BOXes: Efficient Maintenance of Order-Based Labeling for Dynamic XML Data*

Adam Silberstein

Hao He

KeYi Jun Yang

Department of Computer Science, Duke University, Durham, NC 27708, USA
{adam,haohe,yike, junyang}@cs.duke.edu

Abstract

Order-based element labeling for tree-structured XML
data is an important technique in XML processing. It lies
at the core of many fundamental XML operations such as
containment join and twig matching. While labeling for
static XML documents is well understood, less is known
about how to maintain accurate labeling for dynamic XML
documents, when elements and subtrees are inserted and
deleted. Most existing approaches do not work well for
arbitrary update patterns; they either produce unaccept-
ably long labels or incur enormous relabeling costs. We
present two novel 1/O-efficient data structures, W-BOX and
B-BOX, that efficiently maintain labeling for large, dynamic
XML documents. We show analytically and experimentally
that both, despite consuming minimal amounts of storage,
gracefully handle arbitrary update patterns without sacri-
ficing lookup efficiency. The two structures together pro-
vide a nice tradeoff between update and lookup costs: W-
BOX has logarithmic amortized update cost and constant
worst-case lookup cost, while B-BOX has constant amor-
tized update cost and logarithmic worst-case lookup cost.
We further propose techniques to eliminate the lookup cost
for read-heavy workloads.

1. Introduction

XML has become a widely popular standard for repre-
senting and exchanging data over the Internet. Conceptu-
ally, an XML document consists of an ordered hierarchy of
properly nested tagged elements. Elements can be labeled
according to the structure of the document in ways that
facilitate query processing. Many labeling schemes have
been proposed in the literature (see Section 2 for a survey).
Among the most popular and effective of them is an order-
based labeling scheme that assigns a pair of numeric labels
to each element based on the document order of its start and
end tags. Figure 1 shows an example XML document with

* Thiswork was supported by a National Science Foundation CAREER
Award under grant 11S-0238386.

i) iem i ({415) (1617) (1819) sd (de
34 (56 (910 (2324) (25,26) (27,28) (29.30)

Figure 1. An example XML tree with order-
based element labels.

elements labeled using this scheme. This labeling scheme
lies at the core of many fundamental XML operations such
as containment join [20] and twig matching [5], because it
supports efficient checking of ancestor-descendant relation-
ships among elements: An element e is an ancestor of an-
other element e, if and only if the interval formed by e; s la-
bels contains that of e5. There are alternative order-based la-
beling schemes, such as those based on pre- and post-order
traversals of the XML tree, which work in similar ways.
Because of their vital role in query processing, these order-
based labels are often used as element identifiers and in var-
ious indexes [13, 12].

An important issue with any order-based labeling
scheme is the ability to handle dynamic XML docu-
ments. When a document is updated (e.g., when ele-
ments or subtrees of elements are inserted or deleted), how
do we ensure that the ordering among labels remain con-
sistent with the document order? Ideally, we would want
to keep all existing labels, but in [7] a negative result es-
tablishes that any immutable labeling scheme requires
Q(N) bits per label, where N is the size of the docu-
ment. Such long labels not only incur high storage over-
head, but are also less useful in query processing because
they are more expensive to process on than shorter la-
bels, especially when they cannot be accommodated by
native machine words.

The alternative is to use a dynamic labeling scheme
where existing labels can change with document updates.
Most systems take a rather naive approach, which basically
leaves gaps between adjacent labels in advance. Whenever
this scheme runs out of values to assign to new labels be-

cause a gap has been filled by previously inserted labels, it
relabels everything to leave equally sized gaps between ad-
jacent labels. Unfortunately, this scheme is easily broken by
an adversary that repeatedly inserts into the currently small-
est gap. Even if we start with a gap of length 2%, which re-
quires k bits extra to encode each label, it would only take
the adversary &k + 1 insertions to trigger relabeling. This
worst case is perhaps not uncommon, since consecutive in-
sertions into an XML document usually happen in nearby
locations. Obviously, more robust solutions are needed.

Our contribution is a collection of data structures
and techniques for maintaining order-based labeling
for a dynamic tree-structured XML document. We pro-
pose two novel 1/O-efficient data structures, W-BOX
(Weight-balanced B-tree for Ordering XML) and B-BOX
(Back-linked B-tree for Ordering XML). W-BOX re-
duces the relabeling cost by limiting each relabeling op-
eration to within a subrange; it uses a B-tree keyed on
labels and piggybacks relabeling on tree balancing oper-
ations. B-BOX, on the other hand, avoids storing—and
therefore updating—any label explicitly; it uses a key-
less B-tree with back-links from children to parents, al-
lowing labels to be reconstructed quickly on demand. The
two structures together provide a nice tradeoff between up-
date and lookup costs: W-BOX has logarithmic amor-
tized update cost and constant worst-case lookup cost,
while B-BOX has constant amortized update cost and loga-
rithmic worst-case lookup cost. Both structures take linear
space and use O(log N) bits per label. They also sup-
port efficient bulk loading and subtree insert/delete opera-
tions. To validate the theoretical bounds, we experimentally
evaluate the performance of our data structures and demon-
strate their advantage over the naive approach.

In addition to the basic W-BOX and B-BOX structures,
we make the following contributions:

e \We show how to adapt our data structures so that they
can also return the ordinal labels of an element (de-
fined formally in Section 3), which are the exact ordi-
nal positions of its start and end tags within the docu-
ment. Labels shown in Figure 1 happen to be ordinal;
there are no gaps between adjacent labels. In general,
however, a labeling scheme may leave gaps between
labels. Ordinal labels contain the minimum number of
bits per label, and are more efficient than non-ordinal
labels for certain queries. However, they are more ex-
pensive to maintain: Both lookup and update costs be-
come logarithmic for both W-BOX and B-BOX.

e Whenever a label changes value, all occurrences of the
value in the database (e.g., in various indexes) must
be updated, resulting in potentially unbounded update
cost. This problem is inherent for any dynamic label-
ing scheme (including the naive approach) and can be
solved by a level of indirection: We store the value of

each label in only one place so that update is efficient,
and we create an immutable label 1D through which
the value can be retrieved; this ID can then be dupli-
cated freely in the database. However, this solution in-
troduces an extra dereferencing cost which hurts query
performance. We propose a combination of caching
and novel logging techniques that can very effectively
reduce this dereferencing cost.

2. Related Work

Many XML labeling schemes have been proposed in re-
cent years to support efficient processing of path expression
queries, which are the basic building blocks of XPath [18].
Path-based labeling schemes assign a code to each element,
and the label of an element is simply the concatenation of
the codes associated with the elements on its incoming path.
With these labels, ancestor/descendant and parent/child axis
steps can be processed by prefix matching. The main ad-
vantage of such path-based labeling schemes is that they
can handle dynamically changing XML documents eas-
ily: When a new element is added, its label can be gen-
erated without modifying any of the existing labels. How-
ever, space overhead is a major concern, especially when
the XML tree is tall, since the length of the label of an ele-
ment is proportional to the length of its incoming path, and
the majority of the elements in an XML tree are leaves with
long incoming paths. Prefix matching is also more costly
with these long labels. Examples of path-based labeling
schemes include the two proposed by Cohen et al. [7] that
do not use clues: Neither scheme handles tall XML trees
well because label length grows linearly with tree height;
furthermore, neither scheme maintains document ordering
of siblings (only the insertion order of sibling can be recov-
ered). One novel approach [19], which also tries to encode
an element’s incoming path, is to assign a prime number to
each element, and the label of an element is formed by mul-
tiplying together the prime numbers associated with the ele-
ments on its incoming path. Ancestor/descendant axis steps
then can be processed by checking if one label exactly di-
vides the other. However, this approach still suffers from the
same problem of long labels as other path-based schemes,
as the resulting products of primes can become quite big.

The other class of popular labeling schemes includes
the order-based interval and pre- and post-order labeling
schemes, e.g., [20, 14, 11, 13, 12]. These schemes assign
a pair of numeric start and end labels to each element, such
that element e; is element e5’s ancestor if and only if the
start label of e; precedes that of e5, and the end label of e
precedes that of e;. These schemes have several advantages
over the path-based schemes. First, these schemes maintain
document order. Second, each label only requires O(log V)
bits, which is asymptotically minimum. Third, comparing
numeric labels can be faster than prefix matching. Finally,

fixed-size labels that fit in machine words are efficient and
easy to implement. However, making such order-based la-
beling schemes dynamic remains a challenging problem. In
contrast to the path-based schemes, repeated insertions will
inevitably fill up the gaps between adjacent labels, necessi-
tating a relabeling of part or all of the elements.

Hybrid labeling schemes that combine path- and order-
based approaches are also possible. For example, Dewey-
order encoding [17] labels each element by combining the
local (sibling) order of each element on its incoming path.
ORDPATH [15, 16] makes Dewey-order encoding dynamic
using a clever “careting-in” scheme to support insertions.
However, as an immutable labeling scheme, ORDPATH
cannot escape the lower bound of Q (V) bits per label es-
tablished in [7]. Even for shallow XML documents, certain
insertion sequences (such as the concentrated sequence we
experiment with in Section 7) can result in Q(V)-bit labels.

The naive approach to order maintenance mentioned in
Section 1 is to relabel all elements to make equally spaced
labels when we run out of usable labels. This approach has
been suggested in many existing systems, e.g., [13, 12].
However, this scheme is easily broken by an adversary that
continuously inserts into the smallest gap. This worst case
may indeed arise when, for example, a large number of el-
ements (in an XML fragment) are inserted into one loca-
tion in the document. Using floating-point numbers instead
of integers (e.g., [1]) does not circumvent the problem: Al-
though floating-point numbers have a larger range of values,
the number of distinct values is still limited by the number
of bits used in representation.

Maintaining all tags in the desired order under insertions
and deletions is an instance of the well-known problem of
maintaining ordered lists. The classic paper by Dietz [8]
gives an algorithm that relabels O(log V) tags per insertion,
amortized. With one extra level of indirection, the cost can
be broughtdownto O(1) [9]. The O(log N) cost can also be
made worst-case, although the techniques are rather compli-
cated and are primarily of theoretical interest. In [4], Ben-
der et al. give a simplified version of the algorithm from [9],
which is also easier to implement.

The database community has recently begun applying
the above results to maintaining order-based XML labeling.
Fisher et al. [10] use Bender’s algorithm, and also provide
a randomized algorithm which in practice performs slightly
better in their experiments, although there is no theoretical
analysis to guarantee its performance. Chen et al. [6] pro-
pose L-tree, which is parameterized to allow performance
tuning and is also easier to implement than the algorithm
from [9]. However, none of these structures are disk-based.
In contrast, our BOXes are designed to be 1/0-efficient, and
we also develop techniques for avoiding the extra level of
indirection necessitated by dynamic labeling schemes.

3. Prdiminaries

For the purpose of this paper, we assume that an XML
document can be modeled as a tree of elements. Each el-
ement e has a pair of start and end tags. In a well-formed
XML document, e’s start tag always precedes all tags of e’s
descendants, while e’s end tag always succeeds all of them.
An order-based labeling scheme (or labeling for short) is
a function that assigns each element e a pair of integers
(I<(e),ls(e)), where [(e) is called the start label of e or
the label of e’s start tag, and [~ (e) is called the end label of
e or the label of ¢’s end tag. A valid labeling is one that is
consistent with the document order; that is, if a tag ¢ pre-
cedes another tag ¢ in the XML document, then the label of
t; is less than that of ¢5. Note that our proposed structures
also work for other definitions of order (e.g., one based on
pre-order and post-order traversals of the tree of elements),
but for ease of presentation, we choose to use tag ordering
within the document.

The use of order-based labeling in XML query process-
ing has been discussed extensively in literature, so we will
not elaborate it here; instead, we give an illustrative exam-
ple. To see if element e; is a descendant of e, we can sim-
ply check if i (e2) < l<(e1) < Is(e2). It is usually much
cheaper to evaluate this condition than traversing the el-
ement tree to check the ancestor-descendant relationship,
which may take many steps.

The ordinal labeling is one that assigns label i to the
i-th occurring tag in the document, for all 7 > 0 (assum-
ing the ordinal is 0-based). Since the ordinal labeling leaves
no gaps between consecutive labels, it makes the most effi-
cient use of bits to encode labels. Furthermore, some queries
are easier to answer with the ordinal labeling. For exam-
ple, to see if ey is es’s last child, we can simply check
if I~(e1) +1 = Is(e2). With a non-ordinal labeling, we
would need to check if there does not exist any label be-
tween - (e2) and s (e1), which is more expensive to eval-
uate. However, as we will see, the ordinal labeling is more
difficult to maintain when the document changes.

From immutable LIDs to dynamic labels Both W-
BOX and B-BOX utilize a level of indirection to associate
dynamic labels with immutable label IDs (or LID for short).
Again, as motivated in Section 1, this indirection allows la-
bels to be reassigned without disturbing references to them.
We use a simple heap file called the immutable label ID file
(or LIDF for short) to implement this indirection.

When a new XML element e is inserted into the docu-
ment, we allocate two new records in the LIDF: one for e’s
start label and the other for e’s end label. These are the (start
and end) LIDF records of e. Their record numbers (or phys-
ical disk locations) serve as e’s L1Ds, which allow direct ac-
cess to the LIDF records. Once LIDs are assigned, they are
immutable, so they can be freely used in other XML indexes

W-BOX or B-BOX leaf

Jid: |L1DF record|

LIDF

(Immutable label 1D file)

BOX record

Figure 2. Immutable label ID file.

or even as XML element IDs. There is no need to keep LIDs
in any order (although an obvious optimization is to allocate
start and end LIDF records next to each other, so that a sin-
gle 1/O retrieves both records). When an element is deleted,
its LIDF records can be reclaimed and allocated to a new el-
ement, allowing the LIDF to be stored compactly.

W-BOX and B-BOX both maintain two leaf entries for
each XML element e: one for e’s start label and the other
for e’s end label. We call them the (start and end) BOX
records of e. As illustrated in Figure 2, ¢’s LIDF records
store pointers to the blocks containing corresponding BOX
records. Thus, given a LID, we can retrieve the correspond-
ing LIDF record with one 1/0, and then the block contain-
ing the corresponding BOX record with another 1/0. In Sec-
tions 4 and 5, we will see how to obtain the actual label from
the block containing the BOX record. In Section 6, we dis-
cuss how to avoid the dereferencing cost caused by indirec-
tion.

Supported operations Here we briefly outline the oper-
ations on LIDF and W-BOX/B-BOX. The element/label op-
erations include:

e lookup(/id): Return value of the label identified by lid.

e insert-element-before(lid): Insert a new element
so that it immediately precedes the element tag whose
label is identified by lid; return the two LIDs assigned
to the new element’s start and end labels.

If lid identifies an element ¢’s start label, this oper-
ation effectively makes the new element the previous
sibling of e. If lid identifies e’s end label, this oper-
ation effectively makes the new element the last child
of e. These two versions are sufficient for inserting any
atomic XML element.

This operation is implemented using a low-level op-
eration insert-before(lid ew, lidoia), Which in-
serts a new BOX record (identified by lid..) be-
fore an existing one (identified by lid,y) and
writes the block address of the new BOX record
to the corresponding LIDF record. We implement
insert-element-before(lid) by first allocating two
new LIDF records for the new element with LIDs
(lidq, lid2), and then calling insert-before(lids, lid)
and insert-before(lidy, lids) in order. Thus, discus-
sion of insertions in the rest of this paper will focus on

insert-before.

e delete(lid): Remove the label identified by lid. To re-
move an element ¢, we need to call delete with the
LIDs of both start and end labels of e. After the dele-
tion, children of e, if any, effectively become children of
e’s parent.

In addition to the element/label operations described above,
W-BOX and B-BOX also support bulk loading and subtree
insertion and deletion operations. Details of these opera-
tions will be discussed in the next two sections.

Notations and metrics We use N to denote the total
number of labels (including both start and end), which is
twice the number of elements. We assume NN to be a power
of 2 for simplicity of presentation; our approach does not
have this restriction. The minimum length of a label is thus
log N bits. We define B, the size of an 1/O block, as the
number of bits per block divided by log V. That is, B is the
number of minimum-sized labels that a block can hold. We
also assume B to be a power of 2 for simplicity of presen-
tation.

We assume that a block pointer takes log N bits, which
should be more than enough because the number of blocks
we need address is far less than V. Assuming that the LIDF
is kept compact, we can also encode a LID using log N bits;
thus, the space taken by the LIDF is O(N/B).

We evaluate the performance of a labeling scheme us-
ing three metrics: (1) length of a label in bits, (2) total space
used by all data structures, (3) number of block 1/Os re-
quired for each operation. The last two metrics are standard
in the analysis of 1/O-efficient data structures. The first met-
ric is also extremely important because shorter labels are
faster to operate on by queries. In particular, fixed-length
integer labels that fit in a machine word are easy to imple-
ment and have efficient hardware support.

4. W-BOX: Weight-Balanced B-Tree for Or-
dering XML

The idea behind W-BOX is to store the labels using a
balanced search tree, and leverage the tree-balancing oper-
ations to redistribute labels when they become too dense
for a range. B-tree is one of the simplest 1/0-efficient bal-
anced search trees. Unfortunately, a regular B-tree results
in too many relabeling operations. Thus, we use a weight-
balanced B-tree [3] as the basis for our W-BOX.

Background on weight-balanced B-tree In a normal
B-tree, each internal node must have between [b/2] and b
children, where b is the maximum fan-out dictated by the
block size. In a weight-balanced B-tree, constraints are im-
posed on the weight of each node rather than its fan-out. The
weight of a node u, denoted w(u), is defined to be the num-
ber of leaf entries stored in the subtree rooted at . Given a

branching parameter a and a leaf parameter k, we require
the following:

e All leaves are at the same depth.

e Anode at level ; (assuming that leaves are at level 0) has
weight less than 2a’k.

e Anode at level 7 (except for the root) has weight greater
than o’k — 2a* k.
e The root has more than one child.

These properties are slightly different from those in [3]; the
changes are intended to make the weight-balanced B-tree
more efficient for our purpose.

Lemma4.1 The number of children of a non-root internal
node in a weight-balanced B-tree is between | 5| and 2a +
3+ [251. O

Proof: Consider a non-root internal node « at height
i with f children. By the weight constraints, we have
2a'k > w(u) > f - (a"tk — 2a"72k); therefore,
f<2a+ %. Also, a'k — 2a* "'k < w(u) < f-2a""'k;
therefore, f > a/2 — 1. O

Let b be the maximum internal fan-out dictated by the
block size. By Lemma 4.1, for the weight constraints to be
consistent with the maximum fan-out requirement, we may
choose a to be the maximum value that satisfies 2a + 3 +
[-85] < b, orequivalently a = b/2—2 (assuming a > 10).
Accordingly, the minimum fan-outis | § | = b/4 — 1, which
is lower than the requirement imposed by a regular B-tree,
but is still ©(b). We choose k such that 2k — 1 is the maxi-
mum number of leaf entries that can be stored in a block.

If a node u at level ¢ violates its weight constraint be-
cause w(u) = 2a’k, we split it into two nodes u; and s
with roughly equal weights. More precisely, u; gets the left-
most m children of v, and us gets the rest of the children
of u, where m is the largest value for which w(u;) < a'k.
Since children of « are at level ¢ — 1 and therefore have
weights less than 24’1k, it must be that o’k — 2a° "'k <
w(ur) < w(uz) < a’k + 241k < 2a’k; that is, both u;
and uo now satisfy the weight constraints.

Next, we show that a node « will not be split again un-
til there are Q(w(u)) new leaf entries inserted below w. This
low rate of splits is crucial for the W-BOX to achieve its low
amortized update cost. As we will see later, splitting « in the
worst case causes all leaves below w’s parent to be rewrit-
ten, which involves O(w(w)) I/0s. The low rate of splits
implies that the amortized cost of splitting « will be only
O(1); therefore, overall, the amortized update cost will still
be bounded by the height of the tree.

Lemma 4.2 After a split of node u on level into two nodes
uy and uy, more than a'k — 2a*~ 'k insertions have to pass
through u; (or us) to make uy (or ug) split again. After a
new root is created in a tree containing NV records, at least

Root

Search key values: 20 51 7 e

weight fi elds2

weight fi elds

Label values|25[27]28729
------ LIDs) lid|lid | lid | lid

W-BOX records

Figure 3. W-BOX nodes.

(a — 1)N insertions have to be done before the root is split
again. a

Proof: As shown before, right after splitting «, both u;
and uy have weight less than a’k + 2a*~'k. For either one
of them to reach the weight of 2a’k, there must have been
more than 2a’k — (a'k + 2a*~'k) = a'k — 2a*~'k inser-
tions passing through it. |

Data structure W-BOX, as its name implies, is a weight-
balanced B-tree of W-BOX records with label values as
search keys. A W-BOX leaf contains an ordered list of W-
BOX records, each of which stores the value and the LID
of a label. A non-leaf W-BOX node contains a list of child
pointers separated by search key (label) values; each child
pointer is associated with a weight field that stores the
weight of the child. Figure 3 illustrate these two types of
W-BOX nodes.

Conceptually, each node of the W-BOX is associated
with a range of permissible values for labels stored in the
subtree rooted at this node. Assuming M is the maximum
integer that can be used for all labels, the root of the W-
BOX is associated with the full range [0, M]. This range
is then subdivided into b subranges of equal length. Each
child of the root is assigned one of these subranges. We en-
sure the ordering among children is consistent with the or-
dering of their assigned subranges; however, it is acceptable
to skip some subranges if the number of children is less than
b. This process is carried on recursively down the tree. We
require the range associated with a leaf to have length of at
least 2k — 1. We maintain the invariant that all labels stored
below a node w are within the range associated with w.

W-BOX inherits the space complexity of the weight-
balanced B-tree. Since each individual field in a W-BOX
node requires O(log N) bits, both the maximum fan-out (b)
and the minimum fan-out (b/4 — 1) are ©(B). Therefore,
the W-BOX takes O(IN/B) total space and has a height of
O(log N). The number of bits required for a label is deter-
mined by the size of the full range [0, M], which is bounded
roughly by b", where h is the height of the W-BOX. There-

fore, the number of bits is roughly logb” = hlogh =
O(logg N -log B) = O(log N). In fact, we show below
that log NV + 1 + [log(2 + 4/a) - log,(N/k) + logb] bits
are enough for a label in the W-BOX. For example, if we
use 32-bit integers as labels, assuming a = k = 64, then
the W-BOX can support at least 2.58 millon labels.

Lemma 4.3 The height of a weight-balanced B-tree with N
records is at most 1 + [log, 1. O

Proof: Let r be the root and h be the height of the tree.
Since r was created by splitting the old root at level A — 2,
w(r) > 2 x a"2k. Hence, h < 2 + log, A7),

Without deletions, w(r) = N, so h < 2 + log, 2.
With deletions, because we use the global rebuilding tech-
nique to handle deletions (to be discussed later), w(r)
may become greater than NN, but still less than 2/N. Thus
h < 2+log, 2% = 2+ log, &L. Since h is an inte-
ger, h <1+ [log, &]. O

Theorem 4.4 A W-BOX takes O(N/B) space, and a W-
BOX label takes no more than log N + 1 + [log(2 + 4/a) -
log,(N/k) 4+ log b] bits, where log(2 + 4/a) < 1.3 assum-
ing a > 10. O

Proof: We have shown in the preceding paragraph that a
W-BOX takes O(N/B) space; now we bound the num-
ber of bits in a W-BOX label. The size of the full range
is (2k — 1)b"~1. By Lemma 4.3, h < 2 + log,, &. There-
fore,

log((2k — 1)b"1)
= (h—1)logb+ log(2k — 1)

N
< (1+log, ?) log b+ log(2k — 1)

N
= log, = logb + logb + log(2k — 1)
log N — log k

= —— logb+logh(2k — 1)
loga

= (log N —logk)log,(2a + 4) +logb(2k — 1)
4

= (log N —logk)(1+1log,(2+ =)+ logb(2k — 1)
a

N 4
= logN —logk + log - log,(2+ =) + logb(2k — 1)
a

4 N b(2k —1
= logN +log(2 + —)log, - +log¥
a

< log N +1log(2+4/a)log,(N/k) +logb+ 1.

O

Lookup The 1ookup operation of W-BOX, which returns
the label of a given LID, is very straightforward. Follow-
ing the pointer in the LIDF record identified by the given
LID, we retrieve the W-BOX leaf « containing the W-BOX
record we need. We then scan u looking for the W-BOX

record with matching LID, and return the corresponding la-
bel value.

Theorem 4.5 Given a LIDF record, the cost of retrieving
the label from a W-BOX is one 1/O. |

Proof: Follows directly from the discussion in the preced-
ing paragraph.]

Insert and delete To process insert-before(lid pew,
lid 514), we start with the W-BOX leaf « pointed to by the
LIDF record identified by lid ,;4. We create a new W-BOX
record for lid ., right before the W-BOX record identi-
fied by lid .4, and we record the address of « in the new
LIDF record for lid ,,.,. TO reflect the effect of this new in-
sertion on node weights, we increment the weight fields
for all child pointers that directly or indirectly point to .
These child pointers can be found by performing a regu-
lar B-tree lookup for any label stored on u. If no weight
constraint is violated, then there must be some unused label
value in the range associated with u, which allows us to as-
sign a label to the new record (possibly requiring some ex-
isting records in u to be relabeled).

However, if the weight constraint is violated at some
nodes, we must split them to enforce the constraint. We
now discuss the steps involved in splitting a node w. Let
parent(u) denote u’s parent. If is the root, a new root is
created as w’s parent, and the height of the W-BOX grows
by one. The new root extends «’s range by a factor of b, and
u’s range becomes its first subrange.

e First, we check the two subranges within parent(u) ad-
jacent to the subrange associated with . If either one is
currently unassigned, we create a new sibling of « called
v and assign it the unused range. We then relocate some
entries in « to v such that »’s weight is roughly one half
of the original weight of . Those entries that remain in
u require no further processing. However, the relocated
entries must be further processed. If the entries are leaf
records, we relabel them with values within v’s assigned
range, and update their corresponding LIDF records to
point to v. If these entries point to W-BOX subtrees, we
subdivide v’s range and assign them to these subtrees.
This process proceeds recursively down the tree to the
leaves, where the records in each leaf are relabeled with
values within the leaf’s assigned range.

o In the worst case, both subranges adjacent to «’s are un-
available. Then, to make space for v, we reassign
all children of parent(u) with equally spaced sub-
ranges, and relabel all records in the subtree rooted at
parent(u). We note here that by the properties of the
W-BOX, parent(u) is guaranteed to able to accommo-
date v as an additional child.*

1 Toseewhy, let ¢ be the number of parent(u)’s children before u is

Recall that the weight-balanced B-tree has the following
property: As long as we can split a node « using O(w(u))
1/Os, the amortized update cost of the weight-balanced B-
tree will be O(logz N). In the worst case described above,
relabeling the entire subtree rooted at parent(u) requires
O(w(parent(u))/b) = O(w(u)-b/b) = O(w(u)) /Os, ex-
actly as needed to establish the O(log z N') bound.

We use the global rebuilding technique to handle dele-
tions. To process delete(lid), we retrieve the W-BOX leaf
u pointed to by the LIDF record identified by lid, and sim-
ply mark its W-BOX record as “deleted.” We do not decre-
ment the weight fields of any nodes. When a future inser-
tion comes to a leaf, we first check if the leaf has any ex-
isting “deleted” W-BOX records. If so, one such record is
reclaimed to make room for the new label (we might also
need to relabel other labels in this leaf), again not chang-
ing any of the weight fields (hence no splitting). If the
leaf has no existing “deleted” W-BOX records, we handle
the insertion in the normal way as described previously. Af-
ter we have collected N/2 deletions, we rebuild the whole
structure. As will be shown, bulk loading the W-BOX takes
O(N/B) 1/0s, so the amortized cost of a deletion is O(1).

Theorem 4.6 The amortized cost to insert and delete a la-
bel ina W-BOX is O(logz N) and O(1), respectively. O

Proof: Follows directly from the discussion in the preced-
ing paragraphs. |

Note here that had we used a regular B-tree instead of a
weight-balanced one, we would have been unable to provide
the same low amortized update bounds. In general, a regu-
lar B-tree node u at level i can split every [b/2]%+1 inser-
tions. On the other hand, there can be close to to b**! leaves
below v’s parent, yielding an amortized cost of 2¢*1 1/Os
per insertion, which is exponential in 7. In contrast, since a
weight-balanced B-tree imposes constraints on weights, the
number of leaves below a node cannot vary by more than a
constant factor, allowing us to bound the amortized relabel-
ing cost to a constant.

For any algorithm designed to maintain ordered lists that
has a logarithmic update cost, there is a well known tech-
nique [9] that can bring the update cost down to O(1), while
preserving the asymptotic storage and lookup cost. This
technique also applies to the W-BOX, leading to a linear-
size structure with constant update and lookup costs. How-
ever, we do not recommend this theoretically better struc-
ture for the following reasons. First, it breaks up each label
into two pieces and maintains them separately, which means

split. Suppose that w is at level 3. Then, 2a*k > w(parent(u)) >
(c—1)(a*" 1k — 2a*=2k) + 2a*~ 1k, which implies that ¢ < 2a +
1+ 2% < 2a+ 4= b (assuming a > 6). Therefore, after splitting
u and adding v as achild, the fan-out of parent(u) is still within b.

that the lookup cost will be doubled compared to the orig-
inal W-BOX. Second, the number of bits per label will be
increased by a constant factor. Third, although the update
cost will be O(1), this constant will be large. As demon-
strated in [10], even in internal memory, this technique does
not bring any practical benefit by improving the O(log N)
bound to O(1). In our case, logz N is smaller than log N
and usually no more than 4, so this technique is even less
likely to give us any improvement in practice.

Bulk loading and subtree insert/delete Bulk loading
a W-BOX from an XML document is extremely efficient be-
cause it requires no sorting. Simply scanning the document
in order would produce all W-BOX records in exactly their
intended order. Thus, with a single scan of the document,
we can construct the LIDF and all W-BOX leaves in paral-
lel. As each W-BOX leaf becomes full, we insert it into the
W-BOX. When an internal node becomes full, instead of
splitting it, we simply allocate an initially empty new sib-
ling to its right; this strategy avoids the cost of relabeling by
never relocating any entries. During the construction pro-
cess, we always keep the rightmost node of each level in
memory, so that insertions of leaves can be performed with-
out additional 1/0s. At the end of this process, we are left
with a W-BOX whose only underflow nodes are those on
the rightmost root-to-leaf path. We repair these underflow
nodes by borrowing from or merging them with their left
siblings. It is easy to see that, overall, bulk loading costs
O(N/B).

To insert an entire subtree of XML data with N’ tags,
we first locate the W-BOX leaf u containing the insertion
point. For ¢ = 0,1, 2, ..., we check whether v;, the ances-
tor node of u at height ¢, has enough empty space to accom-
modate N’ labels, i.e., a’b — w(v;) > N'. If so, we simply
rebuild the subtree rooted at v; to incorporate the new la-
bels. The rebuilding process keeps all existing leaf entries
in their original blocks, except those in . This technique
minimizes the cost of updating the LIDF for any W-BOX
record that has relocated to a different block. In the worst
case, all existing W-BOX records may have to relabeled, so
the costis O((N + N')/B).

Deleting an entire subtree of XML data is similar. All
N’ labels to be deleted are clustered together in one contin-
uous range. After deleting O(N’/B) leaves and modifying
up to two leaves, we look for the lowest common ances-
tor of these leaves with enough remaining weight to satisfy
the weight constraint. We then rebuild the subtree rooted
at this common ancestor, again trying to avoid relocating
leaf entries. In the worst case, however, all existing W-BOX
records may have to be relabeled, so the cost is O(N/B).
This bound also covers the cost of deleting LIDF records of
deleted labels from the LIDF, which is of size O(N/B).

Ordinal labeling support In order to support ordinal
labeling, each non-leaf node entry needs to keep track of

the total number of W-BOX records found within the sub-
tree rooted at this entry. The weight fields almost fulfill
this purpose, except that they also count records marked
as “deleted” since we use the global rebuilding technique
to handle deletions. Therefore, for a W-BOX with dele-
tion support, we need to augment each non-leaf node entry
with a size field that records the number of valid records
found below the entry. This additional field does not alter
the asymptotic space complexity of the W-BOX.

To retrieve an ordinal label given a lid, we first call
lookup(/id) to find the regular label. We then perform a
regular B-tree lookup using the regular label. We use a run-
ning counter initialized to 0. For each non-leaf node visited
in this top-down traversal, we add to the counter all size
fields located to the left of the child pointer leading to lid.
Finally, in the leaf containing lid, we add to the counter the
number of W-BOX records located to the left of lid. The
value of the counter at the end of the traversal is the ordi-
nal label. Therefore, the cost of looking up an ordinal la-
bel is dominated by that of the regular B-tree lookup, which
is O(logg N). For example, in Figure 3, the ordinal label
for the non-ordinal label 28 is 20 + 0 + 2 = 22, assum-
ing that the size fields in this case happen to be equal to
the weight fields.

To insert (or delete) a single W-BOX record, the size
fields of all non-leaf node entries that lead to the inserted (or
deleted) record need be incremented (or decremented) by 1.
In the case of split, appropriate size fields must be updated
too (details are straightforward and omitted). The 1/0 com-
plexity of insertion is unaffected, but the amortized cost of
deletion becomes O(log 5 V), dominated by the cost of up-
dating size fields.

Bulk loading and subtree insert/delete operations can be
modified in a straightforward manner to maintain the size
fields. The extra cost does not affect the complexity of these
operations.

Further optimization for start/end pairs The basic
W-BOX stores an element’s start and end labels in two dif-
ferent W-BOX records, possibly located on different leaves,
which require two separate 1/0s to retrieve. However, re-
quests for both start and end labels of an element occur
quite frequently in query processing. We propose a variant
of W-BOX, called W-BOX-O, that is optimized for retriev-
ing start/end labels in pairs.

The tree structure of W-BOX-O is identical to that of the
basic W-BOX. Their difference lies in the format of leaf en-
tries. In W-BOX-O, each start record maintains a pointer to
the block containing its corresponding end record, and vice
versa. Furthermore, the start record also keeps a local copy
of the value of the end label. Thus, both start and end la-
bels are obtained from the start record, without an extra I/O
for the end record.

While W-BOX-O improves the lookup performance, we

have to pay the price of maintaining extra information in
the leaf entries. Maintenance is required in two cases. In the
first case, when a leaf splits, half of its entries move to a
new block. As a result, pointers storing these entries’ block
addresses become invalid and need to be updated (through
the pointers in the reverse direction). These updates require
O(B) 1/0s. Since this leaf cannot split again until it re-
ceives at least {2(B) insertions, the amortized cost for up-
dating these pointers is O(1).

In the second case, when a non-leaf node splits, a con-
tinuous range R of labels need to relabeled. The cost of re-
labeling is O(logz V) 1/0Os amortized, as discussed before.
What remains to be bound is the cost of updating the lo-
cal copies of end labels stored by those start records outside
R (start records inside R are updated as part of the relabel-
ing process). At the first glance, this cost can be huge—up
to the total number of labels in R. Fortunately, the hierarchi-
cal nature of XML plays into our hands. Consider the start
records that need to be updated, i.e., those start records out-
side R that are linked to the end records inside R: Elements
with these tags must form a segment of a path in the ele-
ment tree, because these elements all contain the left end-
point of R. Hence, the number of such elements is bounded
by D, the depth of the XML tree. Therefore, regardless of
the number of records in R, the overall amortized cost of in-
sertion into the W-BOX-O is O(D + logz N).

Theorem 4.7 The amortized cost of inserting a label into
the W-BOX-O is O(D + logg N), where D is the depth of
the XML document tree. The amortized cost of deleting an
entry is O(1). a

Proof: The insertion bound follows directly from the dis-
cussion in the preceding two paragraphs. Since deletions
never trigger splits, the deletion bound of Theorem 4.6 car-
ries over to W-BOX-O. a

5. B-BOX: Back-Linked B-Tree for Ordering
XML

The design of B-BOX is motivated by the observation
that updating labels is costly. Therefore, instead of physi-
cally storing the actual labels, we ensure that they can be
reconstructed efficiently from the data structure whenever
needed. Thus, B-BOX goes even further than W-BOX in
trading read performance for faster updates. With the tech-
niques to be described in Section 6 for enhancing read per-
formance, we believe it is reasonable to make this tradeoff.

Data structure B-BOX, as its name implies, is similar
in structure to a regular B-tree constructed on the labels
with normal balancing properties. Unlike B-tree, however,
B-BOX do not keep any search key values in its nodes. A B-
BOX leaf contains an ordered list of B-BOX records, each

Root
Optiond size fi eld§20[18]17

2

’
1

Optional size fields 4] 4

Backilink .~

Cﬂ\\

------ H/ hid|lid|lid|lid]] - -~ T.\.\H lid|lid |lid|lid|lid| --- ---

B-BOX records T

Figure 4. An example B-BOX.

storing the LID for the label. A non-leaf B-BOX node con-
tains an ordered list of child pointers. Every node except the
root contains a back-link that points to the parent node. Fig-
ure 4 illustrates the structure of a B-BOX (ignore the op-
tional size fields for now).

The label of a B-BOX record can be constructed by the
path from the root to the leaf containing this record. Each
B-BOX node on this path contributes to one component of
the label. A non-leaf node contributes the (0-based) ordinal
position of the child pointer that points to the next node on
the path. The leaf at the end of the path contributes the (0-
based) ordinal position of the B-BOX record. For example,
in Figure 4, the label of the B-BOX record z is (1, 3, 2). We
will provide the details on how to obtain a label given its
LID when discussing the 1ookup operation.

The multi-component labels of B-BOX somewhat re-
sembles the Dewey-order encoding proposed in [17]. How-
ever, the crucial difference is that our labels are defined us-
ing a balanced B-BOX tree rather than the XML document
tree, so our labels have a bounded length that is indepen-
dent of the document structure.

B-BOX is a more compact structure than W-BOX. Each
B-BOX leaf fits up to B — 1 B-BOX records, and each non-
leaf B-BOX node has a maximum fan-out of B — 1. With
standard B-tree analysis, it is easy to see that the B-BOX
takes O(NN/B) total space and has a height of O(log 5 N).
B-BOX labels are also very compact. Because each com-
ponent of a label takes at most log B bits and the num-
ber of components is equal to the height of the tree, the
total number of bits in a label is O(log N). In fact, we
show below that a B-BOX label never takes more than

log N + 1+ [2551 | bits.

Theorem 5.1 A B-BOX takes O(NN/B) space, and a B-

log N—1 H
BOX label takes no more than log N + 1 + LIU*;B_lj bits.
O

Proof: We have already shown in the preceding paragraph
that a B-BOX takes O(N/ B) space; now we show that each
label takes no more than log N + 1 + [125 =1 | bits. Let
be the number of children of the root, and A be the height

of the B-BOX. We have f, x (B/2)"~! < N. Solving for

h we obtain h < (log N — log f,)/(log B — 1) + 1. Thus,
the maximum number of bits required for a label is:

[log fr] + (h —1)log B

[log fr] + (log N —log f..)/(log B — 1) x log B
< 1+10gfr+(10gN—logfr)(1+bgbﬁ)

= 1+4+logN + (log N —log f)/(log B —1).

IN

With f,. = 2, the above reaches the maximum value of

log N—1
1+log N + 1225=. O

Lookup The lookup operation, which returns the label
for a given LID, cannot be performed in a top-down fashion
as a regular B-tree, because there are no search key values
in B-BOX nodes to guide the search. Even if there were, we
would not know what key to search for—it is precisely what
we are looking for in the first place. Instead, 1ookup(lid)
proceeds bottom-up, starting from the leaf « containing the
B-BOX record in question, which is obtained by follow-
ing the pointer in the LIDF record. We scan u looking for
the B-BOX record containing lid; the ordinal position of
this record within « gives us the last component of the la-
bel. Next, we follow the back-link to the parent of «. We
then scan the parent looking for the entry that points to w;
the ordinal position of this entry within the parent gives us
the second-to-last component of the label. The process con-
tinues up the tree until reaches the root, where the first com-
ponent of the label is determined.

Besides the extra 1/0 to obtain the pointer to the B-BOX
leaf, the number of 1/0s is equal to the the height of the B-
BOX. Therefore we have the following theorem.

Theorem 5.2 Given a LID, the cost of retrieving the label
from a B-BOX is O(logg N).]

Proof: Follows directly from the previously shown fact
that the height of the B-BOX is O(logz N). O

One of the most frequent operations used in XML query
processing is the comparison of two labels. This operation
can be performed in a B-BOX with potentially much fewer
1/Os, especially if the two labels being compared are close
to each other in document order. To carry out the compari-
son, we traverse the tree bottom-up in parallel starting from
the two B-BOX records being compared. We stop as soon
as their lowest common ancestor node is reached. The or-
dering of the labels is determined by the ordering of the two
entries that lead to the corresponding B-BOX records.

Insert and delete Both insert-before and delete
start with the B-BOX leaf pointed to by the LIDF record.
The rest is similar to dynamic management of a regular B-
tree, but with some additional bookkeeping involving LIDF
records and back-links.

When a new B-BOX record is inserted before an exist-
ing record, we record the address of the leaf block in the
corresponding new LIDF record. If the leaf overflows as a
result of this insertion, we split the leaf into two: The first
half of the B-BOX records remain on the old leaf while the
rest move to a new leaf. For each B-BOX record relocated
to the new leaf, we use its LID to access the correspond-
ing LIDF record and update it to point to the new leaf. Fi-
nally, a pointer to the new leaf is added to the parent node,
immediately after the pointer to the old leaf.

If the addition of this new pointer causes the parent u to
overflow, a split of non-leaf node occurs. A sibling of u is
created, and half of the entries relocate to this new sibling.
For each relocated entry, we need to update the node that it
points to, so its back-link points to «’s new sibling. Finally,
a pointer to the new sibling node is added to «’s parent. In
the worst case, the split can propagate all the way up to the
root, causing the tree to grow.

If the deletion of a B-BOX record causes a leaf u to un-
derflow, we first attempt to borrow a record from a sibling
of w. If this attempt succeeds, in addition to relocating the
borrowed B-BOX record, we must update the correspond-
ing LIDF record to reflect the new block address of the bor-
rowed record. If »’s siblings do not have spare records, we
merge a sibling into « by moving all records in the sibling
to u. Again, corresponding LIDF records to be updated to
pointto u. Finally, the pointer to the sibling is removed from
u’s parent. An underflow non-leaf node is handled in a way
similar to an underflow leaf, with the only difference be-
ing that we update back-links for relocated pointers (analo-
gous to but instead of updating LIDF records for relocated
B-BOX records).

In the worst case, split and merge could occur at ev-
ery level of the tree; at each level, the cost is dominated
by that of updating B/2 back-links or LIDF records. There-
fore, the worst-case update cost of B-BOX is O(B log g N).
However, this worst-case scenario is extremely rare. Most
of the time, an update affects only the leaf, without caus-
ing any reorganization across blocks or updates of LIDF
records or back-links. In fact, the amortized update cost of
B-BOX over a sequence of insertions can be shown to be
O(1): At worst, every B/2 insertions will fill up a leaf and
force it to split at a cost of O(B) 1/0s; every (B/2)? in-
sertions will fill up a parent of a leaf, causing additional
O(B) l/0s, and so on. Therefore, the amortized cost is
O(1) +O(B) x (g + mraz + @mrs +) = 0().

It is also possible to obtain O(1) amortized update cost
over a sequence of updates containing both insertions and
deletions, but we will need to relax the minimum fan-out
requirement to B/4, which does not alter the asymptotic
space complexity of the B-BOX. The standard B-tree min-
imum fan-out of B/2 is susceptible to frequent splits and
merges caused by repeatedly inserting an entry into a full

leaf and then deleting the same entry. However, with a fan-
out of B/4, both split (of an overflow node with B en-
tries) and merge (of an underflow node with B/4 — 1 en-
tries and a node with B/4 entries) result in nodes with size
of about B/2. Each such node then has to gain at least
B/2 or lose at least B/4 entries before it will be split
or merged again. While this smaller minimum fan-out re-
quirement allows us to bound the amortized update cost
for both insertions and deletions, it will result in a taller
tree and longer labels (specifically, a label will take at most
log N+1+ L%J bits). Therefore, the standard min-
imum fan-out requirement of B /2 is still recommended for
workloads consisting of mostly insertions.

Theorem 5.3 The worst-case cost of updating a B-BOX is
O(Blogg N); the amortized update cost is O(1). O

Proof: The worst-case cost bound follows directly from
the discussion. Here we provide a more rigorous argument
for the amortized cost bound. Consider any sequence of n
mixed insertions of deletions. Let f () denote the total num-
ber of splits and merges on level i caused by the given up-
date sequence. Because each leaf will not be split or merged
again until there are Q(B) insertions and deletions per-
formed on it, f(0) = O(n/B). Since each split (or merge)
on level ¢ — 1 triggers an insertion (or deletion, respec-
tively) on level i, f(i) = O(f(i — 1)/B) = O(n/B**!).
Thus, the total number of splits and merges is
S0 fD) = YispyOn/BH) = O(n/B). At O(B)
I/0s per split, the total 1/O cost is O(n), and the amor-
tized 1/0 cost per update is O(1). m|

Bulk loading and subtree insert/delete Bulk loading
a B-BOX from an XML document is very similar to bulk
loading a W-BOX. Again, no sorting is required. With a
single scan of the document, we construct the LIDF and
all B-BOX leaves in parallel. As each B-BOX leaf becomes
full, we insert it into the B-BOX. When a non-leaf hode be-
comes full, instead of splitting it, we simply allocate an ini-
tially empty new sibling to its right; this strategy avoids the
cost of updating the back-links by never relocating any en-
tries. Like bulk loading a W-BOX, we always keep the right-
most node of each level in memory to avoid additional 1/0s.
In the end we are left with a B-BOX whose only underflow
nodes are those on the rightmost root-to-leaf path. We re-
pair these underflow nodes by borrowing from or merging
them with their left siblings; the number of additional 1/Os
is no more than O(B) per level (for updating back-links or
LIDF records). Overall, bulk loading costs O(N/B).

To insert an entire subtree of XML data into an exist-
ing B-BOX T, we first use bulk loading to construct a sep-
arate B-BOX T” for the data to be inserted (but instead of
creating a new LIDF, we append to the same one used by
T). Suppose that 77 has k' levels. We “rip” T from the in-

serting point as follows. First, we split the leaf node u of T
containing the insertion point right at that point, into u, and
ug. Then, we split u’s parent node into two: One node con-
tains all pointers up to and including the pointer to 4, and
the other node contains the pointer to u, and those follow-
ing it. “Ripping” continues up T for a total of A’ levels in-
cluding the leaf. The result is a gap in which we can fit 7"
perfectly, thereby producing a combined B-BOX with all
root-to-leaf paths having the same length. Finally, we re-
pair underflow nodes (on the two sides of the gap) and over-
flow node (where we insert the root of 7). Overall, the cost
is O(N'/B + Blogg(N + N')), where N’ is total num-
ber of tags in the inserted XML subtree.

Conceptually, deleting a subtree of XML data simply re-
verses the steps involved in inserting it. Note that all labels
to be deleted, say, V' of them, are clustered together in one
continuous range. We “rip” the B-BOX starting from both
endpoints of the range in parallel, until the two bottom-up
processes meet at the same node. As a result, we have iso-
lated the labels to be deleted into a number of subtrees in
the B-BOX. We can then remove these subtrees and repair
any remaining underflow nodes. Overall, the cost of updat-
ing the B-BOX is O(Blogz N). On the other hand, the
cost of deleting corresponding LIDF records can be up to
O(N'), as each deletion may result in a random I/O if these
records are scattered across the LIDF. However, if the ele-
ments to be deleted were inserted at around the same time
(either with bulk loading or subtree insertion), their LIDF
records would be clustered and the cost of deleting them
would be O(N'/B).

Ordinal labeling support In order to support ordinal la-
beling, we augment each non-leaf node entry with a size
field that keeps track of the total number of the B-BOX
records found within the subtree rooted at this entry (Fig-
ure 4). This additional field does not alter the asymptotic
space complexity of the B-BOX.

Looking up an ordinal label is similar to looking up a
regular label, but uses a running counter. This counter is
initialized with the number of B-BOX records located to
the left of the B-BOX record in question on the same leaf.
For each non-leaf node visited in the bottom-up traversal,
we add to the counter all size fields located to the left of
the entry that leads to the B-BOX record in question. The
value of the counter at the end of the traversal is the ordi-
nal label. For example, the ordinal label of = in Figure 4 is
24 (4+4+5)+20 = 35. The complexity of the lookup op-
eration remains O(log g N).

To insert (or delete) a single B-BOX record, the size
fields of all non-leaf node entries that lead to the inserted
(or deleted) record need be incremented (or decremented)
by 1. Thus, every update must go all the way to the root. In
the case of split, merge, or borrowing from sibling, appro-
priate size fields must be updated too (details are straight-

forward and omitted). The worst-case update cost is unaf-
fected, but the amortized cost becomes O(logz N), domi-
nated by the cost of updating size fields.

Bulk loading and subtree insert/delete operations can be
modified in a straightforward manner to maintain the size
fields. The extra cost does not affect the complexity of these
operations.

6. Reducing the Cost of Indirection

As we have already pointed out in Section 1, the level
of indirection that bridges the gap between immutable LIDs
and dynamic labels introduces an extra dereferencing cost.
Both W-BOX and B-BOX further trade off lookup perfor-
mance for update performance. These additional costs come
in the form of random 1/Os, which neutralize the benefit
of using order-based labeling in query processing, thereby
making this approach unsuitable for a read-heavy workload.
In this section, we address this issue using a combination of
caching and logging techniques. We begin our discussion
with the basic caching approach, and then show how log-
ging can be combined to increase its effectiveness.

Basic caching approach Instead of using just LIDs to
refer to dynamic labels indirectly, we augment each ref-
erence with the cached value of the label as well as a
last-cached timestamp indicating when the cached value
was obtained. The system also maintainsa last-modified
timestamp for each XML document being labeled, which
tracks the time of the last modification made to the docu-
ment that changed any existing labels. We assume that the
last-modified timestamp is kept in main memory most
of the time.

Given an augmented reference, a lookup operation first
compares the 1last-cached timestamp stored in the refer-
ence with the last-modified timestamp associated with
the document. If 1ast-modified precedes last-cached,
the cached label value in the reference is valid and is im-
mediately returned without incurring any additional 1/0.
If last-modified is more recent than last-cached, the
lookup operation starts with the LID and performs the nor-
mal steps as described in Sections 4 and 5. Then, it replaces
the cached value with the label it obtained, and updates the
last-cached timestamp. Here, the lookup operation pays
the full cost of W-BOX or B-BOX lookup, but this cost,
as we have shown in previous sections, is bounded and rea-
sonably small. Note that in this case a read needs to be esca-
lated to an update (of the cached label and 1ast-cached),
which could affect performance in a multiuser environment;
this issue is a possible topic for future work.

For workloads with few updates, this basic caching ap-
proach works predictably well. Its lookup performance is
practically as efficient as an immutable labeling scheme,
while avoiding the problems of an immutable label-

ing scheme when updates do occur. On the other hand,
a single last-modified timestamp may be insuffi-
cient to mitigate the effect of a steady update stream
on read performance; we discuss a more effective ap-
proach next.

Caching and logging approach Instead of a single
last-modifiedtimestamp, we log the last £ modifications
to the document. Each log entry contains the timestamp of
the modification and a description of its effect on existing
labels. For efficiency, the log should be kept in main mem-
ory and maintained as FIFO queue: when a new entry is
logged the oldest entry is dropped.

This approach works because, fortunately, for our data
structures, effects of modifications can be described suc-
cinctly and applied to an existing label without any addi-
tional information. For example, consider an ordinal label-
ing: The effect of inserting an element before an existing
element with start label 142857 is that all existing labels
greater than or equal to 142857 are incremented by 2. This
effect can thus be logged as a range update [142857, co) :
+2. Detailed logging techniques for different BOXes are
summarized below:

e For ordinal labels (either W-BOX or B-BOX), we
log insert-before(lid e, lidod) @S [I,00) : +1,
where [is the label value of lid ;4 before the inser-
tion. We log delete(lid oiq) as [, 00) : —1, where [is
the label value of lid ,;; before the deletion.

e For W-BOX with non-ordinal labels, in order to make
logging effective, we additionally require that within
each leaf, labeling is ordinal, i.e., the i-th label in the
leaf is always assigned the i-th smallest value in the
range associated with the leaf. This requirement does
not alter the 1/0O cost of the W-BOX in any way. If
insert-before(lid ey, lidoiq) (Or delete(lid oiq))
modifies only one W-BOX leaf, we log it as [I, I ;4] :
+1 (or —1, respectively), where [is the label value of
lid 14 before the update, and [,,,., is the largest label
value on the leaf before the update.

If the update affects multiple leaves, its effect is
difficult to describe succinctly. Instead of logging the
precise effect, we simply log the affected range as
invalidated. In the worst case, the affected range
is the range associated with the parent of the topmost
node that was split during the update (recall that in
this case the entire subtree rooted at the parent is re-
labeled).

e For B-BOX with non-ordinal labels, if
insert-before(lid ew, lidoq) (Or delete(lid oiq))
modifies only one B-BOX leaf, we log it as
(I, Lmaz] = +1 (or —1, respectively), where [is the la-
bel value of lid,;; before the update, and 1,,., IS

the largest label value on the leaf before the up-
date. The effects +1 and —1 are to be applied to the
last component of a label.

If the update affects multiple leaves, we log the af-
fected range as invalidated. The affected range of
labels is determined as follows. Let » be the topmost
node affected by reorganization. Suppose that the path
from root to « contributes label components iy, ..., 1[;,
where [; is the ordinal position of v within its parent.
There are two cases. (1) u has either gained a child
or lost one at ordinal position j because of a split or
a merge, respectively; in this case, the affected labels
are those starting with components {4, ..., [;, k, where
k > j.(2) The boundary between u’s children at ordi-
nal positions j and j+1 has changed because one child
has borrowed from the other; in this case, the affected
labels are those starting with components {4, ..., [;, k,
where k = jorj + 1.

A lookup operation starts by comparing last-cached
with the earliest modification timestamp logged. If
last-cached is earlier, the cached label is unusable and
the full cost of lookup must be paid. Otherwise, we “re-
play,” in timestamp order, the effects of all modifications
with timestamps later than 1ast-cached on the cached la-
bel, and return the result without additional 1/Os. Fi-
nally, we replace the cached label with this result and
update the last-cached timestamp. The only excep-
tion is when a modification marks a range containing the
label as invalidated; in this case, the cached label is un-
usable and we must pay the full cost of lookup.

A log with k entries gives roughly a k-fold boost in the
effectiveness of caching because it takes & subsequent mod-
ifications instead of one to make cached labels unusable.
The invalidated log entries decrease the effectiveness of
caching somewhat, but they are very rare because on aver-
age only one in ©(B) updates affects more than one leaf.
On the other hand, a larger % also increases memory re-
quirements and computational overhead.

7. Experiments

Our experiments evaluate the naive relabeling scheme
(introduced in Section 1), W-BOX, B-BOX, and their vari-
ants on their 1/0 performance. We test a variety of XML
element insertion sequences and demonstrate the ability of
each scheme to cope with each of them. Recall that a num-
ber of theoretical bounds in this paper are given in the amor-
tized sense; to understand these bounds better, we present
not only a single average computed over a sequence of op-
erations, but also the distribution of individual costs.

We have implemented all algorithms in C++. W-BOX,
B-BOX, and their variants are implemented using TPIE [2],
a library that provides support for implementing and eval-

uating 1/0O-efficient algorithms and data structures. For all
experiments, the block size is set to 8KB. Performance is
measured by the number of 1/0s. We present results ob-
tained with main-memory caching turned off. However, we
do assume that during the course of a single operation, a
small number of memory blocks are available for buffer-
ing blocks that need to be immediately revisited; they are
always evicted from the memory as soon as the operation
completes. Turning off caching exposes the full costs of 1/0
and makes the results easier to interpret. In practice, and as
we have observed in experiments with caching turned on,
our structures perform better with caching, especially be-
cause the root tends to be cached at all times.

Our experiments compare the following dynamic label-
ing schemes: W-BOX, W-BOX-O (the variant of W-BOX
optimized for reading start/end labels in pairs), B-BOX, B-
BOX-O (the variant of B-BOX with ordinal labeling sup-
port), and naive-k (the naive relabeling scheme with k bits
of extra storage per label). All schemes use the LIDF de-
scribed in Section 3 to map immutable LI1Ds to dynamic la-
bels. For BOXes, LIDF records point to index leaves con-
taining BOX records. For naive-k, each LIDF record di-
rectly stores the label value and the length of the gap be-
tween this and the previous label value. Our implementa-
tion of naive-k requires sorting the LIDF for relabeling. We
assume that there is enough memory devoted to naive re-
labeling such that sorting can be done entirely in memory
without extra 1/0 passes; this assumption produces a lower
bound on the cost of naive-k to compare with our BOXes.
We will see shortly that, even with this unfair advantage,
naive- is still inferior to our BOXes in most experiments.

Concentrated insertion sequence We start with a two-
level XML document with 2,000, 000 elements and bulk
load our data structures. Then, we insert a two-level XML
subtree with 500, 000 elements, one element at a time, into
the base document. Specifically, we insert the root element
of the subtree first, as a child of the root of the base docu-
ment. Then, we insert the first and the last children of the
subtree root, followed by the second and the second-to-last,
then the third and the third-to-last, and so on. In effect, each
subsequent pair of insertions are “squeezed” into the cen-
ter of a growing list of siblings. This insertion sequence be-
haves in a similar way as the adversary described in con-
nection with the naive labeling scheme in Section 1, and it
also creates the (near) worst case for many other labeling
schemes, such as ORDPATH [15]. We have specifically de-
signed this insertion sequence to stress-test our dynamic la-
beling schemes.

Figure 5 shows the average cost of element insertion
(which involves inserting two labels) for various dynamic
labeling scheme over the entire insertion sequence. Basic
B-BOX, with its compact structure and the advantage of
not having to materialize actual labels, has the best perfor-

Concentrate: Average I/Os Per Insert

naive-256
naive-64
naive-16
naive-4
B-BOX-O
B-BOX
W-BOX-O

W-BOX
T

T T T T T
0 100 200 300 400 500 600 700

Figure 5. Amortized update cost, concen-
trated insertion sequence.

1

1]
8
Q 01t :
9]
z
o 001G
3
2
g 0001} \
£ =
5
S 1emsf
g
[a e R b,
1e-05 : : .
1 10 100 1000 10000 100000
110s

Figure 6. Distribution of update cost, concen-
trated insertion sequence.

mance, confirming the amortized O(1) bound predicted by
our analysis. B-BOX-0, with support for ordinal labels, in-
curs some additional 1/Os (up to the height of the tree) in
maintaining the size fields, but still provides excellent per-
formance. W-BOX suffers a little more, because the worst-
case insertion sequence triggers frequent relabeling which
is unavoidable for any labeling scheme that materializes
labels. W-BOX-O, by further trading update performance
for lookup performance, understandably has a higher up-
date cost. On the other hand, all naive schemes perform ex-
tremely poorly compared with BOXes. Even with 256 ex-
tra bits, each insertion still costs 100 1/Os. Further increas-
ing the number of extra bits gives diminishing returns, be-
cause the space and manipulation overhead of long labels
quickly become significant.

Figure 6 shows, for each 1/O cost, the fraction of inser-
tions in the sequence that incurred higher than this cost.
Note that both axes have logarithmic scale. This figure pro-
vides information about the distribution of individual costs.
The results in this figure largely confirm our analysis and
reaffirms the effectiveness of BOXes. The “steps” in the fig-
ure do provide some interesting insights into the operational
details of the data structure. The drop in the B-BOX curve
around 1, 000 I/Os, for example, represents the fraction of
insertions that cause splits of internal B-BOX nodes.

Scatter: Average 1/Os Per Insert

7

naive-8
naive-4
naive-2
naive-1
B-BOX

W-BOX
| ‘ ‘ Sy

0 5 10 15 1410 1415
Figure 7. Amortized update cost, scattered in-
sertion sequence.

Scattered insertion sequence The next experiment is
designed to contrast with the concentrated one. We start
with the same document of 2, 000, 000 elements and insert
another 500, 000. In this case, though, the inserts are spread
evenly throughout the document. As shown in Figure 7, the
naive policies, as expected, particularly shine in this test.
These policies bank on no gap being overwhelmed with in-
serts; consequently, almost all inserts are done in constant
time, and no relabeling is needed. The exception is naive-1,
whose gap size is too small to accommodate even a sin-
gle element. Therefore, relabeling is triggered constantly.
The BOXes handle this case just as well. While they are
designed to handle arbitrary insertion sequences gracefully,
they too benefit from the evenly spread inserts.

XMark insertion sequence The next experiment is of
the same flavor as the previous two, but now uses a docu-
ment generated from the XMark benchmark with 336, 242
elements. We insert elements in a way to reflect how such
a document might build up over time: Elements are added
in document order of their start tags, one by one. As an
example, for the document in Figure 1, we would first in-
sert site (both its start and end tags), and then regions,
africa, item, another item, asia, etc., in order. Note that
this sequence—inserting all elements in document order—
is not the same as inserting all labels in document order
(which would behave like bulk loading), because end labels
are inserted together with corresponding start labels with-
out knowing subtree sizes in advance.

Our results represent the insertions taking place after the
first 200, 000. This was done to “prime” the structures with
an initial size. The results, shown in Figures 8 and 9, as
expected, fall somewhere between the non-taxing scatter
test and the adversarial concentrate test. No policies escape
without doing any splits or reorganizations. The BOXes out-
perform the naive policies. The naive versions, relative to
each other, perform the same way they did in the concen-
trate test.

Query performance At the end of each experiment, W-
BOX and B-BOX heights were usually 3, but sometimes
2. As with B-trees, the number of elements must rise enor-

XMark: Average 1/Os Per Insert

naive-32
naive-16
naive-8
naive-4
naive-2
B-BOX
W-BOX

0 20 40 60 80 100 120
Figure 8. Amortized update cost, XMark inser-
tion sequence.

1 T T T
9 -~ naive-2 B-BOX ——
8 Y W-BOX -+wwees
naive-4
o 01t
&
=
o
a>5 001 i T,
) A
a
g 0001}
£
K<}
S 1emsf
@
w 1)
1e-05 : i : :
1 10 100 1000 10000 100000
1/0s

Figure 9. Distribution of update cost, XMark
insertion sequence.

mously to force the BOXes to grow in height. It is easy to
see that with such low BOX heights, the logarithmic lookup
costs for regular B-BOX and its ordinal version are, in prac-
tice, quite low (3—4 counting the indirection through LIDF,
without caching the root). W-BOX, on the other hand, al-
ways looks up a label in two I/Os (again counting the indi-
rection through LIDF), regardless of the tree height. If start
and end labels are looked up together, W-BOX-O can do so
in two 1/Os total, two fewer than W-BOX. Finally, naive-k
must also incur one 1/0 per label lookup because of the in-
direction through LIDF, which is unavoidable for any dy-
namic labeling scheme.

Other findings The previous experiments all insert one
element at a time into the document, but the concentrate test
in fact inserts a subtree of elements. In practice, this subtree,
if known in advance, should be inserted using the bulk insert
methods. The element-at-a-time test costs 5,401, 885 and
2,000, 448 total 1/Os for W-BOX and B-BOX, respectively.
With bulk insert methods, costs dramatically decreased to
11,374 and 492, respectively.

It is an interesting exercise to determine which policies
are hurt by the limit of machine word size, typically 32 bits.
Our experiments use data sizes of 2,000, 000 elements, or
4,000, 000 labels overall. Labels for these keys can be dif-
ferentiated with only 12 bits, far below machine word size.

On the other hand, the naive-k scheme requires additional
k bits to maintain its gaps. In our experiments, the naive-32
scheme and those with even larger gap sizes all have la-
bels that exceed machine word size. Therefore, aside from
the 1/0 costs shown in the experiments, the naive policies
also generally run slower because of inefficiencies in pro-
cessing such long labels.

8. Conclusion

We have presented W-BOX and B-BOX, two novel
structures for maintaining order-based labeling of XML el-
ements. Most existing schemes fall prey to adversarial con-
ditions that result in long labels or frequent expensive
relabeling. Our structures temper the effects of any possi-
ble update pattern by trading off the costs of update and
lookup, while providing good bounds for both. By bas-
ing the BOX schemes on formal, balanced tree structures,
we are able to achieve provably good performance. Our ex-
periments show that the BOXes indeed process updates,
and especially adversarial updates, more efficiently than
a naive gap-maintaining scheme. Currently, we are work-
ing on further improving the effectiveness of the caching
and logging approach in Section 6, by using an effi-
cient data structure for storing the log.

Acknowledgements We thank H. V. Jagadish and mem-
bers of the Carolina Database Research Group for their in-
sightful discussions of and related to this problem.

References

[1] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A ro-
bust numbering scheme for XML documents. In Proc. of the
2003 Intl. Conf. on Data Engineering, pages 705-707, Ban-
galore, India, March 2003.

[2] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing 1/O-
efficient data structures using TPIE. In Proc. of the 2002
European Symp. on Algorithms, pages 88-100, Rome, Italy,
September 2002.

[3] L. Arge and J. S. Vitter. Optimal dynamic interval man-
agement in external memory. In Proc. of the 1996 |IEEE
Symp. on Foundations of Computer Science, pages 560-569,
Burlington, Vermont, USA, October 1996.

[4] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and
J. Zito. Two simplified algorithms for maintaining order in
a list. In Proc. of the 2002 European Symp. on Algorithms,
pages 152-164, Rome, Italy, September 2002.

[5] N.Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. In Proc. of the 2002 ACM
S GMOD Intl. Conf. on Management of Data, pages 310-
321, Madison, Wisconsin, USA, June 2002.

[6] Y. Chen, G. Mihaila, S. Padmanabhan, and R. Bordawekar.
L-Tree: a dynamic labeling structure for ordered XML data.
In Proc. of the 2004 Intl. Workshop on Database Technolo-
gies for Handling XML Information on the Web, pages 31—
45, Heraklion-Crete, Greece, March 2004.

[7] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic
XML trees. In Proc. of the 2002 ACM Symp. on Principles
of Database Systems, pages 271-281, Madison, Wisconsin,
USA, June 2002.

[8] P.F. Dietz. Maintaining order in a linked list. In Proc. of the
1982 ACM Symp. on Theory of Computing, pages 122-127,
San Francisco, California, USA, May 1982.

[9] P. F. Dietz and D. Sleator. Two algorithms for maintaining
order in a list. In Proc. of the 1987 ACM Symp. on Theory
of Computing, pages 365-372, New York, New York, USA,
May 1987.

[10] D. K. Fisher, F. Lam, W. M. Shui, and R. K. Wong. Efficient
ordering for XML data. In Proc. of the 2002 Intl. Conf. on
Information and Knowledge Management, pages 350-357,
New Orleans, Louisiana, USA, November 2003.

[11] T. Grust. Accelerating XPath location steps. In Proc. of the
2002 ACM SIGMOD Intl. Conf. on Management of Data,
pages 109-120, Madison, Wisconsin, USA, June 2002.

[12] A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krish-
namurthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang, J. F.
Naughton, and D. J. DeWitt. Mixed mode XML query pro-
cessing. In Proc. of the 2003 Intl. Conf. on Very Large Data
Bases, pages 225-236, Berlin, Germany, September 2003.

[13] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksh-
manan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A native
XML database. The VLDB Journal, 11(4):274-291, 2002.

[14] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. In Proc. of the 2001 Intl. Conf.
on Very Large Data Bases, pages 361-370, Rome, Italy,
September 2001.

[15] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHSs: Insert-friendly XML node labels.
In Proc. of the 2004 ACM SGMOD Intl. Conf. on Manage-
ment of Data, pages 903-908, Paris, France, June 2004.

[16] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis,
and V. Zolotov. Indexing XML data stored in a relational
database. In Proc. of the 2004 Intl. Conf. on Veery Large Data
Bases, pages 1146-1157, Toronto, Canada, September 2004.

[17] 1. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In Proc. of the
2002 ACM S GMOD Intl. Conf. on Management of Data,
pages 204-215, Madison, Wisconsin, USA, June 2002.

[18] World Wide Web Consortium. XML path language (XPath),
November 1999. http://www.w3.org/TR/xpath.

[19] X. Wu, M. L. Lee, and W. Hsu. A prime number labeling
scheme for dynamic ordered XML trees. In Proc. of the 2004
Intl. Conf. on Data Engineering, pages 66—77, Boston, Mas-
sachusetts, USA, March 2004.

[20] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. Lohman. On supporting containment queries in relational
database management systems. In Proc. of the 2001 ACM
S GMOD Intl. Conf. on Management of Data, pages 425—
436, Santa Barbara, California, USA, June 2001.

