠 (𝑉 , 𝑟 ) =

𝜏 − 𝑗, if 𝑟 ∈ [ ˇ𝑓 (𝑉 , 𝑗), ˇ𝑓 (𝑉 , 𝑗 − 1)) for some 𝜏 < 𝑗 ≤ 2𝜏

0, if 𝑟 = ˇ𝑓 (𝑉 , 𝜏)
−𝜏 + 𝑗 − 1, if 𝑟 ∈ ( ˇ𝑓 (𝑉 , 𝑗), ˇ𝑓 (𝑉 , 𝑗 − 1)] for some 0 < 𝑗 ≤ 𝜏

−𝜏 − 1, otherwise

Sample an 𝑟 from [𝐷] with probability proportional to

exp( 𝜀
2
𝑠 (𝑉 , 𝑟 )), denoted by 𝑟 ;

return𝑀 (𝑉 ) = 𝑟 ;

Let

𝑝 = min(Pr(𝑀 (𝑉1) ∈ G1), Pr(𝑀 (𝑉2) ∈ G2)) .
We have

1 − 𝑝 ≥ Pr(𝑀 (𝑉1) ∉ G1) ≥ Pr(𝑀 (𝑉1) ∈ G2)
≥ 𝑒−𝜀 Pr(𝑀 (𝑉2) ∈ G2) ≥ 𝑒−𝜀𝑝

Therefore, 𝑝 ≤ 1

1+𝑒−𝜀 . When 𝜀 ≤ ln 2, we have 𝑝 ≤ 2

3
andL(𝑉 , 𝜌) ≥

1

2
DS
(𝜌−1) (𝑉 ). □

For the sum/count function, it can be shown that DS
(𝜌−1) (𝑉 ) =

DS(𝑉 ) for all 𝜌 , i.e., any 𝑉 contained in 𝑉 is no harder than 𝑉 ,

which is determined by the largest 𝑆 (𝑉 ,𝑢). This means that for

sum/count, down neighborhood optimality is not sensitive to 𝜌 . For

other functions, as we will see, this is not the case.

4 A GENERAL MECHANISM FOR
MONOTONIC FUNCTIONS

4.1 The Mechanism
The inverse sensitivity mechanism can be used to handle a general

𝑓 . However, there are two issues when applying it under user-DP.

First, the utility can be arbitrarily bad. Still consider the counting

function 𝑓 (𝑉 ) = |𝑉 | for ℓ = 1. For any output 𝑟 ∈ (|𝑉 |, 𝐷], one can
always add a user to 𝑉 , obtaining a 𝑉 such that |𝑉 | = 𝑟 , namely,

len(𝑉 , 𝑟 ) = 1. This makes all such 𝑟 equally likely to be sampled

by the exponential mechanism, resulting in an error of Ω(𝐷) with
constant probability. This is actually the main reason why the

inverse sensitivity mechanism has only been used for tuple-DP

problems, for which adding a user can only change |𝑉 | by 1, so that

𝑟 > |𝑉 | have large len(𝑉 , 𝑟 ), hence exponentially less likely to be

sampled.

Since adding users is too “powerful”, one idea is to consider only

deleting users when defining len(𝑉 , 𝑟 ). This will set len(𝑉 , 𝑟 ) = ∞
for all 𝑟 ∈ (|𝑉 |, 𝐷], which avoids the issue above, but now there

exists neighboring instance 𝑉 ′ ∼ 𝑉 such that |𝑉 ′ | > |𝑉 | and Δlen

becomes unbounded for any 𝑟 ∈ (|𝑉 |, |𝑉 ′ |], thus the exponential
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Figure 1: An illustration of the score function 𝑠 (𝑉 , 𝑟 ) used
in ShiftedInverse. The optimal answer ˇ𝑓 (𝑉 , 0) = 𝑓 (𝑉 ) has a
score of −𝜏 , while ˇ𝑓 (𝑉 , 𝜏) has the highest score 0.

mechanism still has no utility. Our idea to fix this issue is a rather

counter-intuitive one: In the exponential mechanism, one usually

assigns the highest score, e.g., 0, to the best answer 𝑟 = 𝑓 (𝑉 ). In
our mechanism, we intentionally shift our target down, assigning

the highest score to an 𝑟 = 𝑓 (𝑉 ) such that 𝑉 ⪯ 𝑉 and 𝑑 (𝑉 ,𝑉 ) = 𝜏 ,

for an appropriately chosen 𝜏 . Then with 𝑟 = 𝑓 (𝑉 ) at the center, we
reduce the scores gradually in both directions (see Figure 1). While

this makes sense for 𝑟 < 𝑓 (𝑉 ), for 𝑟 ∈ (𝑓 (𝑉 ), 𝑓 (𝑉 )], it actually
assigns smaller scores to better answers, and the best answer 𝑟 =

𝑓 (𝑉 ) has (almost) the lowest score. This counter-intuitive scoring

mechanism is needed to ensure Δlen ≤ 1 and all 𝑟 ∈ (𝑓 (𝑉 ), 𝐷] have
low scores (we can just set their scores equal to that of 𝑟 = 𝑓 (𝑉 )
minus 1) so that the exponential mechanism has good utility. Indeed,

our analysis shows that 𝜏 = 𝑂 ( 1𝜀 log
𝐷
𝛽
) is sufficient. This ensures

that we hit a close-to-optimal target with high probability, although

the probability of hitting the optimal target is low.

The second issue is computational. To apply the inverse sen-

sitivity mechanism, one generally needs to compute the inverse

sensitivity for every 𝑟 ∈ [𝐷], which takes super-polynomial time.

Instead, we only compute 𝑂 (log𝐷) inverse sensitivities, and “in-

terpolate” others. More precisely, for each 𝑗 ∈ [2𝜏], we compute

ˇ𝑓 (𝑉 , 𝑗) = min

𝑉 ,𝑉 ⪯𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤ 𝑗
𝑓 (𝑉 ).

Note that
ˇ𝑓 (𝑉 , 0) = 𝑓 (𝑉 ). By definition, len(𝑉 , ˇ𝑓 (𝑉 , 𝑗)) = 𝑗 . For

𝑟 ∈ ( ˇ𝑓 (𝑉 , 𝑗), ˇ𝑓 (𝑉 , 𝑗 − 1)), we set len(𝑉 , 𝑟 ) to 𝑗 or 𝑗 − 1, depending

on whether it is on the left or right side of
ˇ𝑓 (𝑉 , 𝜏). The details are

given in Algorithm 2; also see Figure 1. Note that the true len(𝑉 , 𝑟 )
may be different for the 𝑟 ’s, but we show that it does not affect the

privacy or utility of our mechanism due to the monotonicity of 𝑓 .

Given the
ˇ𝑓 (𝑉 , 𝑗)’s, ShiftedInverse can be implemented in

time𝑂 (𝜏) = 𝑂 ( 1𝜀 log
𝐷
𝛽
):We do not really need to compute 𝑠 (𝑉 , 𝑟 ) =

−len(𝑉 , 𝑟 ) for every 𝑟 . Since all 𝑟 ’s in the same interval delineated

by the
ˇ𝑓 (𝑉 , 𝑗)’s have the same score, we can implement the mech-

anism by first sampling an interval, followed by sampling an 𝑟

uniformly within the interval.

4.2 Analysis
For down neighborhood optimality, it suffices to use 𝛽 = 1

3
. Let

𝜏0 = 2

𝜀 ln(3𝐷 + 3) by setting 𝛽 = 1

3
in 𝜏 . The analysis below also

needs the corresponding instance which attains
ˇ𝑓 (𝑉 , 𝑗), where ties

are broken by taking the instance with the smallest size, i.e., define

𝑉𝑗 = argmin

𝑉

{|𝑉 | : 𝑉 ⪯ 𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤ 𝑗, 𝑓 (𝑉 ) = ˇ𝑓 (𝑉 , 𝑗)}.

Lemma 4.1. For any monotonic 𝑓 , any𝑉 ∼ 𝑉 ′, and any 𝑟 , |𝑠 (𝑉 , 𝑟 )−
𝑠 (𝑉 ′, 𝑟 ) | ≤ 1.

Proof. Given two neighboring instances𝑉 ∼𝑢∗ 𝑉 ′, without loss
of generality, assume 𝑉 ′ ⪯ 𝑉 . We prove that

ˇ𝑓 (·, 𝑗)’s are smooth

for any neighboring instances, i.e., for any 𝑗 ,

ˇ𝑓 (𝑉 , 𝑗 + 1) ≤ ˇ𝑓 (𝑉 ′, 𝑗) ≤ ˇ𝑓 (𝑉 , 𝑗) . (3)

Thus, 𝑠 (𝑉 , 𝑟 ) − 1 ≤ 𝑠 (𝑉 ′, 𝑟 ) ≤ 𝑠 (𝑉 , 𝑟 ) + 1 for all 𝑟 ≤ 𝑓 (𝑉 ). More-

over, when 𝑟 > 𝑓 (𝑉 ), 𝑠 (𝑉 , 𝑟 ) = 𝑠 (𝑉 ′, 𝑟 ) = −𝜏 − 1. Therefore, the

sensitivity of 𝑠 (·, 𝑟 ) is 1.
We now prove (3). It is trivial for 𝑗 > 2𝜏 . Consider any 𝑗 ∈ [2𝜏].

On the one hand, given the instance 𝑉 ′
𝑗
, we have 𝑉 ′

𝑗
⪯ 𝑉 ′ ⪯ 𝑉 and

𝑑 (𝑉 ,𝑉 ′
𝑗
) ≤ 𝑑 (𝑉 ,𝑉 ′) + 𝑑 (𝑉 ′,𝑉 ′

𝑗
) ≤ 𝑗 + 1. Therefore,

ˇ𝑓 (𝑉 , 𝑗 + 1) ≤
𝑓 (𝑉 ′

𝑗
) = ˇ𝑓 (𝑉 ′, 𝑗). On the other hand, given the instance 𝑉𝑗 , denote

𝑈 as the subset of users such that 𝑑 (𝑉 ,𝑉𝑗 ) = |𝑈 | ≤ 𝑗 . If 𝑢∗ ∈ 𝑈 ,

all the multisets contributed by 𝑢∗ are empty in 𝑉𝑗 due to the

monotonicity and the fact that we break the tie by choosing the

instance with the smallest size, i.e., for any 𝑥 ∈
(U
≤ℓ
)
such that

there exists 𝑢 ∈ 𝑈 ,𝑢 ∈ 𝑥 , we have 𝑉 (𝑥) = ∅. Therefore, 𝑉𝑗 ⪯ 𝑉 ′.
Moreover, 𝑑 (𝑉 ′,𝑉𝑗 ) ≤ |𝑈 | ≤ 𝑗 , thus ˇ𝑓 (𝑉 ′, 𝑗) ≤ 𝑓 (𝑉𝑗 ) = ˇ𝑓 (𝑉 , 𝑗). If
𝑢∗ ∉ 𝑈 , construct �̃� ′

𝑗
from𝑉 ′ by setting all the multisets contributed

by any user 𝑢 ∈ 𝑈 as empty set, i.e., set 𝑉 (𝑥) = ∅ for all 𝑥 ∈
(U
≤ℓ
)

such that there exists 𝑢 ∈ 𝑈 ,𝑢 ∈ 𝑥 . We have �̃� ′
𝑗
⪯ 𝑉𝑗 , �̃�

′
𝑗
⪯ 𝑉 ′

and 𝑑 (𝑉 ′, �̃� ′
𝑗
) ≤ |𝑈 | ≤ 𝑗 . Therefore, ˇ𝑓 (𝑉 ′, 𝑗) ≤ 𝑓 (�̃� ′

𝑗
) ≤ 𝑓 (𝑉𝑗 ) =

ˇ𝑓 (𝑉 , 𝑗). □

Lemma 4.2. Given an instance 𝑉 , ShiftedInverse preserves 𝜀-
differential privacy, and with probability at least 1 − 𝛽 , the output
𝑀 (𝑉 ) satisfies 𝑠 (𝑉 ,𝑀 (𝑉 )) ≥ −𝜏 , i.e.,

ˇ𝑓 (𝑉 , 2𝜏) ≤ 𝑀 (𝑉 ) ≤ 𝑓 (𝑉 ) .

Proof. Follows from Theorem 3.2 and Lemma 4.1. □

Lemma 4.3. If for any instance 𝑉 , there exists an instance 𝑉 ⪯ 𝑉

such that 𝑑 (𝑉 ,𝑉 ) + 1 ≤ 𝜌 and

𝑓 (𝑉 ) − ˇ𝑓 (𝑉 , 2𝜏0) ≤ 𝑐 · DS(𝑉 )
for some 𝑐 , ShiftedInverse is (𝜌, 2𝑐)-down neighborhood optimal.

Proof. Let𝑉 be the instance. On the one hand, by Theorem 3.4,

L(𝑉 , 𝜌) ≥ 1

2

DS
(𝜌−1) (𝑉 ) ≥ 1

2

DS(𝑉 ) .

On the other hand, by Lemma 4.2, with probability at least
2

3
,

|𝑀 (𝑉 ) − 𝑓 (𝑉 ) | ≤ 𝑓 (𝑉 ) − ˇ𝑓 (𝑉 , 2𝜏0) ≤ 𝑐 · DS(𝑉 ).
Therefore, |𝑀 (𝑉 ) − 𝑓 (𝑉 ) | ≤ 2𝑐 · L(𝑉 , 𝜌) and the algorithm is

(𝜌, 2𝑐)-down neighborhood optimal. □
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Theorem 4.4. For anymonotonic 𝑓 , ShiftedInverse is (2𝜏0, 4𝜏0)-
down neighborhood optimal.

Proof. Given the instance𝑉2𝜏0
, denote𝑈 as the set of users such

that 𝑑 (𝑉 ,𝑉2𝜏0
) = |𝑈 |. Assume an arbitrary permutation is given

for the users in𝑈 , denoted by {𝑢1, ..., 𝑢 |𝑈 |}. A path of neighboring

instances from 𝑉 to 𝑉2𝜏0
can be constructed as follows. Let 𝑉0 = 𝑉 .

For 𝑖 = 1, ..., |𝑈 |,𝑉𝑖 is the instance constructed from𝑉𝑖−1 by setting

all the multisets contributed by 𝑢𝑖 as empty set, so that 𝑉 |𝑈 | = 𝑉2𝜏0
.

For any neighboring instance 𝑉𝑖−1 ∼ 𝑉𝑖 , 𝑖 = 1, ..., |𝑈 |, we have

DS(𝑉𝑖−1) ≥ 𝑓 (𝑉𝑖−1) − 𝑓 (𝑉𝑖 ) .

Therefore,

𝑓 (𝑉 ) − ˇ𝑓 (𝑉 , 2𝜏0) =
|𝑈 |∑
𝑖=1

𝑓 (𝑉𝑖−1) − 𝑓 (𝑉𝑖 ) ≤ |𝑈 | · max

𝑖=1,..., |𝑈 |
DS(𝑉𝑖−1) .

Let 𝑉 ∈ {𝑉0, ...,𝑉 |𝑈 |−1
} be the one with the largest downward

local sensitivity, we have 𝑑 (𝑉 ,𝑉 ) + 1 ≤ |𝑈 | ≤ 2𝜏0 and 𝑓 (𝑉 ) −
ˇ𝑓 (𝑉 , 2𝜏0) ≤ |𝑈 | ·DS(𝑉 ) ≤ 2𝜏0 ·DS(𝑉 ). The algorithm thus achieves

(2𝜏0, 4𝜏0)-down neighborhood optimality by Lemma 4.3. □

4.3 Approximate Shifted Inverse
The bottleneck of ShiftedInverse is the computation of the

ˇ𝑓 (𝑉 , 𝑗)’s.
In fact, as we will see, even for the counting function with ℓ = 2,

computing
ˇ𝑓 (𝑉 , 𝑗) is NP-hard, so implementing ShiftedInverse

exactly in general takes |𝑉 |𝑂 (log𝐷/𝜀)
time. By digesting the analy-

sis in Section 4.2, we observe that Lemma 4.2 and 4.3 still hold even

with some approximate
ˇ𝑓 (𝑉 , 𝑗), denoted by

˜𝑓 (𝑉 , 𝑗), as long as the

following two conditions are met:

(1) (Smoothness) For any 𝑗 and any neighboring instances 𝑉 ∼
𝑉 ′ where 𝑉 ′ ⪯ 𝑉 ,

˜𝑓 (𝑉 , 𝑗 + 1) ≤ ˜𝑓 (𝑉 ′, 𝑗) ≤ ˜𝑓 (𝑉 , 𝑗).
(2) (Neighborhood approximability) There exist 𝜌, 𝑐 such that

for any instance 𝑉 , there exists an instance 𝑉 ⪯ 𝑉 such that

𝑑 (𝑉 ,𝑉 ) + 1 ≤ 𝜌 and 𝑓 (𝑉 ) − ˜𝑓 (𝑉 , 2𝜏0) ≤ 𝑐 · DS(𝑉 ).
In particular, smoothness ensures that the sensitivity of 𝑠 (·, 𝑟 ) is

1 (Lemma 4.1), and neighborhood approximability leads to down

neighborhood optimality (Lemma 4.3). We denote the approximate

version of our mechanism ApproxShiftedInverse, which uses

some
˜𝑓 (𝑉 , 𝑗) in place of

ˇ𝑓 (𝑉 , 𝑗).

Lemma 4.5. For any monotonic 𝑓 and any ˜𝑓 (𝑉 , 𝑗) satisfying the
smoothness and neighborhood approximability conditions, Approx-
ShiftedInverse preserves 𝜀-DP and is (𝜌, 2𝑐)-down neighborhood
optimal.

Proof. Follows the same proofs as for Lemma 4.2 and 4.3. □

5 SPECIFIC FUNCTIONS
For an arbitrary monotonic 𝑓 , ShiftedInverse runs in |𝑉 |𝑂 (𝜏)
time and is (𝑂 (𝜏0),𝑂 (𝜏0))-down neighborhood optimal. In this

section, we consider a number of specific monotonic functions. For

each case, we show how to reduce the running time to polynomial

and/or further improve the optimality.

5.1 Count/Sum
The sum function is 𝑓 (𝑉 ) = ∑

𝑡 ∈𝑆 (𝑉 ) 𝑡 . Note that count is a special
case of sum where 𝑡 = 1 for all 𝑡 . Writing𝜓 (𝑥) = ∑

𝑡 ∈𝑉 (𝑥) 𝑡 , then
𝑓 (𝑉 ) = ∑

𝑥 𝜓 (𝑥).

The case ℓ = 1. For ℓ = 1, all 𝑥 ∈ X𝑉 are singleton sets, so

removing any user 𝑢 just reduces 𝑓 (𝑉 ) by𝜓 ({𝑢}). Then ˇ𝑓 (𝑉 , 𝑗) is
simply 𝑓 (𝑉 ) minus the sum of the 𝑗 largest𝜓 (𝑥)’s.

Theorem 5.1. For the sum function with ℓ = 1, ShiftedInverse
runs in polynomial time and is (1, 4𝜏0)-down neighborhood optimal.

Proof. Running time is obvious. To see that the optimality im-

proves over the generic guarantee in Theorem 4.4, we use Lemma

4.3 directly with 𝜌 = 1. Consider the instance 𝑉 = 𝑉 . We have

𝑑 (𝑉 ,𝑉 ) = 0 and DS(𝑉 ) = max𝑥 𝜓 (𝑥). Moreover, according to the

definitions of
ˇ𝑓 (𝑉 , 2𝜏0) and DS(𝑉 ), we have
𝑓 (𝑉 ) − ˇ𝑓 (𝑉 , 2𝜏0) ≤ 2𝜏0 · DS(𝑉 ) .

Therefore, the algorithm achieves (1, 4𝜏0)-down neighborhood op-

timality. □

The case ℓ ≥ 2. Computing
ˇ𝑓 (𝑉 , 𝑗) is NP-hard for the edge

counting problem, i.e., even for the special ℓ = 2 and𝜓 (𝑥) = 1 for

all 𝑥 ∈ X𝑉 (so 𝑓 (𝑉 ) = |X𝑉 | = |𝑉 |), by a reduction from the vertex

cover problem: Note that
ˇ𝑓 (𝑉 , 𝑗) is |X𝑉 | minus the largest number

of edges that can be covered by 𝑗 vertices. If we can compute
ˇ𝑓 (𝑉 , 𝑗)

in polynomial time, then we can find the minimum vertex cover by

finding the smallest 𝑗 such that
ˇ𝑓 (𝑉 , 𝑗) = 0.

Thus, for ℓ ≥ 2, instead of trying to find
ˇ𝑓 (𝑉 , 𝑗) exactly, we solve

for an approximate
˜𝑓 (𝑉 , 𝑗) using linear programming. For 𝑗 > 2𝜏 ,

set
˜𝑓 (𝑉 , 𝑗) = 0. For 𝑗 ∈ [2𝜏], we assign a weight𝑤𝑢 for each user

𝑢 ∈ U𝑉 , and a weight 𝑤𝑥 for each subset of users 𝑥 ∈ X𝑉 . Then
the linear program LP(𝑉 , 𝑗) is defined as follows:

minimize
˜𝑓 (𝑉 , 𝑗) =

∑
𝑥 ∈X𝑉

(1 −𝑤𝑥 )𝜓 (𝑥)

subject to 𝑤𝑥 ≤
∑
𝑢∈𝑥

𝑤𝑢 , ∀𝑥 ∈ X𝑉 ,∑
𝑢∈U𝑉

𝑤𝑢 ≤ 𝑗,

0 ≤ 𝑤𝑢 ≤ 1, ∀𝑢 ∈ U𝑉 ,

0 ≤ 𝑤𝑥 ≤ 1, ∀𝑥 ∈ X𝑉 .
This LP is similar to those used in LP-based approximation algo-

rithms for vertex cover and set cover problems [16], but for this to

work under ApproxShiftedInverse, the key is to show it satisfies

the smoothness and neighborhood approximability conditions.

Lemma 5.2. The ˜𝑓 (𝑉 , 𝑗) defined by the LP above is smooth.

Proof. Let𝑢∗ ∈ U be the user such that𝑉 ∼𝑢∗ 𝑉 ′. Consider any
integer 𝑗 . On the one hand, given the optimal solution to LP(𝑉 ′, 𝑗),
we can construct a feasible solution to LP(𝑉 , 𝑗+1) by setting𝑤𝑢∗ = 1

and 𝑤𝑥 = 1 for all 𝑥 ∈ X𝑉 such that 𝑢∗ ∈ 𝑥 , and copying all

other weights. The objective value is no more than
˜𝑓 (𝑉 ′, 𝑗), thus,

˜𝑓 (𝑉 , 𝑗+1) ≤ ˜𝑓 (𝑉 ′, 𝑗). On the other hand, given the optimal solution

to LP(𝑉 , 𝑗), we can construct a feasible solution to LP(𝑉 ′, 𝑗) by
copying the weights 𝑤𝑢 ’s for the users 𝑢 ∈ U𝑉 ′ and 𝑤𝑥 ’s for the
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Algorithm 3: Computing
ˇ𝑓 (𝑉 , 𝑗)’s for 𝑘-selection with

ℓ = 1

Input :The instance 𝑉 , and the parameters 𝑘 and 𝜏

Output : ˇ𝑓𝑘 (𝑉 , 𝑗)’s for 𝑗 ∈ [2𝜏]
count(𝑢) ← 0 for all 𝑢 ∈ U𝑉 ,

ˇ𝑓𝑘 (𝑉 , 𝑗) ← 0 for 𝑗 ∈ [2𝜏];
𝑗 ← 0;

for 𝑖 ← 1, . . . , |𝑉 | do
if sum of all but the largest 𝑗 counters count(𝑢) ≤ 𝑘 − 1

then
ˇ𝑓𝑘 (𝑉 , 𝑗) ← 𝑡 (𝑖) ;

else
𝑗 ← 𝑗 + 1;

if 𝑗 > 2𝜏 then
return ˇ𝑓𝑘 (𝑉 , 𝑗), 𝑗 ∈ [2𝜏]

else
ˇ𝑓𝑘 (𝑉 , 𝑗) ← 𝑡 (𝑖) ;

end
end
Increment count(𝑢) for the user 𝑢 contributing 𝑡 (𝑖) ;

end

subsets of users 𝑥 ∈ X𝑉 ′ . The objective value is no more than

˜𝑓 (𝑉 , 𝑗). Therefore, ˜𝑓 (𝑉 ′, 𝑗) ≤ ˜𝑓 (𝑉 , 𝑗). □

For neighborhood approximability, we prove a slightly more

general result:

Lemma 5.3. For any instance𝑉 and any integer 𝑗 ∈ [2𝜏0], we have
𝑓 (𝑉 ) − ˜𝑓 (𝑉 , 𝑗) ≤ 𝑗 · DS(𝑉 ).

Proof. Given a feasible solution to LP(𝑉 , 𝑗), we have

𝑓 (𝑉 ) − ˜𝑓 (𝑉 , 𝑗) =
∑

𝑥 ∈X𝑉
𝑤𝑥 ·𝜓 (𝑥) ≤

∑
𝑥 ∈X𝑉

∑
𝑢∈𝑥

𝑤𝑢 ·𝜓 (𝑥)

=
∑

𝑢∈U𝑉

𝑤𝑢 ·
∑
𝑥 ∋𝑢

𝜓 (𝑥) ≤ 𝑗 · DS(𝑉 ).

□

The running time of solving a linear program is polynomial

in the number of variables, which is 𝑂 (ℓ · |𝑉 |) in our case, so

the algorithm runs in polynomial time. Then down neighborhood

optimality follows by setting 𝑗 = 2𝜏0 in Lemma 5.3:

Theorem 5.4. For the sum function with any ℓ ≥ 2, Approx-
ShiftedInverse runs in polynomial time and is (1, 4𝜏0)-down neigh-
borhood optimal.

5.2 𝑘-Selection
Sort 𝑆 (𝑉 ) in a descending order as 𝑡 (1) , . . . , 𝑡 ( |𝑉 |) , then the𝑘-selection
problem is to return 𝑓𝑘 (𝑉 ) = 𝑡 (𝑘) . Define 𝑡 (𝑘) := 0 for 𝑘 > |𝑉 |. Let
𝑆𝑖 (𝑉 ) = {𝑡 (1) , . . . , 𝑡 (𝑖) }. As we go from 𝑖 = 1 to 𝑖 = |𝑉 |, ˇ𝑓𝑘 (𝑉 , 𝑗)
corresponds to the last 𝑖 such that all but 𝑘 − 1 tuples in 𝑆𝑖 (𝑉 ) are
contributed by at most 𝑗 users. Flipping the question around, it

boils down to the following decision problem: Can we cover 𝑆𝑖 (𝑉 )
with 𝑗 users while leaving at most 𝑘 − 1 tuples uncovered?

The case ℓ = 1. For ℓ = 1, the contributions of the users are

disjoint. Then above decision problem can be answered easily by

simply picking the 𝑗 users with the largest contributions in 𝑆𝑖 (𝑉 ).
In fact, we can compute all

ˇ𝑓𝑘 (𝑉 , 𝑗), 𝑗 = 0, 1, . . . , 2𝜏 incrementally

while making a single pass over 𝑆 (𝑉 ), as shown in Algorithm 3. The

algorithmmaintains a counter for each user𝑢 ∈ U𝑉 for the number

of tuples in 𝑆𝑖 (𝑉 ) contributed by 𝑢. For each 𝑖 , we check if the sum

of all but the largest 𝑗 counters is at most 𝑘 − 1. If yes, namely, the

largest 𝑖−1 tuples can be covered by at most 𝑗 users, then ˇ𝑓𝑘 (𝑉 , 𝑗) is
at most 𝑡 (𝑖) . Otherwise, we have found ˇ𝑓𝑘 (𝑉 , 𝑗) and continue onto

ˇ𝑓𝑘 (𝑉 , 𝑗 + 1). By maintaining all the counters in a binary search tree,

each iteration of Algorithm 3 can be implemented in 𝑂 (log |𝑉 |)
time, so the total running time is 𝑂 ( |𝑉 | log |𝑉 |).

Theorem 5.5. For 𝑘-selection with ℓ = 1, ShiftedInverse runs
in polynomial time and is (2𝜏0, 4𝜏0)-down neighborhood optimal. For
𝑘 = 1 (i.e., finding the maximum), it is (2𝜏0+1, 2)-down neighborhood
optimal.

Proof. The first claim follows Theorem 4.4. For the second

claim, consider the instance 𝑉 ⪯ 𝑉 constructed as follows. Given

the instance 𝑉2𝜏0
, 𝑉 is constructed from 𝑉2𝜏0

by adding back the

largest element in 𝑆 (𝑉 ) to the original multiset. We have 𝑑 (𝑉 ,𝑉 ) ≤
𝑑 (𝑉 ,𝑉2𝜏0

) ≤ 2𝜏0 and

𝑓1 (𝑉 ) − ˇ𝑓1 (𝑉 , 2𝜏0) ≤ DS(𝑉 ) .
Therefore, the algorithm achieves (2𝜏0 + 1, 2)-down neighborhood

optimality. □

Remark. The 𝑘-selection problem has been studied in the tuple-

DP model, which is the special case of user-DP with ℓ = 1 and

|𝑉 (𝑥) | ∈ {0, 1}. A number of techniques, including inverse sensi-

tivity [3, 23], smooth sensitivity [17], and binary search [13], can

achieve an optimal rank error (which is the difference between 𝑘

and the rank of the returned element) of 𝑂 ( 1𝜀 log𝐷). Note that for
the 𝑘-selection problem, 𝜌 under tuple-DP is exactly the rank error.

So our result can be considered as a generalization of these results

to user-DP. A worst-case rank error guarantee is impossible to

achieve under user-DP, since removing one user’s data may affect

the rank of an element arbitrarily. Down neighborhood optimality

is thus a more appropriate, instance-specific measure of optimality.

The case ℓ ≥ 2. For ℓ ≥ 2, the decision problem above is at least

as difficult as vertex cover. Instead of trying to solve it exactly, we

use the following LP relaxation, where we assign a weight 𝑤𝑢 to

each user 𝑢 and𝑤𝑡 to each tuple 𝑡 :

minimize VC𝑖 (𝑉 ) =
∑

𝑢∈U𝑉

𝑤𝑢

subject to

∑
𝑢∈𝑉 −1 (𝑡 )

𝑤𝑢 ≥ 𝑤𝑡 , ∀𝑡 ∈ 𝑆 (𝑉 ),∑
𝑡 ∈𝑆𝑖 (𝑉 )

𝑤𝑡 ≥ 𝑖 − 𝑘 + 1

0 ≤ 𝑤𝑢 ≤ 1, ∀𝑢 ∈ U𝑉 ,

0 ≤ 𝑤𝑡 ≤ 1, ∀𝑡 ∈ 𝑆 (𝑉 ).
Then we compute

˜𝑓𝑘 (𝑉 , 𝑗) = min{𝑡 (𝑖+1) | VC𝑖 (𝑉 ) ≤ 𝑗},
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for 𝑗 ∈ [2𝜏], and set
˜𝑓𝑘 (𝑉 , 𝑗) = 0 for 𝑗 > 2𝜏 . The total running time

is clearly polynomial; to make it more efficient, we can do a binary

search over 𝑖 to find each
˜𝑓𝑘 (𝑉 , 𝑗).

The smoothness proof is similar to the LP for sum/count.

Lemma 5.6. For any 𝑘, 𝑗 , and any neighboring instance 𝑉 ∼ 𝑉 ′

where 𝑉 ′ ⪯ 𝑉 , ˜𝑓𝑘 (𝑉 , 𝑗 + 1) ≤ ˜𝑓𝑘 (𝑉 ′, 𝑗) ≤ ˜𝑓𝑘 (𝑉 , 𝑗).

Proof. Let 𝑢∗ ∈ U be the user such that 𝑉 ∼𝑢∗ 𝑉 ′. The lemma

is trivial for 𝑗 > 2𝜏 . Consider any integer 𝑗 ∈ [2𝜏]. On the one

hand, given we can cover 𝑖 − 𝑘 + 1 elements in 𝑆𝑖 (𝑉 ) with no more

than 𝑗 users where ˜𝑓𝑘 (𝑉 , 𝑗) = 𝑡 (𝑖+1) , we can cover a subset of these

elements with no more than 𝑗 users, therefore, ˜𝑓𝑘 (𝑉 ′, 𝑗) ≤ ˜𝑓𝑘 (𝑉 , 𝑗).
On the other hand, given we can cover 𝑖 − 𝑘 + 1 elements in 𝑆𝑖 (𝑉 ′)
with no more than 𝑗 users where ˜𝑓𝑘 (𝑉 ′, 𝑗) = 𝑡 ′(𝑖+1) . By setting

𝑤𝑢∗ = 1, we can ensure all tuples 𝑡 contributed by 𝑢 are covered,

and
˜𝑓𝑘 (𝑉 , 𝑗 + 1) ≤ ˜𝑓𝑘 (𝑉 ′, 𝑗). □

The proof of neighborhood approximability is more technical,

since now
˜𝑓𝑘 (𝑉 , 𝑗) is not the direct solution of the LP. It turns out

that we lose a factor of ℓ compared with ShiftedInverse, which
is the price for polynomial time.

Lemma 5.7. For any instance 𝑉 , we have 𝑓𝑘 (𝑉 ) − ˜𝑓𝑘 (𝑉 , 2𝜏0) ≤
𝑑 (𝑉 ,𝑉 ) · DS(𝑉 ) for some instance 𝑉 ⪯ 𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤ 2ℓ𝜏0. When
𝑘 = 1, we have 𝑓1 (𝑉 ) − ˜𝑓1 (𝑉 , 2𝜏0) ≤ DS(𝑉 ) for some instance 𝑉 ⪯
𝑉 ,𝑑 (𝑉 ,𝑉 ) ≤ 2ℓ𝜏0.

Proof. We first prove
˜𝑓𝑘 (𝑉 , 2𝜏0) ≥ ˇ𝑓𝑘 (𝑉 , 2ℓ𝜏0 + 1), so that the

first claim can be derived using a similar proof as Theorem 4.4.

For any LP𝑖 (𝑉 ), let {𝑤∗𝑡 }𝑡 and {𝑤∗𝑢 }𝑢 be the optimal solutions.

To prove the target claim, it suffices to show that for any 𝑖 , we can

find ℓ ·∑𝑤∗𝑢 + 1 users to cover at least

∑
𝑤∗𝑡 ≥ 𝑖 − 𝑘 + 1 tuples in

𝑆𝑖 (𝑉 ). We separate the users into two subsets according to whether

its weight is heavy (≥ 1

ℓ ) or not, i.e., let

𝑈1 (𝑉 ) = {𝑢 ∈ U𝑉 : 𝑤∗𝑢 ≥
1

ℓ
},

𝑈2 (𝑉 ) = U𝑉 −𝑈1 (𝑉 ).
Similarly, we separate the elements according to whether it is con-

tributed by some heavy user or not:

𝑆1

𝑖 (𝑉 ) = {𝑡 ∈ 𝑆𝑖 (𝑉 ) : ∃𝑢 ∈ 𝑈1 (𝑉 ), 𝑢 ∈ 𝑉 −1 (𝑡)},

𝑆2

𝑖 (𝑉 ) = 𝑆𝑖 (𝑉 ) − 𝑆1

𝑖 (𝑉 ).
By definition, it is trivial to see that

|𝑈1 (𝑉 ) | ≤ ℓ ·
∑

𝑢∈𝑈1 (𝑉 )
𝑤∗𝑢 , (4)

𝑤∗𝑡 < 1,∀𝑡 ∈ 𝑆2

𝑖 (𝑉 ) (5)

Therefore, we first select all the users in𝑈1 (𝑉 ) so that all the ele-
ments in 𝑆1

𝑖
are well covered. By (4), the remaining problem is to

select a subset of users 𝑈 ∗ ⊆ 𝑈2 (𝑉 ) satisfying the following two

properties:

(1) |𝑈 ∗ | ≤ ℓ ·∑𝑢∈𝑈2 (𝑉 ) 𝑤
∗
𝑢 + 1.

(2) |⋃𝑢∈𝑈 ∗ 𝑆 (𝑉 ,𝑢) | ≥
∑
𝑡 ∈𝑆2

𝑖
(𝑉 ) 𝑤

∗
𝑡 .

We specially define

Count(𝑢, 𝑆2

𝑖 (𝑉 )) = |𝑆 (𝑉 ,𝑢)
⋂

𝑆2

𝑖 (𝑉 ) |,

representing the number of elements in 𝑆2

𝑖
(𝑉 ) contributed by𝑢, and

select the first ⌈ℓ ·∑𝑢∈𝑈2 (𝑉 ) 𝑤
∗
𝑢⌉ userswithmaximumCount(𝑢, 𝑆2

𝑖
(𝑉 ))

as𝑈 ∗. The first property is satisfied naturally. For the second one,

by (5), we have∑
𝑡 ∈𝑆2

𝑖
(𝑉 )

𝑤∗𝑡 =
∑

𝑢∈𝑈2 (𝑉 )

(
𝑤∗𝑢 · Count(𝑢, 𝑆2

𝑖 (𝑉 ))
)
, (6)

so that ����� ⋃
𝑢∈𝑈 ∗

𝑆 (𝑉 ,𝑢)
����� ≥ ∑

𝑢∈𝑈 ∗

(
1

ℓ
· Count(𝑢, 𝑆2

𝑖 (𝑉 ))
)

(7)

≥
∑

𝑢∈𝑈2 (𝑉 )

(
𝑤∗𝑢 · Count(𝑢, 𝑆2

𝑖 (𝑉 ))
)
. (8)

The first inequality is because each element is contributed by at

most ℓ users. The second one is because |𝑈 ∗ | ≥ ℓ · ∑𝑢∈𝑈2 (𝑣) 𝑤
∗
𝑢

and each𝑤∗𝑢 is at most
1

ℓ . Combine (6) and (8), we show the second

property is satisfied.

For the second sentence, when 𝑘 = 1, given the instance𝑉 (2ℓ𝜏0),
we can construct the instance 𝑉 ⪯ 𝑉 by adding back the largest

element in 𝑆 (𝑉 ), so that

𝑓1 (𝑉 ) − ˜𝑓1 (𝑉 , 2𝜏0) ≤ 𝑓1 (𝑉 ) − ˇ𝑓1 (𝑉 , 2ℓ𝜏0) ≤ DS(𝑉 ),

and 𝑑 (𝑉 ,𝑉 ) ≤ 𝑑 (𝑉 ,𝑉 (2ℓ𝜏0)) ≤ 2ℓ𝜏0. □

Theorem 5.8. For𝑘-selectionwith ℓ ≥ 2, ApproxShiftedInverse
runs in polynomial time and is (2ℓ𝜏0+1, 4ℓ𝜏0+2)-down neighborhood
optimal. For 𝑘 = 1, it is (2ℓ𝜏0 + 1, 2)-down neighborhood optimal.

5.3 Frequency Moments
In this and the next two subsections, we consider various frequency

moments. For these problems, the ordering of the tuples in 𝑆 (𝑉 ) is
not important, i.e., they are categorical data. For each 𝑖 , let𝜓𝑖 (𝑥) be
the frequency (multiplicity) of 𝑖 in 𝑉 (𝑥) and𝜓𝑖 (𝑉 ) =

∑
𝑥 ∈X𝑉 𝜓𝑖 (𝑥)

be the frequency of 𝑖 in 𝑆 (𝑉 ). For an integer 𝑘 , the 𝑘-th frequency

moment is

𝐹𝑘 (𝑉 ) =
∑

𝑖∈𝑆 (𝑉 )
𝜓𝑖 (𝑉 )𝑘 .

Note that 𝐹1 (𝑉 ) = |𝑉 |, which has been discussed in Section 5.1.

Below, we show how to reduce 𝐹𝑘 (𝑉 ) to a sum problem for any

2 ≤ 𝑘 < ∞. Consider 𝐹2 (𝑉 ) first. We expand each𝜓𝑖 (𝑉 )2 as

𝜓𝑖 (𝑉 )2 =
©­«
∑

𝑥 ∈X𝑉
𝜓𝑖 (𝑥)

ª®¬
2

=
∑

𝑥 ∈X𝑉
𝜓𝑖 (𝑥)2 +

∑
𝑥1,𝑥2∈X𝑉 ,𝑥1≠𝑥2

2𝜓𝑖 (𝑥1)𝜓𝑖 (𝑥2).

Then we construct an instance𝑉sum for the sum problem as follows.

For every 𝑥 ∈ X𝑉 and each 𝑖 ∈ 𝑉 (𝑥), we put𝜓𝑖 (𝑥)2 into 𝑉sum (𝑥);
for every 𝑥1, 𝑥2 ∈ X𝑉 , 𝑥1 ≠ 𝑥2, and each 𝑖 ∈ 𝑉 (𝑥1) ∩ 𝑉 (𝑥2), we
put 2𝜓𝑖 (𝑥1) ·𝜓𝑖 (𝑥2) into 𝑉sum (𝑥1 ∪ 𝑥2). It can be verified that (1)

𝐹2 (𝑉 ) =
∑
𝑥 𝑉sum (𝑥), and (2) 𝑉 ∼ 𝑉 ′ iff 𝑉sum ∼ 𝑉 ′

sum
. Therefore,

both privacy and optimality carry over from the sum problem to
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computing 𝐹2 (𝑉 ). Note that, however, ℓ doubles after this reduction,
but 𝜌 and 𝑐 are independent of ℓ anyway.

This technique easily generalizes to any constant 𝑘 ≥ 2. 𝑉sum

will be defined over all the unions of up to 𝑘 subsets of users 𝑥 ∈ X𝑉 .
Its size is still polynomial in |𝑉 | for constant 𝑘 .

5.4 Distinct Count
Distinct count is a special frequencymoment 𝐹0 (𝑉 ) = |Supp(𝑆 (𝑉 )) |.
It is monotonic so ShiftedInverse is (2𝜏0, 4𝜏0)-down neighbor-

hood optimal, but it runs in super-polynomial time. Below we

describe an instantiation of ApproxShiftedInverse for this prob-

lem.

For the distinct count problem,
ˇ𝑓 (𝑉 , 𝑗) is the smallest number

of distinct values in 𝑆 (𝑉 ) after removing 𝑗 users from 𝑉 . We will

design a linear program to compute an approximate
˜𝑓 (𝑉 , 𝑗). We

could ignore the distinct requirement and use the same LP as that

for the count problem, but this leads to a badly underestimated

˜𝑓 (𝑉 , 𝑗). Observing that the distinct count only decreases when all

the copies of a distinct value have been removed, we introduce a

weight 𝑤𝑖 for each distinct value 𝑖 ∈ 𝑆 (𝑉 ), representing whether

any copy of 𝑖 exists. The LP is defined as follows:

minimize
˜𝑓 (𝑉 , 𝑗) =

∑
𝑖∈[𝑘 ]

1 −𝑤𝑖

subject to 𝑤𝑖 ≤ 𝑤𝑡 , ∀𝑡 = 𝑖,

𝑤𝑡 ≤
∑
𝑢∈𝑥

𝑤𝑢 , ∀𝑡 ∈ 𝑉 (𝑥), 𝑥 ∈ X𝑉 ,∑
𝑢∈U𝑉

𝑤𝑢 ≤ 𝑗,

0 ≤ 𝑤𝑢 ≤ 1, ∀𝑢 ∈ U𝑉 ,

0 ≤ 𝑤𝑡 ≤ 1, ∀𝑡 ∈ 𝑉 (𝑥), 𝑥 ∈ X𝑉 ,
0 ≤ 𝑤𝑖 ≤ 1, ∀𝑖 ∈ 𝑆 (𝑉 ) .

We can still show that this LP is smooth, which ensures the

privacy of ApproxShiftedInverse.

Lemma 5.9. For any 𝑗 and any neighboring instance 𝑉 ∼ 𝑉 ′ where
𝑉 ′ ⪯ 𝑉 , ˜𝑓 (𝑉 , 𝑗 + 1) ≤ ˜𝑓 (𝑉 ′, 𝑗) ≤ ˜𝑓 (𝑉 , 𝑗).

Proof. Similar to that of Lemma 5.2. □

Unfortunately, we do not have a neighborhood optimality result

for this instantiation of ApproxShiftedInverse for the distinct

count problem. Nevertheless, it performs very well in the experi-

ments (see Section 6).

5.5 Maximum Frequency
Themaximum frequency is also a special frequencymoment 𝐹∞ (𝑉 ) =
max𝑖 𝜓𝑖 (𝑉 ). It is a monotonic function so ShiftedInverse can

achieve (2𝜏0, 4𝜏0)-down neighborhood optimal, but it runs in super-

polynomial time. To reduce the running time, we use the following

linear program to compute
˜𝑓 (𝑉 , 𝑗) and apply ApproxShiftedInverse:

minimize
˜𝑓 (𝑉 , 𝑗) = 𝑦

subject to

∑
𝑥 ∈X𝑉

(1 −𝑤𝑥 )𝜓𝑖 (𝑥) ≤ 𝑦, ∀𝑖 ∈ 𝑆 (𝑉 ),

𝑤𝑥 ≤
∑
𝑢∈𝑥

𝑤𝑢 , ∀𝑥 ∈ X𝑉 ,∑
𝑢∈U𝑉

𝑤𝑢 ≤ 𝑗,

0 ≤ 𝑤𝑢 ≤ 1, ∀𝑢 ∈ U𝑉 ,

0 ≤ 𝑤𝑥 ≤ 1, ∀𝑥 ∈ X𝑉 .

We can show that
˜𝑓 (𝑉 , 𝑗) is smooth, so ApproxShiftedInverse

satisfies 𝜀-DP:

Lemma 5.10. For any 𝑗 and any neighboring instance𝑉 ∼ 𝑉 ′,𝑉 ′ ⪯
𝑉 , ˜𝑓 (𝑉 , 𝑗 + 1) ≤ ˜𝑓 (𝑉 ′, 𝑗) ≤ ˜𝑓 (𝑉 , 𝑗).

Proof. Similar to that of Lemma 5.2. □

We do not have a neighborhood optimality result for this in-

stantiation of ApproxShiftedInverse for the maximum frequency

problem.

The (𝜌, 𝑐)-down neighborhood optimality for various functions

is summarized in Table 1.

6 EXPERIMENTS
We conducted experiments on the TPC-H benchmark and real-

world network data from SNAP [14]. We tested (Approx)Shifted-
Inverse on all the functions covered in Section 5. For comparison,

we also tested ZetaSQL [27], R2T [10], and the RecursiveMechanism

(RM) [7]. These mechanisms do not support all the functions and

all ℓ’s, which will be pointed out as we present the experimental

results for each function.

6.1 Datasets and Functions
The TPC-H benchmark consists on eight relations: Region(RK),
Nation(RK,NK),Customer(NK,CK),Orders(CK,OK),Supplier
(NK,SK),Part(PK),PartSupp(SK,PK), Lineitem(SK,PK,OK,LN).

We used datasets with scale factors ranging from 1/8 to 4. The

one with scale factor 1 has 1 × 10
4
suppliers, 1.5 × 10

5
customers,

and around 6 × 10
6
lineitems. We also used 4 real-world graph

datasets: Amazon, Bitcoin, Gnutella, and RoadnetTX. Ama-
zon is an Amazon product co-purchasing network. Bitcoin is a

who-trusts-whom network of people trading with Bitcoin, where

each edge is associated with a rating score in the range [−10, 10].
Gnutella is a peer-to-peer file sharing network, and RoadnetTX
is a road network of Texas. The basic information of the networks

are shown in Table 2. For these graph data, the user-DP model

degenerates into node-DP.

Sum, count, and 𝐹2. For graph data, we used edge counting 𝑞1−
and triangle counting 𝑞△ , which have ℓ = 2 and 3, respectively.

ZetaSQL and R2T require an upper bound 𝑅 on the count that each

user can contribute, while we require 𝐷 , an upper bound on the

total count. To set these parameters appropriately, we choose a

degree upper bound 𝐷
deg

for each graph as shown in Table 2. Then,

for edge counting, we set 𝑅1− = 𝐷
deg

and 𝐷1− =
|U𝑉 | ·𝐷deg

2
; for tri-

angle counting, 𝑅△ =
𝐷2

deg

2
and 𝐷△ =

|U𝑉 | ·𝐷2

deg

6
, where |U𝑉 | is the

number of nodes in the graph. Note we set 𝐷 for the worst-case sce-

nario where each node has the maximum number of edges/triangles.

If some prior knowledge about the degree distribution is known



Shifted Inverse: A General Mechanism for Monotonic Functions under User Differential Privacy CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 1: Summary of (𝜌, 𝑐)-down neighborhood optimality. The ones with ∗ can only be achieved in super-poly time.

Function 𝑓 Sum/count Maximum 𝑘-selection 𝐹𝑘 , 1 ≤ 𝑘 < ∞ 𝐹0 𝐹∞
ℓ = 1 (𝑂 (1),𝑂 (𝜏)) (𝑂 (𝜏),𝑂 (1)) (𝑂 (𝜏),𝑂 (𝜏)) (𝑂 (1),𝑂 (𝜏)) (𝑂 (𝜏),𝑂 (𝜏))∗ (𝑂 (𝜏),𝑂 (𝜏))∗
ℓ ≥ 2 (𝑂 (1),𝑂 (𝜏)) (𝑂 (ℓ𝜏),𝑂 (1)) (𝑂 (ℓ𝜏),𝑂 (ℓ𝜏)) (𝑂 (1),𝑂 (𝜏)) (𝑂 (𝜏),𝑂 (𝜏))∗ (𝑂 (𝜏),𝑂 (𝜏))∗

Table 2: Basic information of graph data.

Dataset Amazon Bitcoin Gnutella RoadnetTX
Nodes 262,000 5,880 62,600 1,380,000

Edges 900,000 35,600 148,000 1,922,000

Maximum degree 420 795 95 12

Degree bound 𝐷
deg

1,024 2,048 256 32

(e.g., Zipfian), 𝐷 can be made smaller and our mechanisms would

work better.

For TPC-H data, we chose the following five queries:

• Q12 counts the number of lineitems. For this query, we only

consider the customers as users, hence ℓ = 1. Then this query

can be instantiated in our model by setting𝑉 ({𝑢}) as the set
of lineitems belonging to 𝑢, with 𝑓 (𝑉 ) = |𝑉 |.
• Q18 returns the total quantity of lineitems purchased by all

customers. This is similar to Q12, but 𝑉 ({𝑢}) is a multiset

of quantities, and 𝑓 (𝑉 ) = ∑
𝑡 ∈𝑆 (𝑉 ) 𝑡 .

• Q5 counts the number of lineitems where the customer and

supplier are from the same nation. For this query, both cus-

tomers and suppliers are considered users, who jointly con-

tribute the lineitems, hence ℓ = 2. For each customer 𝑢 and

supplier 𝑣 , if they are from the same nation, then 𝑉 ({𝑢, 𝑣})
is the multiset of lineitems purchased by 𝑢 and supplied by

𝑣 , otherwise ∅. The function is count.

• Q7 returns the total revenue from lineitems purchased by a

customer in nation A and supplied by a supplier from nation

B. We also have ℓ = 2 for this query. For each customer 𝑢

from nation A and each supplier from nation B, 𝑉 ({𝑢, 𝑣})
is the multiset of revenues of lineitems purchased by 𝑢 and

supplied by 𝑣 . The function is sum.

• We adapted Q11 to compute its second moment 𝐹2. For this

query, 𝑉 ({𝑣}) is the brands of parts satisfying a certain con-

dition supplied by 𝑣 , and we compute 𝐹2 (𝑆 (𝑉 )), which rep-

resents the skewness of the distribution of the brands. Note

that although ℓ = 1 for the frequency moment problem, our

reduction turns it into a sum problem with ℓ = 2.

We set 𝑅 to 10
4
for counting queries and 10

6
for sum queries,

and set 𝐷 = 𝑅 · |U𝑉 |; for 𝐹2, we set 𝑅 = 10
8
and 𝐷 = 𝑅 · |U𝑉 |.

𝑘-selection. Using the same definition of 𝑉 from Q18 and Q7

above, we queried for the minimum, median
2
, 75%-percentile, and

maximum in 𝑆 (𝑉 ). In addition, we used Q9, which is interested in

the profit of each part of each supplier, i.e., 𝑉 ({𝑣}) is the multiset

of profits of the parts supplied by 𝑣 . Note that the profits can take

negative values, but they can easily be taken care of by setting the

output domain to R = [−𝐷, 𝐷]. We set 𝐷 = 10
5
for these queries.

We also ran these 𝑘-selection queries on the rating scores in the

2
Technically, the median function is not monotonic, but we can first find a privatized

|𝑉 |, and then solve the
|𝑉 |
2
-selection problem, each using a privacy budget of 𝜀/2.

Bitcoin dataset. This query has ℓ = 2 and features a small 𝐷 , as all

ratings are between −10 and 10.

Distinct count and maximum frequency. We computed the dis-

tinct count and maximum frequency on various attributes with

various predicates on the TPC-H data. The users are defined as

the suppliers or the customers (ℓ = 1), or both (ℓ = 2). For distinct

count, the upper bound 𝐷 is set based on the TPC-H specification.

For example, a date attribute takes values within a 7-year period,

so 𝐷 = 7 × 365. For maximum frequency, 𝐷 is simply set to be the

number of tuples, e.g., 6 × 10
6
for lineitems.

Experimental environment. We conducted all the experiments on

a machine with a 2.2GHz Intel Xeon CPU and 256GB memory. We

repeated each experiment 100 times. For accuracy, we removed the

best 20 and the worst 20 runs and reported the average error of the

remaining runs. For efficiency, the time limit is set to 6 hours for

each run and we reported the average running time of all runs. The

default privacy budget is 𝜀 = 1 and the failure probability is 𝛽 = 0.1.

6.2 Experimental Results
6.2.1 Sum, count, and 𝐹2. In Table 3, we reported the errors and

running times for sum, count, and 𝐹2. Recall that they are all linear

functions (𝐹2 can be reduced to a linear function), which are a spe-

cial case of monotonic functions. On these queries, all mechanisms

yield fairly accurate results, except for triangle counting on the

Gnutella graph and the 𝐹2 query. On these two queries, RM gives

good results. However, a serious issue with RM is its computational

cost. It can only complete about half of the test cases within the

6-hour time limit. We can also see that ZetaSQL performs best in

the 2 cases where ℓ = 1. However, it can does not support ℓ ≥ 2.

6.2.2 Quantile queries. For quantile queries, the only prior user-

DP mechanism is ZetaSQL, and it only supports the ℓ = 1 case. The

errors (both absolute errors and rank errors) and running times

of (Approx)ShiftedInverse and ZetaSQL are shown in Table 4.

The results indicate that (Approx)ShiftedInverse outperforms

ZetaSQL quite significantly in almost all test cases for ℓ = 1, due to

the down neighborhood optimality of our mechanism. Moreover,

when the answers are stable, i.e., changing a few users does not

change the quantile, our framework can even achieve zero error,

as shown in Q18 and Bitcoin. We also see that the running time

for maximum and minimum selection is short because of the small

size of the linear programs.

6.2.3 Distinct count. For distinct count, the only prior user-DP

mechanism is R2T. We reported the errors and running times in

Table 5. We can see that (Approx)ShiftedInverse outperforms

R2T in terms of accuracy by quite some margin, although it spends

more time in solving the LPs.

6.2.4 Maximum frequency. For maximum frequency, the only prior

user-DP mechanism is ZetaSQL but it only supports the ℓ = 1
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Table 3: Comparison of (Approx)ShiftedInverse, R2T, RM and ZetaSQL on sum, count, and 𝐹2.

Dataset Amazon Gnutella RoadnetTX TPC-H

Function type Count Count Count Count Sum 𝐹2

Query Edge Triangle Edge Triangle Edge Triangle Q12 Q5 Q18 Q7 Q11

Query result

Value 900,000 718,000 148,000 2,020 1,920,000 82,900 6,000,000 240,000 153,000,000 66,500,000 39,600,000

Time(s) 0.589 6.04 0.0902 0.410 1.30 9.38 1.49 2.10 1.86 1.63 0.757

(Approx)ShiftedInverse
Relative error(%) 0.884 1.55 1.08 13.7 0.0138 0.216 0.00538 0.599 0.113 0.514 15.7

Time(s) 262 1,360 41.4 1.81 549 29.5 20.3 51.4 61.2 487 142

R2T

Relative error(%) 0.448 0.993 1.12 10.2 0.0112 0.0972 0.00923 1.270 0.105 1.51 40.8

Time(s) 20.4 26.0 3.05 1.08 37.2 11.6 22.3 8.00 64.5 58.1 3.61

RM

Relative error(%)

Over time limit

1.49

Over time limit

0.0321 0.000504 0.0726 0.0206

Over time limit

1.41

Time(s) 4.49 302 23.3 3,140 61.1 118

ZetaSQL

Relative error(%)

Not supported

0.000286

Not supported

0.00271

Not supported

Time(s) 19.4 59.9

Table 4: Comparison of (Approx)ShiftedInverse and ZetaSQL on quantile queries on TPC-H benchmark.

Query Q9 Q18 Q7 Rating Score

𝛼-Quantile(%) 100 75 50 0 100 75 50 0 100 75 50 0 100 75 50 0

Query result

Value 104 34.7 19.9 -8.04 50.0 38.0 26.0 1.00 104 52.4 34.9 0.814 10.0 2.0 1.0 -10.0

Time(s) 3.23 12.7 12.5 3.23 1.86 8.29 8.09 1.85 1.62 5.31 5.28 1.62 0.0134 0.0159 0.0158 0.0100

(Approx)ShiftedInverse
Error 5.15 0.0434 0.0171 1.94 0.00 0.00 0.00 0.00 2.23 0.167 0.243 0.0364 0.00 0.00 0.00 0.00

Rank error 40.0 3,490 2,030 45.0 0.00 0.00 0.00 0.00 28.0 3,850 6,450 34.0 0.00 0.00 0.00 0.00

Time(s) 85.2 162 209 85.1 74.3 188 271 74.4 38.9 2,970 5,240 38.9 1.46 56.4 232 1.61

ZetaSQL

Error 15.1 15.0 6.58 10.3 1.97 0.0422 0.233 2.01

Not supportedRank error Not applicable 888,000 719,000 382,000 239,000 60,200 61,800 360,000

Time(s) 152 152 151 154 127 126 128 1286

Figure 2: Error and running time of (Approx)ShiftedInverse, R2T and ZetaSQL given various scales.

Figure 3: Error and running time of (Approx)ShiftedInverse, R2T, RM and ZetaSQL given various 𝜀.
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Table 5: Comparison of (Approx)ShiftedInverse andR2T on
distinct count.

User Supplier Customer Supplier and Customer

Queried attribute PS.AQ L.EP O.OD L.RD Q7

Query result

Value 9,570 194,000 2,410 2,540 1,610,000

Time(s) 0.297 4.43 0.600 3.64 5.42

(Approx)ShiftedInverse
Relative error(%) 5.54 5.85 0.527 0.611 0.0672

Time(s) 23.1 51.7 114 288 4,590

R2T

Relative error(%) 6.58 17.9 0.613 15.0 0.313

Time(s) 3.95 6.20 1.52 4.74 68.1

Table 6: Comparison of (Approx)ShiftedInverse and Ze-
taSQL on maximum frequency.

User Supplier Customer Supplier and Customer

Queried attribute L.T O.OP L.Q L.D L.SD

Query result

Value 667,000 301,000 37,000 167,000 2,670

Time(s) 2.02 0.294 1.39 1.38 1.32

(Approx)ShiftedInverse
Relative error(%) 0.098 0.00620 0.629 0.157 1.60

Time(s) 59.9 14.5 2,590 5,550 989

ZetaSQL

Relative error(%) 0.0471 0.0106

Not supported

Time(s) 57.4 6.88

case. Table 6 shows the results for both mechanisms. For ℓ = 1,

(Approx)ShiftedInverse and ZetaSQL have similar accuracy and

running times, but the former also extends to ℓ ≥ 2.

6.2.5 Scalability. Next, we examined the effects of the scale of the

dataset using the TPC-H benchmark. The scale factor ranges from

2
−3

to 2
2
, and the queries include Q5 and Q7 for sum estimation, and

Q9 for quantile queries. The results are shown in Figure 2. We can

see that the scale has a small impact on the errors, except maybe for

ZetaSQL on the 75-th percentile of Q9. This is because in the TPC-H

benchmark, the number of tuples that each user contributes to does

not change much as the scale increases. Thus, when each leaf in

the quantile tree contains more tuples, it is easier for ZetaSQL to

find the correct leaf and return an output close to the actual answer.

All the mechanisms have the running time polynomial to the scale.

6.2.6 Privacy budget 𝜀. We also examined the effects of the privacy

budget 𝜀 using the TPC-H benchmark. The privacy budget 𝜀 ranges

from 2
−3

to 2
3
and the results are shown in Figure 3. As expected,

the error decreases as the privacy budget increases. Again, we can

see that the accuracy of our framework and R2T is similar, and

(Approx)ShiftedInverse performs much better than ZetaSQL on

quantile queries. In terms of running time, R2T, RM and ZetaSQL

are not affected by the value of privacy budget, while the running

time of (Approx)ShiftedInverse decreases as 𝜀 increases. This

is because 𝜏 is dependent on 𝜀, and as 𝜀 increases, the number of

linear programs that we have to solve also decreases.

7 FUTUREWORK
An obvious direction for future work is how to achieve neigh-

borhood optimality for distinct count and maximum frequency

within polynomial time. Another interesting open question is non-

monotonic functions, such as mean or median. Mean and median

can be both computed by composing two monotonic functions, but

whether this composition preserves neighborhood optimality is

unclear, although it works well in practice.
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A EQUIVALENCEWITH THE DP MODEL FOR
RELATIONAL DATABASES WITH FOREIGN
KEY CONSTRAINTS

In this section, we show that our user-DP model is equivalent to the

one for relational databases with foreign key constraints [10, 18].

This section assumes familiarity with relational algebra.

The DP model in [10, 18]. Given a database schema R and an

instance I over R, let I(𝑅) denote the relation instance of each

𝑅 ∈ R in I. There is a designated relation 𝑅𝑢 ∈ R that stores all the

users. The DP model in [10, 18] aims at protecting all information

associated with each user, which is defined based on the referencing

relationship, defined recursively as follows. First, any user 𝑡𝑢 ∈
I(𝑅𝑢 ) is said to references itself. Then for any user 𝑡𝑢 ∈ I(𝑅𝑢 ), and
any tuples 𝑡𝑖 ∈ I(𝑅𝑖 ), 𝑡 𝑗 ∈ I(𝑅 𝑗 ), if 𝑡𝑖 references 𝑡𝑢 , 𝑅 𝑗 has a foreign

key (FK) referencing the primary key (PK) of 𝑅𝑖 , and the FK of 𝑡 𝑗
equals to the PK of 𝑡𝑖 , then 𝑡 𝑗 references the user 𝑡𝑢 . Two instances I
and I′ are neighbors if one can be obtained from another by deleting

a set of tuples, all referencing the same user 𝑡∗𝑢 ∈ I(𝑅𝑢 ), which is

called the witness.
The following class of queries are considered. We start with a

multi-way (natural) join 𝐽

𝐽 := 𝑅1 (x1) Z · · · Z 𝑅𝑘 (x𝑘 ),
where x𝑖 is the variables of 𝑅𝑖 . There can be self-joins in 𝐽 , i.e., it is

possible that 𝑅𝑖 = 𝑅 𝑗 for 𝑖 ≠ 𝑗 ; in this case, we must have x𝑖 ≠ x𝑗 .
The join is required to be complete, i.e., if any 𝑅𝑖 in 𝐽 has an FK

referencing the PK of some 𝑅′, then 𝑅′ must also appear in 𝐽 , with

its PK given a variable that is the same as the variable given to the

FK of 𝑅𝑖 . Note that if 𝑅𝑖 has multiple FKs, or it appears multiple

times with its FK given different variables, then this will require

𝑅′ to appear multiple times with its PK given different variables.

Eventually, 𝑅𝑢 may appear multiple times in 𝐽 .

Next, the query specifies two functions 𝜓 : dom(𝑣𝑎𝑟 (𝐽 )) → N
and 𝑓 : NN → [𝐷], and the query output is defined as

𝑓
©­«
⊎

𝑞∈𝐽 (I)
{𝜓 (𝑞)}ª®¬ ,

where 𝐽 (I) denotes the join results on instance I.

The equivalence. First, consider any database instance I in the DP

model above. We first remove all the dangling tuples that contribute

nothing to the join result 𝐽 (I). Suppose 𝑅𝑢 appears ℓ times in the

join. Then we construct an instances 𝑉 in our user-DP model as

follows. We group the join results 𝐽 (I) according to the contribut-

ing users. For each set 𝑥 of ℓ users, we set 𝑉 (𝑥) := {𝜓 (𝑞) | 𝑞 ∈

𝐽 (I), 𝑞 contains 𝑥}. It is clear that ⊎𝑞∈𝐽 (I) {𝜓 (𝑞)} =
⊎

𝑥 𝑉 (𝑥), so
the query results are the same. Next, consider two neighboring

database instances I ∼ I′. Without loss of generality, assume I con-
tains the witness 𝑡∗𝑢 . Any different join result in 𝐽 (I) \ 𝐽 (I′) must be

associated to some different tuple referencing 𝑡∗𝑢 . Since the join 𝐽 is

complete, the different join result must be contributed by the user

𝑡∗𝑢 . Thus, the distance between the neighboring instances under our

setting is 1.

For the other direction, we will use a simple schema with just

two relations. The first relation, 𝑅𝑢 , has only one column containing

the user id’s. The second relation, 𝑅𝑉 , has ℓ + 1 columns, the first ℓ

of which are all FKs referencing the only column in 𝑅𝑢 . Given any

instance 𝑉 in our user-DP model, we construct a database instance

I as follows. For each subset of users 𝑥 = {𝑢1, . . . , 𝑢ℓ } ∈
(U
≤ℓ
)
and

and any 𝑡 ∈ 𝑉 (𝑥), we add a tuple ⟨𝑢1, . . . , 𝑢ℓ , 𝑡⟩ into the relation

I(𝑅𝑉 ). In case 𝑥 contains less than ℓ users, we simply duplicate

some user, say, 𝑢1. Then we define the join

𝐽 := 𝑅𝑢 (u1) Z · · · Z 𝑅𝑢 (uℓ ) Z 𝑅𝑉 (u1, . . . , uℓ , y)
and set 𝜓 (𝑞) = 𝜋y𝑞 for each 𝑞 ∈ 𝐽 (I). Thus, it is still the case

that

⊎
𝑞∈𝐽 (I) {𝜓 (𝑞)} =

⊎
𝑥 𝑉 (𝑥). Now consider any neighboring in-

stances 𝑉 ∼𝑢∗ 𝑉 ′ in our user-DP model (assuming 𝑉 ′ ⪯ 𝑉 without

loss of generality), as all the different tuples in the mappings are con-

tributed by the witness 𝑢∗, the distance between the corresponding

instances I and I′ is 1.
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