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ABSTRACT
Set reconciliation is a fundamental problem in distributed
databases, where two parties each holding a set of elements
wish to find their difference, so as to establish data con-
sistency. Efficient algorithms exist for this problem with
communication cost proportional only to the difference of
the two sets, as opposed to the cardinality of the sets them-
selves. However, all existing work on set reconciliation con-
siders two elements to be the same only if they are exactly
equal. We observe that, in many applications, the elements
correspond to objects on which a distance function can be
defined, e.g., points in the Euclidean space, and close points
often actually represent the same object. During the recon-
ciliation, the algorithm should only find the truly different
elements in the two sets while tolerating small perturbations.
In this paper, we propose the robust set reconciliation prob-
lem, and take a principled approach to address this issue via
the earth mover’s distance. We have developed a communi-
cation and time-efficient algorithm with provable guarantees
on the quality of the reconciliation. This is then comple-
mented with an essentially matching lower bound showing
the optimality of the algorithm. Our experimental results
on both synthetic and real data sets have demonstrated that
our algorithm also performs very well in practice.

1. INTRODUCTION
Data synchronization is a fundamental problem in dis-

tributed databases, where two or more parties wish to es-
tablish consistency for the data sets they hold. This problem
is now becoming more important as big data systems and
cloud data services invariably rely on replication to achieve
high availability and fault tolerance. The classical approach
to data synchronization is wholesale transfer, in which one
party sends all its data to the other. This method incurs
linear communication cost and is clearly not scalable to the
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large data sets nowadays. Thus, one seeks methods with
communication costs proportional only to the difference of
the two data sets.

Depending on the data type we are dealing with, we ar-
rive at different data synchronization problems. In this pa-
per, we are interested in sets (or bags), and the correspond-
ing data synchronization problem is also known in the lit-
erature as the set reconciliation problem. Specifically, let
the two parties, Alice and Bob, each hold a set SA and
SB , respectively. The goal is to compute the set difference
SA ⊕ SB = (SA − SB) ∪ (SB − SA) using minimum com-
munication. The set reconciliation problem has been well
studied in various research communities [7, 18, 9], and can
be solved with communication cost O(|SA⊕SB |). As a con-
crete application, suppose Alice and Bob each have a large
set of images on their phones, and wish to synchronize their
collection. Using the techniques developed, they can do so
with communication cost that is proportional to their differ-
ence, namely, the number of images that one of them has,
but not both.

1.1 Motivation
The underlying assumption in the example above is that

each image can be identified uniquely. This, however, is
only true when the image is always stored as exactly the
same file. Dozens of image file formats exist; even using the
same file format, different codecs handle things in numerous
ways that are slightly different, not to mention the many
possible values for the quality parameters. To detect the
same or similar images, extensive efforts in computer vision
and multimedia research have led to effective feature extrac-
tion methods that map an image to a point in some feature
space, together with suitable distance functions defined to
measure the similarity. However, this is incompatible with
the existing set reconciliation methods, which demand strict
equality when comparing elements in the two sets.

The above is merely a motivating example of the problem
we are facing. More broadly, this problem exists whenever
we try to reconcile two numerical data sets where small er-
rors should be tolerated. In addition to multimedia data,
small errors could have been introduced for a variety of rea-
sons: (1) They can be introduced during initial data syn-
chronization, if the transmission channel is noisy, or one
party may just decide to do a lossy compression of the data
before sharing its data with the others, as the precise values
do not matter much anyway. (2) Different parties holding
the same data set may perform different transformations on
the data but that are mathematically equivalent. However,
due to rounding errors in floating-point computations, the
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results are rarely exactly the same (sqrt(1.1) * sqrt(1.1)

is almost never exactly equal to 1.1). Note that small round-
ing errors could potentially accumulate to the point of being
disastrous, if one is not careful about the computation pro-
cedure, which is actually a main topic of study in the field of
numerical analysis [11]. In this case we would want the rec-
onciliation algorithm to detect these large deviations. (3) Fi-
nally, small errors are sometimes intentional due to privacy
concerns. In privacy-preserving data publishing, adding con-
trolled noise is a basic technique used by many algorithms
[6]. Thus, the publisher and the subscriber will have two
slightly different values for the same data record.

These observations have led us to study a robust version
of the set reconciliation problem, where two elements should
be considered as the same if their difference is small, while
the algorithm will only find the “true differences” between
the two sets SA and SB . Correspondingly, the communi-
cation cost of the algorithm should also be proportional to
the number of “true differences”. The existing algorithms for
(exact) set reconciliation, when facing data sets with many
small errors, would either fail or try to identify all differ-
ences, large or small, while incurring a huge communication
overhead.

1.2 Problem Definition
For concreteness, let SA and SB be two sets each with n

points drawn from the d-dimensional Euclidean space1. How
should we define the “true differences” between SA and SB?
One obvious way is to set a threshold δ, and declare two
points x ∈ SA, y ∈ SB to be truly different if ‖x − y‖ > δ.
However, setting an appropriate value of δ is a bit tricky
and arbitrary, as noise usually follows some continuous dis-
tribution (e.g., Gaussian). The other issue is that since SA
and SB are sets, there is no fixed mapping between their
points, an x ∈ SA that is “truly different” from a y ∈ SB
may just be considered to have a small error when compared
with another y′ ∈ SB . Therefore, we propose the following
more principled definition based on the earth mover’s dis-
tance (EMD), which is a popular similarity measure between
two point sets [1].

Definition 1 (EMD) The earth mover’s distance (EMD)
between two point sets SA = {x1, . . . , xn} and SB = {y1, . . . , yn}
is the cost of the min-cost perfect matching between SA and
SB, that is,

EMD(SA, SB) = min
bijection π:[n]→[n]

∑
1≤i≤n

∥∥xi − yπ(i)∥∥2 .
The `2 norm ‖ · ‖2 can be replaced by other norms, which

will result in different versions of the EMD. Computing the
EMD in one dimension is quite easy: We just sort SA and SB
respectively, and match the corresponding points in order.
However, in two or more dimensions, finding the min-cost
perfect matching requires O(n3) time using the Hungarian
method [16].

We note that the EMD can be more generally applied to
other types of data, such as probability distributions and
vectors [2]. Here we adopt its form when applied to mea-
suring the distance between two point sets. In this case,

1We actually use the bag semantics and allow duplicated
points in SA and SB , but to be consistent with the literature
we still use the term “set reconciliation”.

it is also known as the transportation distance or bipartite
matching distance. This distance measure is more appropri-
ate for our problem than other measures for point sets such
as the Hausdorff distance, since we are looking for a one-to-
one matching between the two point sets, whereas the latter
allows many-to-one matchings.

Definition 2 (Robust set reconciliation) Suppose Alice
has a set of points SA and Bob has SB. Given an upper
bound on the communication cost, the goal of the robust set
reconciliation problem is for Bob to find two sets S−B ⊂ SB
and S+

B ⊂ SA of equal size, such that EMD(SA, S
′
B = (SB −

S−B ) ∪ S+
B) is minimized.

Note that this definition only requires Bob to learn the
difference (S−B and S+

B), but the other direction is symmet-
ric. In the problem definition we do not have any hard limit
on the size of S−B and S+

B , but obviously, given a commu-
nication budget, there is limited information that Bob can
learn, so they cannot be too large.

The above definition using the EMD avoids setting arbi-
trary parameters (the only parameter is the communication
budget), and naturally puts this problem under the general
problem of data synchronization, where the goal is to reduce
some distance measure between the two data sets, ideally to
zero.

A technical assumption we will make in this paper is that
the coordinates of the points take integer values in some
range [0,∆− 1]. We feel that this is not a restriction, since
floating-point numbers have limited precision and can be
appropriately scaled and converted into integers. For exam-
ple, if the application has a known precision requirement,
say δ = 0.0001, then a floating-point number coordinate x
can be converted to an integer bx/δc.

1.3 Our Contributions
For any 0 ≤ k ≤ n, define EMDk(SA, SB) to be the cost

of the min-cost perfect matching between SA and S′B , after
at most k points in SB have been relocated. More precisely,

EMDk(SA, SB) = min
|S−

B
|=|S+

B
|≤k

EMD(SA, S
′
B = (SB−S−B )∪S+

B).

It should be clear that EMDk monotonically decreases as k.
Moreover, if k is larger than the number of true differences,
then EMDk will only include the cost over the small errors.

We have made the following contributions to the robust
set reconciliation problem.

1. We have designed an algorithm that, for any 0 < k <
n, has a communication cost of O(kd log(n∆d) log ∆)
bits and can find an S′B = (SB − S−B ) ∪ S+

B such that
EMD(SA, S

′
B) ≤ O(d)·EMDk(SA, SB) with high prob-

ability. This guarantee holds for the EMD defined by
any `p norm for p ≥ 1 and holds in any dimensions.
The algorithm only needs Alice to send one single mes-
sage to Bob. Alice spends near-linear time O(dn log ∆)
to construct the message (note that the input size is
O(dn)), while Bob also spends O(dn log ∆) time to de-
code the message and finds S−B and S+

B . This result
in some sense can be considered as an approximation
algorithm with approximation ratio of O(d), as com-
pared with the optimal solution with the restriction
|S−B | = |S+

B | = k, although we do not impose this re-
striction to our algorithm. Instead, we put a limit on



the communication cost, which is more meaningful as
this is the resource we actually care.

Note that if there are only k true differences and no
small errors between the two data sets, then we have
EMDk(SA, SB) = 0 and our algorithm will reconcile
the two data sets such that EMD(SA, S

′
B) = 0, i.e.,

SA and S′B are identical. This means that our algo-
rithm strictly generalizes the standard set reconcilia-
tion problem.

2. We have complemented our algorithm with a com-
munication lower bound of Ω(k log(∆d/k) log ∆) bits,
for any randomized one-way communication algorithm
that solves the robust set reconciliation problem that
achieves a quality guarantee of EMD(SA, S

′
B) = O(1) ·

EMDk(SA, SB). Note that for typical settings where

d = O(1), n = ∆O(1), and k = O(∆d−ε) for any small
constant ε, our algorithm exactly matches this lower
bound, showing the optimality of the algorithm, even
on the bits level.

3. We have conducted experiments on real-world data
sets, both one-dimensional and multi-dimensional, to
test the efficiency and reconciliation quality of our al-
gorithm. The experimental results demonstrate that
our algorithm’s running time scales linearly in both
data size and dimensionality, and achieves a reconcili-
ation quality that is order-of-magnitude better than a
baseline method using lossy compression. Finally, we
apply our algorithm to the task of image reconciliation,
and have achieved very satisfactory results.

1.4 Related Work
The problem studied in this paper falls into the general

problem of data synchronization, which is the process of es-
tablishing consistency among data from a source (Alice) to
a target data storage (Bob) or vice versa. This fundamen-
tal problem has been extensively studied by various research
communities in databases, networking, and information the-
ory. As accurate and timely synchronization is expensive
to achieve, attention has primarily been focused on devis-
ing more relaxed synchronization models. One dimension
is to relax the time constraint, which resulted in various
consistency models on the fundamental trade-offs between
consistency, performance, and availability [15, 21, 10], as
mandated by the CAP theorem [3]. The other dimension
is to relax accuracy, i.e., reducing the distance between the
two data sets as much as possible instead of making the two
data sets exactly identical. Depending on the data type
and distance measure, we arrive at different instances of
the problem. For ordered data (i.e., sequence of elements)
with Hamming distance as the distance measure, the prob-
lem can be solved by error correction code [17]. The prob-
lem gets more challenging when using the edit distance [5],
which is more useful when synchronizing two text files. For
unordered data (i.e., sets) with the standard set-difference
measure (or equivalently the Jaccard similarity), the prob-
lem is exactly the set reconciliation problem [7, 18, 9], which
was mentioned at the beginning of the paper. For our prob-
lem, the elements in the sets are points in the Euclidean
space and the distance measure is the EMD.

The robustness issue has been raised for synchronizing or-
dered data. Candes and Randall [4] studied the following

problem. Alice holds a vector of reals x = (x1, . . . , xn) and
Bob has y = (y1, . . . , yn). In addition to a small number
of true differences where |xi − yi| is large, every entry has
some noise added yi = xi + z. They designed an algorithm
that corrects y into some y′ such that ‖x− y′‖2 is roughly
nσ2, where σ is the standard deviation of the noise. In some
sense, the algorithm has identified all the true differences,
leaving only the noise in the recovered vector y′. This re-
sult is actually very similar to our guarantee using EMDk:
when k is the number of true differences, EMDk is essen-
tially the noise. However, our problem is more challenging
as the EMD depends on the min-cost perfect matching, while
for ordered data, the matching is trivial (i.e., xi is always
matched with yi for all 1 ≤ i ≤ n). Furthermore, [4] only
studied the problem where each xi is a real number (i.e.,
a 1D point), while our algorithm works for the xi’s being
multi-dimensional points.

The EMD has been popularly used as a similarity measure
between point sets, but computing the EMD is no simple
matter. If there are no additional structures, the best known
algorithm is the Hungarian algorithm with running time
O(n3) [16]. In the d-dimensional Euclidean space for con-
stant d, there are approximation algorithms with near-linear
running time [12, 19], but it is not clear if they are practi-
cal. Computing the EMD between two data sets held by two
parties is even more difficult. There is no polylogarithmic
communication algorithm that achieves a constant approx-
imation in the one-way communication model. The best
known algorithms have communication costs polynomial in
∆ [1, 20]. Interestingly, although our algorithm gives a qual-
ity guarantee of EMD(SA, S

′
B) = O(d) · EMDk(SA, SB), it

does not actually compute EMD(SA, S
′
B) or EMDk(SA, SB)

(which is difficult).
Finally, there is a considerable amount of work on dealing

with noise in data, particularly on data integration [14], sim-
ilarity search [2], and joins [13]. But the problem of dealing
with noise under the context of set reconciliation has not
been studied before.

2. THE ALGORITHM

2.1 Invertible Bloom Lookup Table (IBLT)
We will make use of an elegant data structure called the

invertible Bloom lookup table (IBLT) [8], which has been
used to solve the (exact) set reconciliation problem [7]. Be-
low we give a brief but self-contained description of the
IBLT. Please refer to [8, 7] for more detailed discussions.

The IBLT uses a table T of m cells, and a set of r ran-
dom hash functions h1, . . . , hr to store a set of keys. Similar
to a Bloom filter, a key x is inserted into the cells desig-
nated by the r hash functions: T [h1(x)], . . . , T [hr(x)]. To
use the IBLT for the set reconciliation problem, we use an-
other hash function f(x) that computes a fingerprint for
each key x. Each cell in T contains two fields: a keySum,
which is the XOR of all keys that have been inserted to this
cell, and a fpSum, which is the XOR of all the fingerprints
of the keys that have been inserted to this cell2. To solve
the set reconciliation problem, Alice simply inserts all her
keys into an IBLT, and passes it to Bob, who then inserts
all of his keys. Note that due to the use of XOR, inserting

2The original IBLT has a third field, count, but this is not
needed for our problem.



the same key twice leaves no effects on the table, thus only
the keys in SA ⊕ SB remain in the IBLT. The value of r is
a constant [8, 7], so it takes constant time to insert a key
into the IBLT (assuming a hash function can be evaluated
in constant time).

Example: Figure 1 shows an example how the IBLT is
constructed. The two sets of keys SA and SB each have two
keys that are different from the other set (the last two keys).
The fingerprints have been computed using the fingerprint
function f(x) = x̂(2x̌+1)+ x̌2 (truncated to the last 8 bits),
where x̂ and x̌ respectively are the first and last 4 bits of x.
Here each key is inserted to r = 2 cells (dictated by 2 hash
functions). Due to the use of XOR, all the keys common in
SA and SB leave no effects on the IBLT (the dashed arrows),
while only the 4 keys in SA ⊕ SB remain (the solid arrows).
2

To retrieve the keys remaining in the IBLT, we first scan
the table to find cells in which f(keySum) = fpSum. This
indicates that the cell has only one key which is keySum

(as long as f is an appropriately chosen, nonlinear finger-
print function). We output this key, and then insert this
key again to the r cells that contain it to eliminate its ef-
fects on the IBLT. This in turn may make those cells meet
the condition f(keySum) = fpSum, and we can recover more
keys. The whole process ends when no cell satisfies this con-
dition. When this happens, if all cells are empty, then we
have succeeded in recovering all keys in the IBLT; other-
wise we only have retrieved a partial list. The analysis [8, 7]
shows that as long as m ≥ γ · |SA ⊕ SB | where γ is a fairly
small constant3, the retrieval process will succeed with high
probability 1−1/mO(1). The retrieval algorithm can be eas-
ily implemented to run in O(m) time. Note that although
the IBLT itself does not distinguish keys in SA − SB from
those in SB − SA, the person who retrieves SA ⊕ SB from
the IBLT (i.e., Bob) can easily tell them apart.

Example (continued): Suppose we now want to retrieve
the 4 keys stored in the IBLT in Figure 1. We first check
each cell if f(keySum) = fpSum. In this example only the
first two cells meet this condition, while the last 3 cells have
collisions. Thus we first retrieve the two keys 01001110 and
11110010 from the first two cells. Then we insert these two
keys back to the IBLT. Due to the use of XOR, this has
the effect of removing their effects, leaving the IBLT to the
state shown in Figure 2, where the solid arrows indicate the
remaining two keys. They still collide in cell number 4, but
cell number 3 and 5 now have only one key left, which can
be checked by the condition f(keySum) = fpSum. Then, we
retrieve the keys 11110011 and 01001111 from these two
cells. In this example, the retrieval process stops here, but
in general could continue iteratively until no more keys can
be retrieved. By crosschecking the 4 retrieved keys with his
own set of keys SB , Bob can tell that 11110011 and 01001110

belong to SB − SA while 11110010 and 01001111 belong to
SA − SB . 2

2.2 The Encoding Algorithm
Suppose Alice has a set of n points SA = {x1, . . . , xn}

drawn from the d-dimensional integer grid [∆]d. Without

3This constant affects the exponent in the 1− 1/mO(1) suc-
cess probability. It suffices to use r = 5 hash functions with
γ = 1.425.

keySum

fpSum

SB = {01001100, 00111110, 11001010, 11110011, 01001110}

01001110

f = {11110100, 00011011, 01100000, 01001111, 01011101}

00111000

11110010

01001111

00000001

00111101

10111100

00101111

SA = {01001100, 00111110, 11001010, 11110010, 01001111}

f = {11110100, 00011011, 01000000, 01110010, 00111000}

00000001

01100101

Figure 1: An example on how the IBLT is constructed.

keySum

fpSum

SB = {01001100, 00111110, 11001010, 11110011, 01001110}

00000000

f = {11110100, 00011011, 01100000, 01001111, 01011101}

00000000

00000000

00000000

11110011

01110010

10111100

00101111

SA = {01001100, 00111110, 11001010, 11110010, 01001111}

f = {11110100, 00011011, 01000000, 01110010, 00111000}

01001111

01011101

Figure 2: An example on retrieving keys from the IBLT.

loss of generality we assume that ∆ = 2L for some integer
L. Let the coordinates of xi be xi = (xi1, . . . , xid). Below we
describe how she constructs the message to be sent to Bob
for reconciliation. The algorithm consists of three simple
steps: (1) perform a random shift of the whole data set; (2)
build a quadtree; and (3) insert the quadtree nodes to an
IBLT. The detailed steps are as follows.

1. Random shift. Alice picks a vector ξ = (ξ1, . . . ξd) uni-
formly at random from [∆]d and add it to all points in
SA, wrapped around ∆, i.e., we set xij ← (xij + ξj)
mod ∆ for all 1 ≤ i ≤ n, 1 ≤ j ≤ d.

2. Build a quadtree. Alice builds a quadtree on the whole
grid [∆]d. Recall that a quadtree is a hierarchical de-
composition of space. The root corresponds to the
whole grid [∆]d. It has 2d children which correspond
to the 2d quadrants of their parents. The subdivi-
sion then continues recursively until we reach the sin-
gle cells of the grid, resulting in L + 1 levels. For
each node in the quadtree, Alice records the number
of points in SA that fall inside its cell, and removes all
empty nodes. In fact, the empty nodes do not have to
be created at all if we build the quadtree bottom up.
The whole construction can be implemented to run in
O(nd log ∆) time, by storing all nonempty nodes in a
hash table.

3. Insert into IBLT. For each level of the quadtree, Alice
inserts all the (nonempty) nodes into an IBLT. More
precisely, if a node at level ` (the leaves are said to
be on level 0) corresponds to cell [q1, q1 + 2` − 1] ×
[q2, q2 + 2` − 1] × · · · × [qd, qd + 2` − 1] with count c,
then she inserts the combined key (q1, q2, . . . , qd, c) into
the IBLT. The size of the IBLT is γ · αk, where α is a
parameter controlling the reconciliation quality (whose
value will be determined later in the analysis), and k
is chosen such that the total message size (i.e., L + 1
IBLTs) meets the communication budget. As it takes



Alice

Bob

Quadtree Level 0: 6 different nodes Level 1: 4 different nodes After reconciliation

Figure 3: An example illustrating the encoding and decoding algorithm.

O(d) time to evaluate a hash function on a combined
key, the total time to build the IBLTs is O(dn log ∆).

In the end, Alice sends the L+ 1 IBLTs, together with ξ,
to Bob. It should be quite clear that the total message size
is O(αk log(n∆d) log ∆) bits, as each combined key requires
O(log(n∆d)) bits. Of course, Alice should also share the
hash functions and the fingerprint function she uses to con-
struct the IBLTs. These are usually constant-degree poly-
nomials, so their descriptions take negligible space.

It is easy to see that the encoding algorithm runs in time
O(dn log ∆).

Example: Figure 3 shows a complete 2D example with n =
8 points on a [8]× [8] grid (except that we omit the random
shift step for simplicity). Here we first look at the encoding
algorithm on Alice’s side. She first builds a quadtree on
her set of points SA, retaining only the nonempty quadtree
cells. Then starting from level 0 (where the quadtree cells
have size 1× 1), she constructs an IBLT for each level. For
each nonempty quadtree cell, we take its coordinates and
the number of points in the cell, and combine them into a
key. In this example, we use 3 bits for each coordinate, as
well as for the count, which results in 9-bit keys. The figure
gives examples on how the keys are generated for two of the
quadtree cells. Alice then inserts these keys to an IBLT.
Similarly, on level 1, there are 5 nonempty quadtree cells,
and Alice builds an IBLT containing 5 keys. She does so for
each level of the quadtree, and finally sends all the IBLTs
to Bob. 2

2.3 The Decoding Algorithm
When Bob receives the message from Alice, he tries to

relocate his points in SB to minimize the EMD, i.e., find
S−A and S+

B so that EMD(SA, S
′
B = (SB − S−B ) ∪ S+

B) can
be reduced as much as possible. The first two steps are
the same as in the encoding algorithm, i.e., he performs the
random shift (using the same ξ he gets from Alice), and
builds the quadtree on his data set SB . In the third step,
starting from the bottom level ` = 0, Bob inserts all his
nonempty quadtree nodes into the corresponding IBLT he

receives from Alice. From the properties of the IBLT, only
different nodes will remain, these include different nodes, or
the same nodes but with different counts. Then he tries to
recover these different nodes, and stops at the lowest level
where this declares success.

When Bob reaches a level ` on which the IBLT successfully
recovers all the differences, he is ready to construct S−A and
S+
B . The idea is that he will relocate his points so that

the quadtree nodes and counts on this level on his data set
are the same as those on Alice’s. Specifically, there are two
cases:

1. For each quadtree node [q1, q1 + 2`−1]×· · ·× [qd, qd+
2`−1] with count c′ that Bob has, but for which Alice
has a different count c < c′ (c could be 0), we add any
c′ − c of Bob’s points inside [q1, q1 + 2` − 1] × · · · ×
[qd, qd + 2` − 1] to S−B .

2. For each quadtree node [q1, q1 + 2`−1]×· · ·× [qd, qd+
2` − 1] with count c that Alice has, but for which Bob
has a different count c′ < c (c′ could be 0), we add any
c − c′ points to S+

B with coordinates (q1 + 2`−1, q2 +

2`−1, . . . , qd + 2`−1), namely, the center point in this
quadtree cell, to S+

B .

Finally, Bob should subtract ξ from all points in S−B and
S+
B (modulo ∆) to get them back to their original locations.
The running time of the decoding algorithm is alsoO(nd log ∆).

Example (continued): We continue the example in Fig-
ure 3, when Bob receives the IBLTs, one per level of the
quadtree. He first also builds a quadtree on his point set
SB . Then level by level, he tries to recover the different
quadtree nodes from the IBLT he has received. For each
level, he inserts all his nonempty quadtree cells (after con-
verting them to 9-bit keys in the same way as Alice did)
into the IBLT, and then performs the retrieval process as
described in Section 2.1. Suppose in this example, the IBLT
at level 1 declares success on finding all differences, which
corresponds to the 5 solid squares shown in Figure 3. Now,
for each of Bob’s cell with count larger than its counterpart



at Alice’s side, he deletes points (i.e., put them into S−B ), ar-
bitrarily chosen from the cell, so that the new count matches
that of Alice’s. In this example, Bob deletes one point in cell
(a) and one point in cell (b) (the crossed points in Figure 3).
Next, for each of Alice’s cell with count larger than its coun-
terpart at Bob’s side, Bob inserts (i.e., put into S+

B) as many
copies of the centerpoints of the cell as necessary so that the
counts of the two cells match. In this example, Bob adds
one copy of the centerpoint in cell (c) and the centerpoint
in cell (d) (the hollow points in Figure 3). This completes
the reconciliation process. 2

Theorem 1 The communication cost of our algorithm is
O(αk log(n∆d) log ∆) bits. The running time of the encod-
ing and the decoding algorithm is both O(dn log ∆).

Optimizations. There are a number of optimizations for
our basic algorithm described above, which can reduce the
hidden constant in the big-Oh. First, a simple observation
is that, once the number of nonempty quadtree cells drops
below the size of the IBLT, γαk, there is no advantage to
“compress” them into an IBLT any more. Instead, Alice
can simply send over all these quadtree cells together with
their counts directly to Bob. Moreover, since the decoding
is guaranteed to succeed at this level, there is no need send
IBLTs for any higher levels, either.

As we move up one level, we perform a division by 2 to
every coordinate of the data points, to fit them in the ap-
propriate quadtree cells. This has the effect of deleting the
least significant bits. Thus, at level `, only dlog ∆e − ` bits
are needed to represent a coordinate of any quadtree cell.
This reduces the key length hence the size of the IBLT (in
terms of bits).

Meanwhile, we do not need to spend logn bits to record
a quadtree cell count, which should be much smaller than
n, especially for the lower levels of the quadtree. Instead,
for each level, Alice can first find the maximum cell count,
say m, and only use logm bits for every cell count on this
level. Then she also communicates the value of m to Bob.
At Bob’s side, if he sees one of his quadtree cells on this
level with count exceeding m, he already knows that this
cell is different from Alice’s, so can report it directly instead
of inserting it into the IBLT.

Remarks. Our algorithm only requires Alice to send one
message to Bob, who then completes the reconciliation all
by himself. This reduces latency, and also works well when
there are many parties whose data all have to be recon-
ciled with Alice, in which case Alice can simply broadcasts
her message. However, if multi-round communication is al-
lowed, we can do a binary search on the log ∆ + 1 levels
to find the lowest level on which the IBLT succeeds. This
way, Bob can just request the necessary levels from Alice
as the binary search proceeds. This reduces the communi-
cation cost to O(αk log(n∆d) log log ∆) bits. But doing a
binary search leads to some theoretical subtleties with re-
spect to the probabilistic analysis; please see Section 2.4 for
the details.

Similarly, Bob can also do a binary search among the
log ∆ + 1 levels, and build the levels of the quadtree only
for those needed. Each level of the quadtree can be built
in linear O(nd) time, so the running time can be reduced
to O(nd log log ∆). However, the bottom-up construction of

the quadtree is often more efficient, especially for dense data
sets, for which the number of nodes decrease quickly as we
go up the quadtree.

2.4 Analysis
In this subsection, we give a theoretical analysis showing

that, with high probability, Bob can reduce the EMD be-
tween SA and SB to at most O(d) · EMDk(SA, SB). We
first give some intuition behind the analysis. W.l.o.g., sup-
pose the optimal solution that moves k points so as to min-
imize EMD(SA, SB) has moved S−B = {y1, . . . , yk} to S+

B =
{x1, . . . , xk}, and suppose the remaining points are matched
as (xk+1, yk+1), (xk+2, yk+2), . . . , (xn, yn). Of course, the al-
gorithm does not know which points have been moved and
how the remaining points are matched; the xi’s and yi’ are
indexed this way just for the purpose of analysis. Then,
EMDk(SA, SB) =

∑n
i=k+1 ‖xi − yi‖2. We will just short-

hand this as EMDk in the following when there is no ambi-
guity. Intuitively, to reduce the EMD to within a constant
factor of EMDk, Bob needs to correctly identify the top-k
pairs (x1, y1), . . . , (xk, yk), and reduce their average distance
to O(EMDk /k).

Recall that in our algorithm, both Alice and Bob build
a quadtree, and try to reconcile their difference bottom up,
level by level, where the IBLT on any level can identify up
to αk differences. It is easy to see that for a pair (xi, yi)

such that ‖xi − yi‖2 > 2`
√
d, they must fall in different

quadtree cells on level ` or below. On the other hand, if
‖xi − yi‖2 < 2`, they are likely to fall in the same quadtree
cell on level ` or above. So we expect the number of differ-
ences to gradually decrease as we go up, and the IBLT will
eventually succeed at some level. The hope is that when this
happens, Bob can identify (x1, y1), . . . , (xk, yk), and reduce
their distance. However, there are two technical difficulties
that we need to overcome:

1. For a close pair (xi, yi) with i > k, it is only likely
that they fall into the same quadtree cell on a given
level. When it is not the case, they potentially intro-
duce another difference, adding burden to the IBLT’s
recovery ability. Even if the IBLT succeeds, this might
be a “false positive” since yi should not be related.

2. For a faraway pair (xi, yi) with i ≤ k, Bob can only
learn from the IBLT that xi lies in some quadtree cell,
without knowing its exact location. In our algorithm,
Bob simply relocates to the center point of the cell.
This introduces additional error that needs to be ac-
counted for.

The first issue can be properly handled by the random
shift. In doing so, we can avoid adversarial cases and guar-
antee that with good probability, there are not many false
positives. To handle the second issue, the redundancy fac-
tor α > 1 introduced in the algorithm proves useful, which
allows us to recover more differences than the top-k pairs in
the matching. This lowers the level on which the IBLT can
succeed, so that the uncertainty in the quadtree cell can be
bounded. Some extra difficulties come from the interplay of
these two issues. For example, it is possible that the reloca-
tion of a false positive will again introduce some additional
error. Thus we need to carefully formulate the charging ar-
gument so that the all errors can be charged to EMDk. In



the rest of this subsection, we formalize the above intuition.
The analysis below holds for any `p norm with p ≥ 1.

First, we need the following observation.

Lemma 1 With the random shift, the probability that a pair
of points (xi, yi) fall into different quadtree cells on level `

is at most d1−1/p‖xi − yi‖p/2`.

Proof. Let the coordinates of xi and yi respectively be
xi = (xi1, . . . , xid) and yi = (yi1, . . . , yid). The two points
fall in different quadtree cells if and only if for at least one
1 ≤ j ≤ d, xij and yij are separated by t2` for some integer
t. By a union bound, this probability is no more than

d∑
j=1

|xij − yij |
2`

≤ d

2`

(∑d
i=1 |xij − yij |

p

d

)1/p

(Jensen’s inequality)

=
d1−1/p‖xi − yi‖p

2`
.

The count at any quadtree node is the sum of those at
its 2d children. Thus, for any node v at some level `, if its
counts are different in Alice’s quadtree and Bob’s quadtree,
then on level `+1, at least one of v’s children must also have
different counts in the two quadtrees. Thus, the number of
different nodes monotonically decreases (or stays the same)
as we go up the quadtree levels. Let `∗ be the lowest level
on which there are no more than αk different nodes. With
high probability, the IBLT will succeed at this level, possibly
even earlier. We will just assume that Bob stops at level `∗;
if he stops earlier, the result can only be better.

Let A = d1/p · 2`
∗

be the maximum `p distance between
any two points in a quadtree cell at level `∗. Obviously, for
all those pairs (xi, yi) with ‖xi − yi‖p ≥ A, they will go to
different quadtree cells at this level. The issue is that it is
possible for a pair (xi, yi) with ‖xi−yi‖p < A to go to differ-
ent cells as well. In this case the algorithm will introduce a
false positive. This might increase the EMD since Bob only
knows the cell which contains xi. Our decoding algorithm
simply relocates yi to the center point of the cell, but do-
ing so might introduce an error up to A/2, which could be
larger than ‖xi − yi‖p itself. Below we will show that such
false positives will not happen too much, and even for those
that do happen, the extra error introduced can be charged
to EMDk.

Set η = α/2−1

4d1−1/p . We focus on a level ` such that 2` =

EMDk /(ηk). 4 We will show that with probability at least
3/4, there are at most αk different quadtree nodes on this
level. If this is the case, then according to the definition of
`∗, we have `∗ ≤ `.

For i = k + 1, . . . , n, let Ti be the indicator variable
of the event that the pair (xi, yi) go to different cells at
level `. Then by Lemma 1, we have that Pr[Ti = 1] ≤

4For convenience, we assume that EMDk /(ηk) is a power of
2. Such an assumption will not change the approximation
ratio by more than a factor of 2.

d1−1/p‖xi−yi‖p
2`

. Let T =
∑n
k+1 Ti. We have

E[T ] ≤
n∑

i=k+1

d1−1/p‖xi − yi‖p
2`

=
d1−1/p ·

∑n
i=k+1 ‖xi − yi‖p

EMDk /(ηk)

=
d1−1/p · EMDk

EMDk /(ηk)

= d1−1/pηk.

By Markov inequality, we have T ≤ 4d1−1/pηk = (α/2−1)k
with probability at least 3/4. Each of the T pairs contribute
at most 2 different quadtree nodes, while the first k pairs
(x1, y1), . . . , (xk, yk) contribute at most 2k different nodes.
So we have that with probability at least 3/4, there are no
more than 2(α/2− 1)k+ 2k = αk different nodes at level `,
which means that `∗ ≤ ` and

A = d1/p · 2`
∗

≤ d1/p · 2`

= d1/p · EMDk /(ηk)

=
4d

(α/2− 1)k
EMDk .

It remains to bound the EMD after the reconciliation
stops at level `∗. Note that at most αk/2 pairs were put
into different cells, and αk/2 points were moved after recon-
ciliation. Then, for each cell at level `∗, the cell counts for
Alice and Bob’s become equal. We say that a pair (xi, yi)
is ‘broken’ if the xi and yi were put in different cells pre-
reconciliation, or if either one of the points was moved dur-
ing reconciliation. A point is ‘broken-off’ if it belongs to a
pair that is broken. Observe in each cell the number of Al-
ice’s broken-off points is exactly the same as Bob’s, or else
their number of points in the cells will not be equal; in total
at most αk pairs would be broken, so 2αk points would be
broken-off. To bound the EMD by above, we simply pair of
each broken-off point of Alice to a broken-off point of Bob
in the same cell arbitrarily, to produce a perfect matching
between their points. The distances between these newly
paired up points will be at most A. So the EMD after rec-
onciliation is

EMD(SA, S
′
B) ≤ αkA+ EMDk

= αk
4d

(α/2− 1)k
EMDk + EMDk

=

(
1 + 8d+

16d

α− 2

)
EMDk

By setting α > 2 the approximation ratio is O(d).

Theorem 2 Our algorithm for the robust set reconciliation
problem can find an S′B such at that EMD(SA, S

′
B) ≤ O(d) ·

EMDk(SA, SB) with probability at least 3/4. This holds for
the EMD defined by any `p norm for p ≥ 1 and in any
dimensions.

Remarks. It should be easy to see from the analysis that we
can increase the success probability from 3/4 to a constant
arbitrarily close to 1, which only affects the value of α by a
constant factor. In the analysis above, we have also ignored



the failure probability of the IBLT, but since it is only o(1),
it does not change the result: We only require one IBLT
to succeed, i.e., the one on level `∗, for the guarantee to
hold. If the IBLT on some lower levels succeeds earlier in the
bottom-up search, the resulting EMD can only be smaller.

As one can observe, our analysis is quite conservative,
the actual approximation factor is actually much better as
demonstrated in our experiments in Section 4.

Multi-round communication protocol. As mentioned
at the end of Section 2.3, if multi-round communication is
allowed, we can reduce communication cost by doing a bi-
nary search on the log ∆ + 1 levels of the quadtree to find
the lowest level on which the IBLT succeeds. However, this
will require all the O(log log ∆) IBLTs probed in the binary
search to succeed (provided that there are no more than αk
different quadtree nodes on that level), which means that we
need to set the failure probability to O(1/ log log ∆) in the
IBLTs and then apply a union bound. Recall that the fail-
ure probability of an IBLT is 1/mO(1) = 1/kO(1). To reduce
this to O(1/ log log ∆), we can keep O(dlog log log ∆/ log ke)
independent instances of the IBLT so that the IBLT will
succeed as long as one of the instances succeeds. Thus, we
have the following variant of our algorithm.

Corollary 1 Our algorithm can be made to run in O(log log ∆)
rounds of communication, with the total communication cost
being O(k log(n∆d) log log ∆dlog log log ∆/ log ke) bits. It finds
an S′B such that EMD(SA, S

′
B) ≤ O(d) ·EMDk(SA, SB) with

probability at least 3/4.

2.5 When the Number of True Differences is
Unknown

k is an important parameter in our algorithm, which should
be set to be at least the number of truly different points be-
tween SA and SB , so that EMDk is small. However, in most
cases we do not know the number of true differences. In the
(exact) set reconciliation problem, one can first estimate the
size of SA ⊕ SB so that proper parameters can be set in the
IBLT [7]. Unfortunately, in the presence of small errors, the
estimation does not work, as it counts all differences, large
or small. In fact, if we want to exclude small differences
from the estimation, we will have to compute (at least ap-
proximately) the EMD between two distributed data sets,
which is known to be a difficult problem [1, 20].

Thus, we propose the following two ways to deal with an
unknown k. First, if a communication budget is given, we
can easily decide the maximum k allowed, and just use this
k. This is actually how we defined the robust set reconcil-
iation problem in the first place, which represents a “best-
effort” approach.

Alternatively, if no explicit communication budget is given,
but the user desires a certain quality of the reconciliation,
say, the resulting EMD must be below some threshold τ .
Then we can take the following approach. Starting with a
small k, we iteratively run our algorithm with a doubled k.
Since the communication cost is linear in k, the total com-
munication cost is just twice that for the last round. At
the end of each iteration, we use the following conservative
estimation for the EMD. Suppose the decoding algorithm
succeeds at level `. Then we know that after the reconcilia-
tion, all pairs must have been corrected to within a distance
of at most d1−1/p2`, so the EMD is at most nd1−1/p2`. We
stop the process when this estimate is below τ .

3. THE LOWER BOUND
We first observe that when there are only k differences

between the two data sets, then our problem degenerates
into the standard set reconciliation problem. In this case,
EMDk = 0, so an algorithm that wishes to give any (multi-
plicative) approximation to EMDk has to recover all the k
differences exactly. Therefore, the standard communication
lower bound for set reconciliation still holds for our problem,
namely, the algorithm has to at least transmit all the differ-
ences. Since in our case, each element is a point in [∆]d, we
have a lower bound of Ω(k log(∆d)) bits. This holds even for
multi-round communication protocols. Note that our multi-
round communication protocol is only an O(log log ∆) factor
away from this lower bound for constant dimensions (ignor-
ing even lower order terms).

Our one-way communication algorithm has an extraO(log ∆)
factor from the lower bound above, and we present a lower
bound showing that this is essentially necessary. Specifi-
cally, we show that any one-way communication protocol
that solves the robust set reconciliation problem with a qual-
ity guarantee of EMD(SA, S

′
B) = O(C) · EMDk(SA, SB) re-

quires a message with at least Ω(k log(∆d/k) log ∆/logC)
bits. This lower bound holds for the EMD defined by any
`p norm for p ≥ 1 and for any dimensions d.

We first illustrate the idea through the one-dimensional
case. We first present a family of hard instances for the ro-
bust set reconciliation problem on the one dimensional grid
[∆]. Alice and Bob hold sets of n points SA and respec-
tively SB on grid [∆]. The construction is performed in two
steps. In the first step, we choose p point center locations
1,∆/p+1, 2∆/p+1, . . . , (p−1)∆/p+1, and in both SA and
SB we assign n/p points to each point center. In the second
step, we move points from these point centers in SA and SB
to the right. At this step we make the point sets SA and SB
different. We pick L (= Θ(log ∆)) subsets X1, . . . , XL ⊆ [p]
such that |Xi| = k for all i ∈ [L]. In SA, for all i ∈ [L],
for all j ∈ Xi, we move one point in the j-th point center
by a distance of 2Bi where B is a technical parameter. In
SB we perform similar operations: we first pick a random
I ∈ [L], and then for all i = {I + 1, . . . , L}, for all j ∈ Xi,
we move one point from the j-th point center by a distance
of 2Bi. Note that SA and SB differ by those points that are
moved in SA indicated by X1, . . . , XI . These points remain
in point centers in SB . The k most significant differences
in point set SA and SB are the k points that Alice moved
by distance 2BI , that is, those points indicated by XI . In-
tuitively, if Bob wants to correct most of these points, Bob
has to learn XI approximately.

The technical implementation of this idea is a reduction
from a variant of the one-way two-party communication
problem called Augmented Indexing. Due to space con-
straints, we leave the details of this reduction to the technical
report version of the paper, while only state the result here.

Theorem 3 Any randomized communication protocol that
computes a C-approximation to the robust set reconciliation
problem on the d-dimensional grid [∆]d with error probability
at most 1/3 requires a message of size

Ω(k log(∆d/k) log ∆/logC),

assuming that k < ∆d/2. This holds for the EMD defined by
any `p norm for p ≥ 1.



4. EXPERIMENTS

4.1 Implementation Details
For the IBLTs we use 5 hash functions, so we take γ =

1.425 and use a table size of dγαke cells [8]. The 5 hash
functions are chosen randomly from the following 5-wise in-
dependent family of hash functions [22]:

h(x) =

(
4∑
i=0

aix
i mod p

)
mod dγαke,

where ai ∈ Zp for i = 0, 1, . . . , 4, and p is a large prime,
here taken as 231 − 1. The fingerprint function we use is
f(x) = x̂(2x̌+ 1) + x̌2 (truncated to the last 32 bits), where
x̂ and x̌ respectively are the first log x

2
and the last log x

2
bits

of x.

4.2 A Baseline Method
Existing algorithms for the standard set reconciliation prob-

lem clearly do not work for our problem, since they would
try to correct all errors, large or small, incurring linear com-
munication cost, which is the same as the naive wholesale
transfer approach. A more reasonable method is to do a
lossy compression of the data before sending it over, as
small errors are tolerated in our scenario. It also gives us
a communication-quality tradeoff on which we can compare
with our algorithm. Specifically, we use the Haar wavelet
compression with the same communication costs as our algo-
rithm. That is, if the communication cost for our algorithm
is set to x% of the raw data, then we retain the top x% of
the coefficients of the wavelet transform in terms of absolute
value, while zeroing the rest. Then Bob will simply invert
the wavelet transform using these coefficients to get an ap-
proximate version of Alice’s data. Note that Bob’s own data
is not used in this baseline method. Finally, we compute the
EMD between Alice’s original data set and the one after this
lossy compression-decompression as quality assessment.

One optimization we did that turned out to be quite effec-
tive is to sort the data (for 1D numerical data sets) before
feeding it to the wavelet transform. This is allowed as the
data is unordered set, and sorting increases the smoothness
of data, which improves the effectiveness of wavelet trans-
formation.

4.3 One-Dimensional Experiments
We start with one-dimensional experiments, i.e., the data

set consists of n numerical values. This represents an im-
portant use case of the problem, and more importantly, it
allows us to compute the EMD efficiently in O(n logn) time,
so that we can accurately measure the reconciliation quality.

Data sets. For 1D experiments, we used the MPCAT-
OBS data set, which is an observation archive available
from the Minor Planet Center5. We picked n = 106 right
ascensions records6, which are integers ranging from 0 to
∆ = 8, 639, 999. This data set is given to Alice as SA.

Then we generated Bob’s point set SB as follows. We
first injected k = 100 “true differences by randomly picking
k points in SA and moving each of them to another location

5http://www.minorplanetcenter.net/iau/ecs/
mpcat-obs/mpcat-obs.html
6Right ascension is an astronomical term used to locate a
point in the equatorial coordinate system.

that is uniformly distributed in the region [∆]. Then for a
perturbation level ε, we add to every point in SA some noise
that is uniformly distributed in [−ε, ε].

Setup and quality measure. Although there appear to
be multiple parameters k, α, γ, but we should emphasize
that they are only used in the analysis and for stating the
quality guarantee: α determines the approximation ratio, k
is the target (i.e., EMDk) on which the approximation ratio
is calculated, and γ decides the failure probability. They
are actually not distinguishable by the algorithm at all. For
the algorithm, the IBLT table size, s = γαk, is the only
parameter, which is solely decided by the communication
budget. So no parameter tuning is needed for the algorithm.

The quality measure we used is the approximation ratio,
i.e., EMD(SA, S

′
B)/EMDk(SA, SB), where k = 100 as set

before. Note that this approximation ratio is computed after
the algorithm is done on the raw data and the output of the
algorithm. The algorithm itself does not know k and cannot
compute EMD or EMDk.

We set ε = 1 as the default perturbation level; note
that this actually represents the hardest case as this makes
EMDk(SA, SB), the denominator in the approximation ra-
tio, small. We will vary ε in one set of experiments.

Varying communication cost. First we vary the com-
munication budget of the algorithm, as a percentage of the
raw data size. For each communication budget, we run our
algorithm 11 times, each time with a different random shift
and different hash functions in the IBLTs. We plot the min-
imum, median and maximum approximation ratios among
the 11 runs in Figure 4a. For the wavelet method, we simi-
larly also compute the ratio of its resulting EMD to EMDk.

We can see that our algorithm performs much better than
wavelet compression, consistently beating the latter by one
to two orders of magnitude. The gap becomes smaller when
the communication cost is higher than 10% of the raw data.
Wavelet compression eventually catches up in performance
at very large communication costs, near 50%, and gives near-
perfect reconciliation at 87% cost. However, high communi-
cation cost scenarios are not very interesting for our prob-
lem, whose goal is to reconcile a small number of true differ-
ences under the abundance of noise. We also observe that
the approximation ratio is roughly inversely proportional to
communication cost (note the log-log scale of the plot), and
flatten off for very large communication. This is quite con-
sistent with the theoretical analysis that the approximation
ratio is 1 + 8d + 16d

α−2
, except that the actual constants are

somehow better.
The average encoding and decoding times are plotted in

Figure 4d. They are about 1 second, scaling very mildly
with communication. This is because the running times are
dominated by quadtree construction and inserting quadtree
nodes in to the IBLTs, both of which are independent of the
size of the IBLTs. The running time depends very slightly
on the randomness in the algorithm, with less than 10%
variation over 11 runs.

Varying perturbation. Note that our data set has ∆/n =
3.2, so it is quite dense, a perturbation level ε ≥ 2 would
often mix signal with noise. So we reduce n to 105, to re-
duce the density by a magnitude. Now there is room for
perturbations of size ε = 1, 2, 4, 8, 16. We also reduce k to
10 by proportion. We fix the communication budget at 4%
and vary ε. For each value of ε, we again run our algorithm
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Figure 4: Experimental results on 1D data.

11 times, and plot the minimum, median and maximum ap-
proximation ratios achieved. This is also compared with
that of the wavelet method (Figure 4b).

Note that the wavelet compression method does not use
any information that Bob possesses, so the decrease in ap-
proximation ratio is solely due to the increase in the de-
nominator EMDk, which is expected to be proportional to
ε. For our algorithm, EMDk increases as ε gets larger, and
EMD(SA, S

′
B) increases not as much, so the approximation

ratio decreases as perturbation gets larger.
The running time does not vary much in the size of per-

turbation (Figure 4e), up and down within a ±10% band.

Varying data size. Finally, we examine how the algorithm
scales with the data size n. We took 5 different values for
n: 62500, 125000, 250000, 500000, 1000000, and for each n,
picked a random subset of size n from the original data set.
Again on each subset, we run our algorithm 11 times, and
plot the minimum, median and maximum approximation
ratios in Figure 4c, while the communication cost is set at
4% of the data. Here we can clearly see that it gets smaller
for larger n. This is again mostly due to EMDk getting
larger as n gets larger. On the other hand, the quality of
wavelet compression is good over very small data sets, but
then deteriorates rapidly. It quickly levels off, after which
point the quality seems to be independent of n.

We see that the running time scales nearly linearly with
n (Figure 4f), which is expected from our analysis.

4.4 Multi-dimensional experiments

EMD estimation. As reviewed earlier, computing EMD
in dimension d ≥ 2 requires O(n3) time, which is unbearable
even for moderately large data sets. So in our experiments,

we used the following rough estimates for EMD and EMDk.
As before, we first injected k true differences in the data,
by relocating k points to complete random positions in the
grid [∆]d. Then we added a random perturbation in the
range [−ε, ε] to every coordinate of each point. We compute
EMDk by assuming that the optimal solution will identify
the k true errors, and match every remaining point to its
perturbed location. If perturbation is small and the data is
sparse, this should actually be quite close to the true EMDk.

To estimate the EMD of our algorithm, we recall that the
algorithm starts from the bottom level of the quadtree, and
works its way up until it succeeds at some level `. Let the di-
agonal distance of a quadtree cell at this level be A = 2`

√
d.

Recall from our analysis that if the algorithm relocates a
point at this level, then it is guaranteed that its distance to
its counterpart is at most A/2. Thus, we use the following
rather rough and conservative estimate:

ÊMD = EMDk +(number of points moved)×A/2.

As there is no reasonably efficient way to estimate the
EMD for the baseline method, it is omitted from the multi-
dimensional experiments. We could have computed it using
the O(n3) method on some small data sets, but from our
experience in the 1D case (Figure 4c) its performance on
small data sets may not be any indication on larger ones.

Data set. We used the MiniBooNE particle identification
data set found in the UCI Machine Learning Repository7.
It has 130, 065 points in 50 dimensions. The coordinates are
floating-point numbers, but can be scaled to integers in the
interval [0, 2 × 107] without loss of precision. For each of

7http://archive.ics.uci.edu/ml/datasets/MiniBooNE+
particle+identification
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Figure 5: Experimental results on multi-dimensional data.

d = 1, 4, 7, 10, 13, we picked the first d dimensions and
obtained a d-dimensional data set. We set k = 10, ε = 1,
and injected true differences and perturbation as before.

Results. We vary the communication cost and compute

the approximation ratios ÊMD/EMDk, and the results are
plotted in Figure 5a. It shows very reasonable approxima-
tion ratios even for d up to 13. On small communication
(i.e., small α), the ratios are higher, but it quickly drops
as α increases. The approximation ratio gently increases
with d, which in general agrees with the O(d) theoretically
guaranteed approximation ratio.

One should also keep in mind that the above estimate

ÊMD is quite conservative; we expect the actual approxi-
mation ratio to be better. For instance, we estimate the
distance between a relocated pair at the maximum A/2; in
reality, this may be around A/4, which could improve the
approximation ratio by a factor of 2.

Finally, we are assured that the running times scale nearly
linearly with d (Figure 5b).

4.5 Image Reconciliation
Finally, we apply our algorithm to the reconciliation of

two sets of images, which is one of the initial motivations of
this work. We took a collection of 10000 high quality JPEG
images and gave them to Alice. Bob has the same 10000
images, but after a 95%-quality JPEG re-compression. Then
Bob changed k of his images to completely new ones, and
our goal is thus to identify these images. Note that this will
also give Alice k images that are different from Bob’s, there
are actually 2k different images that we need to find.

We map the images to points in a feature space. For this
experiment, we used the simplest feature signature, the color
histogram with 6 buckets (the results would only be better
if more sophisticated features were used), so each image is
mapped to a 6-dimensional point. The coordinates of the
points (i.e., number of pixels in the histogram buckets) are
22-bit integers. These points constitute SA and SB as input
to our algorithm. The JPEG re-compression has the effect of
perturbing a point by a small distance in the feature space.
This distance is roughly 1/104 of that between two distinct
images.

Algorithm modification. Recall that our algorithm will
delete and add some points in SB , so as to reduce the EMD.
In particular, when Bob finds a quadtree cell with count
larger than in its counterpart at Alice’s side, he deletes a

point chosen arbitrarily from the cell. If there is more than
one point in the cell, this point may not be the true differ-
ence. This is not a problem as far as EMD is concerned,
as moving any point in the cell to an (approximately) cor-
rect location will reduce the EMD, but it is not sufficient
for the image reconciliation task, where we want to exactly
pinpoint the different images. However, our algorithm can
be easily modified to accomplish this task, with one more
round of messages, described as follows (the first 2 steps are
the same as before).

1. Alice sends Bob the IBLTs of her quadtree.

2. As before, Bob queries the IBLTs level by level, until
he reaches a level ` where he retrieves all the quadtree
differences.

3. Based on the quadtree differences, Bob reports to Alice
a set of candidates ŜB , which includes all points in any
cell where Bob’s point count exceeds Alice’s. Bob also
sends Alice his IBLT at level ` (only).

4. For each point x in ŜB , Alice finds its nearest neighbor
in SA. If the distance between the two is smaller than
the perturbation threshold (we used 10 times the aver-
age perturbation distance as the threshold), we discard
x; otherwise we declare x to be a difference.

5. Likewise, Alice recovers the quadtree differences at
level `, and sends Bob a candidate set ŜA.

6. Bob similarly checks each point in ŜA to see if it matches
with one of his point, and declares a difference if no
such match is found.

Again, we operate in the fixed communication budget sce-
nario, and the algorithm is unaware of the value of k. While
the size of the IBLT can be easily adjusted according to the
budget, we don’t however have control over the size of ŜA
and ŜB . So we adopt the following strategy. We give half
of the communication budget to transmitting the IBLTs, re-
serving the other half for ŜA and ŜB (thus each getting 1/4

of the budget). When the size of either ŜA or ŜB exceeds the
remaining budget, we simply take a random sample. This
may miss out some targets but it is the best effort we can
afford under the budget. On the other hand, Alice omits all
bottom levels of her quad tree whose cell diameters are dom-
inated by the noise threshold, which reduces space used by
IBLTs without affecting recovery; she can also more aggres-
sively remove levels where her cell counts are small enough



Budget
2% 4% 6% 8% 10%

5 0% 56% 92% 100% 100%
10 2% 34% 84% 100% 100%

k 15 0% 28% 80% 100% 100%
20 0% 19% 67% 98% 99%
25 0% 5% 66% 87% 99%

Table 1: Recovery rate for image reconciliation

that she estimates Bob will not report too many points. Fi-
nally, if the size of ŜB is way below the given budget in step 3
above, Bob will go up the quadtree levels above ` (although
the IBLT already succeeds at level `). This simple heuristic
can make better use of the the communication budget, and
help to increase the recovery rate.

Results. We experimented with different communication
budgets, at 2%, 4%, 6%, 8%, 10% of the raw data size. Raw
data here refers to the 10000 6-dimensional points, as the
naive approach would send all of Alice’s data to Bob or vice
versa. We also varied k from 5 to 25. For each combina-
tion of communication budget and k, we ran our algorithm
5 times and report the average recovery rate is Table 1. Re-
covery rate here is the number of reported differences over 2k
(the total number of different images). Note that since both
Alice can Bob verify for every candidate if it matches an
existing image of his/her own, there are no false negatives.

We can see that with communication budget at 2%, there
is virtually no recovery. It means that the small size of the
IBLTs is not sufficient to accommodate the 2k differences,
so the retrieval succeeds only at a very high level of the
quadtree, which in turns leads to a larger number of candi-
dates. With the remaining 1% communication budget, it is
unlikely for the sampling to reach the true differences. As
we increase the budget, the recovery rate increases signifi-
cantly, as an increased budget allows both larger IBLTs as
well as higher sampling rates. The bold numbers in the ta-
ble indicate that all candidates have been sent over with no
need to sample8. Finally, with 10% communication cost, our
algorithm has essentially identified all the different images.
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