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ABSTRACT
We study the mergeability of data summaries. Informally
speaking, mergeability requires that, given two summaries
on two data sets, there is a way to merge the two summaries
into a single summary on the union of the two data sets,
while preserving the error and size guarantees. This prop-
erty means that the summaries can be merged in a way like
other algebraic operators such as sum and max, which is
especially useful for computing summaries on massive dis-
tributed data. Several data summaries are trivially merge-
able by construction, most notably all the sketches that are
linear functions of the data sets. But some other funda-
mental ones like those for heavy hitters and quantiles, are
not (known to be) mergeable. In this paper, we demon-
strate that these summaries are indeed mergeable or can
be made mergeable after appropriate modifications. Specif-
ically, we show that for ε-approximate heavy hitters, there
is a deterministic mergeable summary of size O(1/ε); for ε-
approximate quantiles, there is a deterministic summary of
size O( 1

ε
log(εn)) that has a restricted form of mergeability,

and a randomized one of size O( 1
ε

log3/2 1
ε
) with full merge-

ability. We also extend our results to geometric summaries
such as ε-approximations and ε-kernels.

We also achieve two results of independent interest: (1)
we provide the best known randomized streaming bound
for ε-approximate quantiles that depends only on ε, of size
O( 1

ε
log3/2 1

ε
), and (2) we demonstrate that the MG and the

SpaceSaving summaries for heavy hitters are isomorphic.
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1. INTRODUCTION
Data summarization is an important tool for answering

queries on massive data sets, especially when they are dis-
tributed over a network or change dynamically, as working
with the full data is computationally infeasible. In such
situations, it is desirable to compute a compact summary
S of the data D that preserves its important properties,
and to use the summary for answering queries, hence oc-
cupying considerably less resources. Since summaries have
much smaller size, they answer queries approximately, and
there is a trade-off between the size of the summary and
the approximation error. A variety of data summaries have
been proposed in the past, starting with statistical sum-
maries like heavy hitters, quantile summaries, histograms,
various sketches and synopses, to geometric summaries like
ε-approximations and ε-kernels, and to graph summaries like
distance oracles. Note that the error parameter ε has differ-
ent interpretations for different types of summaries.

Algorithms for constructing summaries have been devel-
oped under several models. At the most basic level, we have
the data set D accessible in its entirety, and the summary
S is constructed offline. More generally, we often want the
summary to be maintained in the presence of updates, i.e.,
when a new element is added to D, S can be updated to
reflect the new arrival without recourse to the underlying
D. Much progress has been made on incrementally main-
tainable summaries in the past years, mostly driven by the
study of data stream algorithms. Some applications, espe-
cially when data is distributed over a network, call for a
stronger requirement on summaries, namely, one should be
able to merge the ε-summaries of two (separate) data sets
to obtain an ε-summary of the union of the two data sets,
without increasing the size of the summary or its approx-
imation error. This merge operation can be viewed as a
simple algebraic operator like sum and max; it is commuta-



tive and associative. We motivate the need for such a merge
operation by giving two specific applications.

Motivating Scenario 1: Distributed Computation. The need
for a merging operation arises in the MUD (Massive Un-
ordered Distributed) model of computation [18], which de-
scribes large-scale distributed programming paradigms like
MapReduce and Sawzall. In this model, the input data is
broken into an arbitrary number of pieces, each of which is
potentially handled by a different machine. Each piece of
data is first processed by a local function, which outputs a
message. All the messages are then pairwise combined using
an aggregation function in an arbitrary fashion, eventually
producing an overall message. Finally, a post-processing
step is applied. This exactly corresponds to our notion of
mergeability, where each machine builds a summary of its
share of the input, the aggregation function is the merg-
ing operation, and the post-processing step corresponds to
posing queries on the summary. The main result of [18] is
that any deterministic streaming algorithm that computes
a symmetric function defined on all inputs can be simulated
(in small space but with very high time cost) by a MUD
algorithm, but this result does not hold for indeterminate
functions, i.e., functions that may have many correct out-
puts. Many popular algorithms for computing summaries
are indeterminate, so the result in [18] does not apply in
these cases.

Motivating Scenario 2: In-network aggregation. Nodes in
a sensor network organize themselves into a routing tree
rooted at the base station. Each sensor holds some data
and the goal of data aggregation is to compute a summary of
all the data. Nearly all data aggregation algorithms follow
a bottom-up approach [29]: Starting from the leaves, the
aggregation propagates upwards to the root. When a node
receives the summaries from its children, it merges these
with its own summary, and forwards the result to its parent.
Depending on the physical distribution of the sensors, the
routing tree can take arbitrary shapes. If the size of the
summary is independent of |D|, then this performs load-
balancing: the communication along each branch is equal,
rather than placing more load on edges closer to the root.

These motivating scenarios are by no means new. How-
ever, results to this date have yielded rather weak results.
Specifically, in many cases, the error increases as more merges
are done [13, 22, 30, 31]. To obtain any overall guarantee,
it is necessary to bound the number of rounds of merging
operations so that the error parameter ε can be scaled ac-
cordingly. Consequently, this weaker form of mergeability
fails when the number of merges is not pre-specified, gener-
ates larger summaries (due to the scaled down ε), and is not
mathematically elegant.

1.1 Problem statement
Motivated by these and other applications, we study the

mergeability property of various widely used summarization
methods and develop efficient merging algorithms. We use
S() to denote a summarization method. Given D and an er-
ror parameter ε, S() may have many valid outputs (e.g., de-
pending on the order in which it processes D, it may return
different valid ε-summaries), i.e., S() could be a one-to-many
mapping. We use S(D, ε) to denote any valid summary for
data set D with error ε produced by this method, and use

k(n, ε) to denote the maximum size of any S(D, ε) for any
D of n items.

We say that S() is mergeable if there exists an algorithm A
that produces a summary S(D1]D2, ε)

1 from any two input
summaries S(D1, ε) and S(D2, ε). Note that, by definition,
the size of the merged summary produced by A is at most
k(|D1|+|D2|, ε). If k(n, ε) is independent of n, which we can
denote by k(ε), then the size of each of S(D1, ε), S(D2, ε),
and the summary produced by A is at most k(ε). The merge
algorithm A may represent a summary S(D, ε) in a certain
way or may store some additional information (e.g., a data
structure to expedite the merge procedure). With a slight
abuse of notation, we will also use S(D, ε) to denote this
representation of the summary and to include the additional
information maintained.

Note that if we restrict the input so that |D2| = 1, i.e.,
we always merge a single item at a time, then we recover
a streaming model: S(D, ε) is the summary (and the data
structure) maintained by a streaming algorithm, and A is
the algorithm to update the summary with every new ar-
rival. Thus mergeability is a strictly stronger requirement
than streaming, and the summary size should be at least as
large.

Some summaries are known to be mergeable. For exam-
ple, all sketches that are linear functions of D are trivially
mergeable. These include the F2 AMS sketch [4], the Count-
Min sketch [15], the `1 sketch [17, 37], among many others.
Summaries that maintain the maximum or top-k values can
also be easily merged, most notably summaries for estimat-
ing the number of distinct elements [6, 26]. However, several
fundamental problems have summaries that are based on
other techniques, and are not known to be mergeable (or
have unsatisfactory bounds). This paper focuses on sum-
maries for several key problems, which are widely applicable.
We develop both randomized and deterministic algorithms.
For randomized algorithms, we require that the produced
summary is valid with constant probability after any num-
ber of merging operations; the success probability can al-
ways be boosted to 1− δ by building O(log 1

δ
) independent

summaries.
Finally, we note that our algorithms operate in a compar-

ison model, in which only comparisons are used on elements
in the data sets. In this model we assume each element, as
well as any integer no more than n, can be stored in one
unit of storage. Some prior work on building summaries
has more strongly assumed that elements are drawn from a
bounded universe [u] = {0, . . . , u − 1} for some u ≥ n, and
one unit of storage has log u bits. Note that any result in
the comparison model also holds in the bounded-universe
model, but not vice-versa.

1.2 Previous results
In this subsection we briefly review the previous results

on specific summaries that we study in this paper.

Frequency estimation and heavy hitters. For a multi-
set D, let f(x) be the frequency of x in D. A ε-approximate
frequency estimation summary of D can be used to estimate
f(x) for any x within an additive error of εn. A heavy hitters
summary allows one to extract all frequent items approxi-
mately, i.e., for a user-specified φ, it returns all items x with

1] denotes multiset addition.



f(x) > φn, no items with f(x) < (φ− ε)n, while an item x
with (φ− ε)n ≤ f(x) ≤ φn may or may not be returned.

In the bounded-universe model, the frequency estimation
problem can be solved by the Count-Min sketch [15] of size
O( 1

ε
log u), which is a linear sketch, and is thus trivially

mergeable. Since the Count-Min sketch only allows querying
for specific frequencies, in order to report all the heavy hit-
ters efficiently, we need a hierarchy of sketches and the space
increases to O( 1

ε
log u log( log u

ε
)) from the extra sketches with

adjusted parameters. The Count-Min sketch is randomized;
while there is also a deterministic linear sketch for the prob-
lem [19], its size is O( 1

ε2 log2 u log n). In some cases log u
is large, for example when the elements are strings or user-
defined types, so we seek to avoid such factors.

The counter-based summaries, most notably the MG sum-
mary [36] and the SpaceSaving summary [35], have been re-
ported [14] to give the best results for both the frequency
estimation and the heavy hitters problem (in the streaming
model). They are deterministic, simple, and have the op-
timal size O( 1

ε
). They also work in the comparison model.

However, only recently were they shown to support a weaker
model of mergeability, where the error is bounded provided
the merge is always “into”a single summary [8]. Some merg-
ing algorithms for these summaries have been previously
proposed, but the error increases after each merging step
[30, 31].

Quantile summaries. For the quantile problem we as-
sume that the elements are drawn from a totally ordered
universe and D is a set (i.e., no duplicates); this assump-
tion can be removed by using any tie breaking method. For
any 0 < φ < 1, the φ-quantile of D is the item x with rank
r(x) = bφnc in D, where the rank of x is the number of
elements in D smaller than x. An ε-approximate φ-quantile
is an element with rank between (φ− ε)n and (φ + ε)n, and
a quantile summary allows us to extract an ε-approximate
φ-quantile for any 0 < φ < 1. It is well known [14] that
the frequency estimation problem can be reduced to an ε′-
approximate quantile problem for some ε′ = Θ(ε), by identi-
fying elements that are quantiles for multiples of ε′ after tie
breaking. Therefore, a quantile summary is automatically
a frequency estimation summary (ignoring a constant-factor
difference in ε), but not vice versa.

Quite a number of quantile summaries have been designed
[15, 20–22, 32, 39], but all the mergeable ones work only in
the bounded-universe model and have dependency on log u.
The Count-Min sketch (more generally, any frequency es-
timation summary) can be organized into a hierarchy to
solve the quantile problem, yielding a linear sketch of size
O( 1

ε
log2 u log( log n

ε
)) after adjusting parameters [15]. The q-

digest [39] has size O( 1
ε

log u); although not a linear sketch,
it is still mergeable. Neither approach scales well when
log u is large. The most popular quantile summary tech-
nique is the GK summary [21], which guarantees a size
of O( 1

ε
log(εn)). A merging algorithm has been previously

designed, but the error could increase to 2ε when two ε-
summaries are merged [22].

ε-approximations. Let (D, R) be a range space, where D
is a finite set of objects and R ⊆ 2D is a set of ranges. In
geometric settings, D is typically a set of points in Rd and
the ranges are induced by a set of geometric regions, e.g.,
points of D lying inside axis-aligned rectangles, half-spaces,
or balls. A subset S ⊆ D is called an ε-approximation of

(D, R) if

max
R∈R

abs

„
|R ∩D|
|D| − |R ∩ S|

|S|

«
≤ ε,

where abs(x) denotes the absolute value of x. Over the last
two decades, ε-approximations have been used to answer
several types of queries, including range queries, on multidi-
mensional data.

For a range space (D, R) of VC-dimension2 ν, a random
sample of O(1/ε2(ν + log(1/δ))) points from D is an ε-
approximation with probability at least 1− δ [28, 42]. Ran-
dom samples are easily mergeable, but they are far from
optimal. It is known that, if R is the set of ranges in-
duced by d-dimensional axis-aligned rectangles, there is an
ε-approximation of size O((1/ε) logd+1/2(1/ε)) [27], and an
ε-approximation of size O((1/ε) log2d(1/ε)) [38] can be com-
puted efficiently. More generally, an ε-approximation of size
O(1/ε2ν/(ν+1)) exists for a range space of VC-dimension
ν [34]. Furthermore, such an ε-approximation can be con-
structed using Bansal’s algorithm [5]; see also [11, 34].

These algorithms for constructing ε-approximations are
not known to be mergeable. Although they proceed by parti-
tioning D into small subsets, constructing ε-approximations
of each subset, and then repeatedly combining pairs and re-
ducing them to maintain a fixed size, the error accumulates
during each reduction step of the process. In particular,
the reduction step is handled by a low-discrepancy coloring,
and an intense line of work (see books of Matousek [34] and
Chazelle [12]) has gone into bounding the discrepancy, which
governs the increase in error at each step. We are unaware
of any mergeable ε-approximations of o(1/ε2) size.

ε-kernels. Finally, we consider ε-kernels [1] which are sum-
maries for approximating the convex shape of a point set
P . Specifically, they are a specific type of coreset that ap-
proximates the width of P within a relative (1 + ε)-factor
in any direction. These summaries have been extensively
studied in computational geometry [2, 9, 10, 43] as they can
be used to approximate many other geometric properties of
a point set having to do with its convex shape, including
diameter, minimum enclosing annulus, and minimum en-
closing cylinder. In the static setting in Rd, ε-kernels of
size O(1/ε(d−1)/2) [9, 43] can always be constructed, which
is optimal. In the streaming setting, several algorithms have
been developed [1, 3, 9] ultimately yielding an algorithm us-

ing O((1/ε(d−1)/2) log(1/ε)) space [44].
However, ε-kernels, including those maintained by stream-

ing algorithms, are not mergeable. Combining two ε-kernels
will in general double the error or double the size.

1.3 Our results
In this paper we provide the best known mergeability re-

sults for the problems defined above.

• We warm-up by showing that the (deterministic) MG
and SpaceSaving summaries are mergeable (Section 2):
we present a merging algorithm that preserves the size
O(1/ε) and the error parameter ε. Along the way
we make the surprising observation that the two sum-
maries are isomorphic, namely, an MG summary can
be mapped to a SpaceSaving summary and vice versa.

2The VC-dimension of (X, R) is the size of the largest subset
N ⊂ D such that {N ∩R | R ∈ R} = 2N .



problem offline streaming mergeable

heavy hitters 1/ε 1/ε [35, 36] 1/ε (§2)

quantiles (deterministic) 1/ε (1/ε) log(εn) [21]
(1/ε) log u [39]

(1/ε) log(εn) (§3.1, restricted merging)

quantiles (randomized) 1/ε 1/ε · log3/2(1/ε) (§3.3)
ε-approximations (rectangles) (1/ε) log2d(1/ε) (1/ε) log2d+1(1/ε) [40] (1/ε) log2d+3/2(1/ε) (§4)

ε-approximations (range spaces)
1/ε

2ν
ν+1 1/ε

2ν
ν+1 logν+1(1/ε) [40] 1/ε

2ν
ν+1 log3/2(1/ε) (§4)

(VC-dim ν)

ε-kernels 1/ε
d−1
2 1/ε

d−1
2 log(1/ε) [44] 1/ε

d−1
2 (§5, w/assumptions on data)

Table 1: Best constructive summary size upper bounds under different models; the generality of model
increases from left to right.

• In Section 3 we first show a limited result, that the
(deterministic) GK summary for ε-approximate quan-
tiles satisfies a weaker mergeability property with no
increase in size. Then using different techniques, we
achieve our main result of a randomized quantile sum-
mary of size O( 1

ε
log3/2 1

ε
) that is mergeable. This

in fact even improves on the previous best random-
ized streaming algorithm for quantiles, which had size
O( 1

ε
log3 1

ε
) [40].

• In Section 4 we present mergeable ε-approximations
of range spaces of near-optimal sizes. This general-
izes quantile summaries (for intervals) to more gen-
eral range spaces. Specifically, for d-dimensional axis-
aligned rectangles, our mergeable ε-approximation has
size O((1/ε) log2d+3/2(1/ε)); for range spaces of VC-
dimension ν (e.g., ranges induced by halfspaces in Rν),

the size is O(1/ε2ν/(ν+1) · log3/2(1/ε)).

• In Section 5 we provide a mergeable ε-kernel for a re-
stricted, but reasonable variant. We assume that we
are given a constant factor approximation of the width
in every direction ahead of time. This allows us to
specify a fixed reference frame, and we can maintain a
mergeable ε-kernel of optimal size O(1/ε(d−1)/2) with
respect to this fixed reference frame. We leave the un-
restricted case as an open question.

We summarize the current best summary sizes for these
problems under various models in Table 1. The running
times of our merging algorithms are polynomial (in many
cases near-linear) in the summary size.

2. HEAVY HITTERS
The MG summary [36] and the SpaceSaving summary [35]

are two popular counter-based summaries for the frequency
estimation and the heavy hitters problem. We first recall
how they work on a stream of items. For a parameter k, an
MG summary maintains up to k items with their associated
counters. There are three cases when processing an item
x in the stream: (1) If x is already maintained in the sum-
mary, its counter is increased by 1. (2) If x is not maintained
and the summary currently maintains fewer than k items,
we add x into the summary with its counter set to 1. (3) If
the summary maintains k items and x is not one of them,
we decrement all counters by 1 and remove all items with
counters being 0. The SpaceSaving summary is the same as
the MG summary except for case (3). In SpaceSaving, if the

summary is full and the new item x is not currently main-
tained, we find any item y with the minimum counter value,
replace y with x, and increase the counter by 1. Previous
analysis shows that the MG and the SpaceSaving summaries
estimate the frequency of any item x with error at most
n/(k + 1) and n/k, respectively, where n is the number of
items processed. Thus they solve the frequency estimation
problem with additive error εn with space O(1/ε), which is
optimal. They can also be used to report the heavy hitters
in O(1/ε) time by going through all counters; any item not
maintained cannot have frequency higher than εn.

We show that both MG and SpaceSaving summaries are
mergeable. We first prove the mergeability of MG sum-
maries by presenting a merging algorithm that preserves the
size and error. Then we show that SpaceSaving and MG
summaries are fundamentally the same, which immediately
leads to the mergeability of the SpaceSaving summary.

We start our proof by observing that the MG summary
provides a stronger error bound. Let f(x) be the true fre-

quency of item x and let f̂(x) be the counter of x in MG

(set f̂(x) = 0 if x is not maintained).

Lemma 1 For any item x, f̂(x) ≤ f(x) ≤ f̂(x) + (n −
n̂)/(k + 1), where n̂ is the sum of all counters in MG.

Proof. It is clear that f̂(x) ≤ f(x). To see that f̂(x)
underestimates f(x) by at most (n − n̂)/(k + 1), observe
that every time the counter for a particular item x is decre-
mented, we decrement all k counters by 1 and ignore the
new item. All these k + 1 items are different. This corre-
sponds to deleting k + 1 items from the stream, and exactly
(n− n̂)/(k + 1) such operations must have been done when
the sum of counters is n̂.

This is related to the result that the MG error is at most
F

res(k)
1 /k, where F

res(k)
1 is the sum of the counts of all items

except the k largest [8]. Since each counter stored by the
algorithm corresponds to (a subset of) actual arrivals of the

corresponding item, we have that n̂ ≤ n − F
res(k)
1 . But we

need the error bound in the lemma above in order to show
mergeability.

We present an algorithm that, given two MG summaries
with the property stated in Lemma 1, produces a merged
summary with the same property. More precisely, let S1 and
S2 be two MG summaries on data sets of sizes n1 and n2,
respectively. Let n̂1 (resp. n̂2) be the sum of all counters
in S1 (resp. S2). We know that S1 (resp. S2) has error
at most (n1 − n̂1)/(k + 1) (resp. (n2 − n̂2)/(k + 1)). Our



merging algorithm is very simple. We first combine the two
summaries by adding up the corresponding counters. This
could result in up to 2k counters. We then perform a prune
operation: Take the (k + 1)-th largest counter, say Ck+1,
and subtract it from all counters, and then remove all non-
positive ones. Clearly this is an efficient procedure: it can
be completed with a constant number of sorts and scans of
summaries of size O(k).

Theorem 1 The MG summaries are mergeable with the above
merging algorithm. They have size O(1/ε).

Proof. Setting k + 1 = d1/εe, the size is O(1/ε) and the
claimed error is (n− n̂)/(k +1) ≤ nε. That the size remains
the same on a merge follows trivially from the algorithm.
If we store the (items, counter) pairs in a hash table, the
merging algorithm can be implemented to run in time linear
in the total number of counters. So it only remains to argue
that the error is preserved, i.e., the merged summary has
error at most (n1 + n2 − n̂12)/(k + 1) where n̂12 is the sum
of counters in the merged summary.

The combine step clearly does not introduce additional
error, so the error after the combine step is the sum of the
errors from S1 and S2, that is, at most (n1 − n̂1 + n2 −
n̂2)/(k + 1).

The prune operation incurs an additional error of Ck+1,
so if we can show that

Ck+1 ≤ (n̂1 + n̂2 − n̂12)/(k + 1), (1)

we will arrive at the desired error in the merged summary.
If after the combine step, there are no more than k counters,
Ck+1 = 0. Otherwise, the prune operation reduces the sum
of counters by at least (k+1)Ck+1: the k+1 counters greater
than or equal to Ck+1 get reduced by Ck+1 and they remain
non-negative. So we have n̂12 ≤ n̂1 + n̂2 − (k + 1)Ck+1 and
the inequality (1) follows.

Next we show that MG and SpaceSaving are isomorphic.
Specifically, consider an MG summary with k counters and a
SpaceSaving summary of k+1 counters, processing the same
stream. Let minSS be the minimum counter of the Space-
Saving summary (set minSS = 0 when the summary is not
full), and n̂MG be the sum of all counters in the MG sum-

mary. Let f̂MG(x) (resp. f̂SS(x)) be the counter of item x in

the MG (resp. SpaceSaving) summary, and set f̂MG(x) = 0

(resp. f̂SS(x) = minSS) if x is not maintained.

Lemma 2 After processing n items, f̂SS(x) − f̂MG(x) =
minSS = (n− n̂MG)/(k + 1) for all x.

Proof. We prove f̂SS(x)− f̂MG(x) = minSS for all x by
induction on n. For the base case n = 1, both summaries
store the first item with counter 1, and we have minSS = 0
and the claim trivially holds. Now suppose the claim holds
after processing n items. We analyze the MG summary case
by case when inserting the (n + 1)-th item, and see how
SpaceSaving behaves correspondingly. Suppose the (n + 1)-
th item is y.

(1) y is currently maintained in MG with counter f̂MG(y) >

0. In this case MG will increase f̂MG(y) by 1. By

the induction hypothesis we have f̂SS(y) = f̂MG(y) +
minSS > minSS so y must be maintained by Space-
Saving, too. Thus SpaceSaving will also increase f̂SS(y)

by 1. Meanwhile minSS remains the same and so do
all f̂SS(x), f̂MG(x) for x 6= y, so the claim follows.

(2) y is not maintained by the MG summary, but it is not
full, so it will create a new counter set to 1 for y. By the
induction hypothesis f̂SS(y) = minSS , which means
that y either is not present in SpaceSaving or has the
minimum counter. We also note that f̂SS(y) cannot be
a unique minimum counter in SpaceSaving with k + 1
counters; otherwise by the induction hypothesis there
would be k items x with f̂MG(x) > 0 and the MG
summary with k counters would be full. Thus, minSS

remains the same and f̂SS(y) will become minSS + 1.

All other f̂SS(x), f̂MG(x), x 6= y remain the same so
the claim still holds.

(3) y is not maintained by the MG summary and it is
full. MG will then decrease all current counters by 1
and remove all zero counters. By the induction hy-
pothesis f̂SS(y) = minSS , which means that y ei-
ther is not present in SpaceSaving or has the mini-
mum counter. We also note that in this case there is a
unique minimum counter (which is equal to f̂SS(y)),
because the induction hypothesis ensures that there
are k items x with f̂SS(x) = f̂MG(x) + minSS >

minSS . SpaceSaving will then increase f̂SS(y), as well
as minSS , by 1. It can then be verified that we still
have f̂SS(x)− f̂MG(x) = minSS for all x after insert-
ing y.

To see that we always have minSS = (n − n̂MG)/(k + 1),
just recall that the sum of all counters in the SpaceSaving
summary is always n. If we decrease all its k + 1 counters
by minSS , it becomes MG, so minSS(k+1) = n− n̂MG and
the lemma follows.

Due to this correspondence, we can immediately state:

Corollary 1 The SpaceSaving summaries are mergeable.

3. QUANTILES
We first describe a result of a weaker form of mergeability

for a deterministic summary, the GK algorithm [21]. We say
a summary is“one-way”mergeable if the summary meets the
criteria of mergeability under the restriction that one of the
inputs to a merge is not itself the output of a prior merge
operation. One-way mergeability is essentially a “batched
streaming” model where there is a main summary S1, into
which we every time insert a batch of elements, summarized
by a summary S2. As noted in Section 1.2, prior work [8]
showed similar one-way mergeability of heavy hitter algo-
rithms.

The bulk of our work in this section is to show a ran-
domized construction which achieves (full) mergeability by
analyzing quantiles through the lens of ε-approximations of
the range space of intervals. Let D be a set of n points
in one dimension. Let I be the set of all half-closed inter-
vals I = (−∞, x]. Recall that an ε-approximation S of D
(w.r.t. I) is a subset of points of D such that for any I ∈ I,
n|S ∩ I|/|S| estimates |D ∩ I| with error at most εn. In
some cases we may use a weighted version, i.e., each point p
in S is associated with a weight w(p). A point p with weight
w(p) represents w(p) points in D, and we require that the
weighted sum

P
p∈S∩I w(p) estimates |D ∩ I| with error at



most εn. Since |D ∩ I| is the rank of x in D, we can then
do a binary search3 to find an ε-approximate φ-quantile for
any given φ. We will first develop a randomized merge-
able ε-approximation of size O((1/ε) log(εn)

p
log(1/ε)) in-

spired by low-discrepancy halving. Then after we review
some classical results about random sampling, we combine
the random-sample-based and low-discrepancy-based algo-
rithms to produce a hybrid mergeable ε-approximation whose
size is independent of n.

3.1 One-way mergeability
We define a restricted form of mergeability where the

merging is always “one-way”.

Definition 1 (One-way mergeability) A summary S(D, ε)
is one-way mergeable if there exist two algorithms A1 and
A2 such that, (1) given any D, A2 creates a summary of
D, as S(D, ε); (2) given any S(D2, ε) produced by A2 and
any S(D1, ε) produced by A1 or A2, A1 builds a merged
summary S(D1 ]D2, ε).

Note that one-way mergeability degenerates to the stan-
dard streaming model when we further restrict to |D2| = 1
and assume wlog that S(D2, ε) = D2 in this case. One-
way mergeability is essentially a “batched streaming” model
where there is a main summary, into which we every time
insert a batch of elements, summarized by a summary in
S2. As noted in Section 1.2, prior work showed one-way
mergeability of heavy hitter algorithms.

Theorem 2 Any quantile summary algorithm which is in-
crementally maintainable is one-way mergeable.

Proof. Given a quantile summary S, it promises to ap-
proximate the rank of any element by εn. Equivalently, since
D defines an empirical frequency distribution f (where, as in
the previous section, f(x) gives the count of item x) we can
think of S as defining an approximate cumulative frequency
function F̂ , that is, F̂ (i) gives the (approximate) number of
items in the input which are dominated by i. The approxi-
mation guarantees mean that ‖F − F̂‖∞ ≤ εn, where F is
the (true) cumulative frequency function (CFF) of f , and
the ∞-norm, ‖ · ‖∞, takes the maximal value. Further, from

F̂ and n, we can derive f̂ , the distribution whose cumulative
frequency function is F̂ .

Given summaries S1 and S2, which summarize n1 and n2

items respectively with error ε1 and ε2, we can perform a
one-way merge of S2 into S1 by extracting the distribution
f̂2, and interpreting this as n2 updates to S2. The resulting
summary is a summary of f ′ = f1 + f̂2, that is, f ′(x) =

f1(x)+ f̂2(x). This summary implies a cumulative frequency

function F̂ ′, whose error relative to the original data is

‖F̂ ′−(F1 + F2)‖∞
≤ ‖F̂ ′ − (F̂2 + F1)‖∞ + ‖(F̂2 + F1)− (F1 + F2)‖∞
≤ ε1(n1 + n2) + ‖F̂2 − F2‖∞
= ε1(n1 + n2) + ε2n2.

3We will need all O(log 1
ε
) comparisons in the binary search

to succeed, so there is actually an O(log log 1
ε
) difference

between the two problems, which we omit to keep the ex-
pressions simple.

By the same argument, if we merge in a third summary
S3 of n3 items with error ε3, the resulting error is at most
ε1(n1 +n2 +n3)+ ε2n2 + ε3n3. So if this (one-way) merging
is done over a large number of summaries S1, S2, S3 . . . Ss,
then the resulting summary has error at most

ε1(

sX
i=1

ni) +

sX
i=2

εini ≤ (ε1 + max
1<i≤s

εi)N

Setting ε1 = ε2 = . . . εi = ε/2 is sufficient to meet the
requirements on this error.

An immediate observation is that the GK algorithm [21]
(along with other deterministic techniques for streaming com-
putation of quantiles which require more space [32]) meets
these requirements, and is therefore one-way mergeable. The
merging is fast, since it takes time linear in the summary size
to extract an approximate distribution, and near-linear to
insert into a second summary.

Corollary 2 The GK algorithm is one-way mergeable, with
a summary size of O( 1

ε
log(εn)).

3.2 Low-discrepancy-based summaries
Unfortunately, we cannot show that the GK summary is

(fully) mergeable, nor can we give a negative proof. We
conjecture it is not, and in fact we conjecture that any
deterministic mergeable quantile summary must have size
linear in n in the comparison model. On the hand, in
this section we give a randomized mergeable quantile sum-
mary of size O(1/ε log1.5(1/ε)). The idea is to the merge-
reduce algorithm [13, 33] for constructing deterministic ε-
approximations of range spaces, but randomize it in a way
so that error is preserved.

Same-weight merges. We first consider a restricted merg-
ing model where each merge is applied only to two sum-
maries (ε-approximations) representing data sets of the same
size. Let S1 and S2 be the two summaries to be merged. The
algorithm is very simple: Set S′ = S1∪S2, and sort S′. Then
let Se be all even points in the sorted order and So be all odd
points in the sorted order. We retain either Se or So with
equal probability as our merged summary S. We call this a
same-weight merge. We note essentially the same algorithm
was used by Suri et. al. [40], but their analysis shows that
the error increases gradually after a series of merges. Below
we give our analysis which shows that the error is actually
preserved. We first consider a single merge.

Lemma 3 For any interval I ∈ I, 2|I ∩ S| is an unbiased
estimator of |I ∩ S′| with error at most 1.

Proof. If |I ∩ S′| is even, then I ∩ S′ contains the same
number of even and odd points. Thus 2|I ∩ S| = |I ∩ S′| no
matter whether we choose the even or odd points.

If |I ∩ S′| is odd, it must contain exactly one more odd
point than even points. Thus if we choose the odd points,
we overestimate |I ∩ S′| by 1; if we choose the even points,
we underestimate by 1. Either happens with probability
1/2.

Below we generalize the above lemma to multiple merges,
but each merge is a same-weight merge. We set the sum-
mary size to be kε, and note that each merge operation takes
time O(kε) to merge the sorted lists and pick every other



point. Let D be the entire data set of size n. We assume
that n/kε is a power of 2 (this assumption will be removed
later). Thus, the whole merging process corresponds to a
complete binary tree with m = log(n/kε) levels. Each inter-
nal node in the tree corresponds to the (same-weight) merge
of its children. Let S be the final merged summary, cor-
responding to the root of the tree. Note that each point
in S represents 2m points in D. Recall that (randomized)
mergeability requires that S is a valid ε-summary after any
number of merges, so it important that the merging algo-
rithm is oblivious to m (hence n). In fact, our algorithm
only has one parameter kε. We first analyze the correctness
of S for any one query.

Lemma 4 If we set kε = O((1/ε)
p

log(1/δ)), then for any
interval I ∈ I with probability at least 1− δ,

abs(|I ∩D| − 2m|I ∩ S|) ≤ εn.

Proof. Fix any I. We prove this lemma by consider-
ing the over-count error Xi,j (which could be positive or
negative) produced by a single merge of two sets S1 and

S2 to get a set S(j) in level i. Then we consider the er-
ror Mi =

Pri
j=1 Xi,j of all ri = 2m−i merges in level i, and

sum them over all m levels using a single Chernoff-Hoeffding
bound. We will show that the errors for all levels form a ge-
ometric series that sums to at most εn with probability at
least 1− δ.

Start the induction at level 1, before any sets are merged.
Merging two sets S1 and S2 into S(j) causes the estimate
2|S(j) ∩ I| to have over-count error

X1,j = 2|S(j) ∩ I| − |(S1 ∪ S2) ∩ I|.

Now abs(X1,j) ≤ 1 = ∆1, by Lemma 3. There are r1 =
2m−1 such merges in this level, and since each choice of
even/odd is made independently, this produces r1 indepen-
dent random variables {X1,1, . . . , X1,r1}. Let their total
over-count error be denoted M1 =

Pr1
j=1 X1,j . So, now ex-

cept for error M1, the set of r1 sets S(j), each the result of
an independent merge of two sets, can be used to represent
|D ∩ I| by 2|(

S
j S(j)) ∩ I|.

So inductively, up to level i, we have accumulated at mostPi−1
s=1 Ms error, and have 2ri point sets of size kε, where

ri = 2m−i. We can again consider the merging of two sets
S1 and S2 into S(j) by a same-weight merge. This causes
the estimate 2i|S(j) ∩ I| to have error

Xi,j = 2i|S(j) ∩ I| − 2i−1|(S1 ∪ S2) ∩ I|,

where abs(Xi,j) ≤ 2i−1 = ∆i, by Lemma 3. Again we have
ri such merges in this level, and ri independent random vari-
ables {Xi,1, . . . , Xi,ri}. The total error in this level is Mi =Pri

j=1 Xi,j , and except for this error Mi and Mi−1, . . . , M1,

we can accurately estimate |D ∩ I| as 2i|(
S

j S(j))∩ I| using

the ri sets S(j).
We now analyze M =

Pm
i=1 Mi using the following Chernoff-

Hoeffding bound. Given a set {Y1, . . . , Yt} of independent
random variables such that abs(Yj − E[Yj ]) ≤ Υj , then for
T =

Pt
j=1 Yj we can bound Pr[abs(T −

Pt
j=1 E[Yj ]) > α] ≤

2e−2α2/(
Pt

j=1(2Υj)2). In our case, the random variables are
m sets of ri variables {Xi,j}j , each with E[Xi,j ] = 0 and
abs(Xi,j − E[Xi,j ]) = abs(Xi,j) ≤ ∆i = 2i−1. There are
m such sets for i ∈ {1, . . . , m}. Setting α = h2m for some

parameter h, we can write

Pr [abs(M) > h2m] ≤ 2 exp

 
− 2 (h2m)2Pm

i=1

Pri
j=1(2∆i)2

!

= 2 exp

„
− 2 (h2m)2Pm

i=1(ri)(22i)

«
= 2 exp

 
−

2h2
`
22m

´Pm
i=1(2

m−i)(22i)

!

= 2 exp

 
−

2h2
`
22m

´Pm
i=1 2m+i

!

= 2 exp

„
− 2h2Pm

i=1 2i−m

«
= 2 exp

„
− 2h2Pm

i=1 2−i

«
< 2 exp

`
−2h2´ .

Thus if we set h =
p

(1/2) ln(2/δ), with probability at least
1−δ we have abs(M) < h2m = hn/kε. Thus for kε = O(h/ε)
the error will be smaller than εn, as desired.

An ε-approximation is required to be correct for all inter-
vals I ∈ I, but this can be easily achieved by increasing kε

appropriately. There is a set of 1/ε evenly spaced intervals
Iε such that any interval I ∈ I has

abs(|D ∩ I| − |D ∩ I ′|) ≤ εn/2

for some I ′ ∈ Iε. We can then apply the union bound
by setting δ′ = δε and run the above scheme with kε =
O((1/ε)

p
log(1/δ′)). Then with probability at least 1 − δ,

no interval in Iε has more than εn/2 error, which means
that no interval in I has more than εn error.

Theorem 3 There is a same-weight merging algorithm that
maintains a summary of size O((1/ε)

p
log(1/εδ)) which is

a one-dimensional ε-approximation with probability at least
1− δ.

Uneven-weight merges. We next reduce uneven-weight
merges to O(log(n/kε)) weighted instances of the same-weight
ones. This follows the so-called logarithmic technique used
in many similar situations [22].

Set kε = O((1/ε)
p

log(1/εδ)) as previously. Let n be the
size of data set currently being summarized. We maintain
log(n/kε) layers, each of which summarizes a disjoint sub-
set of data points. Each layer is either empty or maintains
a summary with exactly kε points. In the 0th layer, each
summary point has weight 1, and in the ith layer, each sum-
mary point has weight 2i. We assume n/kε is an integer;
otherwise we can always store the extra ≤ kε points exactly
without introducing any error.

We merge two such summaries S1 and S2 via same-weight
merging, starting from the bottom layer, and promoting re-
tained points to the next layer. At layer i, we may have
0, 1, 2, or 3 sets of kε points each. If there are 0 or 1 such
sets, we skip this layer and proceed to layer i+1; if there are 2
or 3 such sets we merge any two of them using a same-weight
merge, and promote the merged set of kε points to layer i+1.
Consequently, each merge takes time O(kε log εn), linear in
the total size of both summaries.



The analysis of this logarithmic scheme is straightforward
because our same-weight merging algorithm preserves the er-
ror parameter ε across layers: Since each layer is produced
by only same-weight merges, it is an ε-approximation of the
set of points represented by this layer, namely the error is
εni for layer i where ni is the number of points being rep-
resented. Summing over all layers yields a total error of εn.
Again it should be clear that this algorithm works without
the a priori knowledge of the number of merges.

Theorem 4 There is a mergeable summary of size O((1/ε)·p
log(1/εδ) log(εn)) which is a one-dimensional ε-approximation

with probability at least 1− δ.

3.3 Hybrid quantile summaries
In this section, we build on the above ideas to remove the

dependence on n in the size of the summary.

Random sampling. A classic result [41, 42] shows that
a random sample of kε = O((1/ε2) log(1/δ)) points from
D is an ε-approximation with probability 1 − δ. So an ε-
approximation can also be obtained by just retaining a ran-
dom sample of D. Random samples are easily mergeable:
A standard way of doing so is to assign a random value
ui ∈ [0, 1] for each point pi ∈ D, and we retain in S ⊂ D the
kε elements with the smallest ui values. On a merge of two
summaries S1 and S2, we retain the set S ⊂ S1∪S2 that has
the kε smallest ui values from the 2kε points in S1 ∪ S2. It
is also easy to show that finite precision (O(log n) bits with
high probability) is enough to break all ties.

Fact 1 A random sample of size kε = O((1/ε2) log(1/δ)) is
mergeable and is an ε-approximation with probability at least
1− δ.

We next show how to combine the approaches of random
sampling and the low-discrepancy-based method to achieve
a summary size independent of n. At an intuitive level, for
a subset of points, we maintain a random sample of size
about (1/ε) log(1/ε). The sample guarantees an error of

√
ε

for any range, so we make sure that we only use this on a
small fraction of the points (at most εn points). The rest of
the points are processed using the logarithmic method. That
is, we maintain O(log(1/ε)) levels of the hierarchy, and only
in the bottom level use a random sample. This leads to a
summary of size (1/ε) poly log(1/ε).

Hybrid structure. We now describe the summary struc-
ture in more detail for n points, where 2j−1kε ≤ n < 2jkε

for some integer j, and kε = (4/ε)
p

ln(4/ε). Let gε =
(64/ε2) ln(16/ε). For each level l between i = j − log2(gε)
and j − 1 we either maintain kε points, or no points. Each
point at the lth level has weight 2l. The remaining m ≤ 2ikε

points are in a random buffer at level i, represented by a ran-
dom sample of kε points (or only m if m < kε). Each point
in the sample has weight m/kε (or 1 if m < kε). Note the
total size is O(kε log(gε)) = O((1/ε) log1.5(1/ε)).

Merging. Two hybrid summaries S1 and S2 are merged as
follows. Let n1 and n2 be the sizes of the data sets repre-
sented by S1 and S2, and w.l.o.g. we assume n1 ≥ n2. Let
n = n1 + n2. Let j be an integer such that 2j−1kε ≤ n <
2jkε, and let i = j − log2(gε).

First consider the random buffer in the merged summary;
it now contains both random buffers in S1 and S2, as well

as all points represented at level i− 1 or below in either S1

or S2. Note that if n1 ≥ 2j−1kε, then S1 cannot have points
at level l ≤ i− 1. Points from the random buffers of S1 and
S2 already have ui values. For every p of weight w(p) = 2l

that was in a level l ≤ i− 1, we insert w(p) copies of p into
the buffer and assign a new ui value to each copy. Then the
kε points with the largest ui values are retained.

When the random buffer is full, i.e., represents 2ikε points,
then it performs an “output” operation, and outputs the
sample of kε points of weight 2i each, which is then merged
into the hierarchy at level i. It is difficult to ensure that the
random buffer represents exactly m = 2ikε points when it
outputs points, but it is sufficient if this occurs when the
buffer has this size in expectation. There are two ways the
random buffer may reach this threshold of representing m
points:

1. On insertion of a point from the hierarchy of level
l ≤ i − 1. Since copies of these points are inserted
one at a time, representing 1 point each, it reaches
the threshold exactly. The random buffer outputs and
then inserts the remaining points in a new random
buffer.

2. On the merge of two random buffers B1 and B2, which
represent b1 and b2 points, respectively. Let b1 ≥ b2,
and let B be the union of the two buffers and represent
b = b1 + b2 points. If b < m we do not output; other-
wise we have m/2 ≤ b1 < m ≤ b < 2m. To ensure the
output from the random buffer represents m points in
expectation we either:

(i) With probability ρ = (b−m)/(b− b1), we do not
merge, but just output the sample of B1 and let
B2 be the new random buffer.

(ii) With probability 1−ρ = (m−b1)/(b−b1), output
the sample of B after the merge, and let the new
random buffer be empty.

Note that the expected number of points represented
by the output from the random buffer is ρb1+(1−ρ)b =
b−m
b−b1

b1 + m−b1
b−b1

b = m.

Next, the levels of the hierarchy of both summaries are
merged as before, starting from level i. For each level if
there are 2 or 3 sets of kε points, two of them are merged
using a same-weight merge, and the merged set is promoted
to the next level. See Figure 1 for illustration of hybrid
structure.

Analysis. First we formalize the upward movement of points.

Lemma 5 Over time, a point only moves up in the hierar-
chy (or is dropped): it never decreases in level.

Proof. For this analysis, the random buffer is considered
to reside at level i at the end of every action. There are five
cases we need to consider.

1. A point is involved in a same weight merge at level l.
After the merge, it either disappears, or is promoted
to level l + 1.

2. A point is merged into a random buffer from the hi-
erarchy. The point must have been at level l ≤ i − 1,
and the random buffer resides at level i, so the point
moves up the hierarchy. If its ui value is too small, it
may disappear.



pi ∈ P → random ui ∈ [0, 1]
B = {pi}i with top kε uiP B

output:
kε points

input:
m� points

Random Buffer:

2j−1kε ≤ n < 2jkε

2j−1kε

2j−2kε

2j−3kε

2ikε

O(log(g
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kε = O( 1
ε

�
log(1/ε))

gε = O( 1
ε2 log( 1

ε ))
i = j − log(gε)
m = 2ikε < n/gε

2j−4kε

Figure 1: Illustration of the hybrid summary. The
labels at each level of the hierarchy shows the num-
ber of points represented at that layer. Each filled
box contains only kε summary points.

3. A point is in a random buffer B that is merged with
another random buffer B′. The random buffer B could
not be at level greater than i before the merge, by
definition, but the random buffer afterward is at level i.
So the point’s level does not decrease (it may stay the
same). If the ui value is too small, it may disappear.

4. A point is in a random buffer when it performs an
output operation. The random buffer was at level i,
and the point is now at level i in the hierarchy.

5. Both j and i increase. If the point remains in the
hierarchy, it remains so at the same level. If it is now
at level i− 1, it gets put in the random buffer at level
i, and it may be dropped. If the point is in the random
buffer, it remains there but the random buffer is now
at level i where before it was at level i− 1. Again the
point may disappear if too many points moved to the
random buffer have larger ui values.

Now we analyze the error in this hybrid summary. We
will focus on a single interval I ∈ I and show the over-count
error X on I has abs(X) ≤ εn/2 with probability 1 − ε/4.
Then applying a union bound will ensure the summary is
correct for all 1/ε intervals in Iε with probability at least
3/4. This will imply that for all intervals I ∈ I the summary
has error at most εn.

The total over-count error can be decomposed into two
parts. First, we invoke Theorem 4 to show that the effect of
all same-weight merges has error at most εn/4 with prob-
ability at least 1 − ε/8. This step assumes that all of the
data that ever comes out of the random buffer has no error,
it is accounted for in the second step. Note that the total
number of merge steps at each level is at most as many as
in Theorem 4, even those merges that are later absorbed
into the random buffer. Second, (the focus of our analysis)

we show the total error from all points that pass through
the random buffer is at most εn/4 with probability at least
1 − ε/8. This step assumes that all of the weighted points
put into the random buffer have no error, this is accounted
for in the first step. So there are two types of random events
that affect X: same-weight merges and random buffer out-
puts. We bound the effect of each event, independent of the
result of any other event. Thus after analyzing the two types
separately, we can apply the union bound to show the total
error is at most εn/2 with probability at least 1− ε/4.

It remains to analyze the effect on I of the random buffer
outputs. First we bound the number of times a random
buffer can output to level l, i.e., output a set of kε points of
weight 2l each. Then we quantify the total error attributed
to the random buffer output at level l.

Lemma 6 A summary of size n, for 2j−1kε ≤ n < 2jkε,
has experienced hl ≤ 2j−l = 2i−lgε random buffer promo-
tions to level l within its entire merge history.

Proof. By Lemma 5, if a point is promoted from a ran-
dom buffer to the hierarchy at level l, then it can only be
put back into a random buffer at a level l′ > l. Thus the
random buffer can only promote, at a fixed level l, points
with total weight n < 2jkε. Since each promotion outputs
points with a total weight of 2lkε, this can happen at most
hl < 2jkε/2lkε = 2j−l times. The proof concludes using
gε = 2j−i.

Lemma 7 When the random buffer promotes a set B of kε

points representing a set P of m′ points (where m/2 < m′ <
2m), for any interval I ∈ I the over-count

X = (m/kε)|I ∩B| − |I ∩ P |

has expectation 0 and abs(X) ≤ 2m.

Proof. The expectation of over-count X has two inde-
pendent components. B is a random sample from P , so in
expectation is has the correct proportion of points in any
interval. Also, since E[|P |] = m, and |B| = kε, then m/kε

is the correct scaling constant in expectation.
To bound abs(X), we know that |P | < 2m by construc-

tion, so the maximum error an interval I could have is to
return 0 when it should have returned 2m, or vice-versa. So
abs(X) < 2m.

Since m ≤ n/gε at level i, then m ≤ 2l−in/gε at level l,
and we can bound the over-count error as ∆l = abs(X) ≤
2m ≤ 2l−i+1n/gε. Now we consider a random buffer pro-
motion that causes an over-count Xl,s where l ∈ [0, i] and
s ∈ [1, hl]. The expected value of Xl,s is 0, and abs(Xl,s) ≤
∆l. These events are independent so we can apply another
Chernoff-Hoeffding bound on these

Pi
l=0 hl events. Recall

that gε = (64/ε2) ln(16/ε) and let T̂ =
Pi

i=0

Phl
s=1 Xl,s,

which has expected value 0. Then

Pr[abs(T̂ ) ≥ εn/4] = 2 exp

 
−2

(εn/4)2Pi
l=0 hl∆2

l

!

≤ 2 exp

 
−2

(εn/4)2Pi
l=0 (2i−lgε) (2l−i+1n/gε))

2

!

≤ 2 exp

 
−gε

ε2

8

1Pi
l=0 2i−l22(l−i)+2

!



= 2 exp

 
−gε

ε2

32

1Pi
l=0 2l−i

!

= 2 exp

 
−2 ln(16/ε)

1Pi
l=0 2−l

!
≤ 2 exp(− ln(16/ε))

= 2(ε/16) = ε/8.

Theorem 5 The above scheme maintains a fully mergeable
one-dimensional ε-approximation of size O( 1

ε
log1.5(1/ε)),

with probability at least 3/4.

4. ε-APPROXIMATIONS OF RANGE SPACES
In this section, we generalize the approach of the previ-

ous section to ε-approximations of higher dimensional range
spaces. Let D be a set of points in Rd, and let (D, R) be
a range space of VC-dimension ν (see Section 1.2 for the
definition). We will use Rd to denote the set of ranges in-
duced by a set of d-dimensional axis-aligned rectangles, i.e.,
Rd = {D ∩ ρ | ρ is a rectangle}.

The overall merge algorithm is the same as in Section 3,
except that we use a more intricate procedure for each same-
weight merge operation of two summaries S1 and S2. Sup-
pose |S1| = |S2| = k, and let S′ = S1 ∪ S2. Using the
algorithm in [5], we compute a low-discrepancy coloring χ :
S′ → {−1, +1} such that for any R ∈ R,

P
a∈S′∩R χ(a) =

O(k1/2−1/2ν). Let S+ = {a ∈ S′ | χ(a) = +1} and S− =
{a ∈ S′ | χ(a) = −1}. Then we choose to retain either S+

or S− at random as the merged summary S. We can then
generalize Lemma 3 as follows.

Lemma 8 Given any range R ∈ R, 2|S ∩R| is an unbiased

estimator of |S′ ∩R| with error at most Λν = O(k1/2−1/2ν).

For the range space (P, Rd), we can reduce the discrep-
ancy of the coloring to O(log2d k) using [38]. Hence the
generalization of Lemma 3 is as follows.

Lemma 9 Given any range R ∈ Rd, 2|S∩R| is an unbiased
estimator of |S′ ∩R| with error at most Λd = O(log2d k).

Lemma 4 and its proof generalize in a straightforward
way, the only change being that now ∆i = 2i−1Λν , hence
implying h > O(Λv log1/2(1/εδ)) and

ε′ = ε/h = Ω(ε/Λv log1/2(1/εδ)).

Solving n/kε = nε′ for kε yields

kε =
1

ε
O

 
Λv

r
log

1

εδ

!

=O

 
1

ε

“
k1/2−1/(2ν)

ε log1/2 kε

”r
log

1

εδ

!

=O

 „
1

ε

«2ν/(ν+1)

logν/(ν+1)

„
1

εδ

«!
.

For (P, Rd) we get

kε =O((1/ε)Λd

p
log(1/εδ))

=O

 
1

ε
log2d

„
log(1/δ)

ε

«r
log

1

εδ

!
.

Applying the rest of the machinery as before we can achieve
ε-approximations of size kε under same-weight merges, with
probability at least 1− δ.

Lemma 10 Using the above framework, on same-weight merges,
we can maintain an ε-approximation of (P, A) with constant

VC-dimension ν of size O((1/ε)2ν/(ν+1) logν/(ν+1)(1/εδ)),
with probability at least 1 − δ. For the range space (P, Rd),

the size is O((1/ε) log2d(log(1/δ)/ε) ·
p

log(1/εδ)).

Then this extends to different-weight merges with an ex-
tra log(nε) factor, as with intervals. Also, the random buffer
can maintain a random sample of the same asymptotic size
O((1/ε2) log(1/δ)) and 0 expected over-count error. Substi-
tuting the increased kε value, the generalizations of Lemma 6
and Lemma 7 follow. We can also move the log(1/δ) term to
the outside, by setting δ = 1/2 in these expressions, and then
repeating the processes O(log(1/δ′) times independently to
drive the probability of failure down to δ′.

Theorem 6 A mergeable ε-approximation of a range space

(D, R) of VC-dimension ν of size O(1/ε
2ν

ν+1 log
2ν+1
ν+1 1

ε
log 1

δ
)

can be maintained with probability at least 1− δ. If R = Rd,

then the size is O
“

1
ε

log2d+3/2
`

1
ε

´
log 1

δ

”
.

5. ε-KERNELS
A unit vector u in Rd defines a direction, and a point p ∈

Rd is projected to the line through u using the inner product
〈u, p〉. Given a point set P ⊂ Rd, the extent in direction u is
E[P, u] = maxp∈P 〈u, p〉, and the width wid[P, u] = E[P, u]+
E[P,−u]. An ε-kernel is a subset K ⊂ P such that over all
directions u,

max
u

E[P, u]− E[K, u] ≤ εwid[P, u]

and

max
u

wid[P, u]− wid[K, u]

wid[P, u]
≤ 2ε.

An ε-kernel of size O(1/ε(d−1)/2) can be computed in time

O(|P |+ 1/εd−3/2) [9, 43]. It is also known that the union of
two ε-kernels is an ε-kernel [9], but this observation alone

is not sufficient to have mergeable ε-kernels of size 1/εO(1)

since the size of the kernel doubles after taking the union.
We therefore need a merge procedure that reduces K1 ∪K2

to an appropriate size without increasing the error.

Reference frames and ε-kernel basics. We say a point
set P is β-fat if over all directions u, v we can bound the
width ratio maxu,v(wid(P, u)/wid(P, v)) ≤ β. Given a box
B ⊃ P , P is β-fat with respect to B if

max
u,v

(wid(B, u)/wid(P, v)) ≤ β.

If β is less than some fixed constant (that depends only
on d) we say that P is just fat (with respect to B). B
represents a reference frame in that it fixes a set of axis,
as well as a relative scale along those axis. That is, the d
orthogonal directions the of box’s face normals {b1, . . . , bd}
define coordinate axis, and the width of the box in each of
these directions provides a relative scale of the contained
point sets. Given P and B, we will use this reference frame
to construct/merge kernels.



Most standard techniques to create ε-kernels use the fol-
lowing observations.

• Let A be an affine transform. If K is an ε-kernel of P ,
then A(K) is an ε-kernel of A(P ) [1].

• Let I = [−1, 1]d and βd = 2dd5/2d!. There exists an
O(d2|P |) size algorithm to construct an affine trans-
form A such that A(P ) ⊂ I and A(P ) is βd-fat with
respect to I [7, 25].

• Place a grid Gε on I so that each grid cell has width
ε/βd. For each grid cell g ∈ Gε, place one point (if
it exists) from g ∩ A(P ) in K. Then K is an ε-kernel
of A(P ). Clearly the same holds if for each column in
the grid, you only retain the most extreme such points,
reducing the size to O(1/εd−1) [1].

Because of the first two observations, for static ε-kernel
algorithms it is convenient to simply assume that P ⊂ I and
P is fat with respect to I. The main difficulty in incremental
ε-kernel algorithms is maintaining such a reference frame I.

The size of ε-kernels can be reduced to O(1/ε(d−1)/2) using
an additional trick [1], given that we have an (ε/3)-kernel
K1 of P that is β-fat with respect to I. Consider a sphere
S of radius

√
d + 1 centered at the origin, and place a set

Qε of O(1/(εβ)(d−1)/2) evenly spaced points on S. For each
point q ∈ Qε place the closest point to q from K1 into K.
Then K is an ε-kernel of P (of size O(1/ε(d−1)/2)).

Mergeable ε-kernels in a common reference frame.
Let B be a d-dimensional box, and let P1, P2 ⊂ I be two
point sets that are fat with respect to B. A result in [1]
implies that we can assume B = [−1, +1]d. We can now
create mergeable ε-kernels for P1 and P2. More precisely,
we create ε-kernels K1, K2 of P1, P2, respectively, such that
(1) |K1|, |K2| ≤ bε,d = c(1/ε)(d−1)/2 for some constant c,
and (2) from K1 and K2 we can create an ε-kernel K of
P = P1 ∪ P2 such that |K| ≤ bε,d.

First we create K1 and K2 using the three observations
above and the additional trick to reduce the size. For each
point q ∈ Qε, we retain in K, the merged ε-kernel of P1∪P2,
the closest point to q in K1∪K2. This approach can be used
to merge as many ε-kernels as desired, without increasing
the ε error factor or the size beyond bε,d, provided each of
the input point sets is fat with respect to the same box B.

Theorem 7 A mergeable ε-kernels of size O(1/ε(d−1)/2) can
be maintained, assuming all input point sets are fat with re-
spect to a fixed box.

Although the requirement of being fat with respect to the
same box may seem too restrictive, it is a reasonable as-
sumption for most data sets in practice. Given a distributed
data set, we probably have upper bounds and rough lower
bounds on the total extent of point sets. This is enough to
provide a bounding box for which the point sets are fat with
respect to. Even if one partition of the data set is not fat
with respect to the full bounding box (it may be a small
localized subset), the full result will be fat.

We leave open the question of maintaining a mergeable
ε-kernel that does not restrict the points to a fixed reference
frame.

6. CONCLUDING REMARKS

We have formalized the notion of mergeable summaries,
and demonstrated fully mergeable summaries for the cen-
tral problems of heavy hitters, quantiles, ε-approximations
and ε-kernels. The obvious open question is for what other
problems do there exist fully mergeable summaries. In some
cases, it may be possible to adapt existing solutions from
the streaming literature to this setting. For example, con-
sider the problem of k-median clustering. Guha et al. [24]
show that clustering the union of cluster centers from dis-
joint parts of the input gives a guaranteed approximation to
the overall clustering. In our terminology, this means that
clusterings can be merged, although since the accuracy de-
grades by a constant amount each time, we may think of this
as a one-way merge algorithm. Similarly, results on k-center
clustering on the stream can generate a mergeable summary
of size O( k

ε
log 1/ε) that provides a 2 + ε guarantee [23].

In the graph setting, a simple technique for finding a
t-spanner is to eject any edges which complete a cycle of
length t. Given two such spanners, we can merge by simply
applying the same rule as we add one graph to the other,
edge by edge. This results in a mergeable summary of size
Õ(n1+2/(t+1)) [16]. However, there are many other problems
in the domain of high-dimensional data, geometric data and
graph data for which no mergeable summary is known or for
which bounds are not tight.
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