

Clustering - overview

• A general clustering problem:

Given a set V of points in a metric space, partition V into a set of disjoint clusters such that a certain objective function is minimized,

subject to some

Clustering - overview

• A general clustering problem:

Given a set V of points in a metric space, partition V into a set of disjoint clusters such that a certain objective function is minimized,

subject to some

cluster-level constraints: impose restrictions, for example, on the number of clusters (exactly k clusters) or on the size of each cluster (at least l elements).

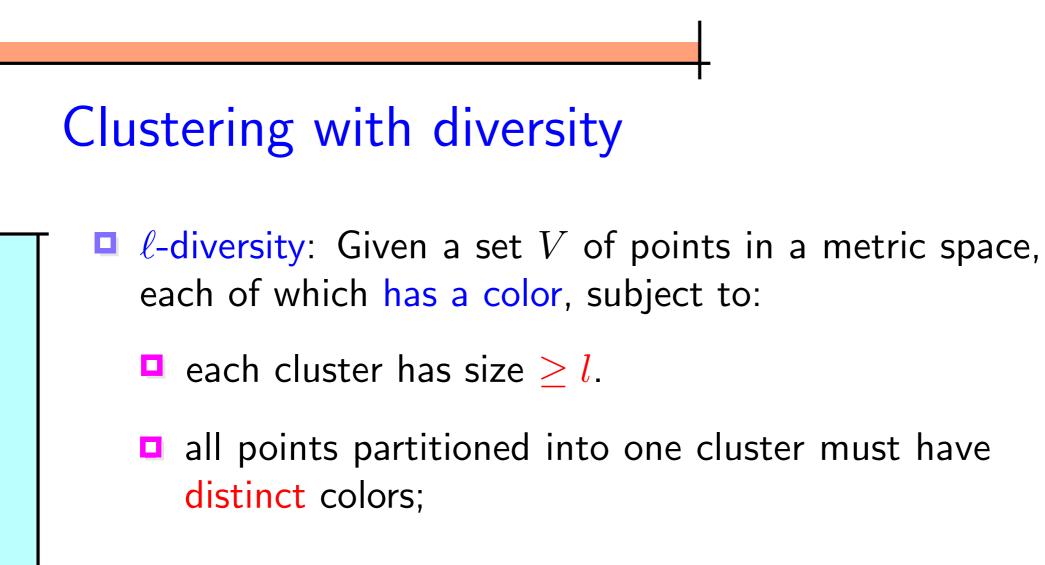
Clustering - overview

• A general clustering problem:

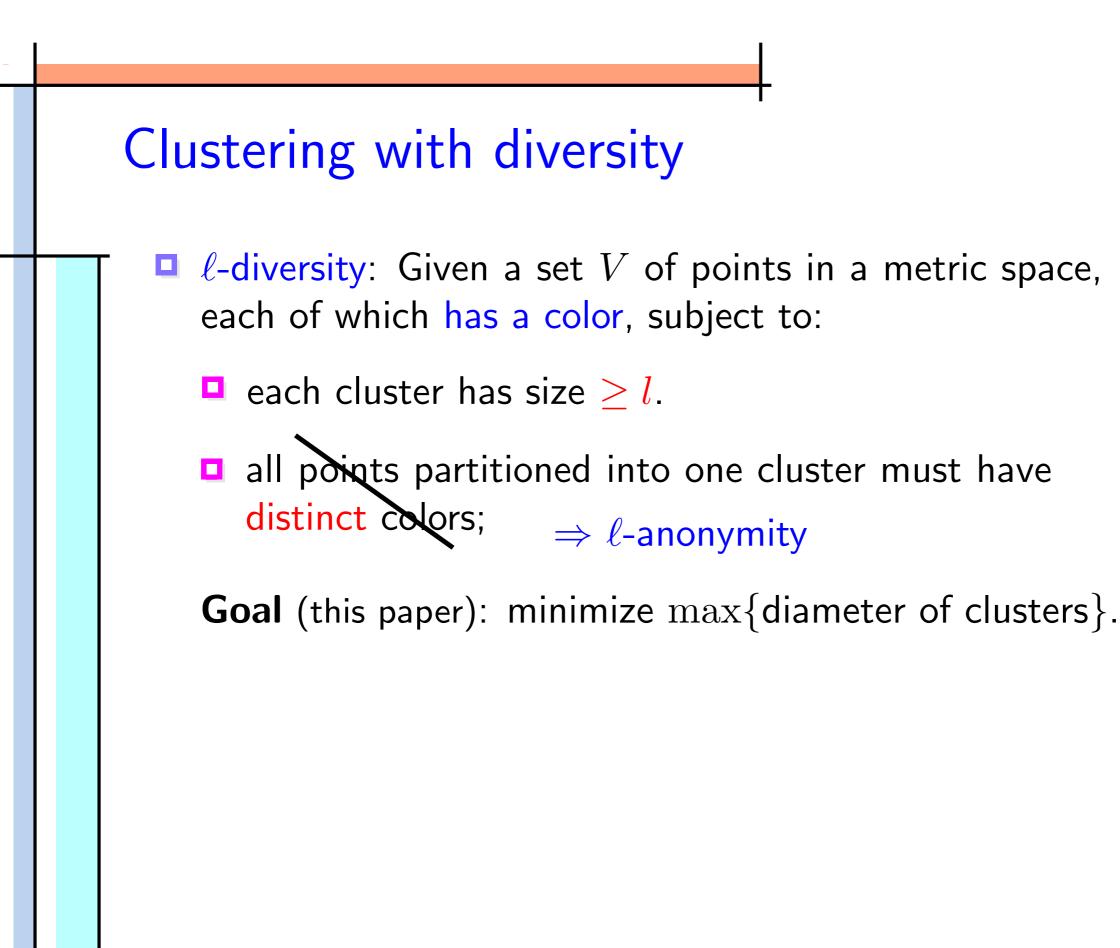
Given a set V of points in a metric space, partition V into a set of disjoint clusters such that a certain objective function is minimized,

subject to some

- cluster-level constraints: impose restrictions, for example, on the number of clusters (exactly k clusters) or on the size of each cluster (at least l elements).
- instance-level constraints: specify whether particular pair of items can be clustered together based on some background knowledge.



Goal (this paper): minimize $\max\{\text{diameter of clusters}\}$.



The main motivation

 ℓ -diversity is motivated from privacy preservation for data publication (Machanavajjhala et. al. 2006), follows ℓ -anonymity (a.k.a. *k*-anonymity, Samarati 2001).

quasi-identifier (QI)

sensitive / attribute

T-1D(<i>Name</i>)	Age	Gender	Degree	Disease
1 (Adam)	29	М	M.Sc.	HIV
2 (Bob)	25	М	M.Sc.	HIV
3 (Calvin)	25	М	B.Sc.	pneumonia
4 (Daisy)	29	F	B.Sc.	bronchitis
5 (<i>Elam</i>)	40	М	B.Sc.	bronchitis
6 (Frank)	45	М	B.Sc.	bronchitis
7 (George)	35	М	B.Sc.	pneumonia
8 (Henry)	37	М	B.Sc.	pneumonia
9 (<i>Ivy</i>)	50	F	Ph.D.	dyspepsia
10 (<i>Jane</i>)	60	F	Ph.D.	pneumonia

(a) The microdata

The main motivation

 ℓ -diversity is motivated from privacy preservation for data publication (Machanavajjhala et. al. 2006), follows ℓ -anonymity (a.k.a. *k*-anonymity, Samarati 2001).

quasi-identifier (QI)

sensitive

T-1D(<i>Name</i>)	Age	Gender	Degree	Disease
1 (Adam)	29	М	M.Sc.	HIV
2 (<i>Bob</i>)	25	М	M.Sc.	HIV
3 (Calvin)	25	М	B.Sc.	pneumonia
4 (Daisy)	29	F	B.Sc.	bronchitis
5 (<i>Elam</i>)	40	М	B.Sc.	bronchitis
6 (Frank)	45	М	B.Sc.	bronchitis
7 (George)	35	М	B.Sc.	pneumonia
8 (Henry)	37	М	B.Sc.	pneumonia
9 (<i>Ivy</i>)	50	F	Ph.D.	dyspepsia
10 (<i>Jane</i>)	60	F	Ph.D.	pneumonia

				_
/ a	ttr	٦b	u	te
-	1	_		

Qls	Disease	
	HIV	
(25-29, M, MSc) HIV	
(25-29, *, BSc)	pneumonia	
(25-29, *, 550)	bronchitis	
	bronchitis	
(40-45, M, BSc)	bronchitis	
	pneumonia	
(35-37, M, BSc) pneumonia	
(50-60, F, PhD)	dyspepsia	
(50-00, F, FIID)	pneumonia	

(a) The microdata

(b) A 2-anonymous table

The main motivation

 ℓ -diversity is motivated from privacy preservation for data publication (Machanavajjhala et. al. 2006), follows ℓ -anonymity (a.k.a. *k*-anonymity, Samarati 2001).

quasi-identifier (QI)

sensitive

T-1D(<i>Name</i>)	Age	Gender	Degree	Disease
1 (Adam)	29	М	M.Sc.	HIV
2 (<i>Bob</i>)	25	М	M.Sc.	HIV
3 (Calvin)	25	М	B.Sc.	pneumonia
4 (Daisy)	29	F	B.Sc.	bronchitis
5 (<i>Elam</i>)	40	М	B.Sc.	bronchitis
6 (Frank)	45	М	B.Sc.	bronchitis
7 (George)	35	М	B.Sc.	pneumonia
8 (Henry)	37	М	B.Sc.	pneumonia
9 (<i>Ivy</i>)	50	F	Ph.D.	dyspepsia
10 (<i>Jane</i>)	60	F	Ph.D.	pneumonia

(a) The microdata

Qls	Disease		Qls	Disease
	HIV		(25-29, M, *)	HIV
(25-29, M, MSc) HIV		(23-29, 101,)	pneumonia
(25-29, *, BSc)	pneumonia		(25-29, *, *)	HIV
(23-29, , B3C)	bronchitis			bronchitis
	bronchitis		(35-40, M, BSc)	bronchitis
(40-45, M, BSc)	bronchitis			pneumonia
(35-37, M, BSc	pneumonia		(37-45, M, BSc`	bronchitis
	, pneumonia		(, ,	pneumonia
(50-60, F, PhD)	dyspepsia		(50-60, F, PhD	dyspepsia
	pneumonia		(30-00, 1, 110)	, pneumonia

(b) A 2-anonymous table

(c) An 2-diverse table

Previous work

- *l*-anonymity
 - A 2-approximation in the metric space is known (Aggarwal el. al. 2006).

Previous work

l-anonymity

A 2-approximation in the metric space is known (Aggarwal el. al. 2006).

- *l*-diversity
 - Many heuristic solutions have been proposed in the DB community (i.e. LeFevre et. al. 2006, Ghinita et. al. 2007). But no theoretical result.

Previous work

- *l*-anonymity
 - A 2-approximation in the metric space is known (Aggarwal el. al. 2006).
- *l*-diversity
 - Many heuristic solutions have been proposed in the DB community (i.e. LeFevre et. al. 2006, Ghinita et. al. 2007). But no theoretical result.
- Outliers (remove some points to get better clusters)
 - First considered by Charikar et. al. 2001 for facility location and k-median.
 - A 4-approximation is known for *l*-anonymity (Aggarwal el. al. 2006).

Related work on instance-level constraints

- ML constraints and CL constraints (Wagstaff and Cardie 2000)
 - must-link (ML): two points must be clustered together. cannot-link (CL): two points must be separated.
 - *l*-diverse clustering can be seen as a special case where nodes with the same color must satisfy CL constraints.
 - No approximation algorithm is studied.

Related work on instance-level constraints

- ML constraints and CL constraints (Wagstaff and Cardie 2000)
 - must-link (ML): two points must be clustered together. cannot-link (CL): two points must be separated.
 - *l*-diverse clustering can be seen as a special case where nodes with the same color must satisfy CL constraints.
 - No approximation algorithm is studied.
- Correlation clustering (Bansal et. al. 2004)
 - Minimize the violation of the given constraints.
 - Best approximation algorithms are due to Ailon et. al. 2008

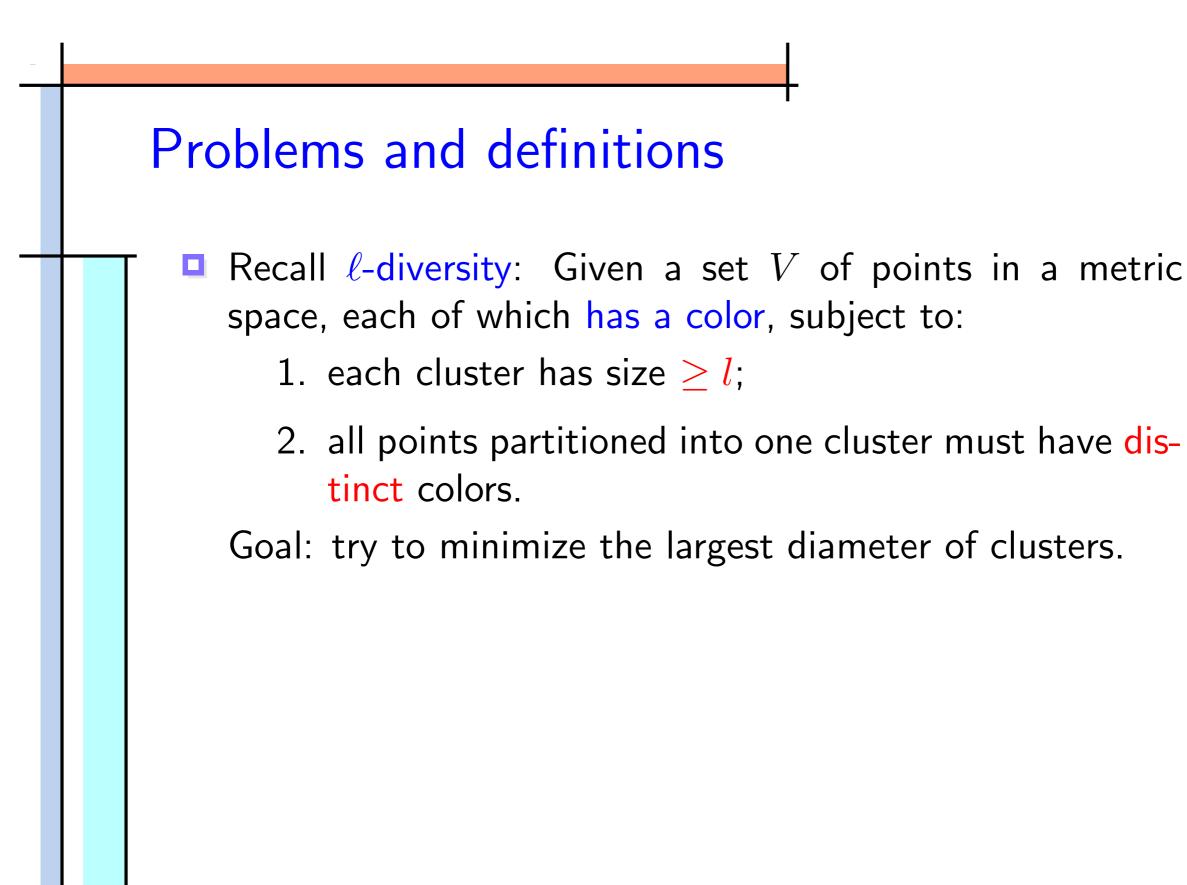
Our results for *l*-diversity

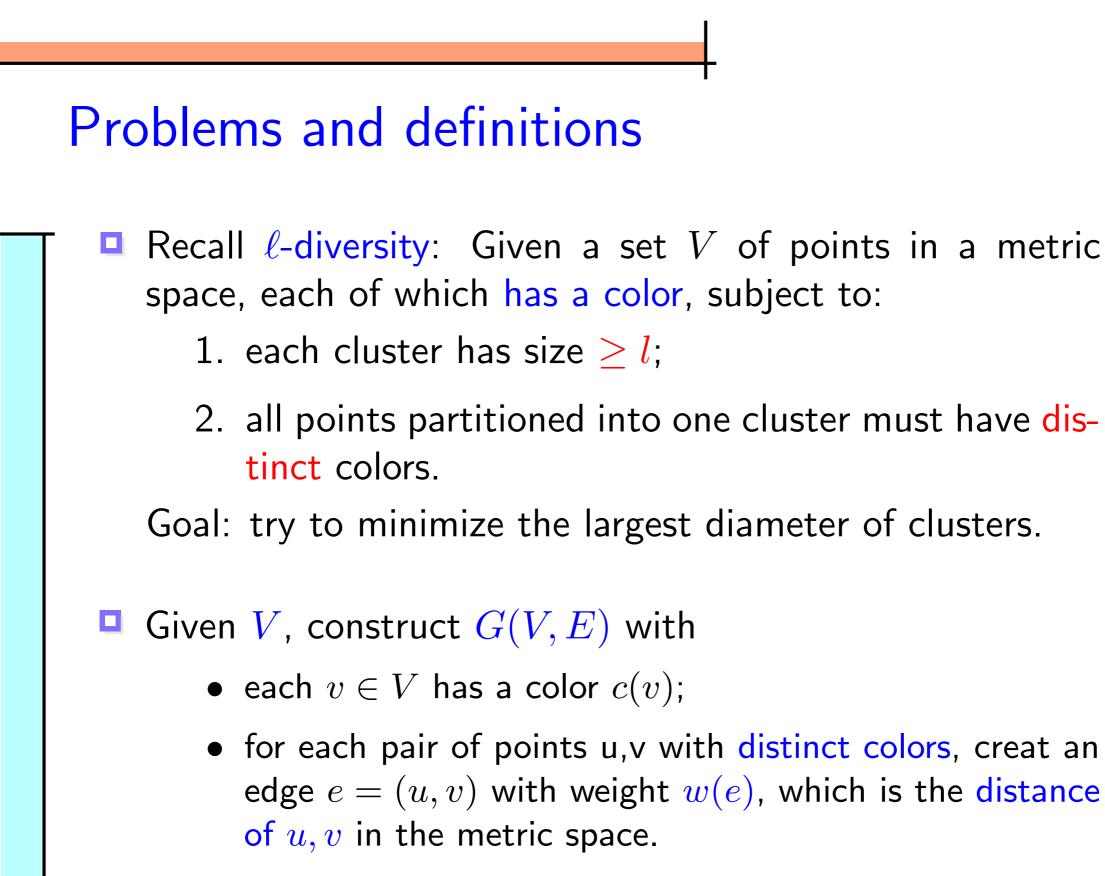
 A 2-approximation algorithm (if the problem has feasible solutions).

 A matching lower bound assuming P \neq NP (even there are only 3 colors)

An O(1)-approximation algorithm for the infeasible case.
 (if the problem does not have a feasible solution, we remove the least possible number of points to get a feasible solution)

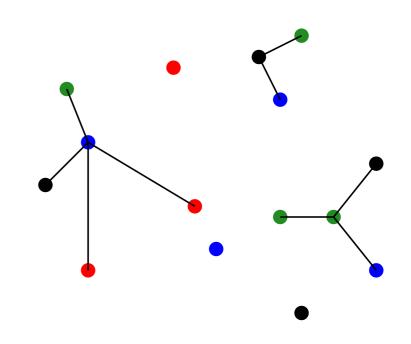
2-approximation algorithm



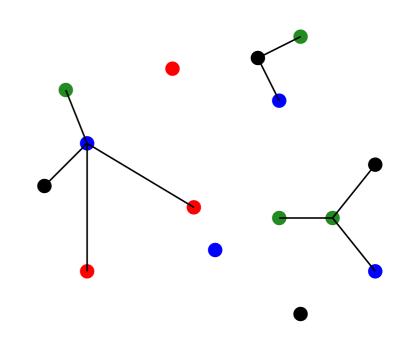


• diameter of $C \subseteq V$: $\max_{u,v \in C}(w(e(u,v)))$.

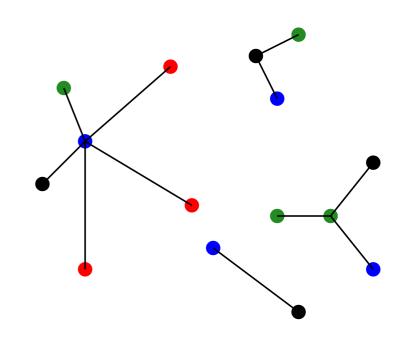
star forest: a forest where each connected component is a star.



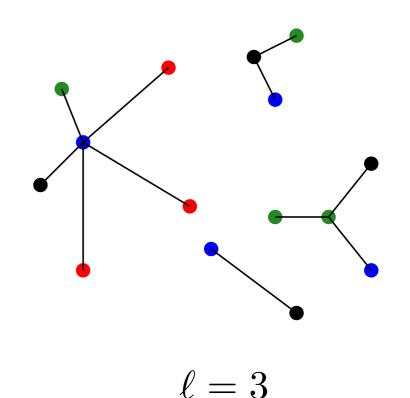
- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.



- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.

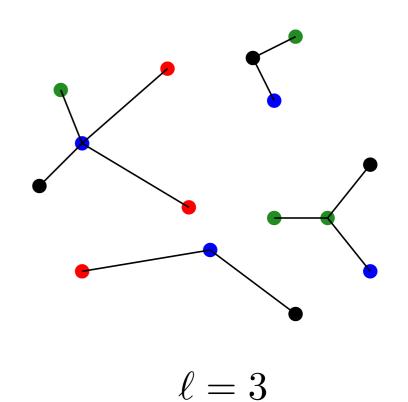


- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.



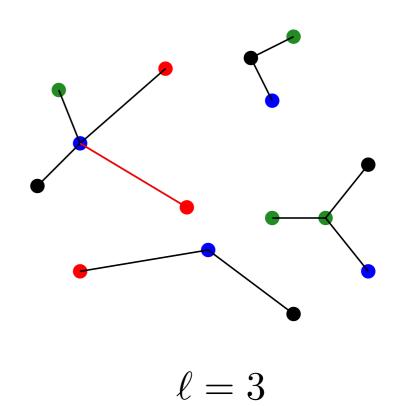
semi-valid spanning star forest: a spanning star forest with each component containing at least least least.

- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.



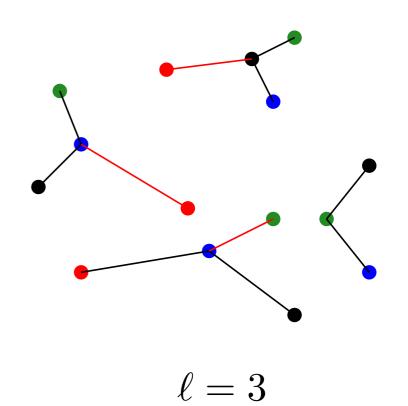
semi-valid spanning star forest: a spanning star forest with each component containing at least least least.

- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.



- semi-valid spanning star forest: a spanning star forest with each component containing at least *l* colors.
- valid spanning star forest: a semi-valid spanning star forest with each component containing points with distinct colors.

- star forest: a forest where each connected component is a star.
- spanning star forest: a star forest with no isolated point.



- semi-valid spanning star forest: a spanning star forest with each component containing at least *l* colors.
- valid spanning star forest: a semi-valid spanning star forest with each component containing points with distinct colors.

A review on 2-approximation for $\ell\text{-anonymity}$

- General idea of the algorithm in Aggarwal el. al. 2006.
 - 1. Let e_1, e_2, \ldots be the edge of G in a non-decreasing order of weights.
 - 2. Consider each graph G_i formed by the first i edges $E_i = \{e_1, e_2, \dots, e_i\}.$
 - 3. For each $G_i = (V, E_i)$, try to

A review on 2-approximation for ℓ -anonymity

- General idea of the algorithm in Aggarwal el. al. 2006.
 - 1. Let e_1, e_2, \ldots be the edge of G in a non-decreasing order of weights.
 - 2. Consider each graph G_i formed by the first i edges $E_i = \{e_1, e_2, \dots, e_i\}.$
 - 3. For each $G_i = (V, E_i)$, try to

find a maximal independent set (IS) I s.t.

- (1) there is a spanning star forest in G_i with the nodes in I being the star centers,
- (2) each star has at least ℓ nodes.

A review on 2-approximation for ℓ -anonymity

- General idea of the algorithm in Aggarwal el. al. 2006.
 - 1. Let e_1, e_2, \ldots be the edge of G in a non-decreasing order of weights.
 - 2. Consider each graph G_i formed by the first i edges $E_i = \{e_1, e_2, \dots, e_i\}.$
 - 3. For each $G_i = (V, E_i)$, try to

find a maximal independent set (IS) I s.t.

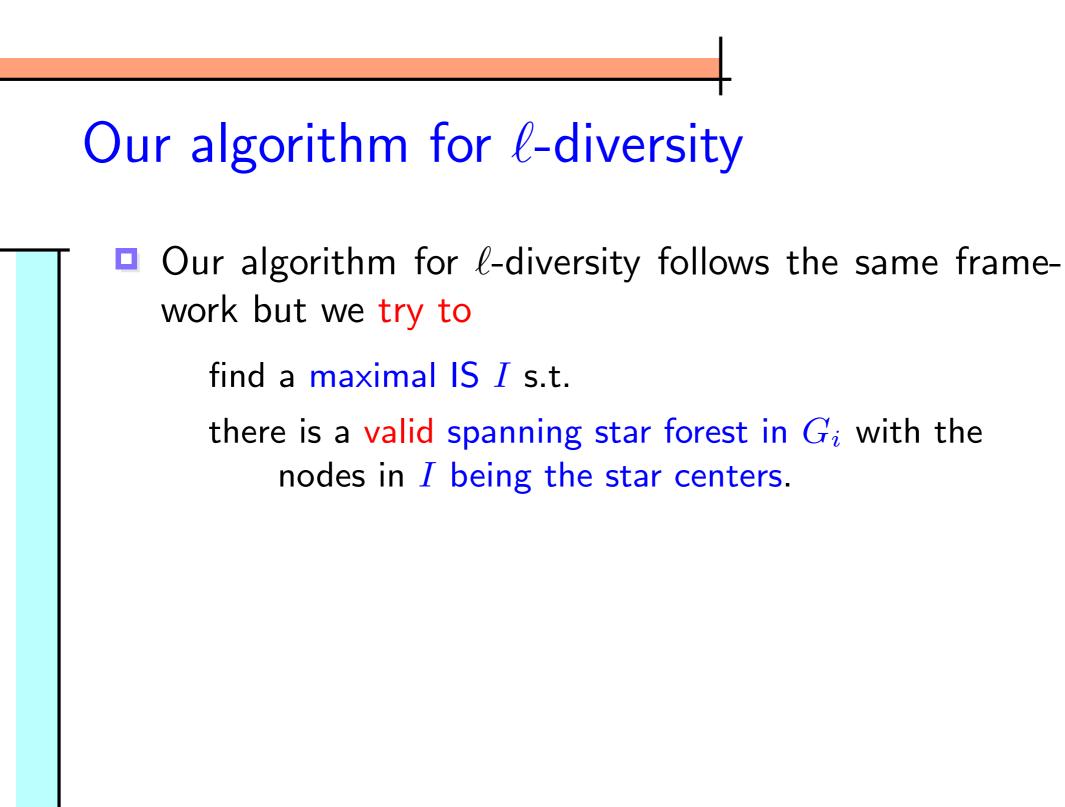
- (1) there is a spanning star forest in G_i with the nodes in I being the star centers,
- (2) each star has at least ℓ nodes.
- Let the diameter of the OPT clustering be d^* with $w(e_{i^*}) = d^*$. Aggarwal el. al. shows that the trial on G_{i^*} must succeed.

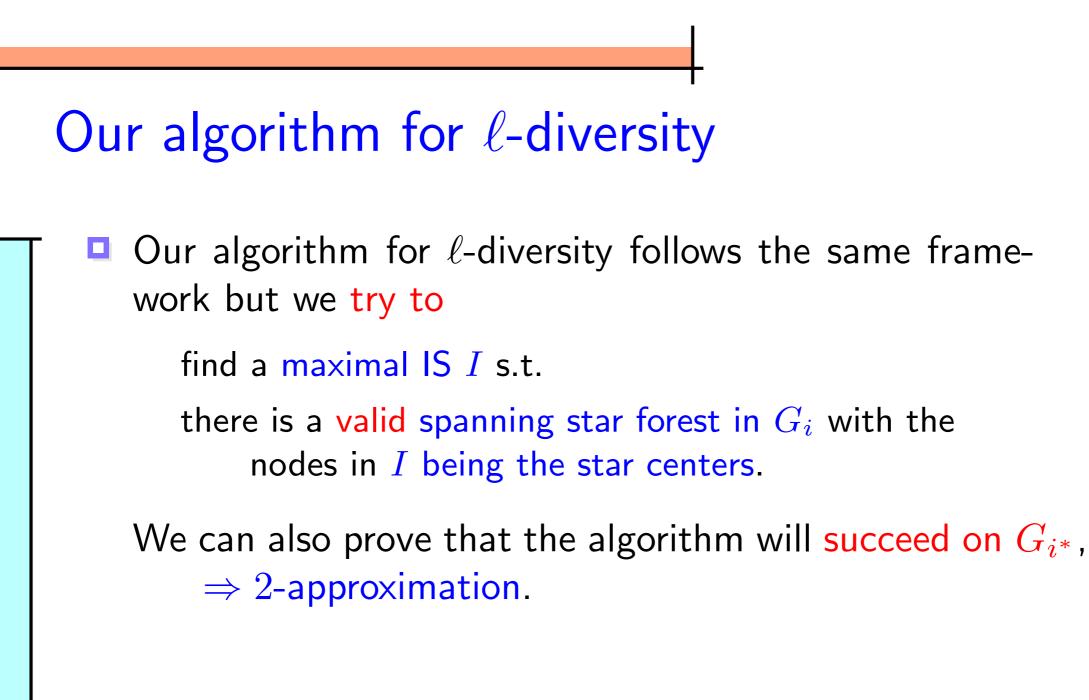
A review on 2-approximation for ℓ -anonymity

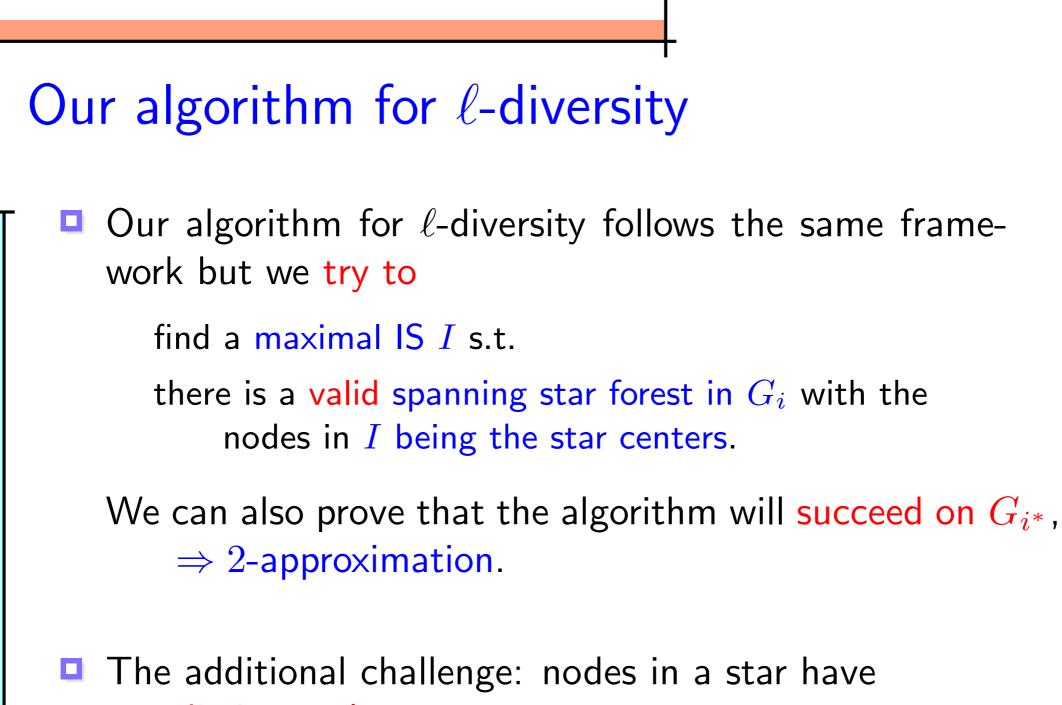
- General idea of the algorithm in Aggarwal el. al. 2006.
 - 1. Let e_1, e_2, \ldots be the edge of G in a non-decreasing order of weights.
 - 2. Consider each graph G_i formed by the first i edges $E_i = \{e_1, e_2, \dots, e_i\}.$
 - 3. For each $G_i = (V, E_i)$, try to

find a maximal independent set (IS) I s.t.

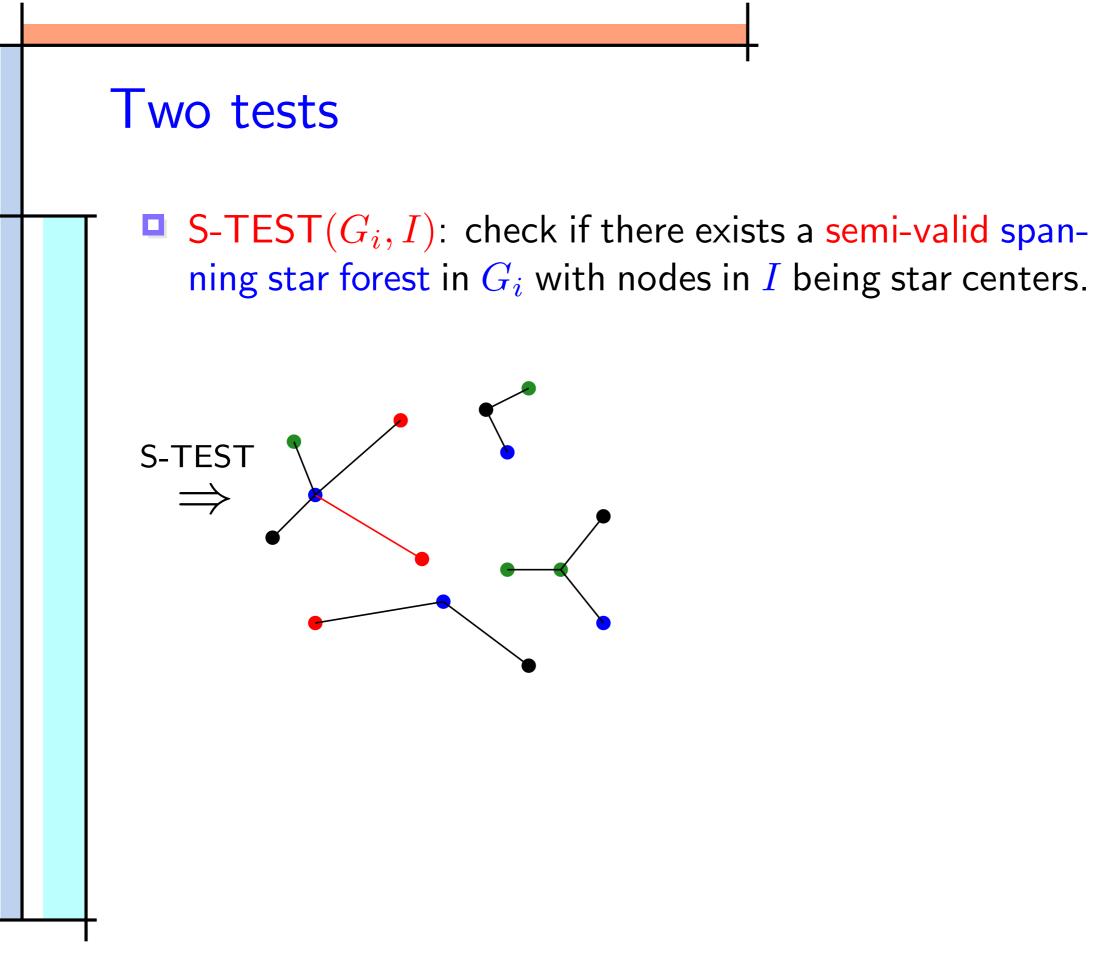
- (1) there is a spanning star forest in G_i with the nodes in I being the star centers,
- (2) each star has at least ℓ nodes.
- Let the diameter of the OPT clustering be d^* with $w(e_{i^*}) = d^*$. Aggarwal el. al. shows that the trial on G_{i^*} must succeed. $\Rightarrow 2$ -approximation (SOL $\leq 2d^*$)

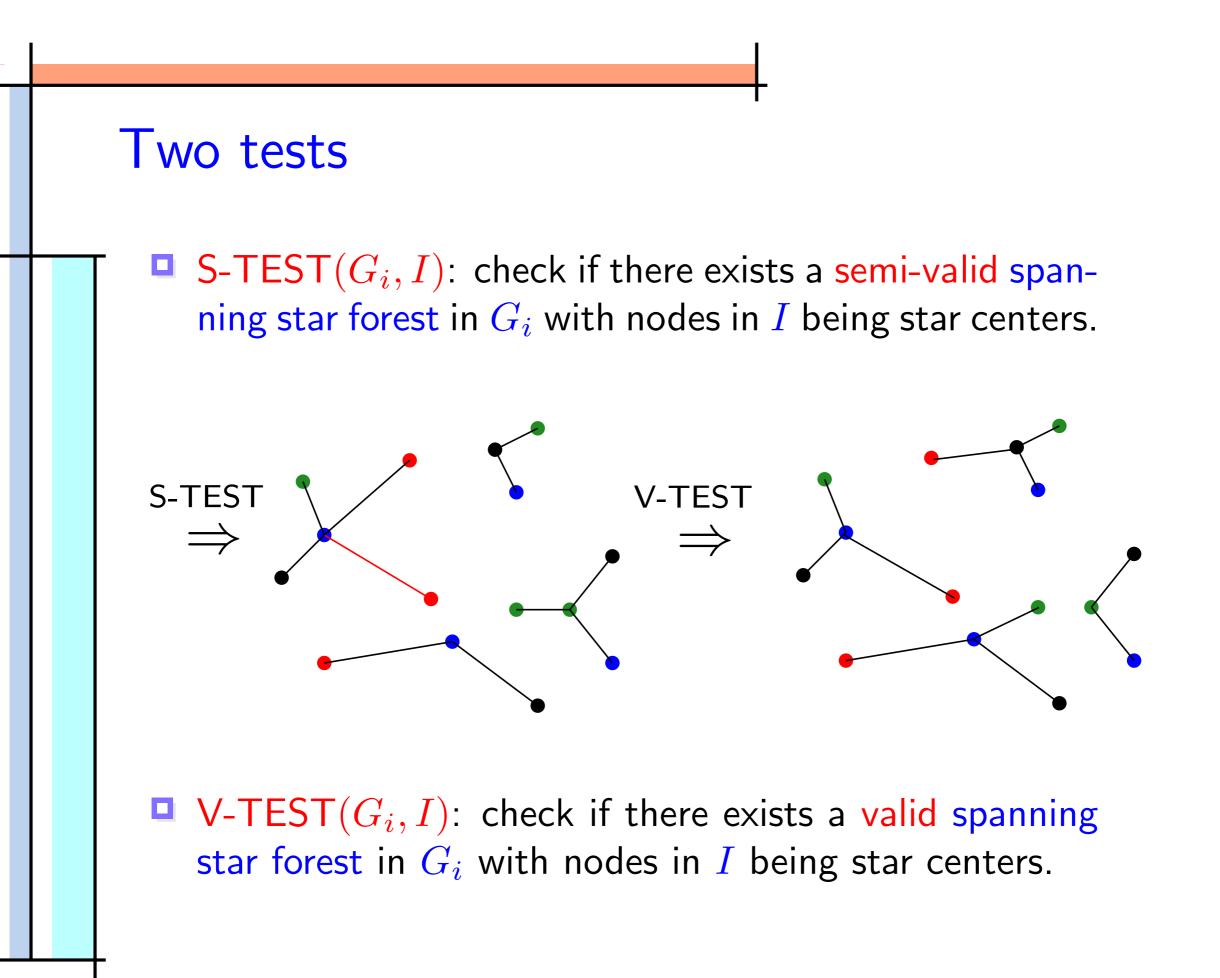






distinct colors.





The 2-approximate algorithm

- We just perform the trial on graphs G_1, G_2, \ldots one by one, until we find on some G_i a valid spanning forest with a maximal independent set as centers.
 - 1. Let I be an arbitrary maximal IS in G_i
 - 2. While S-TEST (G_i, I) is passed
 - (a) $(S, S') \leftarrow \mathsf{V}\mathsf{-}\mathsf{TEST}(G_i, I) /* S \subseteq V I, S' \subseteq I */$
 - (b) If $S = \emptyset$ then *Succeed*; else
 - i. I ← I S' + S
 /* |S'| < |S|, |I| increase and I is still an IS */
 ii. Add nodes to I until it is a maximal IS
 - 3. *Fail*;

The 2-approximate algorithm

- We just perform the trial on graphs G_1, G_2, \ldots one by one, until we find on some G_i a valid spanning forest with a maximal independent set as centers.
 - 1. Let I be an arbitrary maximal IS in G_i
 - 2. While S-TEST (G_i, I) is passed

(a) $(S, S') \leftarrow \mathsf{V}\mathsf{-}\mathsf{TEST}(G_i, I) /* S \subseteq V - I, S' \subseteq I */$

(b) If $S = \emptyset$ then Succeed; else and and

- i. $I \leftarrow I S' + S$ /* |S'| < |S|, |I| increase and I is still an IS */
- ii. Add nodes to I until it is a maximal IS

The 2-approximate algorithm

- We just perform the trial on graphs G₁, G₂,... one by one, until we find on some G_i a valid spanning forest with a maximal independent set as centers.
 - 1. Let I be an arbitrary maximal IS in G_i
 - 2. While S-TEST (G_i, I) is passed

(a) $(S, S') \leftarrow \mathsf{V}\mathsf{-}\mathsf{TEST}(G_i, I) /* S \subseteq V - I, S' \subseteq I */$

(b) If $S = \emptyset$ then *Succeed*; else

i. $I \leftarrow I - S' + S$ /* |S'| < |S|, |I| increase and I is still an IS */

ii. Add nodes to I until it is a maximal IS

3. *Fail*;

Claim: Both tests succeed on G_{i^*} . $\Rightarrow \exists$ a valid spanning star forest on G_{i^*}

Lowerbound

Theorem: There is no polynomial-time approximation algorithm for ℓ -diversity that achieves an approximation factor less than 2 unless P = NP.

By reduction to 3D-matching.

Lowerbound

- **Theorem**: There is no polynomial-time approximation algorithm for ℓ -diversity that achieves an approximation factor less than 2 unless P = NP.
 - By reduction to 3D-matching.
 - Holds even there are only 3 colors.
 - □ If there are 2 colors, the problem can be solved in polynomial time by finding perfect matchings in the G_1, G_2, \ldots

The infeasible case (high-level sketch)

If some color has more than [n/l] points, there is no feasible solution, thus we must remove some points.
 Least number of points that should be removed to get a feasible solution can be computed, say, k points.

Goal: Compute an optimal clustering by deleting k points.

The infeasible case (high-level sketch)

If some color has more than [n/l] points, there is no feasible solution, thus we must remove some points.
 Least number of points that should be removed to get a feasible solution can be computed, say, k points.

Goal: Compute an optimal clustering by deleting k points.

Additional challenge: have to decide (even know k): which points should be deleted?

The infeasible case (high-level sketch) If some color has more than |n/l| points, there is no feasible solution, thus we must remove some points. Least number of points that should be removed to get a feasible solution can be computed, say, k points. **Goal**: Compute an optimal clustering by deleting k points. Additional challenge: have to decide (even know k): which points should be deleted? Our strategy: to find a valid star forest spanning n-k nodes in $G_{i^*}^{28}$. \Rightarrow 56-approximation

