Optimal Tracking of Distributed Heavy Hitters and Quantiles

Qin Zhang

Hong Kong University of Science & Technology

Joint work with Ke Yi

PODS 2009 June 30, 2009

Models and Problems

 $f(X \cup Y)$; minimize communication

Three different fs

\square Heavy hitters: For a multiset A, item i is a

- heavy hitter if (count of i) > $\phi|A|$
- non-heavy hitter if (count of i) < $(\phi \epsilon)|A|$
- Application: Find out IP addresses that appear $\geq 1\%$ over a network

Three different fs

\square Heavy hitters: For a multiset A, item i is a

- heavy hitter if (count of i) > $\phi|A|$
- non-heavy hitter if (count of i) < $(\phi \epsilon)|A|$
- Application: Find out IP addresses that appear $\geq 1\%$ over a network
- Single Quantile: Median, 1/4-quantile.
 - Application: The median size of packets over a network.

Three different fs

\square Heavy hitters: For a multiset A, item i is a

- heavy hitter if (count of i) > $\phi|A|$
- non-heavy hitter if (count of i) < $(\phi \epsilon)|A|$
- Application: Find out IP addresses that appear $\geq 1\%$ over a network
- Single Quantile: Median, 1/4-quantile.
 - Application: The median size of packets over a network.
- All Quantiles: A is a set of distinct elements from a totally ordered universe. Quantile of x = |y < x, y ∈ A|/|A|, usually allows a ±ε error. Need a data structure to extract ε-approximate quantile for any x.

Previous and our results

Previous results in distributed streaming model

- Frequent moments $(F_p = \sum_i (\text{count of } i)^p)$
 - Total count F_1
 - Simple: each site sends an update every time its local count has increased by a $(1 + \epsilon)$ factor
 - Complexity $O(k/\epsilon \cdot \log n)$
 - n: total # items received at all sites, $\epsilon:$ relative error

Previous results in distributed streaming model

- Frequent moments $(F_p = \sum_i (\text{count of } i)^p)$
 - Total count F_1
 - Simple: each site sends an update every time its local count has increased by a $(1 + \epsilon)$ factor
 - Complexity $O(k/\epsilon \cdot \log n)$ n: total # items received at all sites, ϵ : relative error
 - Distinct count F_0 , Second frequency moment F_2

• $F_0: O(k/\epsilon^2 \cdot \log n \log(n/\delta))$ [Cormode, Muthukrishnan, Yi, SODA'08]

• F_2 : $O((k^2/\epsilon^2 + k^{3/2}/\epsilon^4) \log n \log(n/\delta)$ [same paper]

Previous results in distributed streaming model

- Frequent moments $(F_p = \sum_i (\text{count of } i)^p)$
 - Total count F_1
 - Simple: each site sends an update every time its local count has increased by a $(1 + \epsilon)$ factor
 - Complexity $O(k/\epsilon \cdot \log n)$ n: total # items received at all sites, ϵ : relative error
 - Distinct count F_0 , Second frequency moment F_2
 - $\square F_0: O(k/\epsilon^2 \cdot \log n \log(n/\delta)) \text{ [Cormode, Muthukrishnan, Yi, SODA'08]}$
 - F_2 : $O((k^2/\epsilon^2 + k^{3/2}/\epsilon^4) \log n \log(n/\delta)$ [same paper]
- Entropy of the stream
 - Shannon entropy and related entropies [Arackaparambil, Brody, Chakrabarti, ICALP'09]

Previous results: Heavy Hitters

- Streaming model (space complexity)
 - □ O(1/ε), [Karp, Shenker, Papadimitriou TODS'03], [Demaine, Munro, Lopez-Ortiz, ESA'02], [Metwally, Agrawal, Abbadi TODS'06], [Misra, Gries 1982]

Previous results: Heavy Hitters

- Streaming model (space complexity)
 - O(1/\epsilon), [Karp, Shenker, Papadimitriou TODS'03], [Demaine, Munro, Lopez-Ortiz, ESA'02], [Metwally, Agrawal, Abbadi TODS'06], [Misra, Gries 1982]
- One-shot communication model
 - $O(k/\epsilon)$ easy

Previous results: Heavy Hitters

- Streaming model (space complexity)
 - O(1/e), [Karp, Shenker, Papadimitriou TODS'03], [Demaine, Munro, Lopez-Ortiz, ESA'02], [Metwally, Agrawal, Abbadi TODS'06], [Misra, Gries 1982]
- One-shot communication model
 - $O(k/\epsilon)$ easy
- Distributed streaming model
 - Heuristics [e.g. Babcock, Olston, SIGMOD'03]

Previous results: All Quantiles

- Streaming model (space complexity)
 - \Box $O(1/\epsilon \cdot \log(\epsilon n))$ [Greenwald, Khanna, SIGMOD'01]
 - □ $O(1/\epsilon \cdot \log(1/\delta))$, with failure probability δ [Cormode, Muthukr-ishnan, J. Alg '05]

Previous results: All Quantiles

- Streaming model (space complexity)
 - $\Box O(1/\epsilon \cdot \log(\epsilon n)) \text{ [Greenwald, Khanna, SIGMOD'01]}$
 - □ $O(1/\epsilon \cdot \log(1/\delta))$, with failure probability δ [Cormode, Muthukr-ishnan, J. Alg '05]
- One-shot communication model
 $O(k/\epsilon)$ easy

Previous results: All Quantiles

- Streaming model (space complexity)
 - $\Box O(1/\epsilon \cdot \log(\epsilon n)) \text{ [Greenwald, Khanna, SIGMOD'01]}$
 - □ $O(1/\epsilon \cdot \log(1/\delta))$, with failure probability δ [Cormode, Muthukr-ishnan, J. Alg '05]
- One-shot communication model
 O(k/e) easy
- Distributed streaming model
 $O(k/\epsilon^2 \cdot \log n)$ [Cormode, Garofalakis, Muthukrishnan, Rastogi, SIGMOD'05]

Our results

- Tracking heavy hitters
 - **Complexity:** $\Theta(k/\epsilon \cdot \log n)$

Our results

- Tracking heavy hitters
 - **Complexity:** $\Theta(k/\epsilon \cdot \log n)$
- □ Tracking one quantile (in particular: Median)
 □ Complexity: Θ(k/ε · log n)

Our results

- Tracking heavy hitters
 - **Complexity:** $\Theta(k/\epsilon \cdot \log n)$
- Tracking one quantile (in particular: Median)
 Complexity: Θ(k/ε · log n)
- Tracking all quantiles
 - Upper bound: $O(k/\epsilon \cdot \log^2(1/\epsilon) \log n)$

Tracking Heavy Hitters

Divide into multiple rounds: Every time m increase by a factor of $1 + \epsilon$. m: total # elements inserted

Tracking Heavy Hitters

- Divide into multiple rounds: Every time m increase by a factor of $1 + \epsilon$. m: total # elements inserted
- In each round
 - **Compute total count** m: O(k) messages
 - **D** Broadcast m: O(k) messages
 - Each site:
 - For each *i*, sends out a message every time count(*i*) increases by εm/(2k)
 - Sends out a message every time total local count increases by $\epsilon m/(2k)$
 - Coordinator:
 - Terminate the round when O(k) messages have been received

Tracking Heavy Hitters

- Divide into multiple rounds: Every time m increase by a factor of $1 + \epsilon$. m: total # elements inserted
- In each round
 - **Compute total count** m: O(k) messages
 - **D** Broadcast m: O(k) messages
 - Each site:
 - For each *i*, sends out a message every time count(*i*) increases by εm/(2k)
 - Sends out a message every time total local count increases by $\epsilon m/(2k)$
 - **Coordinator**:

Track the count of each element with error at most ϵm

• Terminate the round when O(k) messages have been received

Tracking Heavy Hitters Total messages in one round: O(k)# rounds: $O(\log_{1+\epsilon} n) = O(\log n/\epsilon)$

- Divide into multiple rounds: Every time m increase by a factor of $1 + \epsilon$. m: total # elements inserted
- In each round
 - **Compute total count** m: O(k) messages
 - **D** Broadcast m: O(k) messages
 - Each site:
 - For each *i*, sends out a message every time count(*i*) increases by εm/(2k)
 - Sends out a message every time total local count increases by $\epsilon m/(2k)$
 - **Coordinator**:

Track the count of each element with error at most ϵm

• Terminate the round when O(k) messages have been received

Tracking Heavy Hitters: lower bound

- Construct an input where the set of heavy hitters undergoes $\Omega(\log n/\epsilon)$ updates
- In each update, one item changes from nonheavy to heavy
- Argue that Ω(k) sites need to be contacted in order to correctly identify this item at the right time

Tracking the Median

- Divide tracking period into rounds: *m* (roughly) doubles in each round
- In each round
 - Maintain a dynamic set of intervals each has $\frac{\epsilon}{8}m \text{ to } \frac{\epsilon}{2}m \text{ items: } \# \text{ messages } O(k/\epsilon) \text{ in each round}$

Tracking the Median

- Divide tracking period into rounds: *m* (roughly) doubles in each round
- In each round
 - Maintain a dynamic set of intervals each has $\frac{\epsilon}{8}m \text{ to } \frac{\epsilon}{2}m \text{ items: } \# \text{ messages } O(k/\epsilon) \text{ in each round}$
 - After $\Theta(\epsilon m)$ items, recalculate the median from the old median by using the dynamic set of intervals.

messages O(k) per recalculation, $O(1/\epsilon)$ recalculations in each round

Tracking the Median

Total messages in one round: $O(k/\epsilon)$ # rounds: $O(\log n)$

- Divide tracking period into rounds: *m* (roughly) doubles in each round
- In each round
 - Maintain a dynamic set of intervals each has $\frac{\epsilon}{8}m \text{ to } \frac{\epsilon}{2}m \text{ items: } \# \text{ messages } O(k/\epsilon) \text{ in each round}$
 - After $\Theta(\epsilon m)$ items, recalculate the median from the old median by using the dynamic set of intervals.

messages O(k) per recalculation, $O(1/\epsilon)$ recalculations in each round

A balanced tree

structure can be used to extract the rank of any x with absolute error $<\epsilon m \Rightarrow$ quantile with error $<\epsilon$

A balanced tree

Divide tracking period into rounds: m (roughly) doubles in each round

A balanced tree

each leaf contains $\Theta(\epsilon m)$ elements

Divide tracking period into rounds: *m* (roughly) doubles in each round

At the beginning of each round, initialize the structure with $O(k/\epsilon)$ communication, then broadcast.

A balanced tree

each leaf contains $\Theta(\epsilon m)$ elements

- Divide tracking period into rounds: *m* (roughly) doubles in each round
- At the beginning of each round, initialize the structure with $O(k/\epsilon)$ communication, then broadcast.
- Each site tracks each interval, sends a message for every $\Theta(\epsilon m/(k \log(1/\epsilon)))$ new elements arrive. Total: $O(k/\epsilon \cdot \log^2(1/\epsilon))$

A balanced tree

each leaf contains $\Theta(\epsilon m)$ elements

- Divide tracking period into rounds: m (roughly) doubles in each round
- At the beginning of each round, initialize the structure with $O(k/\epsilon)$ communication, then broadcast.
- Each site tracks each interval, sends a message for every $\Theta(\epsilon m/(k \log(1/\epsilon)))$ new elements arrive. Total: $O(k/\epsilon \cdot \log^2(1/\epsilon))$
- □ Maintain the balance of the tree. Total: $O(k/\epsilon \cdot \log(1/\epsilon))$

Remarks and open problems Focused on communication only, but the algorithms can be implemented with small space O(1/\epsilon) each site for heavy hitter O(1/\epsilon \log(\epsilon)) each site for quantiles

• There is an upperbound $O\left((k+1/\epsilon^2) \cdot poly \log(n,k,1/\epsilon)\right)$

Other tracking problems ...

