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Models and Problems
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Distributed streaming model [Babcock, Olston SIGMOD 2003]

1 3 2

4 3 12

Bob observes
B(t) by time t

Alice observes
A(t) by time t

Carole tries to track f(A(t) ∪ B(t)) for all t (an
ε-approximation is usually allowed)

A(t), B(t) : multisets
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Distributed streaming model [Babcock, Olston SIGMOD 2003]

1 3 2

4 3 12

Find an (approximate) tracking protocol
while minimizing communication

Bob observes
B(t) by time t

Alice observes
A(t) by time t

Carole tries to track f(A(t) ∪ B(t)) for all t (an
ε-approximation is usually allowed)

A(t), B(t) : multisets
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Distributed streaming model [Babcock, Olston SIGMOD 2003]

1 3 2

4 3 12

1 34

Extend to k sites

Coordinator

Site

Site

Site

A1(t)

A2(t)

f(A1(t)∪A2(t)
∪ . . . ∪Ak(t))

Find a protocol to minimize communication.
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Combination of two models
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f(X ∪ Y ); minimize communication
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Combination of two models
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Streaming model

A(t)

f(A(t)); minimize space
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Combination of two models
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(One-shot) communication model

+

Only interested in communication cost

⇒

f(X ∪ Y ); minimize communication

X Y

Distributed streaming model
a.k.a. Continuous commun. model

2 1 3 4 2

Streaming model

A(t)

f(A(t)); minimize space



5-1

Applied motivation: distributed monitoring

Large-scale distributed “holistic” querying/monitoring.

Picture from the tutorial “Streaming in a connected world: Querying
and tracking distributed data streams” at VLDB′06 and SIGMOD′07

C
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Three different fs

Heavy hitters: For a multiset A, item i is a

• heavy hitter if (count of i) > φ|A|
• non-heavy hitter if (count of i) < (φ− ε)|A|

Application: Find out IP addresses that appear ≥ 1%
over a network
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Three different fs

Heavy hitters: For a multiset A, item i is a

• heavy hitter if (count of i) > φ|A|
• non-heavy hitter if (count of i) < (φ− ε)|A|

Application: Find out IP addresses that appear ≥ 1%
over a network

Single Quantile: Median, 1/4-quantile.

Application: The median size of packets over a network.
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Three different fs

Heavy hitters: For a multiset A, item i is a

• heavy hitter if (count of i) > φ|A|
• non-heavy hitter if (count of i) < (φ− ε)|A|

Application: Find out IP addresses that appear ≥ 1%
over a network

Single Quantile: Median, 1/4-quantile.

Application: The median size of packets over a network.

All Quantiles: A is a set of distinct elements from a to-
tally ordered universe. Quantile of x = |y < x, y ∈ A|/|A|,
usually allows a ±ε error. Need a data structure to extract
ε-approximate quantile for any x.
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Previous and our results
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Previous results in distributed streaming model

Total count F1

Complexity O(k/ε · log n)
n: total # items received at all sites, ε: relative error

Simple: each site sends an update every time its local
count has increased by a (1 + ε) factor

Frequent moments (Fp =
∑

i(count of i)p)
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Previous results in distributed streaming model

Total count F1

Complexity O(k/ε · log n)
n: total # items received at all sites, ε: relative error

Simple: each site sends an update every time its local
count has increased by a (1 + ε) factor

Distinct count F0, Second frequency moment F2

F0: O(k/ε2 · log n log(n/δ)) [Cormode, Muthukrishnan, Yi, SODA’08]

F2: O((k2/ε2 + k3/2/ε4) log n log(n/δ) [same paper]

Frequent moments (Fp =
∑

i(count of i)p)
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Previous results in distributed streaming model

Total count F1

Complexity O(k/ε · log n)
n: total # items received at all sites, ε: relative error

Simple: each site sends an update every time its local
count has increased by a (1 + ε) factor

Distinct count F0, Second frequency moment F2

F0: O(k/ε2 · log n log(n/δ)) [Cormode, Muthukrishnan, Yi, SODA’08]

Entropy of the stream

Shannon entropy and related entropies [Arackaparambil,
Brody, Chakrabarti, ICALP’09]

F2: O((k2/ε2 + k3/2/ε4) log n log(n/δ) [same paper]

Frequent moments (Fp =
∑

i(count of i)p)
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Previous results: Heavy Hitters

Streaming model (space complexity)

O(1/ε), [Karp, Shenker, Papadimitriou TODS’03], [Demaine,
Munro, Lopez-Ortiz, ESA’02], [Metwally, Agrawal, Abbadi
TODS’06], [Misra, Gries 1982]
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Previous results: Heavy Hitters

Heuristics [e.g. Babcock, Olston, SIGMOD’03]

Distributed streaming model

Streaming model (space complexity)

O(1/ε), [Karp, Shenker, Papadimitriou TODS’03], [Demaine,
Munro, Lopez-Ortiz, ESA’02], [Metwally, Agrawal, Abbadi
TODS’06], [Misra, Gries 1982]

One-shot communication model

O(k/ε) - easy
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Previous results: All Quantiles

Streaming model (space complexity)

O(1/ε · log(1/δ)), with failure probability δ [Cormode, Muthukr-
ishnan, J. Alg ’05]

O(1/ε · log(εn)) [Greenwald, Khanna, SIGMOD’01]
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Previous results: All Quantiles

Streaming model (space complexity)

O(1/ε · log(1/δ)), with failure probability δ [Cormode, Muthukr-
ishnan, J. Alg ’05]

O(1/ε · log(εn)) [Greenwald, Khanna, SIGMOD’01]

One-shot communication model

O(k/ε) - easy

O(k/ε2 · log n) [Cormode, Garofalakis, Muthukrishnan, Rastogi, SIGMOD’05]

Distributed streaming model
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Our results

Complexity: Θ(k/ε · log n)

Tracking heavy hitters
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Our results

Complexity: Θ(k/ε · log n)

Tracking heavy hitters

Tracking one quantile (in particular: Median)
Complexity: Θ(k/ε · log n)
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Our results

Complexity: Θ(k/ε · log n)

Tracking heavy hitters

Tracking one quantile (in particular: Median)
Complexity: Θ(k/ε · log n)

Tracking all quantiles

Upper bound: O(k/ε · log2(1/ε) log n)
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Technical details
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Tracking Heavy Hitters

Divide into multiple rounds: Every time m increase by
a factor of 1 + ε. m: total # elements inserted
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Tracking Heavy Hitters

Divide into multiple rounds: Every time m increase by
a factor of 1 + ε. m: total # elements inserted

In each round

Broadcast m: O(k) messages

Compute total count m: O(k) messages

Each site:

• For each i, sends out a message every time
count(i) increases by εm/(2k)

• Sends out a message every time total local count
increases by εm/(2k)

Coordinator:

• Terminate the round when O(k) messages have
been received
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Tracking Heavy Hitters

Divide into multiple rounds: Every time m increase by
a factor of 1 + ε. m: total # elements inserted

In each round

Broadcast m: O(k) messages

Compute total count m: O(k) messages

Each site:

• For each i, sends out a message every time
count(i) increases by εm/(2k)

• Sends out a message every time total local count
increases by εm/(2k)

Coordinator:

• Terminate the round when O(k) messages have
been received

Track the count of each ele-
ment with error at most εm
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Tracking Heavy Hitters

Divide into multiple rounds: Every time m increase by
a factor of 1 + ε. m: total # elements inserted

Total messages in one round: O(k)
# rounds: O(log1+ε n) = O(log n/ε)

In each round

Broadcast m: O(k) messages

Compute total count m: O(k) messages

Each site:

• For each i, sends out a message every time
count(i) increases by εm/(2k)

• Sends out a message every time total local count
increases by εm/(2k)

Coordinator:

• Terminate the round when O(k) messages have
been received

Track the count of each ele-
ment with error at most εm
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Tracking Heavy Hitters: lower bound

Construct an input where the set of heavy hit-
ters undergoes Ω(log n/ε) updates

In each update, one item changes from non-
heavy to heavy

Argue that Ω(k) sites need to be contacted
in order to correctly identify this item at the
right time
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Tracking the Median

Maintain a dynamic set of intervals each has
ε
8
m to ε

2
m items: # messages O(k/ε) in each

round

Divide tracking period into rounds: m (roughly)
doubles in each round

In each round

2 6 73 5 8 11 15 19 21 24 2722 41 4337 45 47 51

pivot elementeach leaf contains εm/8 ∼
εm/2 elements, maintain an
approximate count
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Tracking the Median

Maintain a dynamic set of intervals each has
ε
8
m to ε

2
m items: # messages O(k/ε) in each

round

Divide tracking period into rounds: m (roughly)
doubles in each round

After Θ(εm) items, recalculate the median
from the old median by using the dynamic set
of intervals.

# messages O(k) per recalculation, O(1/ε) re-
calculations in each round

In each round



15-3

Tracking the Median

Maintain a dynamic set of intervals each has
ε
8
m to ε

2
m items: # messages O(k/ε) in each

round

Divide tracking period into rounds: m (roughly)
doubles in each round

Total messages in one round: O(k/ε)
# rounds: O(log n)

After Θ(εm) items, recalculate the median
from the old median by using the dynamic set
of intervals.

# messages O(k) per recalculation, O(1/ε) re-
calculations in each round

In each round
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Tracking all Quantiles

structure can be used to extract the rank of
any x with absolute error < εm ⇒ quantile
with error < ε

A balanced tree
approximate count with
absolute error < εm/ log(1/ε)

approximate median: either half
contains at least 1/4 of the elements

each leaf contains Θ(εm) elements
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Tracking all Quantiles

Divide tracking period into rounds: m (roughly) doubles in each round

A balanced tree
approximate count with
absolute error < εm/ log(1/ε)

approximate median: either half
contains at least 1/4 of the elements

each leaf contains Θ(εm) elements
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Tracking all Quantiles

Divide tracking period into rounds: m (roughly) doubles in each round

At the beginning of each round, initialize the structure with O(k/ε)
communication, then broadcast.

A balanced tree
approximate count with
absolute error < εm/ log(1/ε)

approximate median: either half
contains at least 1/4 of the elements

each leaf contains Θ(εm) elements
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Tracking all Quantiles

Divide tracking period into rounds: m (roughly) doubles in each round

At the beginning of each round, initialize the structure with O(k/ε)
communication, then broadcast.

Each site tracks each interval, sends a message for every
Θ(εm/(k log(1/ε))) new elements arrive. Total: O(k/ε · log2(1/ε))

A balanced tree
approximate count with
absolute error < εm/ log(1/ε)

approximate median: either half
contains at least 1/4 of the elements

each leaf contains Θ(εm) elements
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Tracking all Quantiles

Divide tracking period into rounds: m (roughly) doubles in each round

At the beginning of each round, initialize the structure with O(k/ε)
communication, then broadcast.

Each site tracks each interval, sends a message for every
Θ(εm/(k log(1/ε))) new elements arrive. Total: O(k/ε · log2(1/ε))

A balanced tree
approximate count with
absolute error < εm/ log(1/ε)

approximate median: either half
contains at least 1/4 of the elements

each leaf contains Θ(εm) elements

Maintain the balance of the tree. Total: O(k/ε · log(1/ε))
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Remarks and open problems

O(1/ε) each site for heavy hitter

Focused on communication only, but the algo-
rithms can be implemented with small space

O(1/ε · log(εn)) each site for quantiles



17-2

Remarks and open problems

O(1/ε) each site for heavy hitter

Focused on communication only, but the algo-
rithms can be implemented with small space

O(1/ε · log(εn)) each site for quantiles

Randomized algorithms?

There is an upperbound O
(
(k + 1/ε2) · poly log(n, k, 1/ε)

)
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O(1/ε) each site for heavy hitter

Focused on communication only, but the algo-
rithms can be implemented with small space

O(1/ε · log(εn)) each site for quantiles

Randomized algorithms?

How about deletions?

There is an upperbound O
(
(k + 1/ε2) · poly log(n, k, 1/ε)

)

One site, arbitrary function in Zd, competitive analysis.
(Yi and Zhang SODA 2009)



17-4

Remarks and open problems

O(1/ε) each site for heavy hitter

Focused on communication only, but the algo-
rithms can be implemented with small space

O(1/ε · log(εn)) each site for quantiles

Randomized algorithms?

How about deletions?

Other tracking problems ...

There is an upperbound O
(
(k + 1/ε2) · poly log(n, k, 1/ε)

)

One site, arbitrary function in Zd, competitive analysis.
(Yi and Zhang SODA 2009)
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The End

T HANK YOU

Q and A


