
Logging Every Footstep:
Quantile Summaries for the Entire History∗

Yufei Tao1 Ke Yi2 Cheng Sheng1 Jian Pei3 Feifei Li4
1Chinese University of Hong Kong 2Hong Kong University of Science and Technology

3Simon Fraser University 4Florida State University

ABSTRACT
Quantiles are a crucial type of order statistics in databases. Ex-
tensive research has been focused on maintaining a space-efficient
structure for approximate quantile computation as the underlying
dataset is updated. The existing solutions, however, are designed
to support only the current, most-updated, snapshot of the dataset.
Queries on the past versions of the data cannot be answered.

This paper studies the problem ofhistorical quantile search. The
objective is to enableε-approximate quantile retrieval onanysnap-
shot of the dataset in history. The problem is very importantin
analyzing the evolution of a distribution, monitoring the quality of
services, query optimization in temporal databases, and soon. We
present the first formal results in the literature. First, weprove
a novel theoretical lower bound on the space cost of supporting
ε-approximate historical quantile queries. The bound reveals the
fundamental difference between answering quantile queries about
the past and those about the present time. Second, we proposea
structure for findingε-approximate historical quantiles, and show
that it consumes more space than the lower bound by only a square-
logarithmic factor. Extensive experiments demonstrate that in prac-
tice our technique performs much better than predicted by theory.
In particular, the quantiles it returns are remarkably moreaccurate
than the theoretical precision guarantee.

ACM Categories & Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems.

General Terms: Theory

Keywords: Quantile, Approximation, Lower Bound.

∗Yufei Tao and Cheng Sheng were supported by grants
GRF4161/07, GRF 4173/08, GRF4169/09 from HKRGC, and a
direct grant (2050395) from CUHK. Ke Yi was supported by a
Hong Kong DAG grant (DAG07/08). Jian Pei was supported by
an NSERC Discovery grant and an NSERC Discovery Accelerator
Supplement grant. Feifei Li was partially supported by NSF Grant
IIS-0916488.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Quantiles are widely recognized as a crucial type of order statis-

tics in databases. Specifically, letD be a set ofN ordered data
items. Given a parameterφ ∈ (0, 1], the k-th φ-quantile (k =
1, 2, ..., b1/φc) is the item ofD at the rankbkφNc in the ordered
sequence. An important problem is to maintain a space-efficient
structure to support quantile retrieval whenD is updated with in-
sertions, and sometimes deletions as well. The problem has been
extensively studied, as will be reviewed in Section 1.2. Thefocus
of the relevant works, however, is to design asnapshotstructure on
the currentD. Namely, afterD is updated, the previous state of the
structure is not preserved. As a result, quantile queries onthe past
versions ofD cannot be answered.

In this paper, we consider the problem ofhistorical quantile re-
trieval. Our goal is to support quantile queries onall the past snap-
shots ofD. To illustrate, imagine that an initially emptyD has been
modified with an arbitrary sequence of insertions and deletions. In
other words,D has evolved through a number ofversions, one af-
ter each update. We aim at building a space-efficient structure that
allows us to compute accurateφ-quantiles in any version ofD in
history.

Historical quantiles are useful for many purposes. Similarto
“snapshot quantiles" that serve as a succinct summary of thedata
distribution in the currentD, historical quantiles capture the entire
evolutionof the distribution ofD. For example, in monitoring the
performance of a web server, the server’s present efficiencycan be
reflected by all the1

10
-quantiles on the response times for the recent

requests (i.e., the longest delay of the 10% fastest responses, of the
20% fastest, ...). Then, historical quantiles provide a clear picture
of how the server’s efficiency has been changing over time. Such
information is vital to studying the server’s usage and the behavior
of users. Similar applications can be found in a variety of contexts
involving different study subjects, such as the waiting time of a
hotline, appeal processing time, elapsed time till the police’s arrival
after a 911 call, and so on.

Historical quantiles are also helpful to query optimization in tem-
poral databases, which track the historical changes of a dataset
(see [17] for an excellent survey). Consider, for instance,a tem-
poral database that manages the balances of bank accounts. After
a deposit/withdrawal, the previous balance of the affectedaccount
is not discarded, but instead, needs to be preserved in the database.
The objective is to enable retrieval of the past data, such as“find
all accounts whose balances were larger than 1 millon on 1 Jan.
2009". As with relational databases, effective query optimization
in temporal databases also demands accurate estimation of the re-
sult sizes. Historical quantiles serve the purpose very well. In fact,
it is well-known that quantiles are closely related torange count-
ing: given an interval[x1, x2], a range count query onD returns

how many items ofD fall in the interval. Typically, a structure
for quantile computation can also be leveraged to perform range
counting with good precision.

It is easy to see that, to answer historical quantile queriesexactly,
we must capture all the updates ofD in history, which requires ex-
pensive space consumption. On the other hand, it has been well
acknowledged that approximate quantiles already fulfill the pur-
poses of many applications (in fact, most of the previous studies
focus only on approximate quantiles). Informally, an approximate
quantile returns items whose ranks only slightly differ from the de-
sired ranks, by just a few percentage points. The benefit in return
is that the amount of necessary space (for computing approximate
historical quanties) can be significantly reduced.

This work presents the first formal results on approximate histor-
ical quantile retrieval. We propose a structure and its accompanying
query algorithm to find historical quantiles with strong precision
guarantees, which match the guarantees of the existing snapshot
structures (i.e., the quantiles returned are alwaysε-approximate, as
formalized shortly). Our structure isdeterministic, namely, it al-
ways correctly answers all queries, instead of failing occasionally
as in a probabilistic solution. Moreover, we prove a lower bound
on how much space must be spent in the worst case by any struc-
ture, in order to support all (historical quantile) queries. The lower
bound shows that the space cost of our structure is tight, up to only
a square-logarithmic factor. Our theoretical results are verified by
extensive experiments, which also demonstrate that, in practice,
the proposed structure works much better than predicted by the-
ory. Specifically, the actual query results have errors thatare sig-
nificantly lower than the theoretical upper bounds.

The rest of the section will formally define the problem, review
the previous results related to our work, and summarize our re-
sults. The subsequent sections are organized as follows. Section 2
proves the space lower bounds forε-approximate historical quan-
tile retrieval. Section 3 presents the proposed structure and studies
its efficiency theoretically. Section 4 evaluates the practical perfor-
mance of our technique with extensive experiments. Finally, Sec-
tion 5 concludes the paper with directions for future work.

1.1 Problem definition
Let D be the dataset for the interest of quantile retrieval. We

consider that the items inD are integers, but it is straightforward to
apply our results to any ordered domain. Each integer is assumed
to fit in a constant number of words.

D is initially empty. We are given the sequence of all updates
onD in history. Denote byM the total number of updates. Each
update is either an insertion or a deletion. Specifically, aninsertion
adds an integer toD, while adeletionremoves an existing number
in D. Denote byD(i) the snapshot ofD after thei-th update (1 ≤
i ≤ M).

We will refer toD(i) as theversioni of D. Let N(i) be the
size ofD(i), namely,N(i) = |D(i)|. Obviously, since an in-
sertion (deletion) increases (decreases) the size ofD by 1, it fol-
lows that|N(i + 1) − N(i)| = 1. We refer to the ordered list
(N(1), ..., N(M)) as thesize sequence. Without loss of general-
ity, we assumeN(i) > 0 for all 1 ≤ i ≤ M . Otherwise, the update
sequence can be broken into several continuous segments, each of
which satisfies the assumption, and can be processed separately.

Given a parameterφ ∈ (0, 1], the φ-quantile of D(i) is the
bφN(i)c-th greatest1 item inD(i). Alternatively, this is the item
with rank bφN(i)c in non-ascending order of the items inD(i).
Ties are broken arbitrarily. A related concept, which appeared in

1By symmetry, our technique can be easily adapted in case theφ-
quantile is defined as thebφN(i)c-th smallestitem inD(i).

some previous works, is thek-th φ-quantile (1 ≤ k ≤ b1/φc),
which in our context is the item with rankbkφN(i)c in D(i).
For the purpose of our discussion, it suffices to regard thek-th φ-
quantile simply as thekφ-quantile.

We aim at retrievingε-approximate quantiles. Formally, given
ε ∈ (0, 1], anε-approximateφ-quantileof D(i) is a valueu in the
data domain fulfilling two conditions:

• At least(φ− ε)N(i) items ofD(i) are greater than or equal
to u;

• At most(φ+ ε)N(i) items ofD(i) are greater than or equal
to u.

Intuitively, these conditions imply that the rank ofu differs from the
requested rankφN(i) by at mostεN(i). Usually multiple values
can be returned as the resultu. Precisely,u can be any value that
is not smaller than the item inN(i) with rankd(φ − ε)N(i)e, and
strictly smaller than the item inN(i) with rankb(φ+ ε)N(i)c+1

Given a value ofε, our goal is to pre-process the historical up-
dates ofD into a structure that can be used to answerε-approximate
quantile queries with anyφ ∈ (0, 1], in all possible versions
i ∈ [1,M] of D. The structure should consume small space, but
needs to answer each query efficiently, both in the worst case.

1.2 Previous work
To our knowledge, no formal result is known in the literaturefor

computing historical quantiles. The previous research mainly fo-
cused on approximate quantile search in the current, most updated,
snapshot of the datasetD. The objective is to maintain a struc-
ture along with the updates onD, so that it can be used to answer
queries correctly. The challenge is to minimize the space ofthe
structure.

Most works consider thatD is updated with only insertions, i.e.,
no item inD is ever removed. In this setting, Munro and Paterson
[16] suggested a structure forε-approximate quantile retrieval that
consumesO(1

ε
log2(εN)) space, whereN is the number of inser-

tions. Various heuristic improvements (without affectingthe space
complexity) were discussed and experimented in [1, 14]. Manku et
al. [15] proposed a randomized structure that successfullyanswers
a query with probability at least1− δ for anyδ ∈ (0, 1], and occu-
piesO(1

ε
(log2 1

ε
+log2 log 1

δ
)) space. Greenwald and Khanna [10]

gave a deterministic structure that requiresO(1
ε
log(εN)) space.

Cormode et al. [5] extended the structure of [10] to computebiased
quantiles, which were also studied by Gupta and Zane [11].

ε-approximate quantile search is much harder when deletionsare
allowed. Only a few results exist in this setting. Gilbert etal. [9]
are the first to tackle this challenge. They designed a random-
ized structure that requiresO(1

ε2
log2 U log logU

δ
) space, where

1 − δ is the success probability of answering a query, andU is
the size of the data domain. Thecount-minsketch of Cormode and
Muthukrishnan [6] reduces the space by a factor of1/ε. In the
sliding-window model, whereD contains only theR items most
recently received, Arasu and Manku [2] proposed a structurere-
quiring O(1

ε
log 1

ε
logR) space. Note, however, that the sliding

window model imposes a strict ordering on the insertions anddele-
tions. Hence, the solution of [2] cannot be applied to sequences of
updates where insertions and deletions are arbitrarily mixed.

As for exactquantiles, Blum et al. [4] were the first to show that
the median (i.e., the1

2
-quantile) of a dataset withN items can be

found inO(N) time. Their algorithm can be modified to retrieve
anyφ-quantile with the same time bound.

It would be attempting to adapt one of the above methods to our
historical quantile problem, but the adaption seems to be either im-
possible or space expensive. First, obviously only methodsthat

supportarbitrary deletions can be considered, which already elim-
inates all the approximate solutions, except [6, 9]. Unfortunately,
the algorithms of [6, 9] are quite specific to their own settings; it
is not clear how their footprints in history can be compactedeffec-
tively for querying historical quanties. Naive extensionsresult in
Ω(M) storage. In any case, the solutions of [6, 9] are probabilistic
(i.e., they may fail occasionally), as opposed to our interest in de-
terministic algorithms. Finally, although the exact algorithm of [4]
can be directly applied to find a historical quantile, its space and
query costsO(M) are excessive for our goal.

1.3 Our main results
The first major contribution of this paper is a space lower bound

of any (deterministic or random) structure forε-approximate quan-
tile search in history. The lower bound is related toε, the number
M of updates, and somewhat surprisingly, theHarmonic meanH
of the sizes ofD at all past versions. Specifically, as defined in Sec-
tion 1.1, letN(i) be the size of thei-th version ofD, 1 ≤ i ≤ M ;
then,H is given by:

H =
M

∑M
i=1

1
N(i)

. (1)

We show that every structure must consume at leastΩ(M
H
) space

for any ε < 1/2 in the worst case. Furthermore, ifH ≥ 1/ε,
the space lower bound becomesΩ(M

εH
) for any ε ≤ 1/4. These

bounds are drastically different from the well-known spacelower
boundΩ(1/ε) for computingsnapshotε-approximate quantiles. In
particular, the presence ofH in our bounds is a unique feature of
historical quantile retrieval.

The paper’s second contribution is a new deterministic structure
for answeringε-approximate historical quantile queries. The struc-
ture requiresO(M

εH
log2 1

ε
) space, which is higher than the theoret-

ical lower bound by only a factor ofO(log2 1
ε
). Its accompanying

query algorithm takesO(log 1
ε
+ log M

H
) time to compute anε-

approximate quantile. Note that none of our bounds depends on
the sizeU of the data domain.

Our experiments deployed both synthetic and real data to eval-
uate the efficiency of our techniques. The results indicate that, by
consumingonly 1%of the underlying dataset, the proposed struc-
ture can be used to find very accurate quantiles throughout the en-
tire history. Furthermore, the accuracy increases gracefully when
additional space is allowed.

2. SPACE LOWER BOUNDS FOR
HISTORICAL QUANTILE SEARCH

In this section, we will derive a lower bound on the space needed
to supportε-approximate historical quantile queries. First of all,
it is easy to see that, in some extreme scenarios, the space cost
must beΩ(M), whereM is the number of updates in history. For
example, suppose that each past versionD(i) of the datasetD (1 ≤
i ≤ M) is so small thatN(i) = |D(i)| < 1

ε
. In this case, the error

permitted by anε-approximate quantile is less thanεN(i) < 1.
In other words, no error is allowed, and we must return theexact
quantiles. This, in turn, means that all the updates in history must
be captured, which requiresΩ(M) space.

The situation in practice is much better, because typicallyN(i)
is by far larger than1/ε, which makes it possible to use much less
space thanΩ(M) to find ε-approximate historical quantiles. Nev-
ertheless, the above discussion implies that the size of each past
version ofD should play a role in the minimum amount of space
needed. It turns out that there is a close relationship between the

space and the Harmonic meanH of the sizes of all the versions of
D (see Equation 1).

In the sequel, we will establish the relationship in two steps.
First, we give a lower bound that is weaker than our final lower
bound, but its proof is simpler, and illustrates the main ingredients
of our methodology. The analysis will then be extended to obtain
our ultimate lower bound.

The first lower bound. The bound is stated in the following theo-
rem:

THEOREM 1. For any size sequence(N(1), N(2), ..., N(M))
and ε < 1/2, a structure for answering historicalε-approximate
quantile queries must useΩ(M/H) words in the worst case.

Our earlier discussion already demonstrates that the theorem is
correct ifN(i) < 1/ε for all 1 ≤ i ≤ M , noticing that theH of
such a size sequence is less than1/ε, soΩ(M/H) = Ω(M). Next,
we will show that the theorem is correct forany size sequence.
Towards this purpose, we first prove a relevant lemma:

LEMMA 1. For any ε < 1/2 and any size sequence
(N(1), N(2), ..., N(M)), there exists a sequence of updates such
that, if we query theε-approximate median at each versioni ∈
[1,M], the number of different results (returned by any structure)
must beΩ(M/H).

To prove the lemma, we construct a hard sequence of up-
dates, based on the following principle:an insertion always in-
serts a value greater than the maximum value inD, and a dele-
tion always removes the minimum value inD. Whether thei-th
(i ≥ 1) update is an insertion or deletion depends on the com-
parison ofN(i) andN(i − 1) (recall that|N(i) − N(i − 1)| =
1). For example, assumeM = 6, and that the size sequence
is (1, 2, 3, 2, 3, 2). The constructed sequence of updates can be
(+10,+20,+30,−10,+40,−20), where+u (−u) represents an
insertion (deletion) of valueu. Note that each inserted value is
greater than all the previously inserted values, whereas each dele-
tion removes the smallest value that has not been deleted.

Next, we define a sequence of values(v(1), v(2), ...). They in-
dicate some special versions ofD that are important to space con-
sumption, as elaborated later. Specifically:

• v(1) = 1.

• Inductively,v(i+1) is the smallestj > v(i) satisfyingeither
of the following conditions:

C1: N(j) ≥ N(v(i))/(1/2− ε);

C2: there have beenN(v(i)) · (1/2 + ε) deletions between
versionsv(i) andj.

Intuitively, Condition C1 means that the size ofD at version
v(i+1) has increased by a factor of 1

1/2−ε
compared to the size at

versionv(i). ConditionC2, on the other hand, indicates that many
deletions have occurred between versionsv(i) andv(i + 1). The
inductive definition ofv(i + 1) continues until such aj cannot be
found. LetL be the number of values in the sequence, i.e.,v(1),
v(2), ..., v(L) are successfully defined. The following is a useful
property about these values:

LEMMA 2. v(i+1)−v(i) ≤ N(v(i)) · 3−4ε2

1−2ε
for any1 ≤ i ≤

L− 1.

PROOF. Note thatv(i + 1) − v(i) equals the number of up-
dates to transform versionv(i) to v(i + 1). Among them, there
can be at mostN(v(i)) · (1/2 + ε) deletions due to Condition
C2. Thus, before ConditionC1 is violated, there can be at most
N(v(i))
1/2−ε

+ N(v(i)) · (1/2 + ε) insertions. This makes the total

number of updates at mostN(v(i))
1/2−ε

+ 2N(v(i)) · (1/2 + ε) =

N(v(i)) · 3−4ε2

1−2ε
.

Recall that, as mentioned in Section 1.1, there may be more than
one value that can be returned as anε-approximateφ-quantile. For
proving Lemma 1, we consider onlyφ = 1/2, namely, theφ-
quantile is the median. For thei-th versionD(i) of D, 1 ≤ i ≤ M ,
we define alegal range to be the range of values (in the data
domain) that can be anε-approximate median ofD(i). More
precisely, the legal range starts from the item ofD(i) at rank
d(1/2 − ε)N(i)e, and ends right before (but does not touch) the
item at rankb(1/2 + ε)N(i)c + 1. Now we give a fact which
reveals why a certain amount of space is inevitable:

LEMMA 3. The legal ranges at versionsv(1), v(2), ..., v(L)
are mutually disjoint.

PROOF. We will show that the legal range ofv(i + 1) must be
completely abovev(i) for eachi ≥ 1. We distinguish two cases,
depending on howj is decided in definingv(i+ 1).

Case 1: j is decided by ConditionC1. It follows thatN(v(i +

1)) ≥ N(v(i))
1/2−ε

. Letcut be the maximum value inD at versionv(i).
Clearly,cut has rank 1 inD(v(i)), which is lower thanN(v(i))/2
by more thanεN(v(i)) (due toε < 1/2)). Hence, the legal range
of versionv(i) must finish strictly beforecut. On the other hand,
there areN(v(i+1))−N(v(i)) items inD(v(i+1)) greater than
cut. FromN(v(i+ 1)) ≥ N(v(i))

1/2−ε
, we know

N(v(i+ 1))−N(v(i)) ≥ N(i+ 1)(1− (1/2 − ε))

= N(i+ 1)(1/2 + ε).

Therefore, the legal range ofv(i+ 1) must start strictly aftercut.

Case 2: j is decided by ConditionC2. Let cut be the minimum
value inD at versionv(i+1). Notice that the deletions during the
period fromv(i) to v(i + 1) remove all the items ofD(i) below
cut. With reasoning similar to Case 1, it is easy to verify that the
legal range of versionv(i) must finish strictly beforecut, while
that ofv(i+ 1) must start strictly aftercut.

The above lemma implies that no common value can be returned
as anε-approximate median simultaneously for any two of the ver-
sionsv(1), v(2), ...,v(L). Equivalently, any structure must return
L different values to be theε-approximate medians at thoseL ver-
sions, respectively.

Next, we complete the proof of Lemma 1 by showingL ≥
(1−2ε)2

6−8ε2
M
H

= Ω(M/H). For this purpose, definev(L + 1) =
M + 1 to tackle the boundary case in the following equation:

M∑

i=1

1

N(i)
=

L∑

i=1

v(i+1)−1∑

j=v(i)

1

N(j)
.

By Condition C2, for any j ∈ [v(i), v(i + 1) − 1], N(j) ≥
N(v(i)) −N(v(i)) · (1/2 + ε) = N(v(i)) · (1/2− ε). Thus:

v(i+1)−1∑

j=v(i)

1

N(j)
≤

v(i+1)−1∑

j=v(i)

1

N(v(i)) · (1/2− ε)

=
v(i+ 1)− v(i)

N(v(i)) · (1/2− ε)

≤
N(v(i)) · 3−4ε2

1−2ε

N(v(i)) · (1/2− ε)
(By Lemma 2)

=
6− 8ε2

(1− 2ε)2
.

Therefore:

M

H
=

M∑

i=1

1

N(i)
≤

6− 8ε2

(1− 2ε)2
L

which is what we need for Lemma 1.
Using a standard information theoretical argument, we can care-

fully specify the inserted values (each fitting inO(1) words) such
that there are at least2Ω(MW/H) possibilities for the set of results
at all v(i), 1 ≤ i ≤ L, whereW is the length of a word. This
establishes Theorem 1.

A tighter lower bound. The above analysis can be extended to
obtain a stronger result that applies toε ≤ 1/4 andH ≥ 1/ε.

THEOREM 2. For any ε ≤ 1/4 and any size sequence
(N(1), N(2), ..., N(M)) satisfyingH ≥ 1/ε, a structure for an-
swering historicalε-approximate quantile queries must useΩ(M

εH
)

words in the worst case.

To prove the theorem, we need the following property aboutH :

LEMMA 4. If H ≥ 1/ε, then at least half of the values in
(N(1), N(2), ..., N(M)) are at least1/(2ε).

PROOF. Otherwise,
∑M

i=1 1/N(i) > 2ε(M/2) = εM , which
would forceH = M/(

∑M
i=1 1/N(i)) to be strictly lower than1/ε,

contradictingH ≥ 1/ε.

We define a sequence of values

(N ′(1), N ′(2), ..., N ′(M ′))

by extracting all theM ′ numbers in(N(1), N(2), ..., N(M))
that are at least1/(2ε). Lemma 4 indicates thatM ′ ≥ M/2.
Specifically, for 1 ≤ i ≤ M ′, N ′(i) is the i-th number in
(N(1), N(2), ..., N(M)) at least1/(2ε). Note that sinceD is ini-
tially empty,N ′(1) must bed1/(2ε)e, which implies that

N ′(1) ≤ N ′(i) (2)

for all i ∈ [2,M ′].
To prove Theorem 2, we deploy the same hard update sequence

of D that was used earlier to prove Theorem 1. In the same fashion
of definingv(.) onN(.) (in proving Theorem 1), we re-definev(1),
v(2), ... onN ′(1), N ′(2), ..., N ′(M ′) in a slightly different way:

• v(1) = 1.

• Inductively,v(i + 1) is the smallestj > v(i) satisfyingany
of the following conditions:

C1: N ′(j) ≥ N ′(v(i))/(1/2− ε);

C2.1: there have beenN ′(v(i)) · (1/2 + ε) deletions be-
tween versionsv(i) and j; furthermore,N ′(v(j)) ≥
3
4
N ′(v(i));

C2.2: same asC2.1 butN ′(v(j)) < 3
4
N ′(v(i)).

The inductive definition continues untilj is undefined. Denote by
L′ the total number of values defined.

Observe that when ConditionC1 or C2.1 is satisfied, at least
N ′(v(i))/4 = Ω(N ′(v(i)) new items have been added toD after
versionv(i). Moreover,all these items rank ahead of the items of
D(v(i)). Using a standard argument to design the inserted values,
we can show that, after versionv(i),Ω(1/ε) extra words are needed
to supportε-approximate queries at versionv(i + 1) on the ranks
of those items inserted afterv(i).

There is another imperative observation. Letx1, x2, andx3 be
the number of times ConditionsC1, C2.1, andC2.2 are satisfied,
respectively. It must hold thatx3 = O(x1 + x2). This is because

• at each occurrence ofC1 or C2.1, the cardinality ofD can
be at most 1

1/2−ε
≤ 4 times that ofD(v(i)), and

• at eachC2.2, the cardinalityD must be smaller than that of
D(v(i)) by a factor of at least3/4.

Therefore:

N ′(1) · 4x1+x2 · (3/4)x3 ≥ N ′(M ′)

which, with the factN(M ′) ≥ N(1) (Inequality 2), leads to

x3 ≤
log 4

log(4/3)
(x1 + x2) = O(x1 + x2).

Using the argument proving Lemma 1, we know thatL′ =
x1 + x2 + x3 = Ω(M ′/H ′), whereH ′ is the Harmonic mean
of N ′(1), N ′(2), ..., N ′(M ′). Hence,x1 + x2 = Ω(M ′/H ′).

Note thatH ′ ≥ H because any value in(N(1), ..., N(M)) not
included in(N ′(1), ..., N ′(M ′)) must be smaller than all the val-
ues in(N ′(1), ..., N ′(M ′)). Combining withM ′ ≥ M/2, we
know x1 + x2 = Ω(M/H). In other words,Ω(1/ε) new words
must be stored at each of at leastΩ(M/H) versions, which com-
pletes the proof of Theorem 2.

Remark. An interesting special case is when all theM updates
are insertions. In this case, theD(i) has exactlyN(i) = i items.
As a result,M/H =

∑M
i=1 1/i = Θ(logM). So the space lower

bound becomesΩ(1
ε
logM).

3. A STRUCTURE FOR HISTORICAL
QUANTILE SEARCH

Section 3.1 briefly reviews thepersistence techniquesince it is
deployed by our solutions. Section 3.2 explains the high-level ideas
behind the proposed structure, which is formally describedin Sec-
tion 3.3, together with its query algorithm. Section 3.4 elaborates
how to construct our structure, and Section 3.5 analyzes itsspace
and query complexities. Finally, in Section 3.6, we give another
solution that is fairly simple to implement.

3.1 Persistence technique
Thepersistence framework[8] (also known as themulti-version

framework[3]) is a general technique for capturing all the historical
changes of a dynamic structure. In the database area, it has been
applied to design many access methods (see, for example, [3,7,
13, 18, 19]). To illustrate, assume that the underlying structure
is a binary treeT (e.g., ared-black tree[8]). Each noden of T
stores an index keykn and a constant-size information tagtn. We
consider three update operations onT :

1. insert(k, t): insert a node with keyk and information tagt;

2. delete(n): delete a noden;

3. modify(n, t): reset the information tagtn of noden to t.

Traditionally, a binary tree isephemeralbecause, after an update,
the previous version ofT is lost. A persistent binary treeT p [8],
on the other hand, retains all the past versions ofT (one version
per update) in a space-efficient manner.

For example, consider a binary tree at time 1 as shown in Fig-
ure 1a. At time 2, key 30 is deleted, and the tree changes to Fig-
ure 1b. The corresponding persistent tree is demonstrated in Fig-
ure 1c. Each pointer is associated with its creationtimestamp(note
that a timestamp is stored with an edge, as opposed to the informa-
tion tag in a node). The purpose of such timestamps is to identify
the ephemeral binary tree of a specific version. For example,as-
sume that we want to single out, from the tree in Figure 1c, the
nodes of the ephemeral tree at time 2. Although node20 has two
right pointers, no ambiguity can be caused: clearly, the onecarry-
ing timestamp 2 belongs to the tree at time 2.

10

20

30

40

60

50

70 10

20

40

60

50

70

(a) Ephemeral tree at time 1 (b) Ephemeral tree at time 2

10

20

40

60

50

7030

�� � � � � �pointer’s timestamp

(c) Persistent tree

Figure 1: Illustration of the persistent binary tree

As shown in [8], a persistent tree occupiesO(N) space, where
N is the total number of updates (i.e.,insert, delete, andmodify)
in history. In other words, each update incurs onlyO(1) space.
Finally, note that the persistence technique is aframework. That
is, given a sequence of updates on a traditional binary treeT , the
corresponding persistent treeT p can be created by standard algo-
rithms [3, 8]. Hence, we can focus on explaining how to updateT
itself, without worrying about the technical details of maintaining
T p (including its edges’ timestamps).

3.2 High-level rationales and challenges
The proposed technique is motivated by the fact that a binary

tree can be used to query exact quantiles efficiently. To illustrate,
assume that the datasetD consists of 10 integers: 10, 20, ..., 100.
Figure 2 shows a binary tree on these values. Each noden carries
an r-counter(as the information tag ofn) that equals the number
of values in the right subtree ofn. For example, ther-counter of
the root is6 since its right subtree has 6 values 50, 60, ..., 100.

The binary tree allows us to find any exactφ-quantile by ac-
cessingat mosta single path from the root to a leaf. For instance,
assumeφ = 1/2, namely, theφ-quantile is theφ|D| = 5-th great-
est item inD. We can find such an item as follows. At any time,
our algorithm maintainsrtotal, which intuitively is the number of
items inD that are confirmed to be greater than the node being pro-
cessed. This value is increased whenever we access the left child of
a node. Initially,rtotal = 0 and the first node visited is the root 40.
Its r-counter 6 indicates that the result item (i.e., the 5-th greatest
in D) must lie in the root’s right subtree. Hence, we access its right

10

20

40

60

50 70

30

80

90

100

r 6

r 1 r 1

r 2r 1

Figure 2: Using a binary tree to query quantiles

child 80. Ther-counter 2 of node 80 shows that the result item is
in its left subtree. Before descending, however, we increase rtotal
by 2+1 = 3, to indicate that3 items are definitely greater than the
node 60 we are about to process. Specifically, the2 comes from the
r-counter of 80, and the1 refers to node 80 itself. Now, we visit
node 60, and obtain itsr-counter 1. Combined withrtotal = 3, it
is clear that exactly 4 items inD are greater than 60. Therefore, the
algorithm returns 60 and terminates.

Extending the above idea, we could maintain such a binary tree
on every snapshot ofD in history, which would enableexactquan-
tile queries on any snapshot. All these trees, however, require ex-
pensive space, but since our goal isε-approximate quantile search,
the space consumption can be reduced by permitting several types
of imprecision in each tree. First, it is not necessary to create a
node for every item inD, but instead, multiple items can be col-
lectively represented by one node, which corresponds to an interval
in the data domain. Second, ther-counters do not have to be fully
accurate. Third, as opposed to using the exact|D| in the above al-
gorithm, we can work with an approximate|D|, to avoid keeping
track of the exact size of every past snapshot ofD. The challenge,
however, is to develop all the above rationales into a concrete struc-
ture that can guaranteeε-approximate quantiles, and at the same
time, consume small space.

3.3 The structure and its query algorithm
This subsection will formally discuss the proposed structure and

its query algorithm. Denote byD the data domain. As before, let
D(i) be thei-th version ofD (i.e., the snapshot ofD after thei-
th update), andN(i) be the size ofD(i), 1 ≤ i ≤ M . H is the
Harmonic mean ofN(1), N(2), ...,N(M), as given in Equation 1.

Overview. Our structure is a forest of persistent binary treesT p
1 ,

T p
2 , ... each of which supportsε-approximate quantile search in

some versions ofD. Specifically:

1. T p
1 supports queries onD(1) andD(2).

2. Inductively, ifT p
j covers up to versionv− 1, thenT p

j+1 sup-
ports queries on the next1 + bN(v)/2c versions, namely,
D(v), D(v + 1), ...,D(v + bN(v)/2)c.

The above construction continues until all theM versions ofD
have been covered.

Let T be the total number of persistent trees built. In Sec-
tion 3.5, we will show thatT = O(M/H), and each tree occupies
O(1

ε
log2 1

ε
) space. Hence, the total space cost isO(M

εH
log2 1

ε
).

Structure and properties. Next, we explain the details of each
persistent treeT p

j , 1 ≤ j ≤ T . Since allT p
j have the same struc-

ture, we will drop the subscriptj when there is no ambiguity. Fur-
thermore, ifD(v) is the first version ofD covered byT p, we say
thatv is theinitial versionof T p.

As explained in Section 3.1, a persistent binary tree can be un-
derstood as a set of ephemeral binary trees. As forT p, it cap-
tures1 + bN(v)/2c ephemeral trees, that is,T (i) for v ≤ i ≤

v + bN(v)/2c, wherev is the initial version ofT p. EachT (i) is
used to answer queries on thei-th versionD(i) of D. It is sim-
ilar to the binary tree in Figure 2, but permits some imprecision
(mentioned in Section 3.2). Specifically:

• The keykn of each noden in T (i) is an interval in the data
domainD, such that the keys of all nodes inT (i) constitute
a disjoint partitioning ofD. T (i) is built on the natural or-
dering of these intervals.

• Each noden carries an information tagtn = (cn, rn), where

1. cn is (approximately) the number of items ofD(i) cov-
ered by the intervalkn of n. We refer tocn as thec-
counterof n.

2. rn is (approximately) the number of items ofD(i) cov-
ered by the intervals in theright subtree ofn. It is called
ther-counterof n. If n does not have a right child,rn
must be 0.

• The root n̂ of T (i) has an extra information tagALLn̂,
which is (approximately) the sizeN(i) of D(i). We refer
toALLn̂ as theALL-counterof n̂.

Furthermore, four properties are ensured onT (i):

P1: There areO(1
ε
log 1

ε
) nodes2 in T (i), whose height is there-

fore at most:

h = α log(1/ε) (3)

for a properly chosen constantα.

P2: cn ≤ dBe, where

B = εN(v)/16 (4)

with v being the initial version ofT p.

P3: All the c- andr-counters can have errors at most:

E = max{0, B/h− 1}. (5)

In other words, letc∗n be the accurate number of items in
D(i) covered by intervalkn, and letr∗n be the accurate num-
ber of items inD(i) covered by the intervals in the right sub-
tree ofn. Then,|cn − c∗n| ≤ E and|rn − r∗n| ≤ E.

P4: For the rootn̂, ALLn̂ can have an error at mostεN(v)/4,
namely,|ALLn̂ −N(i)| ≤ εN(v)/4.

Example 1.Next, we give an example ephemeral binary treeT (i),
assumingB = 120 andE = 19. Since the value ofi is not impor-
tant, we abbreviateT (i) asT , andD(i) asD.

Recall that the key of each node inT is an interval, and the keys
of all nodes inT partition the data domainD. Figure 3a shows the
right-most few intervalsk1, k2, ...,k6 indexed byT (these intervals
are the “largest" elements inT). The number below each interval
indicates how many items ofD are covered by the interval (e.g.,k1
covers 105 items).

Figure 3b demonstrates part ofT . Observe that the nodes’ coun-
ters are not all accurate, but their errors are at mostE = 19.
Consider, for example, the root; its intervalk1 covers 105 items,
so itsc-counter 120 has an error of 15. On the other hand, itsr
counter 600 has an error of 14. To see this, notice that the root’s
2We can reduce the number of nodes inT (i) to O(1/ε), using a
somewhat more complex construction algorithm than the one pre-
sented later. Details are left to the full paper.

right subtree has 5 intervalsk2, k3, ..., k6. They cover totally
130+120+ ...+139 = 614 items (Figure 3a), which is 14 greater
than the root’sr-counter. Finally, note that the errors of counters
can be either positive or negative.

k� k� k� k� k�
105 130 120 115

k�
110 139

domain
other intervals

(a) Number of items ofD covered by each interval

k� c 120
r 120

k	 c 120
r 120

k
 c 120
r 0

k� c 120
r 0

k� c 120
r 0

k 120
r 600

left subtree of k� n
n
 n	

n�
n�

n�
��� ����
c

(b) Ephemeral binary treeT

Figure 3: The structure of an ephemeral binary tree

Query algorithm. Before explaining how to build our structure,
let us first give the algorithm for finding anε-approximate histor-
ical quantile, as it will clarify many rationales behind ourdesign.
Assume that a query requests anε-approximateφ-quantile in ver-
sionD(q). We answer it using the ephemeral binary treeT (q) on
D(q). Letλ = φ ·ALLn̂, wheren̂ is the root ofT (q).

Our algorithm accesses at most a single path ofT (q). It main-
tains a valuertotal, which equals the sum of thec- andr-counters
of every node where we descended to its left child. Initially,
rtotal = 0, and the first node visited is the root. In general, after
loading a noden, we proceed differently depending on the compar-
ison betweenλ and the range[rtotal + rn, rtotal + cn + rn]:

1. If rtotal + rn ≤ λ ≤ rtotal + cn + rn, then terminate by
returning the starting value of the keykn of n (remember that
kn is an interval).

2. If λ < rtotal + rn, recursively visit the right child ofn.

3. Otherwise (i.e.,λ > rtotal + cn + rn), first increasertotal
by cn + rn, and then recursively visit the left child ofn. If n
does not have a left child, terminate by returning the starting
value ofkn.

The query algorithm is formally presented in Figure 4.

Example 2.To demonstrate the algorithm, assume that a query re-
quests the(4/15)-quantile in the version ofD in Figure 3a. We
answer it with the treeT in Figure 3b. The value ofλ equals
4
15
1500 = 400, where 1500 is theALL counter of the root.
At the beginning,rtotal = 0, and the algorithm starts from the

root n1. Sincertotal + rn1
= 600 is greater thanλ = 400, we

descend to the right childn5 of n1, without changingrtotal. This
time,λ is greater thanrtotal+cn5

+rn5
= 0+120+120 = 240, we

first increasertotal by cn5
+rn5

= 240, and then, visit the left child
n3 of n5. Now,λ falls betweenrtotal + rn3

= 240 + 120 = 360
andrtotal + cn3

+ rn3
= 240 + 120 + 120 = 480. Hence, the

algorithm terminates by returning the first value in the datadomain
D that is covered by the keyk3 of n3.

algorithm historical-quantile (φ, q)

/* find an ε-approximateφ-quantile in versionD(q) */

1. T = the ephemeral binary tree forD(q)
2. λ = φ · ALLn̂, wheren̂ is the root ofT
3. rtotal = 0; n = n̂
4. while (true)
5. if rtotal + rn ≤ λ ≤ rtotal + cn + rn then
6. return the starting value ofkn
7. else ifλ < rtotal + rn then
8. n = the right child ofn
9. else
10. rtotal = rtotal + cn + rn
11. if n has a left child
12. n = the left child ofn
13. else return the starting value ofkn

Figure 4: Algorithm for finding historical quantiles

We now establish the correctness of our algorithm:

LEMMA 5. When PropertiesP2, P3 andP4 hold, the above
algorithm correctly finds anε-approximateφ-quantile.

PROOF. We discuss onlyE > 0 because the error-free case
E = 0 is trivial. Let u be the value returned by our algorithm.
Denote byx the number of items in the queried versionD(q) that
are greater than or equal tou. Let λ′ = φN(q). To prove the
lemma, we must show thatx can differ fromλ′ by at mostεN(q).

Let T (q) be the ephemeral binary tree onD(q). Recall that
T (q) is captured by a persistent binary treeT p. Let v be the initial
version ofT p. SinceD has incurred at mostbN(v)/2c updates
between versionsv andq, it holds thatN(q) ≥ N(v)/2. Next, we
will show |x−λ′| ≤ εN(v)/2, which will imply |x−λ′| ≤ εN(q).

Consider theλ = φ ·ALLn̂ in our query algorithm. By Property
P4, ALLn̂ differs fromN(q) by at mostεN(v)/4. This means
that λ andλ′ can also differ by at mostεN(v)/4, regardless of
φ. Hence, to prove|x − λ′| ≤ εN(v)/2, it suffices to show|x −
λ| ≤ εN(v)/4. We distinguish three cases, depending on howu is
returned (according to the pseudo-code of Figure 4) and its concrete
value. In all cases, denote byP the set of nodes inT (q) visited by
our algorithm.

Case 1:u is returned by Line 6.First, notice that if all ther- and
c-counters of the nodes onP are fully accurate, thenx can differ
from λ by at mostdBe (Equation 4) due to PropertyP2. Now, let
us account for the errors of the counters alongP . The errors of
each node onP can increase the difference betweenx andλ by at
most2E due to PropertyP3. SinceP has at mosth nodes, the
total difference accumulated is at mostdBe+ 2Eh ≤ εN(v)/4.

Case 2:u is returned by Line 13, and is the smallest value in the
data domainD. Sox = N(q), andP involves the at mosth nodes
on the left-most path ofT (q). Furthermore,λ must be greater
than the final valuey of rtotal when the algorithm finishes. Note
that if there is no error in thec- andr-counters of those nodes,y
ought to be exactlyN(q). As each counter may have an error ofE,
after accumulating all errors,y may differ fromN(q) by at most
2hE ≤ εN(v)/8. Therefore,λ must be at leastN(q)− εN(v)/8.
On the other hand,λ cannot exceedALLn̂ ≤ N(q) + εN(v)/4.
So in any case|x− λ| ≤ εN(v)/4.

Case 3:u is returned by Line 13, but is not the smallest value inD.
Then, there is at least one node where the algorithm visited its right
child. Denote byn′ the lowestsuch node inP , and byS the set
of nodes inP that are belown′. Also, letn be the leaf node inP .

Finally, let y′ be the value ofrtotal whenn′ was being processed
at Line 5 and, as in Case 2,y be the final value ofrtotal.

We will bound the difference betweenx andλ by relating them
to y. First, asu is returned by Line 13,λ must be greater thany. On
the other hand, since the algorithm descended into the rightchild
of n, λ must be lower thany′ + rn′ , wherern′ is ther-counter of
n′. Note thaty − y′ equals the sum of thec- andr-counters of all
the nodes inS. The sum should be exactlyrn′ if all counters are
accurate, and can differ fromrn′ by at most2hE ≤ εN(v)/8 if
errors are accounted for. Thus,y−y′ ≥ rn′−εN(v)/8. The above
analysis indicatesy < λ < y + εN(v)/8. Another crucial fact is
that, if no counter has error, thanx equals the sum of thec- andr-
counters of all nodes onP , which is exactlyy. Hence, the counters’
errors can makex differ from y by at most2hE ≤ εN(v)/8. It
therefore follows that|x− λ| ≤ εN(v)/4.

3.4 Construction algorithm
We are ready to explain how to build a persistent binary tree

T p. As before, letD(v) be the first version ofD covered byT p,
i.e.,T p captures the ephemeral binary treeT (i) of D(i) for each
v ≤ i ≤ v + bN(v)/2c.

As mentioned in Section 3.1, to describe the construction ofa
persistence tree, it suffices to elaborate the list of updates (i.e.,in-
sert, delete, andmodify) on an ordinary binary tree. Hence, to de-
scribeT p, we will explain the updates on the following binary tree
T . The initial T is the ephemeral treeT (v) on D(v). For ev-
ery subsequent update (i.e., an insertion or a deletion) onD, T is
maintained accordingly, so that the currentT always corresponds
to T (v + i), wherei is the number of updates onD that have
been processed since versionv. Next, we give the initialization and
maintenance algorithms ofT .

Initialization. The initial T = T (v) is built as follows. We par-
tition the data domainD into several intervals, each coveringdBe
(Equation 4) items of the currentD, except perhaps the last inter-
val. In this way, roughlyN(v)/B = 16/ε intervals are obtained.
T simply indexes all such intervals. All counters inT are set accu-
rately (including thec- andr-counters of each node, as well as the
ALL-counter of the root).

Maintenance.Given a noden in T , denote bySn the set of items
in D that are covered by the keykn of n. AsD is updated with in-
sertions and deletions,Sn undergoes changes, too. At all times, for
eachn, we maintainSn and the accurate valuesc∗n, r∗n of counters
cn, rn, respectively. Precisely,c∗n = |Sn| andr∗n equals the sum of
|Sn′ | of all nodesn′ in the right subtree ofn in T . Note thatSn,
c∗n, andr∗n are needed only for structure construction, and do not
need to be stored in our structure.

T is updated only when any counter of a noden incurs error
higher thanE (Equation 5). There are 4 differentevents:

E1: |rn − r∗n| > E. In this case, we reset ther-counter ofn
accurately. Formally, we perform an update operation

modify(n, t)

on T , wheret = (cn, r
∗

n) is the new information tag ofn.
Note that thec-counter ofn remains unchanged.

E2: cn − c∗n > E. Namely,cn is greater than the accurate value
by more thanE. The event is dealt with by resettingboth
counters ofn with an operation onT : modify(n, t), where
t = (c∗n, r

∗

n).

E3: c∗n − cn > E. That is,cn is lower than the accurate value
by more thanE. We create two nodesn1 andn2 by splitting

k� k� k� k� k�
105 130 120 115

k�
110 140

domain
other intervals

splits into
k� k�
70 70

k� k� k� k� k�
(a) Split ofk6 in an EventE3

k� c 120
r 140

k� c 120
r 120

k� c 120
r 0

k� c 120
r 0

k c 70
r 0

k! c 120
r 600

left subtree of k" n!
n� n�

n�
n�

n
k# c 70

r 0
n#

$%% &'((

(b) The binary treeT after update

Figure 5: Updating an ephemeral binary tree

Sn evenly (i.e., sort the items ofSn in descending order; then
Sn1

gets the first half of the sorted list, andSn2
gets the other

half). Then, 3 updates are performed onT :

delete(n), insert(n1, t1), andinsert(n2, t2)

where tagst1 = (c∗n1
, r∗n1

) and t2 = (c∗n2
, r∗n2

). Fi-
nally, the 3 operations may alter the right pointers of some
nodes. For each such noden′, reset itsr-pointer accurately
(without affecting itsc-pointer) with modify(n′, t′), where
t′ = (cn′ , r∗n′).

E4: |ALLn − |D|| > εN(v)/4. In this event,n is the rootn̂ of
T . We handle the event by accurately resettingALLn̂ and
rn̂, without changingcn̂. Specifically, this is achieved with
an operationmodify(n̂, t̂, |D|), wheret̂ = (cn̂, r

∗

n̂), and|D|
is the new value ofALLn̂.

Example 3. Next we illustrate our maintenance algorithm with
an example, focusing on EventE3, because the handling of the
other events involves only simplemodifyoperations. In particular,
we will continue Example 1, where Figure 3a shows the intervals
(a.k.a. keys) of the nodes inT , and Figure 3b gives the structure of
T in detail. Also, recall thatE = 19.

Now assume that a new value is inserted inD, and this value
falls ink6, which now covers 140 items (as in Figure 3a,k6 covered
139 items previously). As a result, thec-counter 120 ofn6 incurs
a negative error of -20. Since the (absolute value of the) error is
higher thanE = 19, an EventE3 is generated. To handle the
event, we first splitk6 into intervalsk7 andk8 (see Figure 5a), each
of which covers 70 items, namely, half as many ask6. Then, node
n6 is deleted fromT , while n7 andn8 are inserted. The resulting
structure is presented in Figure 5b. The counters ofn7 andn8 are
shaded to indicate that they are newly (accurately) set. Also shaded
is ther-counter ofn5, which needs to be precisely reset because
the right child ofn5 has changed (fromn6 to n8). Note that the
c-counter ofn5 is not modified.

Now we verify that our construction algorithm guarantees Prop-
ertiesP1-P4.

LEMMA 6. PropertiesP1-P4 hold on any ephemeral binary
treeT .

PROOF. This is obvious forP3 andP4, as they are explicitly
ensured by EventsE1-E4. As forP2, it trivially holds whenT is
initiated. After that, thec-count of an existing node can be modified
only in EventE2, which, however, cannot violateP2 because it
decreases the count. Finally, when a new node is created by a split
in EventE3, its c-count can be at most(dBe+ E + 1)/2 ≤ dBe.

Next, we will validateP1 by showing thatT can have at most
O(1

ε
log 1

ε
) nodes. We discuss onlyE > 0 (the caseE = 0 is

trivial). WhenT is initiated, it hasΩ(1/ε) nodes. Then, a new
node can be created only in EventE3. SinceD must incur at least
dEe updates to generate anE3, and sinceT is maintained only for
bN(v)/2c updates onD, T can have at mostO(1

ε
+ N(v)/2

E
) =

O(h/ε) nodes. Solvingh = O(log(h/ε)) we geth = O(log 1
ε
).

SoT can have at mostO(h/ε) = O(1
ε
log 1

ε
) nodes.

3.5 Complexity analysis
We will first show that our structure requires at most

O(M
εH

log2 1
ε
) space, and then prove that our query algorithm takes

O(log 1
ε
+log M

H
) time. Here,M is the total number of updates on

D in history, andH (Equation 1) is the Harmonic mean ofN(1),
N(2), ...,N(M), with N(i) being the size of thei-th versionD(i)
of D, 1 ≤ i ≤ M .

Space cost.Recall that our structure consists ofT persistent binary
treesT p

1 , T p
2 , ..., T p

T . We will bound the space of eachT p
j , 1 ≤

j ≤ T , andT separately in two lemmas.

LEMMA 7. EachT p
j , 1 ≤ j ≤ T , requiresO(1

ε
log2 1

ε
) space.

PROOF. As the same analysis is used for allT p
j , we drop the

subscriptj. Assume thatD(v) is the first version ofD covered by
T p. In other words,T p supports queries onD(v), D(v + 1), ...,
D(v+ bN(v)/2c). Namely, the underlying binary treeT of T p is
maintained whenD evolves fromD(v) to D(v + bN(v)/2c). As
mentioned in Section 3.1, the space ofT p is linear to the number
of updates onT .

Let x, y, andz be the numbers ofinsert, delete, andmodifyop-
erations onT , respectively. Next, we will show thatx + y + z =
O(1

ε
log2 1

ε
). In fact,x = O(1

ε
log 1

ε
) has already been established

in the proof of Lemma 6. Since a deletion is always accompanied
by two insertions (EventE3), it follows thaty = O(1

ε
log 1

ε
). So

it suffices to provez = O(1
ε
log2 1

ε
).

A modifyoperation may be performed in all EventsE1-E4. We
do not need to worry, however, about those due to EventE3. This is
because the number of right-pointer changes in a binary tree(e.g.,
a red-black tree) is bounded byO(x+ y), as argued in [8]. Each of
E1,E2 andE4 issuesO(1) modifyoperations. It is easy to see that
a new EventE4 can happen only after at leastdεN(v)/4e updates
on D since the last EventE4. Since totallybN(v)/2c updates
occur onD during the versions covered byT p, EventE4 happens
at mostO(1/ε) times, thus generating onlyO(1/ε) modify.

It remains to analyze EventsE1 andE2. We focus on only
E1 because the analysis ofE2 is similar. EventE1 is due to the
changes ofr-counters. Ther-counter of a noden in T can have
its error increased by 1, only if (i) a value inD is inserted/deleted,
and (ii) the value falls in the keykn of n (remember thatkn is an
interval in the data domain). Hence,n may trigger an EventE1
only afterdEe updates onD since the creation ofn. On the other
hand, each inserted/deleted value (inD) may fall in the keys (i.e.,
intervals) ofO(log 1

ε
) nodes on a single path inT . It follows that

the total number of EventE1’s is bounded byO(N(v)/2
E

log 1
ε
) =

O(1
ε
log2 1

ε
).

LEMMA 8. T = O(M/H).

PROOF. Definev(j), 1 ≤ j ≤ T , be the first versionD(v)
covered by the persistent treeT p

j . By our construction described at
the beginning of Section 3.3,v(1) = 1, and forj ≥ 1:

v(j + 1) = min{M,v(j) + bN(v(j))/2c + 1}.

For notational convenience, definev(T + 1) = M + 1.
Consider any versioni ∈ [v(j), v(j + 1) − 1]. SinceD has

incurred at mostbN(v(j))/2c updates between versionsv(j) and
i, it holds thatN(i) ≤ 3N(v(j))/2. With this, we have:

M∑

i=1

1

N(i)
=

T∑

j=1

v(j+1)−1∑

i=v(j)

1

N(i)

≥

T∑

j=1

v(j+1)−1∑

i=v(j)

2

3N(v(j))

=
T∑

j=1

2(v(j + 1)− v(j))

3N(v(j))

≥

T∑

j=1

N(v(j))

3N(v(j))
= T/3

Hence, M/H =
∑M

i=1
1

N(i)
≥ T/3, indicating T =

O(M/H).

It thus follows from the above lemmas that our structure occupies
O(M

εH
log2 1

ε
) space.

Query time. The analysis of query time is trivial. Given a query,
we can find the persistent treeT p that covers the queried version
i in O(log T) time. After that, by the same argument in [8], the
ephemeral binary treeT (i) in T p can be identified inO(log 1

ε
)

time. Then, the query algorithm terminates after accessinga single
path ofT (i) in O(log 1

ε
) time. Hence, the overall query cost is

O(log T + log 1
ε
) = O(log 1

ε
+ log M

H
).

Remark. The above results can be summarized as:

THEOREM 3. Given a sequence ofM updates on an initially
emptyD, there is a structure that occupiesO(M

εH
log2 1

ε
) space,

and finds anyε-approximate historical quantile inO(log 1
ε
+

log M
H
) time.

As a corollary, if all the updates onD are insertions (so
H = Θ(M/ logM)), the space and query costs become
O(1

ε
log2 1

ε
logM) andO(log 1

ε
+ log logM), respectively. Fi-

nally, it is worth mentioning that our structure can be builteffi-
ciently in O(M log(εM) log 1

ε
) time. Details will appear in the

full paper.

3.6 An alternative simple solution
We close the section by pointing out an alternative structure forε-

approximate historical quantile search, which consumesO(1
ε2

M
H
)

space. Although this is higher than the space complexity in The-
orem 3, the structure has the advantage of being very simple to
implement. The idea is to periodically extractO(1/ε) items, and
use them to answer queries onΩ(εN(v)) versions ofD, wherev
is the versionD(v) from which the set is extracted.

Precisely, version 1 is supported by a setS1 containing the sole
item inD(1). In general, if setSi covers up to versionv − 1, we
build Si+1 as follows:

• If N(v) ≤ 4/ε, Si+1 simply includes all the items inD(v),
and supports (queries on) only versionv.

• Otherwise,Si+1 contains thebkεN(v)/4c-th greatest items
in D(v) for k = 1, 2, ..., d4/εe. Si+1 supports versionsv,
v + 1, ...,v + bεN(v)/4c.

In any case, forSi+1, we also store a valueALLi+1, which equals
N(v). Furthermore, every item inSi+1 keeps its rank inD(v).

Given anε-approximateφ-quantile query on versionq, we iden-
tify the setSi coveringq, and return the itemu in Si whose asso-
ciated rank is the closest toφALLi from above. If such an item
is not found (i.e.,φALLi exceeds the ranks of all items inSi), the
smallest value of the data domainD is returned. It can be verified
thatu is anε-approximateφ-quantile at versionq.

4. EXPERIMENTS
In this section, we evaluate the proposed solutions with experi-

ments. Section 4.1 first clarifies the competing methods and how
they will be compared. Then, Section 4.2 explores their charac-
teristics using synthetic data. Finally, Section 4.3 examines their
usefulness in a real networking scenario.

4.1 Competitors and metrics
In the sequel, we refer to our main method (developed in Sec-

tions 3.2-3.5) aspersistent quantile forest(PQF). Since no previous
solution is available forε-approximate historical quantile search,
we comparePQF with Simple, which is the approach presented
in Section 3.6. Recall that, althoughSimple has a higher space
complexity thanPQF, it is much simpler to implement. Hence, a
chief objective of the experiments is to identify when it pays off to
applyPQF.
PQF andSimple aresynopsis structures(just like histograms)

that reside in main memory. Both of them answer a quantile query
in negligible time (less than 1µs). Therefore, we will assess (i)
their space overhead, and (ii) the precision of their query results.
In particular, to measure the precision of a structure, we employ a
workloadthat consists of 100 queries. Each query has two parame-
ters: the value ofφ, and the versionq queried. Theφ of each query
is randomly selected in(0, 1]. Furthermore, the versions of the 100
queries are placed evenly throughout the history. That is, the i-th
(1 ≤ i ≤ 100) query inquires about thebiM/100c-th version of
the dataset, whereM is the total number of updates in history. The
error of a query is calculated as the difference between the actual
rank (of the returned result) and the requested rank, in relation to
the size of the queried version of the dataset. Specifically,assume
that the queried version hasN items, andA of them are greater
than or equal to the query result; then, the error equals

|A− φN |/N.

This is a standard error definition in the literature (see, for example,
[5, 9]). Sometimes we will report the errors of all queries directly.
When this is not convenient, we report both theaverage errorand
maximum errorof all the queries in a workload.

4.2 Performance characteristics
This subsection studies the general behavior ofPQF and

Simple. For this purpose, we generated synthetic data in a do-
main from 1 toU = 230. The update sequence of each dataset ex-
hibits a transition of distribution involving the uniform distribution

ε
0.10.050.0250.01250.00625

0.01

0.1

1

10

100
space cost (mega bytes)

PQF
Simple

ρ

space cost (mega bytes)

PQF
Simple

0

1

2

3

4

1 2 4 8 16

(a) Space vs.ε (b) Space vs.ρ

Figure 6: Space comparison

number of updates (million)

error SimplePQF

0.00001

0.0001

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1

Figure 7: Error vs. the number of updates

and a Gaussian distribution. Specifically, at the first version, the
dataset has 100k items uniformly distributed in the domain.Then,
1 million updates are generated according to several rules.First,
each update isρ times more likely to be an insertion than a dele-
tion, whereρ is a parameter calledinsertion-deletion ratio. As a
special case, ifρ = 1, then roughly an equal number of insertions
and deletions are created. Second, a deletion always randomly re-
moves an existing item of the dataset. Third, if an insertionappears
in the first half million updates, the inserted value followsa Gaus-
sian distribution with meanU/2 and standard deviationU (a value
outside the domain is discarded and re-generated). On the other
hand, for an insertion that is in the second half million of updates,
the inserted value is uniformly distributed in the domain. Record-
ing all the updates of a dataset requires storage of around 8 mega
bytes3, regardless ofρ.

The first experiment compares the space consumption ofPQF
andSimple as a function ofε. We fix ρ to 1, and doubleε from
0.1/24 to 0.1. As shown in Figure 6a,PQF scales withε much bet-
ter thanSimple. In particular, even for a tinyε = 0.00625, PQF
requires only slightly more than 1 mega bytes, whereasSimple
demands over 50 mega bytes (i.e., 6 times more than capturingall
the updates precisely). This phenomenon confirms the necessity of
designing a method whose space cost grows slower than1

ε2
as ε

decreases.
Next, we study the impact ofρ on the space overhead, by set-

ting ε = 0.1/22 and doublingρ from 1 to 16. Recall thatρ is the
ratio between the numbers of insertions and deletions. The results
are illustrated in Figure 6b. For a largerρ, Simple requires less
space because the Harmonic meanH (Equation 1) grows withρ
(remember that the space complexity ofSimple is O(M

ε2H
)). Al-

though the space complexity ofPQF is also inversely proportional
to H , its space cost actually increased. This is because a higherρ
also necessitates more counter updates inPQF, which cancels the
benefits of a smallerH for the range ofρ examined.

3Each update requires two integers: the inserted value and the in-
sertion time.

space (10k bytes)

average error

SimplePQF
0.0001

0.001

0.01

0.1

8 32 64 12816

(a) Error vs. space

ρ

average error

SimplePQF

0.001

0.01

0.1

1 4 8 162

(b) Error vs.ρ

Figure 8: Comparison of average and maximum errors

0
5

10
15
20
25
30
35
40

0 0.5 1 1.5 2 2.5 3

port frequencies

number of updates (million)

actual PQF

0.1-quantile

0.2-quantile

0.5-quantile

Figure 9: Exact and approximate quantiles (Abilene traffic)

Now we proceed to evaluate the precision of each method. The
next experiment employs the dataset withρ = 1. Both methods are
allowed storage of 80k bytes, which is around 1% of the space for
recording all the updates. Figure 7 gives the errors of all queries in a
workload, as a function of their versions (equivalently, the number
of updates already processed when the query is issued). Notice that,
for most queries, the error ofPQF is lower than that ofSimple
by a wide margin. This is not surprising because the lower space
complexity ofPQF allows it to choose a smallerε thanSimple
under the same space budget. In particular, in Figure 7, theε of
PQF andSimpleare 0.05 and 0.18, respectively. Observe that, for
all queries, the actual errors of each method are significantly below
the theoretical upper boundε.

Still using the dataset withρ = 1, we increase the space limit
of each method, and measure their average and maximum errors
(of all the queries in a workload), respectively. Figure 8a plots
the average error as a function of the space budget. Each reported
value has a bar on top to indicate the corresponding maximum er-
ror. The precision ofPQF improves dramatically when more space
is available, and is better than that ofSimple by a factor more
than an order of magnitude. Finally, we study the influence ofthe

number of updates (million)

error SimplePQF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3

(a) 250k bytes of storage

number of updates (million)

error SimplePQF

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 0.5 1 1.5 2 2.5 3

(b) 4 mega bytes of storage

Figure 10: Error vs. the number of updates (Abilene)

insertion-deletion ratioρ on precision. For this purpose, we fix the
space of each method to 320k bytes, and measure their averageand
maximum errors on the datasets withρ = 1, 2, ..., 16, respectively.
As shown in Figure 8b, when there are more insertions, the ac-
curacy ofPQF (Simple) is adversely (positively) affected, which
is consistent with the result of Figure 6b. Nevertheless,PQF still
substantially outperformsSimple for all values ofρ.

4.3 Performance on real data
In this subsection, we evaluatePQF andSimple in a real net-

work monitoring scenario. The dataset was obtained from the
authors of [12], and consists of over 1.6 million packets passing
through a router in theAbilene backbone network. For each packet,
the dataset contains the timestamp the packet is received, its source
and destination IPs, the ports at the source and destination, and so
on. We focused on monitoring the usage distribution of thedesti-
nation ports. Specifically, the arrival of a packet with (destination)
port p increases thefrequencyof p by 1. At any snapshot, the goal
is to enable quantile retrieval on the frequencies of all ports. For
this purpose, each packet with portp generates a deletion followed
by an insertion: we first remove the previous frequency ofp, and
then the add its new, incremented, frequency. The total number of
updates is therefore over 3.2 million. Each port is an integer in the
domain[1, 65535]. There are totally53940 distinct (destination)
ports in the entire dataset. Storing all the updates demandsaround
25 mega bytes.

Port usage distribution is useful for detecting abnormal traffic in
the network. The distribution of normal traffic should be highly
skewed because some ports, such as 80 for the HTTP protocol,
should be used much more frequently than others. The three solid
lines in Figure 9 (in the top-down order) plot respectively the pre-
cise 0.1-, 0.2-, and 0.5-quantiles of the Abilene dataset asa function
of the number of updates. The dotted lines represent the corre-

0.0001

average error

SimplePQF

0.25

0.001

0.01

0.1

space (mega bytes)
1 2 40.5

Figure 11: Average and maximum errors vs. space (Abilene)

sponding approximate quantiles retrieved fromPQF, when it con-
sumes 1 mega bytes of space. Both the exact and approximate
quantiles clearly indicate a skewed distribution. Also observe that
thewholefrequency distribution gradually shifts upwards, which is
a tough scenario for quantile computation as mentioned in [9].

Next, we compare the precision ofPQF andSimple using a
workload of queries (that inquire about versions scatteredthrough-
out the history). Figure 10a (10b) shows the errors of all queries
when each method is allowed to use 250k (4 mega) bytes of space,
which accounts for around 1% (16%) of the storage needed to cap-
ture all updates exactly.PQF is highly accurate in all queries, and
outperformsSimple significantly (note that the error axis in Fig-
ure 10b is in log scale). The last experiment examines the accuracy
of the two methods as the space budget doubles from 250k bytes
to 4 mega bytes. Figure 11 presents each method’s average and
maximum errors of all the queries in a workload (in the same fash-
ion as in Figure 8). The results confirm our earlier findings from
Figure 8a.

Summarizing all the experiments, a few observations can be
made regarding the performance ofPQF andSimple in practice.
First, for obtaining highly accurate results (with errors at the or-
der of 0.001 or below),PQF must be deployed, because the space
cost ofSimple is prohibitive. Second, with space around 1% of
the space of the underlying dataset,PQF achieves an average error
around 0.01. This makesPQF a nice choice for query optimization
in temporal databases, where an error of 0.01 is fairly acceptable.
Third, if an application can accept an error between 0.05 and0.1,
Simple will be more appropriate due to its simplicity.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a set of formal results on the problem ofε-

approximate historical quantile retrieval, which has not been stud-
ied previously in spite of its significant importance in practice. Our
first major contribution is to establish a lower bound on the space
consumption of any access method for solving the problem cor-
rectly. Besides its theoretical values, our lower bound analysis also
reveals critical insights into the characteristics of the problem, in-
cluding the identification of the factors affecting the space cost.
As the second major contribution, we match the lower bound (up
to only a square-logarithmic factor) by developing a concrete data
structure to supportε-approximate historical quantile retrieval. Ex-
tensive experiments demonstrate that the proposed techniques are
fairly effective in practice.

This work also creates several open problems that deserve further
investigation. First, it remains unknown whether we can close the
square-logarithmic gap between the space lower and upper bounds.
A promising direction would be to apply a probabilistic approach,
by allowing a method to occasionally fail in answering a query.
Second, it would be natural to extend our results to other variants

of quantile search (such asbiased quantilesin [5]). Finally, in this
work, we assume that the data domain can be arbitrarily large, but
it is interesting to consider historical quantile retrieval on a domain
with limited size. In that case, the space complexity may be sub-
stantially improved.

6. REFERENCES
[1] K. Alsabti, S. Ranka, and V. Singh. A one-pass algorithm for

accurately estimating quantiles for disk-resident data. In
VLDB, pages 346–355, 1997.

[2] A. Arasu and G. S. Manku. Approximate counts and
quantiles over sliding windows. InPODS, pages 286–296,
2004.

[3] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion B-tree.
VLDB J., 5(4):264–275, 1996.

[4] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E.
Tarjan. Time bounds for selection.JCSS, 7(4):448–461,
1973.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Effective computation of biased quantiles over data streams.
In ICDE, pages 20–31, 2005.

[6] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[7] J. V. den Bercken, B. Seeger, and P. Widmayer. A generic
approach to bulk loading multidimensional index structures.
In VLDB, pages 406–415, 1997.

[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persistent.JCSS, 38(1):86–124, 1989.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. InVLDB, pages 454–465, 2002.

[10] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. InSIGMOD, pages
58–66, 2001.

[11] A. Gupta and F. Zane. Counting inversions in lists. InSODA,
pages 253–254, 2003.

[12] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D.
Kolaczyk, and N. Taft. Structural analysis of network traffic
flows. InSIGMETRICS, pages 61–72, 2004.

[13] D. B. Lomet and B. Salzberg. Access methods for
multiversion data. InSIGMOD, pages 315–324, 1989.

[14] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. InSIGMOD, pages 426–435, 1998.

[15] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation
of order statistics of large datasets. InSIGMOD, pages
251–262, 1999.

[16] J. I. Munro and M. Paterson. Selection and sorting with
limited storage.Theo. Comp. Sci., 12:315–323, 1980.

[17] B. Salzberg and V. J. Tsotras. Comparison of access methods
for time-evolving data.ACM Comp. Surv., 31(2):158–221,
1999.

[18] Y. Tao and D. Papadias. MV3R-tree: A spatio-temporal
access method for timestamp and interval queries. InVLDB,
pages 431–440, 2001.

[19] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and
B. Seeger. On computing temporal aggregates with range
predicates.TODS, 33(2), 2008.

