
The Communication Complexity of Distributed
ε-Approximations

Zengfeng Huang∗

MADALGO, Aarhus University

Ke Yi †

HKUST

Abstract

Data summarization is an effective approach to dealing with the “big data” problem. While
data summarization problems traditionally have been studied is the streaming model, the focus is
starting to shift to distributed models, as distributed/parallel computation seems to be the only viable
way to handle today’s massive data sets. In this paper, we study ε-approximations, a classical data
summary that, intuitively speaking, preserves approximately the density of the underlying data set
over a certain range space. We consider the problem of computing ε-approximations for a data set
which is held jointly by k players, and give general communication upper and lower bounds that
hold for any range space whose discrepancy is known.
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1 Introduction

Data summarization, which makes “big data” small while preserving important properties of the data,
is an effective approach in many data analytics tasks. While data summarization problems traditionally
have been studied is the streaming model, the focus is starting to shift to distributed models, as dis-
tributed/parallel computation seems to be the only viable way to handle today’s massive data sets. A
standard approach for constructing a summary over a large data set is to break it into k pieces (often
tens of thousands), give them to many workers, who compute a summary for each piece (possibly using
a streaming algorithm), and then merge them together. This mergeability is trivially enjoyed by all the
linear sketches, as well as many non-linear summaries [1]. This standard approach has a communication
cost of k×summary size. Thus, an interesting question is if this is the best one can do. It has been shown
that for heavy hitters and the quantiles, with randomization, the communication cost can be reduced to√
k×summary size [11], while no further improvement is possible for coresets [21], the distinct count

[28] and the F2 problem [27], up to polylog factors.
In this paper, we study another classical data summary, ε-approximations, which preserves approx-

imately the density of the underlying data set over a certain range space (a formal definition will be
given later). In the centralized setting, ε-approximations have been extensively studied [19, 9], with
numerous applications in data analytics, machine learning, and computational geometry. In this work,
we are interested in characterizing the communication complexity of computing ε-approximations from
large distributed data sets. In a nutshell, we show that the standard approach above is optimal for de-
terministic algorithms, while the dependency on k can be reduced with randomization, and the exact
dependency is related to the discrepancy of the underlying range space.

1.1 Communication models

We study the multi-party communication complexity in the number-in-hand model, in which each player
gets part of the input and cannot see other players’ data. To solve a problem, the players can exchange
messages with each other. Based on the way the messages are being exchanged, the following three
models have been studied in the literature, with increasing power of communication.

Simultaneous message passing model. In the simultaneous message passing model (SMP), there is a
coordinator or referee, and each player can only send one message to the coordinator. After receiving
all the messages, the coordinator should output the answer. In this model, it is usually assumed that all
players know the common parameters like ε, k (the number of players), and n (input size).

Message passing model. The message passing model is a fundamental model has been extensively
studied in distributed computing and other areas [12, 13]. In this model, every player can send messages
to any other players according to some protocol.

Blackboard model. In the blackboard model, there is a shared blackboard, and each player will write
their messages on it, which can be seen by everyone else. This model corresponds to the situation where
there is a broadcast channel in the communication network. This model has the strongest communication
power, thus lower bounds proved for the this model also hold for the other two models.

1.2 Range space and ε-approximation

Let X be a set of size n and S ⊆ 2X be a family of subsets of X . In the study of ε-approximations, we
are interested in set systems (X,S) where X is a set of points in Rd and S is induced by some range
space R (such as all intervals in R1 or all halfplanes in R2), i.e., S = {r ∩X | r ∈ R}. Let ε ∈ [0, 1]
be a real number. We say that a subset Y ⊆ X is an ε-approximation of X w.r.t. the range space R if
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we have, for all r ∈ R, ∣∣∣∣ |Y ∩ r||Y |
− |X ∩ r|
|X|

∣∣∣∣ ≤ ε. (1)

This means that the fraction of points of Y lying in r should approximate the fraction of points of X in
r with accuracy no worse than ε. Therefore, an ε-approximation is considered as a “density-preserving”
sample of X (w.r.t.R), which is a desirable property in many applications.

The study of ε-approximations has spanned mathematics, learning theory, and computational geom-
etry. Classical results [26, 16] show that, if the range space has bounded VC-dimension, a random
subset of size Θ( 1

ε2
) is an ε-approximation with constant probability. An interesting fact about ε-

approximations is that their size depends only on ε. Nevertheless, keep in mind that ε is an additive
error to a fraction, so it should be set quite small; actually, one may consider ε = 1/

√
n as the most in-

teresting case, as it makes simple random sampling ineffective and calls for more careful constructions.
Define approx(ε,X,R) to be the optimal size of an ε-approximation ofX with respect toR, and let

approx(ε,R) = maxX approx(ε,X,R). We will omitR when it is clear from the context. For specific
range spaces, the size of ε-approximations can be much smaller than what is achieved by random sam-
pling. For instance, for intervals in R1, we have (trivially) approx(ε) = Θ(1

ε ); for (axis-parallel) boxes

in Rd, we have approx(ε) = O(1
ε logd+1/2 1

ε ) [19, 15]; for halfspaces in Rd, approx(ε) = Θ(1/ε
2d
d+1 )

[18]. There is a close relationship between approx(ε) and the combinatorial discrepancy of the under-
lying range space. We include a brief introduction to discrepancy below. For a complete treatment on
ε-approximations and discrepancy theory, please refer to the books [19] and [9].

1.3 Discrepancy

In this section, we give some preliminaries on discrepancy theory, which will be used in our algorithm,
as well as the lower bounds. Let X = {x1, · · · , xn} ⊂ Rd be a set of n points in Rd and R a range
space. A coloring is any mapping χ : X → {−1,+1}.

The (combinatorial) discrepancy of the set system (X,R) is defined as

disc(X,R) = min
χ

max
r∈R
|χ(r)|, (2)

where χ(r) =
∑

x∈X∩r χ(x). Intuitively, it finds the best coloring such that the two colors in every
range of R are as balanced as possible. For example, if R is the family of all intervals in R1, the best
coloring is to order the points of X and then color them alternatively, which gives disc(X,R) = 1. The
discrepancy of the range spaceR considers the worst case over all point sets X of a given size n, i.e.,

disc(n,R) = max
|X|=n

disc(X,R). (3)

We will omit R when it is clear from the context. The discrepancy for many range spaces have
been extensively studied. Notable results include: for intervals in R1, disc(n) = 1; for boxes in
Rd, disc(n) = O(logd+1/2 n) [15]; for halfspaces in Rd, disc(n) = Θ(n

d−1
2d ) [18]. The bounds on

the size of ε-approximations mentioned above are actually all derived from these discrepancy bounds
through a standard procedure [19]. In general, if disc(n) = O(logτ n) for some constant τ , then
approx(ε) = O(1

ε logτ 1
ε ); if disc(n) = O(nτ ), then approx(ε) = O(1/ε1/(1−τ)).

The discrepancy as defined in (2) considers the worst range r of R. The notion of an “average
discrepancy” has also been studied, which is often helpful in lower bound proofs. Let m be the number
of distinct subsets that can be defined by R on X . When X is given, we abuse the notation slightly by
also using R = {r1, · · · , rm} to denote these subsets of X induced by the ranges of R. We order X
andR arbitrarily, and let A be the incidence matrix of (X,R), which is the m×n matrix with columns
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corresponding to the points of X and rows corresponding to R, and has entry aij = 1 iff xj is in ri.
Interpreting the coloring χ as a vector, the lp-discrepancy of (X,R) is defined as

discp(X,R) = min
χ∈{−1,+1}n

||Aχ||p
m1/p

.

Thus disc(X,R) = disc∞(X,R). It should be clear that disc1(X,R) ≤ disc2(X,R) ≤ disc∞(X,R).
An α-partial coloring is any mapping χ : X → {−1, 0,+1} satisfying ||χ||1 ≥ α|X|. We can

similarly define the α-partial lp-discrepancy as

discαp (X,R) = min
χ∈{−1,0,+1}n,||χ||1≥αn

||Aχ||p
m1/p

.

The α-partial lp-discrepancy for a range spaceR is defined similarly as in (3):

discαp (n,R) = max
|X|=n

discαp (X,R).

To construct a good full coloring, a general method is to first get a good partial coloring, then
recursively apply the method to the points that have not been colored. So the gap between the full
coloring discrepancy and partial discrepancy is usually not significant. The following lemma can be
easily proved using this idea (proof in Appendix A).

Lemma 1.1. For any range space R, any constant α and p ≥ 1, discp(n) = O(log n · discαp (n)). If
discαp (n) = poly(n), then discp(n) = O(discαp (n)).

Finally, we need another version of coloring where we relax χ(x) to be real numbers instead of
{−1,+1}. We call a point x heavy if |χ(x)| ≥ 1. A coloring χ is α-heavy, if it is a mapping χ : X → R,
such that there are at least α|X| points in X that are heavy. The α-generalized lp-discrepancy is

rdiscαp (X,R) = min
α-heavy χ

||Aχ||p
m1/p

.

We omitR when the context is clear; we also omit α when α = 1 and omit p when p =∞.

1.4 Our results

In our setting, the point set X is partitioned arbitrarily into k pieces and each player possesses one, and
the goal is to compute an ε-approximation (for a certain range space) using minimum communication.
Based on known results, there are two straightforward ways to solve this problem. The first one is
to draw a random sample of size O(1/ε2) over the whole data set, which can be easily implemented
with communication cost O(1/ε2).1 Another way is the standard “merging” approach mentioned at
the beginning of the paper, which has communication cost O(k · approx(ε)). It is deterministic if the
players’ time cost to compute the local ε-approximations is not a concern. The detailed bounds for
various range spaces are listed in Table 1, and they remain the best deterministic bounds for these cases.

Our first result is a randomized algorithm in the SMP model to compute an ε-approximation for any
range space, which has communication cost better than both methods above. The algorithm works
for any range space R, with its communication cost depending on disc(n,R). The general rela-
tionship is described in Theorem 2.1, while we have listed the explicit bounds for some common

1We assume k < 1/ε2 in this paper. When k > 1/ε2, the bound can be either O(k) or O(1/ε2) depending on some
subtleties in the model formulation, e.g., whether the players need to be notified when the protocol starts/ends, but in either
case, random sampling is already the optimal solution for our problem.
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approx(ε) Deterministic Randomized
O Ω O Ω

Intervals in R1 1/ε k/ε k/ε
√
k
ε

√
log 1

ε

√
k/ε

Boxes in Rd 1
ε logd+ 1

2
1
ε

k
ε logd+ 1

2
1
ε

k
ε log 1

ε

√
k
ε logd+1 1

ε

√
k
ε log 1

ε for d = 2, 3, 4;√
k
ε log

d−3
2

1
ε for all d

Halfspaces in Rd 1/ε
2d
d+1 k/ε

2d
d+1 k/ε

2d
d+1 k

1
d+1 /ε

2d
d+1 · log

d
d+1 1

ε k
1
d+1 /ε

2d
d+1

Table 1: The k-party communication upper and lower bounds for computing ε-approximations. The
upper bounds are in terms of the number of points communicated and hold in the simultaneous message
passing model; the lower bounds are in terms of bits and hold in the blackboard model.

range spaces in Table 1. For example, for halfspaces in Rd, the communication cost of our algo-
rithm is Õ(k

1
d+1 /ε

2d
d+1 ) = Õ(k

1
d+1 · approx(ε)). This is obviously better than the deterministic bound

O(k · approx(ε)); it is also better than the random sampling bound O(1/ε2) when k ≤ 1/ε2, the param-
eter range we are interested in.

The bulk of the paper studies lower bound methods, which yield almost tight lower bounds for many
interesting range spaces, up to polylog factors. The lower bounds hold in the blackboard model, and
actually hold for computing any data structure that allows one to estimate |X∩r||X| for any r ∈ R as in (1)
within ε accuracy, which may not be a subset of points of X as required by the strict definition of an
ε-approximation. The lower bounds use information-theoretical arguments, and the bounds are in terms
of bits (note that the upper bounds are in terms of the number of points transmitted). But we note that
all the lower bound constructions use points drawn from a d-dimensional grid [u]d for u = (k/ε)O(1).
In this case, the gap between the upper and lower bounds is thus polylog(k/ε) since it takes d log u bits
to represent a point.

We provide both deterministic and randomized lower bounds. We first relate deterministic lower
bounds to the partial l1-discrepancy discα1 (n) of the underlying range space (Theorem 3.1). However,
since the l1-discrepancy is still not well understood (there is only the trivial lower bound discα1 (n) =
Ω(1)), this method yields a rather weak lower bound of Ω(k/ε). We then link the deterministic lower
bound to the partial generalized l∞-discrepancy rdisc(n) (Theorem 4.2), via a new deterministic direct-
sum result. This leads to tight deterministic lower bounds, in particular for halfspaces.

For randomized lower bounds, we also provide two connections to discrepancy theory, one to the
(partial) l2-discrepancy (Theorem 3.8) and the other to the (partial) generalized l∞-discrepancy (The-
orem 4.5). Comparing these two relationships with the upper bound in Theorem 2.1, one can notice
that the statements are the essentially the same (modulo log factors), except that disc(n) is replaced by
disc2(n) and rdisc(n), respectively. As lower bounds on the l2-discrepancy and generalized discrepancy
have been well studied, this allows us to derive almost tight lower bounds for the range spaces in Table 1.

1.5 Related work

Discrepancy theory, including ε-approximations, is a well-studied topic [19, 9]. There are efficient
algorithms to construct ε-approximations for range spaces with bounded VC-dimension in the cen-
tralized setting [9]. For most interesting range spaces, optimal ε-approximations now can be com-
puted in polynomial time due to recent breakthrough results on constructive discrepancy minimization
[5, 17]. Recently, it has also been studied in the streaming model [24, 4, 1]. However, the communi-
cation complexity of computing ε-approximations in a distributed environment is largely an unexplored
area. For the simplest range space, intervals in R1, the ε-approximation problem is equivalent to the
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ε-approximate quantiles problems. For this problem, we previously gave an algorithm in the simulta-
neous message passing model with communication cost O(

√
k
ε log 1

ε ) words [11]; while Woodruff and

Zhang [27] proved a randomized lower bound of Ω(
√
k
ε ) bits. The results presented here match these

results for the approximate quantiles problem, but are much more general, as they hold for any range
space for which the discrepancy is known.

2 The Upper Bound

In this section we give a general randomized algorithm for any range spaceR based on the upper bound
of disc(n,R). We first rewrite the definition of ε-approximations (1) as∣∣∣∣|Y ∩ r| · |X||Y | − |X ∩ r|

∣∣∣∣ ≤ ε|X|,
which implies that if we give a weight |X||Y | to each element in Y , the size of X ∩ r can be estimated

within an additive error ε|X| for all r ∈ R. For a range r, when call
∣∣∣|Y ∩ r| · |X||Y | − |X ∩ r|∣∣∣ the error

of Y on r. Then Y is an ε-approximation of X if its error is at most ε|X| for all r ∈ R. We allow
duplicated points in X and Y ; they are treated as different points but sharing the same coordinates.

The Algorithm. Our algorithm works in the simultaneous message passing model. LetX be partitioned
into k subsets with player i holding Ii. Let ni = |Ii| and n =

∑
i ni. We assume that disc(n) ≤ O(

√
n),

which is a reasonable assumption since this holds for any range space with bounded VC-dimension [19].
Every player i will run the following algorithm to compute a subset of Ii, and sends it to the coor-

dinator. Without loss of generality we assume |Ii| is a power of 2. Each player i reduces its point set Ii
iteratively, every time by half. We first color Ii using a coloring χ such that |χ(r)| = O(disc(|Ii|)) for
all r and |χ−1(−1)| = |χ−1(+1)|.2 Then randomly pick one of the two classes χ−1(−1) and χ−1(+1).
Let I1

i be the picked subset, and we recursively apply the same procedure on I1
i . We repeat the procedure

for λ times, and let Iλi be the final subset. The value of λ will be determined through our analysis.
In the end, the coordinator receives k subsets Iλ1 , · · · , Iλk . We will show that their union forms an

ε-approximation of X with at least constant probability. Note that this may not give an ε-approximation
of the optimal size, but this can be easily fixed by asking the coordinator to run a centralized algorithm
to compute an optimal-size ε-approximation on the union of the k subsets. This would give a (2ε)-
approximation of X .

Analysis. The analysis of the algorithm is given in Appendix B, which is based on the following
intuition. For 1 ≤ j ≤ λ, let ∆j

i = 2j−1(2|Iji ∩ r| − |I
j−1
i ∩ r|). Then the final error of using the union

of the Iλi ’s to approximate X on r is
∑k

i=1

∑λ
j=1 ∆j

i . We observe that the ∆j
i ’s are random variables

with mean 0 and absolute value bounded by the discrepancy of the coloring. Then, we can apply a tail
bound on the probability that their sum does not deviate from 0 too much. Some technicalities have to
be taken care of because the ∆j

i ’s are not independent, though.

Theorem 2.1. For any range space R with bounded VC-dimension, if disc(n)2 is concave and t is any
value that satisfies

t

disc(t)
= Ω

(
1

ε
√
k
·
√

log
1

εδ

)
,

2 We assume there is an r ∈ R that contains the entire X , which is true for all natural geometric range spaces. Then the
restriction |χ−1(−1)| = |χ−1(+1)| will increase the discrepancy by at most a constant factor.
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then there is an algorithm in the simultaneous message passing model that computes an ε-approximation
for any input X with respect toR with probability 1− δ, and the communication cost is O(tk).

To apply this theorem, given a range space, we should set t to the smallest value satisfying the above
requirement. In case disc(t) is not yet known, it can be replaced by any upper bound. The reader can
easily verify the results in Table 1 by plugging in the known discrepancy upper bounds.

Remarks. Our algorithm actually adopts the same framework as the standard algorithm to compute an
ε-approximation [19]. The only difference is that, while we retain χ−1(−1) or χ−1(+1) randomly, the
standard algorithm just picks one arbitrarily. In the RAM model, making random choices does not help;
what we show here through our analysis is that these random choices significantly reduce the communi-
cation complexity, and they are necessary as suggested by our deterministic lower bounds. Similar ideas
have also been used in designing randomized streaming algorithms for computing ε-approximations
[24, 1], but no deterministic lower bounds are known in the streaming model.

3 Lower Bounds via lp-Discrepancy

In this section, we give deterministic and randomized lower bounds techniques for computing ε-approximations
in the blackboard model based on lp-discrepancy. The deterministic lower bound uses l1-discrepancy,
while the randomized lower bounds use l2-discrepancy.

3.1 Our techniques

Our lower bounds follow the following common framework. For some parameter t, set Y to be a set of t
points with the largest discrepancy, i.e., the discrepancy of (Y,R) matches that ofR. The particular form
of discrepancy will vary in different lower bounds. It is easy to see that Y should not have duplicated
points. Let R|Y = {r1, . . . , rm} be the distinct ranges in R defined on Y . The input of each player
i is a subset xi ⊆ Y , and we write xi in vector form xi ∈ {0, 1}t (assuming an arbitrary ordering of
the points in Y ). Let x = x1 + · · · + xk denote the whole input set, for which we need to compute an
ε-approximation. Note that x could contain duplicated points, and duplicity is considered. Let n = |x|,
which is at most tk. Our lower bounds use information-theoretical arguments and hold for computing
any data structure that allows one to estimate |x ∩ r| for any r ∈ R with additive error εn.

Clearly there are totally 2tk possible inputs. Let Π be any deterministic protocol computing an ε-
approximation in the blackboard model. It is well-known [14] that Π partitions the set of all possible
inputs into a set of combinatorial rectangles P = {ρ1, ρ2, · · · , ρh}. Each rectangle ρj is a Cartesian
product ρj = B1 ×B2 × · · · ×Bk, where Bi ⊆ {0, 1}t is a subset of all possible inputs for player i.
For all the inputs in the same rectangle, the transcripts of the protocol are exactly the same, in other
words, the protocol cannot distinguish these inputs. In particular, the outputs over a rectangle are the
same, thus any correct Π should produce a rectangle partitioning such that all inputs in any rectangle
share a common correct output. The communication cost of Π is at least log |P | bits. A randomized
protocol is just a distribution of a set of deterministic protocol.

For deterministic complexity, it is enough to prove that, under certain conditions, any correct de-
terministic protocol computing an ε-approximation must produce a partitioning P with at least 2Ω(tk)

rectangles. Let ρ = B1×B2×· · ·×Bk be any combinatorial rectangle in the partition induced by a cor-
rect deterministic protocol, the size of which is |ρ| = |B1| · |B2| · · · · · |Bk|. We will show |ρ| ≤ 2tk/2,
thus the communication cost of the protocol is at least log(2tk/|ρ|) = Ω(tk). As all the inputs in a
rectangle share the same output, we define the error in a rectangle ρ as

max
x,x′∈ρ

max
r∈R

∣∣|x ∩ r| − |x′ ∩ r|∣∣ .
6



It is easy to see that any correct protocol cannot have a rectangle with error larger than 2εn ≤ 2εtk,
since otherwise no matter what the output is, it cannot be a valid ε-approximation for both (x,R) and
(x′,R). We will prove that the error in a rectangle with size greater than 2tk/2 will be too large. To do
so, we begin with the observation that a rectangle of size at least 2tk/2 must have Ω(k) long sides, where
a long side i means |Bi| ≥ 2t/4. Then we show that, for a long side Bi, there must be xi, x′i ∈ Bi that
are far away in terms of the Hamming distance. The Hamming distance is then related to the α-partial
discrepancy ofR, which shows that xi, x′i will cause a large error for some r. However, the Ω(k) players
corresponding to the long sides may not share the same r, so we cannot add the errors up. This is where
the `1-discrepancy comes to the rescue, which corresponds to the “average” error over all ranges, which
can be added up over the Ω(k) players. We formalize the above intuition and give the full proof of the
following theorem in Appendix C.

Theorem 3.1. For any range space R, any deterministic protocol Π that solves the 1
3t · disc

1/64
1 (t)-

approximation problem forR must communicate at least Ω(tk) bits in the blackboard model.

Since for any range space, disc1/64
1 (t) = Ω(1) is a trivial lower bound, the above theorem yields

an Ω(k/ε) lower bound for all range spaces by setting t = Ω(1/ε). However, as l1-discrepancy lower
bounds are still not well understood, Theorem 3.1 currently does not yield a higher lower bound for
specific range spaces.

To prove randomized lower bounds, by Yao’s minimax principle, we only need to prove the dis-
tributional complexity for some hard input distribution. We follow the common framework as in the
deterministic case, i.e., we pick an Y to maximize the discrepancy (the l2-discrepancy now) of (Y,R)
with |Y | = t for some t. The input of each player i is a random subset xi ∈ Y , and the goal is to
compute an ε-approximation for (x,R), where x = x1 + · · · + xk. The (still deterministic) algorithm
is required to solve the ε-approximation problem with at least constant probability (with respect to the
random input).

Our hard distribution is simply the uniform distribution. More precisely, thinking of xi as a binary
vector in {0, 1}t, each player independently sets each entry of xi to 1 or 0 with equal probability.
For deterministic complexity, we only need to find two inputs in a large rectangle that are far away,
such that they cannot share the same output. However, to lower bound the distributional communication
complexity, we need to show that a constant fraction of all inputs in a large rectangle cannot be answered
correctly, which is more difficult. Our approach is, instead of analyzing the maximum error, we will
analyze the variance of the number of points in each range. We use l2-discrepancy to lower bound the
variance of the range counts, and argue that in a large rectangle, there must exist one range such that the
number of points in this range cannot concentrate around its expectation, then at least a constant fraction
of the inputs cannot be answered correctly. Similar variance arguments have been used in [27] to prove
the information cost of a simpler problem. We next give the details of the proof for randomized lower
bounds.

3.2 Randomized lower bound via l2-discrepancy

As before we set n = |x|,m = |R|Y | andA the incidence matrix of the range space (Y,R|Y ). Let us fix
a rectangle ρ = B1×B2×· · ·×Bk. Note that conditioned on x ∈ ρ, the distribution of xi is uniform in
Bi, which follows from the fact that the distribution of x is uniform and ρ is a combinatorial rectangle.
LetEi = 1

|Bi|
∑

xi∈Bi Axi be anm-dimensional vector, which can be viewed as the average ofAxi over
all xi in the set Bi. Let di also be an m-dimensional vector such that di,j =

∑
xi∈Bi((Axi)j − Ei,j)

2.
Note that

∑
xi∈Bi ||Axi − Ei||

2
2 =

∑m
j=1 di,j . We have the following lemma.
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Lemma 3.2. For any rectangle ρ = B1 ×B2 × · · · ×Bk of size at least 2tk/2, we have

max
j∈[m]

k∑
i=1

1

|Bi|
· di,j ≥

k

18
· (disc1/64

2 (Y,R))2.

We first prove the following technical lemma.

Lemma 3.3. If |Bi| ≥ 2t/4, then∑
x∈Bi

||Ax− Ei||22 ≥
|Bi|m

6
· (disc1/64

2 (Y,R))2.

Proof. For any two vectors x, y ∈ Bi, if their Hamming distance HD(x, y) ≥ t/64, we have

||Ax−Ay||2 = ||A(x− y)||2 ≥
√
m · disc1/64

2 (Y,R),

as x− y is a 1/64-partial coloring. By triangle inequality,

||Ax− Ei||2 + ||Ay − Ei||2 ≥ ||Ax−Ay||2 ≥
√
m · disc1/64

2 (Y,R),

which implies ||Ax− Ei||22 + ||Ay − Ei||22 ≥ m
2 · (disc

1/64
2 (Y,R))2.

From the Lemma C.2, we know that, if the size of Bi is at least 2t/4, then for any vector x ∈ Bi,
almost all other vectors in Bi have Hamming distance at least t/64 from x. Thus we can easily pick
|Bi|/3 pairs of (x, y) with HD(x, y) ≥ t/64, so∑

x∈Bi

||Ax− E||22 ≥
|Bi|

3
· m

2
· (disc1/64

2 (Y,R))2 =
|Bi|m

6
· (disc1/64

2 (Y,R))2.

Proof of Lemma 3.2. By Lemma 3.3, if |Bi| ≥ 2t/4 we have 1
|Bi|
∑m

j=1 di,j ≥
m
6 · (disc

1/64
2 (Y,R))2.

By Lemma C.1, there are at least k/3 such i’s, which implies

m∑
j=1

k∑
i=1

1

|Bi|
· di,j ≥

mk

18
· (disc1/64

2 (Y,R))2.

Then the lemma follows using an averaging argument.

Suppose j achieves the maximum in Lemma 3.2. For any i, let Yij be a random variable, which
is defined as Yij = (Ax)j where x ∈R Bi, i.e., the number of points in rj when the underlying set is
chosen uniformly from Bi. Put Yj =

∑k
i=1 Yij . Since our input distribution is uniform, it easily follows

from the combinatorial rectangle property that the random variables Y1j , Y2j , · · · , Ykj are independent.
Thus Lemma 3.2 actually gives a lower bound on Var[Yj ], the variance of Yj , since Var[Yi,j ] = 1

|Bi| ·di,j .

Corollary 3.4. For any rectangle ρ = B1 ×B2 × · · · ×Bk of size at least 2tk/2, we have

max
j∈[m]

Var[Yj ] ≥
k

18
· (disc1/64

2 (Y,R))2.

Then we can use an anti-concentration inequality (Lemma 3.6) to prove that Yj cannot concentrate
around its expectation. Let w = maxr∈R |Y ∩ r|. We have the following anti-concentration lemma.
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Lemma 3.5. If the size of the rectangle ρ is at least 2tk/2 and k
18 · (disc

1/64
2 (Y,R))2 ≥ 40000w2, then

Pr[Yj ≥ E[Yj ] +
√
k · disc1/64

2 (Y,R)] ≥ c, and

Pr[Yj ≤ E[Yj ]−
√
k · disc1/64

2 (Y,R)] ≥ c,

for a sufficiently small constant c > 0.

Proof. To prove the lemma, we will use the following anti-concentration inequality (see [20]).

Lemma 3.6. Let X be as sum of independent random variables, each attaining values in [0, 1], and
σ =

√
Var[X] ≥ 200. Then for all t ∈ [0, σ

2

100 ], we have

Pr[X ≥ E[X] + t] ≥ ce−t2/3σ2

for a sufficiently small constant c > 0.

To use Lemma 3.6, we first scale each Yij such that Yij ∈ [0, 1]. Since w = maxr∈R |Y ∩ r| is
an upper bound of Yij . We set Y ′ij = Yij/w, and Y ′j = Yj/w, then Var[Y ′j ] = Var[Yj ]/w

2. We have
already shown in Corollary 3.4 that

Var[Y ′j ] = Var[Yj ]/w
2 ≥ k

18w2
· (disc1/64

2 (Y,R))2.

Since Yj is the sum of independent random variables, which follows from the combinatorial rectangle
property and our input distribution, Y ′j is also the sum of independent random variables, each attaining
values in [0, 1], and we can directly apply Lemma 3.6. So when Var[Yj ]/w

2 ≥ 40000, we have

Pr

[
Y ′j ≥ E[Y ′j ] +

√
k

w
· disc1/64

2 (Y,R)

]
≥ c

for a sufficiently small constant c ≤ 1, which is equivalent to the first part of the lemma. The second
part can be proved similarly. We just replace each Y ′ij with 1− Y ′ij , and Y ′j with k − Y ′j .

Recall that Y is a set of size t such that disc1/64
2 (Y,R) = disc

1/64
2 (t). We are ready to prove our

randomized communication lower bound.

Lemma 3.7. If w2 ≤ k
β (disc

1/64
2 (t))2 for large enough constant β, any algorithm solving the ε-

approximation problem forR where ε ≤ disc
1/64
2 (t)

t
√
k

with probability at least 1− c/2 must communicate
Ω(tk) bits, for a sufficiently small constant c.

Proof. By Yao’s minimax principle [29], we only need to prove a lower bound for the distributional
complexity, i.e., the communication complexity of any deterministic protocol which will output a correct
ε-approximation with probability 1− c/2, where the probability is over the input distribution. We know
every deterministic protocol partitions all possible inputs into a set of combinatorial rectangles. If
there is a rectangle in this partition with size at least 2tk/2, then a constant fraction of the inputs in
this rectangle cannot be answered correctly. This is because the approximation error allowed is at most
εkt =

√
k ·disc1/64

2 (t), and by Lemma 3.5, the output can not be a ε-approximation for at least c fraction
of the inputs in this rectangle. Let σ be the total measure of rectangles of size at least 2tk/2, then the
error probability is at least σc. Hence, σ ≤ 1/2. This implies that the total number of rectangles is
at least 2tk−1/2tk/2 = 2tk/2−1, from which it follows that the communication cost of the deterministic
protocol is at least log 2tk/2−1 = Ω(tk) bits.
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The above lower bound can be more effectively used when have a good bound on w. For a
general range space, we only have w ≤ t. So replace the condition w2 ≤ k

β (disc
1/64
2 (t))2 with

t2 ≤ k
β (disc

1/64
2 (t))2, i.e., t

disc
1/64
2 (t)

≤
√

k
β . We set t such that t

disc
1/64
2 (t)

= 1
ε
√
kβ

, which then simplifies

the condition to k ≥ 1/ε. Note that this means ε =
disc

1/64
2 (t)

t
√
kβ

which satisfies the condition in Lemma 3.7
for β ≥ 1.

Theorem 3.8. Given any range spaceR, if t is a value satisfying

t

disc
1/64
2 (t)

=
1

ε
√
kβ

for some large constant β, and if k ≥ 1/ε, any algorithm solving the ε-approximation problem for R
with probability 1− c must communicate Ω(kt) bits for sufficiently small c.

The annoying assumption k ≥ 1/ε in the above theorem roots from the anti-concentration inequality
(Lemma 3.6) having a restriction on the range of the individual random variables. In our case, the Yij’s
can attain any value in [0, t]. To get rid of this assumption, we need to restrict each Yij to a smaller
range. Our idea to achieve this is that, for any algorithm, we first modify it by also running a naive
deterministic algorithm computing an ε′-approximation with ε′ = εk/2 along the side. This changes
the transcript of the protocol such that in any rectangle, each Yij is bounded by an interval of size at
most εkt. We leave the details of this arguments to Appendix D.

Theorem 3.9. Given any range spaceR, if t is a value satisfying

t

disc
1/64
2 (t)

=
1

ε
√
kβ

for some large constant β, and if k < 1/ε, any algorithm solving the ε-approximation problem for R
with constant probability must communicate Ω(kt− k · approx(εk/2)) bits.

Applications. For intervals in R1, we have the trivial bounds disc
1/64
2 (t) = Ω(1) and approx(ε) =

O(1/ε). Then the theorems above yield the communication lower bound of Ω(
√
k/ε). This matches

the lower bound recently proved in [27], but our proof is elementary, while the proof of [27] needs the
machinery of information complexity [8, 6].

For boxes in Rd, the highest l2-discrepancy lower bound known today is disc2(t) = Ω(log(d−1)/2 t)

[23], thus disc1/64
2 (t) = Ω(log(d−3)/2 t) by Lemma 1.1. The current best upper bound on approx(ε) is

O(1
ε logd+1/2 1

ε ) [19, 15]. So we have the following communication lower bounds.

Corollary 3.10. Any randomized algorithm solving the ε-approximation problem for d-dimensional
boxes must communicate Ω(

√
k
ε · log(d−3)/2 1

ε ) bits if k ≥ 1/ε. For k < 1/ε, the lower bound is

Ω(
√
k
ε · log(d−3)/2 1

ε −
1
ε · logd+1/2 1

ε ).

Note that the 1
ε · logd+1/2 1

ε term is insignificant as long as k ≥ logd+4 1
ε .

For halfspaces in Rd, we have disc2(t) = Ω(t1/2−1/2d) [2], thus disc
1/64
2 (t) = Ω(t1/2−1/2d) by

Lemma 1.1. Also since approx(ε) = 1/ε2d/(d+1), we get a lower bound of Ω(k1/(d+1)/ε2d/(d+1)).

4 Lower Bounds via Generalized Discrepancy

In this section, we will give another characterization of both the deterministic and randomized commu-
nication complexity which relates them to the generalized l∞-discrepancy.
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4.1 Our techniques

We obtain our lower bounds through a reduction from t independent instances of a primitive problem,
the 1-bit problem, to the ε-approximation problem. Then we prove direct-sum theorems, both deter-
ministic and randomized, for the former. Recall that for a primitive problem which has complexity C,
a direct-sum theorem states that the complexity of solving t independent instances of this problem si-
multaneously is Ω(tC). However, for deterministic algorithms, the natural requirement, which is that
the algorithm should be correct on all instances, turns out to be too strong for the reduction to work. So
we have to use a relaxed requirement that the algorithm only needs to solve an arbitrary 1− α fraction
of the t instances correctly, for some small constant α. For randomized algorithms, we use the usual
requirement that the algorithm is correct with constant probability for each of the t instances.

In the 1-bit problem, each player gets one bit, and their goal is to estimate their sum within additive
error ∆, where ∆ = Θ(k) for deterministic algorithms and ∆ = Θ(

√
k) for randomized algorithms. It

has been shown that the information complexity of the randomized 1-bit problem is Ω(k) [27]. Then the
standard direct-sum arguments using information complexity [6, 7] will give us a direct-sum theorem for
the randomized 1-bit problem. There are, however, no effective tools for proving deterministic direct-
sum theorems. Our strategy is to first prove a lemma concerning the width of a set of large subsets in
the t-dimensional hypercube. The geometric interpretation of the lemma is that, for any ` subsets of the
t-dimensional hypercube with non-negligible measures, there must be a direction y ∈ {−1,+1}t such
that the sum of the widths of these sets in this direction is Ω(`

√
t). Note that the largest width of any set

is
√
t. To show this, the main tool we used is a well-known isoperimetric inequality of the t-dimensional

hypercube with the Hamming metric.
Once we have the direct-sum theorem, we use the following idea to build the connection between

communication complexity and generalized discrepancy. We fix a range space (Y,R), with |Y | = t. Let
Π be a deterministic protocol which computes an ε/2-approximation for the range space (Y,R), with
ε = rdiscα(Y,R)

5t . We will show that such a protocol can be used to solve the deterministic direct-sum
problem with t independent instances. It seems that this is only possible when rdiscα(Y,R) = O(1),
since the error allowed in Π is εkt = k·rdiscα(Y,R)

5 . So we can only set t to be a constant, which would
not give us a good lower bound. Our idea is to use discrepancy. We show that if, on the contrary, Π
cannot recover a constant fraction of answers within errorO(k), then the error will be amplified through
discrepancy. More precisely, there will be at least one range r ∈ R, for which the error made by Π is
large than εtk, which contradicts the correctness of Π. The idea for the randomized case is similar.

4.2 Deterministic lower bounds via generalized discrepancy

We first define the deterministic problem more formally. In the deterministic version of the 1-bit prob-
lem, each player gets one bit, and their goal is to estimate the sum of their bits within additive error k/4.
We will use DSEk to denote this problem. It is not hard to see the communication complexity of DSEk
is Ω(k). The direct-sum problem DSEtk,α is defined as follows. Each player gets an t-bit input xi. Let
z =

∑k
i=1 xi. The goal is to estimate an arbitrary (1−α) fraction of zj’s within error k/4. Note that we

do not need to solve all the t copies of the 1-bit problem, but only to solve an arbitrary constant fraction
of them. We have the following lower bounds for DSEtk,α

Lemma 4.1. For any k, t and small enough constant α, the deterministic communication complexity of
DSEtk,α is Ω(tk) bits.

Before proving the above lemma, we first show how to use this to prove a theorem which relates
deterministic communication complexity of the ε-approximation problem to generalized discrepancy.
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Theorem 4.2. Given range spaceR, constant ε and k, if t is a value satisfying

t

rdiscα(t)
=

1

5ε

for some constant d, any deterministic algorithm solving the ε-approximation problem forR must com-
municate Ω(tk) bits.

Proof. As before, we fix a range space (Y,R), where |Y | = t and R = {r1, · · · , rm}. The input of
each player i is a subset xi ⊆ Y , and we also use xi ∈ {0, 1}t and r` ∈ {0, 1}t as vectors. Let A
be the incidence matrix of this range space. We want to compute an ε-approximation of the multiset
X = x1 + · · ·+ xk.

Let Π be a deterministic protocol which computes an ε/2-approximation for the range space (Y,R),
with ε = rdiscα(Y,R)

5t . We will show that such an protocol can be used to solve DSEtk,α. Let y1, · · · , yk ∈
{0, 1}t be the input of DSEtk,α. To solve this problem using protocol Π, we first set xi = yi for
1 ≤ i ≤ k, then run Π on the input x1, · · · , xk. We further define z to be a t-dimensional vector
such that z =

∑
i xi and ξ be a m-dimension vector such that ξ` =

∑k
i=1 |r` ∩ xi| for each r` ∈ R,

i.e., ξ` is the number of points of X in the range r`, and it is easy to see ξ = Az. After running the
protocol we got a vector ξ′ such that ||ξ − ξ′||∞ ≤ εkt/2. Given ξ′ we find an arbitrary z′ such that
||Az′ − ξ′||∞ ≤ εkt/2 (there must exists one, as z is valid). By triangle inequality, we have

||Az −Az′||∞ ≤ εkt (4)

We next show that

|{j| |zj − z′j | > k/4}| ≤ αt. (5)

Suppose this is not true, then 4(z − z′)/k is a α-heavy coloring, and ||4A(z − z′)/k||∞ ≥ rdisc(Y,R),
which implies that

||A(z − z′)||∞ ≥ k · rdisc(Y,R)/4 = 5εtk/4 > εtk,

which is a contradiction to 4. So 5 holds, and z′ is a valid answer to DSEtk,α. Since z′ can be computed
after running Π without further communication, the communication complexity of Π is at least Ω(tk).

Proof of Lemma 4.1. Let ρ = B1 × B2 × · · · × Bk be a combinatorial rectangle and define |ρ| =
|B1| · |B2| · · · · · |Bk| as the size of ρ. Let ρ be the largest rectangle in any correct protocol Π. We
will show |ρ| ≤ 2(1−α)tk for some small enough constant, then the communication cost of the protocol
is at least log(2tk/|ρ|) = Ω(tk). Let x, x′ ∈ ρ be any two inputs in the rectangle, and we define the
t-dimensional vectors z, z′ as above, i.e., z =

∑k
i=1 xi. We will show that in any rectangle ρ of size

larger than 2(1−α)tk, there must be two inputs x, x′ ∈ ρ such that |{j | |zj − z′j | > k/4}| = Ω(t),
which means the rectangle partition induced by any correct deterministic protocol cannot contain such
a rectangle. We first prove the following key lemma we will use. The geometric interpretation of the
lemma is that, for any ` subsets of the t-dimensional hypercube with non-negligible measures, there
must be a direction y ∈ {−1,+1}t such that the sum of the widths of these sets in this direction is
Ω(`
√
t). Note that the largest width of any set is

√
t.

Lemma 4.3. Let B1, · · · , B` be a collection of ` subsets of the t-dimension hypercube {−1, 1}t such
that |Bi| ≥ 2(1−β)t for small enough constant β, then there exists a vector y ∈ {−1, 1}t and a set of
vectors xi, x′i ∈ Bi for 1 ≤ i ≤ `, such that the following holds,

|
∑̀
i=1

(xi − x′i) · y| ≥ Ω(`t), (6)
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where x · y denotes the inner product of x, y.

Proof. We will first prove that if we uniformly pick a random y ∈ {−1,+1}t, then, for each i, with
high probability there exist xi and x′i in Bi such that

xi · y − x′i · y = Ω(t).

The proof is based on the following lemma which is a simple consequence of Talagrand’s Inequality
[25, 3].

Lemma 4.4. For any A ⊂ {−1,+1}t, we have

Pr[A](1− Pr[Ad]) ≤ e−
d2

4t ,

where Ad is the set of elements in {−1,+1}t with Hamming distance less than d from A, and the
probability measure is the uniform measure.

Due to the above lemma, if Pr[A] = 2−βt for some small enough constant, then 1 − Pr[A0.4t] ≤
e−Ω(t). That is for a random y, Pr[y ∈ A0.4d] ≥ 1 − e−Ω(t). Since for any x, y ∈ {−1,+1}t, it is
obvious that x · y = t − 2HD(x, y), then the probability that there exist x ∈ A such that x · y ≥ 0.2t
is at least 1 − e−Ω(t). Similarly, we can prove that the probability that there exists x ∈ A such that
−x · y ≥ 0.2t is at least 1 − e−Ω(t), since we can negate all the elements in A and apply the same
arguments as above. Now apply the union bound, we have that, for a random y, the probability that
there exist x and x′ in A such that x · y − x′ · y = Ω(t) is at least 1− e−Ω(t) ≥ 1/2.

By our assumption, it is satisfied that Pr[Bi] ≥ 2−βt for all i, so for at least half of the y’s in
{−1,+1}t, we can find xi, x′i ∈ Bi such that xi · y − x′i · y = Ω(t) for every i. It is implied that∑

i

∑
y

max
xi,x′i∈Bi

(xi − x′i) · y ≥ 2t−1`Ω(t)

Then by an averaging argument, there must exist y such that∑
i

max
xi,x′i∈Bi

(xi − x′i) · y ≥ Ω(`t),

and the lemma follows.

Let us focus on a rectangle ρ = B1 × B2 × · · · × Bk of size 2(1−β/2)tk. Using a similar averaging
argument as in the proof of Lemma C.1, we can easily show that the number of i’s such that |Bi| ≥
2(1−β)t is at least βk for any small enough constant. W.l.o.g, we assume |Bi| ≥ 2(1−β)t for 1 ≤ i ≤ βk.
For each element xi in Bi, we transform it into an element x̂i of {−1,+1}t by replacing each 0 with
−1. Now using Lemma 4.1, we have

k∑
i=1

(x̂i − x̂′i) · y ≥ Ω(kt),

for some y ∈ {−1,+1}t and some xi, x′i ∈ Bi (for i > βk we just set xi = x′i). It is observed that
xi − x′i = (x̂i − x̂′i)/2, thus

k∑
i=1

(xi − x′i) · y ≥ Ω(kt). (7)
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Now we got two inputs x, x′ ∈ ρ, where x = x1x2 · · ·xk and x′ = x′1x
′
2 · · ·x′k. Define z =

∑
i xi

and z′ =
∑

i x
′
i. By 7, we have (z − z′) · y ≥ Ω(kt). Since y ∈ {−1,+1}, it follows that

||z − z′||1 ≥ (z − z′) · y ≥ Ω(kt).

The absolute value of each entry of the vector z − z′ is at most k, then by an averaging argument, we
have that |{j | |zj − z′j | > k/4}| ≥ αt, for small enough α. So z, z′ cannot be in the same rectangle
induced by a correct protocol. Since we proved that there are such a pair of inputs in any rectangle ρ of
size at least 2(1−β/2)tk, we conclude that any correct protocol cannot have a rectangle of this size, then
it follows that the communication complexity is at least log(2tk/2(1−β/2)tk) = βtk/2 = Ω(tk).

It was known [22] that, for boxes in R2, rdiscα∞(t) = Ω(log t) for any constant 0 < α ≤ 1. Plugging
this result into Theorem 4.2 yields a better lower bound of Ω(k log(1/ε)/ε). The lower bound proved
in [2] for halfspaces actually holds for the generalized discrepancy for any constant α, i.e. rdiscα∞(t) =
Ω(t1/2−1/2d) for d-dimensional halfspaces. Applying Theorem 4.2, we got optimal deterministic lower
bounds for halfspaces, which is Ω( k

ε2d/(d+1) ).

4.3 Randomized lower bound via generalized discrepancy

Applying similar ideas as in the deterministic case together with information complexity arguments, we
get the following analogous result for randomized protocols, the proof of which is given in Appendix E.

Theorem 4.5. Given range spaceR, if t is a value satisfying

t

rdisc1/6(t)
=

1

2ε
√
k
,

any algorithm solving the ε-approximation problem for R with constant probability must communicate
Ω(kt) bits.

Roth [22] showed that, for boxes in R2, rdiscα∞(n) = Ω(log n) for any constant 0 < α ≤ 1.
Plugging this result into Theorem 4.5 yields a better lower bound for d = 2, 3, 4 than the one derived
from Theorem 3.8, as listed in Table 1.

The error we considered so far is the maximum error (l∞ norm) of the ε-approximation over all
ranges. Another advantage of the generalized discrepancy lower bound is that it easily adapts to other
forms of errors, by just changing the form of the discrepancy accordingly. Further details are given in
Appendix F.
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[19] J. Matoušek. Geometric Discrepancy: An Illustrated Guide, volume 18. Springer, 1999.
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A Proof of Lemma 1.1

Proof. We first construct a partial coloring χ1 with discrepancy discαp (n). Now there are only (1− α)n
points that have not been colored. We then color these points using a partial coloring χ2 with discrepancy
discαp ((1−α)n), and after this there are only (1−α)2n points left uncolored. We repeat this construction
until the number of uncolored points becomes trivially small, say smaller than a suitable constant. Let `
be the number of iterations, then ` = O(log n) since α is a constant. Finally we set χ =

∑`
i=1 χ

i to be
our full coloring. Note that χ is a valid coloring as each point is colored only once. The discrepancy of
χ can be bounded as follows.

m1/pdisc(n) ≤ ||Aχ||p ≤
∑̀
i=1

||Aχi||p ≤ `m1/p · discαp (n) = m1/p ·O(log n · discαp (n)).

When discαp (n) = poly(n), then

∑̀
i=1

||Aχi||p ≤
∑̀
i=1

discαp ((1− α)in) = O(discαp (n)).

B Analysis of the Algorithm

It should be clear that the total size of the k subsets is n/2λ, so the weight of each point is 2λ. We will
prove that, with at least constant probability, for every r ∈ R, we have∣∣∣∣∣

k∑
i=1

(2λ|Iλi ∩ r| − |Ii ∩ r|)

∣∣∣∣∣ ≤ εn.
Fix some range r ∈ R. For 1 ≤ j ≤ λ, let ∆j

i = 2j−1(2|Iji ∩ r| − |I
j−1
i ∩ r|). Then the final error

of using Iλi to approximate Ii on r is

2λ|Iλi ∩ r| − |Ii ∩ r| =
λ∑
j=1

∆j
i . (8)

Sum up (8) over i, the total error is ∆ =
∑

i

∑
j ∆j

i .
Note that these ∆j

i ’s may not be independent. But conditioned on the event Ij−1
i = S for any set S,

it is easy to see that E
[
2|Iji ∩ r|

∣∣ Ij−1
i = S

]
= |S ∩ r|, so E[∆j

i | I
j−1
i = S] = 0. Thus if we order the

∆j
i ’s as ∆1

1, . . . ,∆
λ
1 ,∆

1
2, . . . ,∆

λ
2 , . . . ,∆

1
k, . . . ,∆

λ
k , and let Y` be the partial sum of first ` terms of this

sequence, then the sequence Y0, Y1, . . . , Ykλ form a martingale.
Next, we show that |∆| = |Ykλ| > εn with small probability.

Lemma B.1 (Azuma-Hoeffding). Let Y0, · · · , Ym be a martingale such that |Y` − Y`−1| ≤ c`. Then,
for all β > 0,

Pr[|Ym − Y0| ≥ β] ≤ 2e−β
2/(2

∑m
`=1 c

2
` ).
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To use the Azuma-Hoeffding inequality, we need an upper bound c` on each |Y` − Y`−1| = |∆j
i | =

2j−1
∣∣∣2|Iji ∩ r| − |Ij−1

i ∩ r|
∣∣∣ for some i, j. Recall that Iji is the subset of Ij−1

i with the same color, so∣∣∣2|Iji ∩ r| − |Ij−1
i ∩ r|

∣∣∣ is exactly the discrepancy of the coloring on r. By the definition of discrepancy,

we have |∆j
i | ≤ 2j−1disc(|Ij−1

i |). Let cij = 2j−1disc(|Ij−1
i |), and letD =

∑
i

∑
j c

2
ij . For each i ∈ [k],

let Di =
∑λ

j=1 c
2
ij . We have D =

∑
iDi and

Di =
λ∑
j=1

c2
ij ≤

λ∑
j=1

(
2j−1 · disc(|Ij−1

i |)
)2

=
λ∑
j=1

(
2j−1 · disc(ni/2j−1)

)2
.

Since we assume disc(n) ≤ O(
√
n), the above sum is bounded by the last term:

Di ≤ 2
(

2λ−1 · disc(ni/2λ−1)
)2
.

We further assume that (disc(n))2 is a concave function, which is true for all natural range spaces. Thus
by Jenson’s inequality, we have

D ≤ 22λ−1 · k
(
disc(n/(k2λ−1))

)2
.

Then by the Azuma-Hoeffding inequality,

Pr[|Ykλ| ≥ εn] ≤ 2e−(εn)2/(2D) ≤ 2 exp

(
− (εn)2

22λ−1 · k (disc(n/(k2λ−1)))
2

)
.

Set t = n
k2λ−1 . To make this probability smaller than some δ′, we only need to set t such that

t

disc(t)
≥ Ω

(
1

ε
√
k
·
√

log
1

δ′

)
.

The number of iterations, λ, is then determined by the value of t. The communication cost is simply the
total size of the k subsets

∑k
i=1 ni/2

λ = tk.
The above analysis is for any fixed r ∈ R, while there are infinitely many ranges in R on which

we need to ensure the accuracy of the estimates. But it is well known that, among all the ranges, only
poly(1/ε) of them are different enough that one needs to consider, if the range space has bounded
VC-dimension [26]. Thus, it is sufficient to set δ′ = poly(ε) · δ and apply a union bound.

C Proof of the Deterministic Lower Bound via `1-Discrepancy

Lemma C.1. Let ρ = B1 × B2 · · · × Bk be a rectangle of size no less than 2tk/2, and let U = {i :
|Bi| ≥ 2t/4}, then |U | ≥ k/3.

Proof. U is the same as {i : log |Bi| ≥ t/4}. By our assumption, we have

k∑
i=1

log |Bi| = log |ρ| ≥ tk/2.

Because for each i, we have log |Bi| ≤ t, by an averaging argument, we conclude that |U | ≥ k/3.
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Now we consider a player i in U , that is |Bi| ≥ 2t/4. It can be shown that there are two vectors x, y
in Bi with Hamming distance no less than t/64.

Lemma C.2. If |Bi| ≥ 2t/4, then for any x ∈ Bi, it hold for almost all vectors y ∈ Bi thatHD(x, y) ≥
t/64, where HD(x, y) is the hamming distance between x and y.

Proof. We will use the following bound for the sum of the first z binomial coefficients.

z∑
i=0

(
n

i

)
≤
(en
z

)z
. (9)

The total number of different y’s with HD(x, y) ≤ t/64 is

t/64∑
i=0

(
t

i

)
≤
(
en

t/64

)t/64

< 2t/8.

The lemma follows because |Bi| ≥ 2t/4 > 2t/8.

Let A be the incidence matrix of (Y,R|Y ) with |Y | = t, |R|Y | = m.

Lemma C.3. Let ρ = B1×B2 · · ·×Bk be any rectangle, then the approximation error in the rectangle
ρ is at least

1

m
·
k∑
i=1

||A(xi − yi)||1,

for any xi, yi ∈ Bi, i = 1, 2, · · · , k .

Proof. Define di = A(xi− yi). The jth entry of di is di,j = |xi ∩ rj | − |yi ∩ rj |. Let Ej =
∑k

i=1 |di,j |,
then

max
1≤j≤m

Ej ≥
1

m
·
m∑
j=1

Ej =
1

m
·
m∑
j=1

k∑
i=1

|di,j | =
1

m
·
k∑
i=1

||A(xi − yi)||1.

W.l.o.g., we assume E1 = maxiEi, and we next show that the approximation error of ρ is at least E1.
It is sufficient to find two inputs (z1, · · · , zk), (z′1, · · · , z′k) with zi, z′i ∈ Bi for every i, such that∣∣∣∣∣

k∑
i=1

|zi ∩ r1| −
k∑
i=1

|z′i ∩ r1|

∣∣∣∣∣ ≥ E1. (10)

We set

zi =

{
xi, if (Axi)1 ≥ (Ayi)1;
yi, otherwise,

and set z′i in the opposite way. It is easy to check that these two inputs satisfy (10), then the lemma
follows.

From Lemma C.2, we know for each i ∈ U , we can find a pair xi, yi ∈ Bi with HD(xi, yi) ≥ t/64.
As a result, for each i ∈ U , we can view (xi−yi) ∈ {−1, 0,+1}t as a 1/64-partial coloring for Y , then
it directly follows from Lemma C.3 that
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Corollary C.4. Let ρ = B1 ×B2 · · · ×Bk be any rectangle of size no less than 2tk/2, then the approx-
imation error in ρ is at least

k

3
· disc1/64

1 (Y,R).

Proof.

1

m
·
k∑
i=1

||A(xi − yi)||1 ≥ 1

m
·
∑
i∈U
||A(xi − yi)||1

≥
∑
i∈U

disc
1/64
1 (Y,R)

≥ k

3
· disc1/64

1 (Y,R)

Since the total number of points in any input is n ≤ tk, a valid 1
3tdisc

1/64
1 (Y,R)-approximation only

allows error less than k
3 · disc

1/64
1 (Y,R). So the above lemma shows that the partitioning |P | produced

by any correct protocol computing a 1
3tdisc

1/64
1 (Y,R)-approximation cannot contain a rectangle of size

more than 2tk/2, which implies that the communication cost is at least log |P | = Ω(tk) bits. As we pick
Y to maximize the discrepancy of (Y,R), so disc

1/64
1 (Y,R) = disc

1/64
1 (t), then we have proved our

deterministic lower bound.

D Dealing with Small k

Here we briefly describe how to deal with the case when k < 1/ε. Let (Y,R) and (X,R) be defined
as above. Given any protocol Π computing an ε-approximation of (X,R), we modify it as follows.
We first run the protocol Π, and when it finishes, each player deterministically computes an (εk/2)-
approximation of its own set xi and sends it to the coordinator. We use Π′ to denote this new protocol,
clearly it is correct if Π is correct. If the cost of Π is `, the cost of Π′ is at most ` + k · approx(εk/2).
Suppose there is a rectangle ρ = B1×B2×· · ·×Bk of size at least 2tk/2 in Π′. Our new protocol has the
property that for any x1, x2 ∈ Bi, |A(x1−x2)|∞ ≤ εkt, since a deterministic local εk/2-approximation
was computed and sent to the coordinator. This means the range of the random variable Yi,j has size at
most εkt, i.e., there is a fixed number φi such that 0 ≤ Yi,j − φi ≤ εkt. We now set Y ′i,j =

Yi,j−φi
εkt ,

then it is in the range [0, 1], and put Y ′j =
∑

i Y
′
i,j . Observing that Var[Y ′i,j ] = Var[Yi,j ]/(εkt)

2, we can
apply the same arguments as in the proof of Lemma 3.5, except now w = εkt, and get an analogous
result as follows: If Var[Yj ] = k

18 · (disc
1/64
2 (Y,R))2 ≥ 40000(εkt)2, then

Pr[Yj ≥ E[Yj ] +
√
k · disc1/64

2 (Y,R)] ≥ c

and
Pr[Yj ≤ E[Yj ]−

√
k · disc1/64

2 (Y,R)] ≥ c,

for some sufficiently small constant c > 0. Thus the same result as Lemma 3.7 follows. Now, given
ε, k, we set t such that t

disc
1/64
2 (t)

= 1
ε
√
kβ

. Then in order to satisfy the variance requirement that

k
18 · (disc

1/64
2 (Y,R))2 ≥ 40000(εkt)2, we only need to set β to be a large enough constant
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E Proof of Theorem 4.5

Here we introduce some basic definitions from information theory, see [10] for a comprehensive in-
troduction. For any random variables X,Y, Z, we use H(X|Y ) to denote the conditional entropy of
X given Y , and I(X,Y |Z) = H(X|Z) − H(X|Y,Z) to denote the conditional mutual information
between X and Y given Z. Recall the randomized k-party 1-bit problem, which is defined as follows.
The input for each player is a bit yi, and the goal is to determine whether the sum

∑k
i=1 yi is greater

than k/2 +
√
k/2 or smaller than k/2−

√
k/2. We need the following result.

Lemma E.1 ([27]). Let P be the transcript of any randomized protocol solving the 1-bit problem in the
blackboard model with probability 3/4, then we have

I(Y1, · · · , Yk;P |R) = Ω(k),

where the mutual information is measured under uniform input distribution, and R is the public ran-
domness used in P .

As before, we fix a range space (Y,R), where |Y | = t and R = {r1, · · · , rm}. The input of
each player i is a subset xi ⊆ Y , and we also use xi ∈ {0, 1}t and r` ∈ {0, 1}t as vectors. We
want to compute an ε-approximation of the multiset x = x1 + · · · + xk. We further define z to be an
t-dimensional vector such that zj =

∑
i xi,j for each j ∈ [t].

Let Π be a randomized protocol which computes an ε/2-approximation with probability 0.9, where

ε ≤ rdisc1/6(Y,R)

2
√
kt

. We will show that, the information cost of Π measured under the uniform distribution
is Ω(tk), which is t times the information cost of the 1-bit problem. To do so, we show that, by
running Π, we can recover Ω(t) zj’s within additive error

√
k, which implies that Π actually solves Ω(t)

independent instances of the 1-bit problem. This is quite counter-intuitive, because the error of Π is
O(εtk) = O(

√
k · rdisc1/6(t)), which is too large. It seems that if we want to recover the zj’s within

additive error
√
k, we can only set t to be a constant, which would not give us a good lower bound.

Our idea is to use discrepancy. We show that if, on the contrary, Π cannot recover a constant fraction
of the zj’s within error

√
k, then the error will be amplified through discrepancy. More precisely, there

will be at least one range r ∈ R, for which the error made by Π is large than εtk, which contradicts
the correctness of Π. To formalize the above intuition, we first give a reduction that uses Π to solve the
1-bit problem by embedding the input instance to a random position in Y . Then we use the symmetry
of our reduction to prove the correctness of this reduction. As the embedding position is random and
there are t positions, we can then use information-complexity arguments to prove that the information
cost of Π is at least Ω(t) times that of the 1-bit problem.

Let ξ be an m-dimensional vector such that ξ` =
∑k

i=1 |r` ∩ xi| for each r` ∈ R. Given input
y1, · · · , yk in the 1-bit problem, which are drawn from uniform distribution (Y1, · · · , Yk are the corre-
sponding random variables). Our protocol for solving the 1-bit problem using Π is as follows.

(1) The players use public randomness to sample an element j ∈ [t], and each player i sets xi,j = yi.
(2) For each j′ 6= j, each player i sets xi,j′ = 0 or 1 with equal probability. Note that this only needs
private randomness. (3) All players run together the protocol Π on the input they have just constructed,
and the coordinator gets an ε/2-approximation. (4) For each ` ∈ [m], the coordinator uses the ε/2-
approximation computed to recover a value ξ′` for each `, which is an approximation of ξ`. (5) The
coordinator then computes a t-dimensional vector z′ that is compatible with ξ′, i.e., ||Az′ − ξ′||∞ ≤
εtk/2. (6) Answer 1 if z′j ≥ k/2, otherwise 0.

Lemma E.2. If Π is a randomized protocol which computes an ε/2-approximation with probability

0.9, where ε ≤ rdisc1/6(Y,R)

2
√
kt

, then the above protocol correctly solves the 1-bit problem with constant
probability, and the information cost of Π is at least Ω(tk) under uniform distribution.
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Proof. We first show the correctness of the protocol. Suppose the ε/2-approximation computed by Π is
correct, which happens with probability 0.9. Then both ||Az−ξ′||∞ ≤ εtk/2 and ||Az′−ξ′||∞ ≤ εtk/2.
By triangle inequality, we have

||A(z − z′)||∞ = ||Az −Az′||∞ ≤ εtk.

We claim that for 5/6 fraction of j ∈ [t], it holds that |zj − z′j | ≤
√
k/2. Suppose it is not true, then

2(z − z′)/
√
k is a 1/6-heavy coloring, and

||A(z − z′)||∞ =

√
k

2
||2A(z − z′)/

√
k||∞ >

√
k

2
· rdisc1/6(Y,R) ≥ εtk,

which is a contradiction.
One important property of our reduction is that the input constructed for Π is totally symmetric. In

other words, although we sample j first, we can apply the principle of deferred decision, and reveal the
value of j after z′ is computed. Thus, with probability 5/6, we have |zj − z′j | ≤

√
k/2. Conditioned

on this happening, zj ≥ k/2 +
√
k/2 implies z′j ≥ k/2, which shows that the output of the protocol is

correct. In all, the error probability of the protocol is at most 0.1 + 0.9 · 1/6 = 1/4.
Next we analysis of the information cost of Π. We need the following property of mutual informa-

tion.

Proposition 1 (see [10]). Super-additivity of mutual information: If X1, · · · , Xt are conditional inde-
pendent given Z, then I(X1, · · · , Xt;Y |Z) ≥

∑t
i=1 I(Xi;Y |Z).

We use P to denote the above protocol for 1-bit. Let J, Yi, Xi be the corresponding random variable
of j, yi, xi. The public randomness used in P is J and R, where R is the public randomness of Π. By
Lemma E.1, we have

Ω(k) = I(Y1, · · · , Yk;P |J,R)

=
t∑

j=1

Pr[J = j] · I(Y1, · · · , Yk;P |J = j, R)

=
1

t
·

t∑
j=1

I(X1,j , · · · , Xk,j ; Π|R) (11)

≤ 1

t
· I(X1, · · · , Xk; Π|R). (12)

The equality (11) holds because the joint distributions (Y1, · · · , Yk, P,R|J = j) and (X1,j , · · · , Xk,j ,Π, R)
are the same by our construction. Inequality (12) holds because the tuples (X1,j , · · · , Xk,j) for j ∈ [q]
are conditionally independent given R, and we apply the supper-additivity of mutual information. So
we have shown the information cost, I(X1, · · · , Xk; Π|R), of the protocol is Ω(kt), when the inputs
(X1, · · · , Xk) are distributed uniformly. By standard arguments, the communication cost is at least the
information cost (e.g., see [6]).

Finally, we set Y of size t satisfying rdisc1/6(Y,R) = rdisc1/6(t), and Theorem 4.5 is proved.

F Handling different error norms

So far we have only studied the l∞ norm of the error (i.e., maximum error) from an ε-approximation. It
is too strong for some applications, and different norms have been considered. The lp ε-approximation
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of X with respect to a range spaceR is a subset Y ⊂ X if 1

m
·

∑
r∈R,X∩r unique

∣∣∣∣ |Y ∩ r||Y |
− |X ∩ r|
|X|

∣∣∣∣p
1/p

≤ ε.

Theorem 4.5 can easily be extended to hold for lp ε-approximations. In the proof, any norm will
work (actually only triangle inequality is needed). Here we state the following result without going
through the details again.

Theorem F.1. Given range spaceR, if t is a value satisfying

t

rdisc
1/6
p (t)

=
1

2
√
kε
,

any algorithm solving the lp ε-approximation problem forR must communicate Ω(kt) bits.

The lower bound proved in [2] for halfspaces actually holds for the generalized l2-discrepancy.
Thus, the lower bound listed in Table 1 for computing (l∞) ε-approximations for halfspaces actually
also holds for computing l2 ε-approximations.

Corollary F.2. Any randomized algorithm solving the l2 ε-approximation problem for d-dimensional
halfspaces must communicate Ω(k1/(d+1)/ε2d/(d+1)) bits.
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