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Abstract

We study the dynamic membership problem, one of the

most fundamental data structure problems, in the cell

probe model with an arbitrary cell size. We consider a

cell probe model equipped with a cache that consists of

at least a constant number of cells; reading or writing

the cache is free of charge. For nearly all common data

structures, it is known that with sufficiently large cells

together with the cache, we can significantly lower the

amortized update cost to o(1). In this paper, we show

that this is not the case for the dynamic membership

problem. Specifically, for any deterministic membership

data structure under a random input sequence, if the

expected average query cost is no more than 1+δ for some

small constant δ, we prove that the expected amortized

update cost must be at least Ω(1), namely, it does not

benefit from large block writes (and a cache). The space

the structure uses is irrelevant to this lower bound. We

also extend this lower bound to randomized membership

structures, by using a variant of Yao’s minimax principle.

Finally, we show that the structure cannot do better even

if it is allowed to answer a query mistakenly with a small

constant probability.

1 Introduction

We study one of the most fundamental data structure
problems, dynamic membership, in the cell probe

model [22]. In this model, a data structure is a
collection of b-bit cells, and the complexity of any
operation on the data structure is just the number
of cells that are read and/or changed. It is arguably
the strongest computation model one can conceive
for data structures; in particular it is at least as
powerful as the RAM with any operation set. The cell
size b is an important model parameter, and various
b’s have been considered, often leading to models
with dramatically different characteristics. The case
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b = 1 (a.k.a. the bit probe model) yields a clean
combinatorial model, but it is mainly of theoretical
interest. The most studied case is b = log u, where
u is the universe size, so that every cell stores one
element from the universe. In recent years, there have
been a lot of interests in studying much larger cell
sizes, potentially going all the way to b = nǫ for some
small constant ǫ. This is motivated by the fact that
in modern memory hierarchies, data is transferred in
larger and larger blocks to amortize the high memory
transfer costs. In this paper, we will work with any
cell size b, though our result is more meaningful for
large b’s.

In the membership problem, we want to build
a data structure for a set S ⊂ [u], |S| = n ≤ u/2,
such that we can decide if x ∈ S efficiently for any
x ∈ [u]. In the dynamic version of the problem,
we also need to update the data structure under
insertions and deletions of elements in S. As we are
mostly interested in lower bounds in this paper, we
will only consider insertions. A closely related and
more general problem is the dictionary problem, in
which each element x ∈ S is in addition associated
with a piece of data. If the answer to the membership
query on x is “yes”, this piece of data should also
be returned. Both problems have been extensively
studied in the literature, especially the dictionary
problem. With log u-bit cells, comparison based
dictionaries have Θ(logn) cost per operation; various
hashing techniques can achieve expected O(1) cost.
There are also data structures that are specifically
designed for membership queries, such as Bloom

filters [4]. For the dynamic versions of these two
problems, the two most important measures are the
query time tq and the (amortized) update time tu.
In this paper, we will study the inherent tradeoff
between tq and tu for the dynamic membership
problem. It turns out that the space the structure
uses is irrelevant to our tradeoffs.

In all the membership and dictionary data struc-



tures (except the trivial one using Ω(u) space), an
operation always starts by first probing a cell (or a
constant number of cells) at a fixed location, which
stores for example the root of a search tree or the
description of a hash function, and then adaptively
probe other cells. Thus it is convenient, and actually
realistic, to exclude the cost of the first fixed probe,
by introducing a cache that consists of at least a con-
stant number of cells which can be accessed for free.
Note that when we consider a general cache size of
m bits for m ≥ b, the cell probe model essentially
becomes the external memory model [1] where the
cache is the “main memory” and a cell is a “block”.
In the cell probe literature this assumption is some-
times not made explicitly. However, when b is large,
the availability of a cache, even with only a constant
number of cells, could make updates much faster. In
this case, Ω(1) is not a lower bound on tu any more
since it is possible to update b bits with one probe.
This is evident from the vast literature on external
memory data structures [19]. Using various buffering
techniques, for most problems the update cost can be
reduced to just slightly more than O(1/b), typically

O(poly log(n,u)
b ) (see e.g. [3, 5, 8]) without affecting tq

very much. Note that this could be much smaller
than 1 for typical values of b of interests in the ex-
ternal memory setting. This line of study has also
resulted in a lot of practical data structures that sup-
port fast updates, which are especially useful for man-
aging archival data where there are much more up-
dates (mostly insertions) than queries, e.g., network
traffic logs, database transaction records [10, 14].

However, no effective buffering technique is
known for the dictionary problem. It has been conjec-
tured that the update cost must be Ω(1) if a constant
query time is desired, that is, a dictionary does not
benefit from large block writes (and a cache), unlike
other external memory data structures. This conjec-
ture has been floating around in the external memory
community for quite a while, and was recently stated
explicitly by Jensen and Pagh [9]. In this paper, we
make the first progress towards proving this conjec-
ture by establishing its correctness for an expected
average query time tq = 1 + δ for some small con-
stant δ. We will formally state our results after set-
ting up the context. Our lower bound holds for the
membership problem, hence also for the more general
dictionary problem.

Previous results. We will only review the rele-
vant results on dynamic membership and dictionary
structures for b ≥ log u; the static case and the bit-
probe complexity are considered in [15] and the ref-

erences therein. The most widely used dictionary
structure is a hash table. Knuth [11] showed that us-
ing some standard collision resolution strategies such
as linear probing or chaining, a hash table achieves
tq = tu = 1+1/2Ω(b/ log u), which is extremely close to
1 as b gets large. Here tq is the expected query cost as-
suming uniformly random inputs (or equivalently us-
ing a truly random hash function), and averaged over
all queried keys in the universe; tu is the expected
amortized update cost over a sequence of random in-
sertions. If the random input assumption is lifted
and tq is required to be worst-case, cuckoo hashing

[16] achieves tq = 2, but tu = O(1) is still expected.
It is believed that tq and tu cannot both be made
worst-case O(1) (with near-linear space), but there
has not been a formal proof. Some super-constant
lower bounds on the worst-case max{tq, tu} are given
in [7, 12, 18], but they use a model either more restric-
tive than or incomparable to the cell probe model.

Intuitively, membership should be easier than
the dictionary problem, but we do not have any
membership structure that does strictly better. The
Bloom filter [4] solves the membership problem with
only O(n) bits of space, but querying and updating
the structure needs more probes, and it also has a
probability of false positives.

There are very few lower bounds for the two prob-
lems in the cell probe model. Pagh [15] proved that
for static membership, the worst-case tq is at least
2 with linear space (for b = log u). However, when
it comes to hashing, people are generally more in-
terested in its expected performance under uniformly
random inputs, since with a reasonably good hash
function, real-world inputs indeed appear to be uni-
formly random; some theoretical explanations have
been recently put forward for this phenomenon [13].
Under random inputs, Knuth [11] showed that tq ap-
proaches 1 exponentially quickly in b, just using a
standard hash table, so there is little left to do in
terms of query performance since tq ≥ 1 − o(1) triv-
ially (the o(1) term is due to elements being stored
in the cache). However, as argued above, there is no
reason why tu cannot go below 1, especially when b
is large, but currently there is no lower bound on tu
yet except the trivial one Ω(1/b). In [20], a tradeoff
between tq and tu is given on the dictionary problem,
but there tq is defined as the expected query cost aver-
aged over all the elements currently in the dictionary,
while elements not in the dictionary (i.e., unsuccess-
ful queries) are not considered. In this case, it is
proved that if tq = 1 +O((b/ log u)−c) for any c ≥ 1,
any dictionary must have an expected amortized up-



date cost tu = Ω(1); if tq = 1 + O((b/ log u)−c) for
any c < 1, then it is possible to achieve tu = o(1)

provided b = Ω(log1/c n log u). The latter exploits
the fact that only the average successful query cost
needs to be small; unsuccessful ones require longer
time to decide. So these results do not apply to the
membership problem.

The tradeoff between tq and tu has been consid-
ered for other dynamic data structure problems in
the cell probe model (with a cache), for example the
marked ancestor problem [2], partial sums [17], and
range reporting [23]. The lower bounds on tu, with
respect to the range of tq considered for these prob-
lems, are all o(1) (for sufficiently large b) but higher
than Ω(1/b), showing that buffering is still effective
but only to a certain extent.

Our results. In this paper, we study the tradeoff
between tq and tu of any dynamic membership data
structure in the cell probe model with any cell size
b and a cache of size m, where tq is the expected
query cost averaged over all x ∈ [u] and tu is the
expected amortized update cost, under a uniformly
random sequence of insertions. Our main result is
that if tq ≤ 1+δ for some small constant δ (any δ < 1

2
works for our analysis, but we have not attempted to
optimize this constant), then tu = Ω(1). The lower
bound holds as long as n = Ω(mb) and u = Ω(n)
for sufficiently large hidden constants. Our result
rules out the possibility of achieving tq = 1 + o(1)
and tu = o(1) simultaneously. Compared with the
results of [20], it also shows that when both successful
and unsuccessful queries are considered, the problem
indeed becomes harder. In addition, our lower bound
holds irrespective of the size of the data structure.

One of the main difficulties in proving a lower
bound for the membership problem is that the query
answer is binary. So we cannot use the indivisibility

assumption as in the lower bounds for dictionaries
[7, 18, 20], which says that for a successful query, a
cell storing the element (or one of its copies) has
to be probed. A membership data structure may
indeed “divide” an element into multiple pieces, as
in a Bloom filter. To overcome this difficulty, we take
a functional view of any (deterministic) membership
data structure in the cell probe model, which gives
us a clean, combinatorial picture of the problem. We
define our model in Section 2, followed by the proof
of the lower bound for deterministic data structures
in Section 3.

In Section 4 we extend our lower bound to ran-
domized data structures. It turns out that we only
need a smaller constant δ so as to make the lower

bound hold. To prove our randomized lower bound,
we first give a version of Yao’s minimax principle [21],
which connects the update cost of a randomized data
structure with that of a deterministic data structure
on a random update sequence following any distri-
bution. Since our deterministic lower bound already
assumes a uniformly random update sequence, with
this principle it easily results in a randomized lower
bound. The result is actually quite intuitive: as the
inputs are already random, a data structure should
not be able to improve by using further internal ran-
domization.

Finally in Section 5, we extend our lower bound
to data structures that may err with a probability
ǫ when answering membership queries, thus incorpo-
rating any Bloom filter-type structures, but we in ad-
dition allow both false positives and false negatives.
We show that as long as δ and ǫ are constants small
enough, the update time still has to be Ω(1).

2 The Model

In this section, we define the our model for any
dynamic deterministic data structure, which is at
least as strong as the cell probe model.

We will treat computation as the evaluation of
functions. Let [u] be the universe and S ⊆ [u]
be a dynamic set of cardinality at most n that is
maintained by the data structure D. At any time,
D should be able to evaluate a function gS, following
the procedures that we will specify shortly. In the
following we will omit the subscript S from gS when
the context is clear. For membership queries, the goal
is to evaluate

g(x) =

{

1, x ∈ S;
0, x 6∈ S.

To evaluate g, D will employ a few families of
functions. The first family, Ψ, consisting of 2m

functions ψ1, . . . , ψ2m : [u] → {0, 1}, represents all
possible functions computable entirely within the
cache. Since there are

(

u
n

)

different g’s, some g’s must
not be captured by Ψ. To evaluate these g’s, we need
to read one or more memory cells. Let us focus on
the case where only one probe is allowed. By reading
one cell, we have b “fresh bits”. Together with the
m bits in the cache, we can index a larger family of
functions. Let F be a family of 2m × 2b functions
fM,B : [u] → {0, 1} for M = 1, . . . , 2m, B = 1, . . . , 2b.
This does not appear to increase the size of the set
of computable functions by much, but the key is that
the query algorithm is allowed to choose which cell
to read after seeing the queried element x. Thus the
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b new bits read by this probe could potentially differ
for different queries. On the other hand, note that
the cache content has to be the same for all queries.

Realizing this, we need to introduce a third
family of functions Π, which consists of 2m functions
π1, . . . , π2m : [u] → {0}∪Z

+. Each πM is called a cell

selector, which will select the cell to probe depending
on the queried item and the current cache content
M . When πM (x) = 0, the cell selector directs the
query algorithm to no cell, namely, we will use the
cache-resident function ψM to evaluate x. Putting
everything together, when the cache content is M
and the memory cells store the bit strings B1, B2, . . . ,
upon a queried element x ∈ [u], the data structure D

will evaluate

(2.1) D(x) =

{

ψM (x), if πM (x) = 0;
fM,BπM (x)

(x), otherwise.

The query cost of evaluating D(x) is defined to be 0
for any x such that πM (x) = 0, and 1 otherwise.

We should stress that under our model, all the
function families Ψ,F ,Π have to be predetermined
for a deterministic data structure. What changes as
elements are inserted into or deleted from S is the
cache content M and the cells B1, B2, . . . . These
form the state of D. This naturally defines the update

cost of D: Every time after S changes, M is allowed
to switch to an arbitrary state with no cost, while
changing any Bi costs 1.

Our model as defined above only allows the
query algorithm to visit one memory cell. We can
extend the model to visiting multiple memory cells
by cascading the basic scheme: A cache-indexable
cell selector is first used to select the first cell to read,
then a second cell selector, indexed by both the cache
and the content of the first cell, is used to select the
second cell, and so forth. This complicates the model
significantly. Since in this paper, we are interested in
a tq = 1 + δ query bound for some small constant δ,
we can relax the model in an easier way that avoids
these complications.

We introduce a special symbol ∗, and redefine F
to be a family of 2m × 2b functions fM,B : [u] →
{0, 1, ∗}. The evaluation procedure remains the same
as (2.1), but now we only require D(x) ≈ g(x)
for all x ∈ [u], where we define ∗ ≈ 0 as well as
∗ ≈ 1. Conceptually, when D(x) returns ∗, the data
structure is declaring that it cannot determine g(x)
by just visiting one memory cell and more probes are
needed (note that D is not allowed to return incorrect
answers; we will discuss data structures that may err
in Section 5). For lower bound purposes, we say the
query cost is 2 for any x such that D(x) = ∗; for any

x where D(x) 6= ∗, the query cost is defined the same
way as before.

To better understand this “functional” model, let
us consider how the standard hash table instantiates
in this model. It uses O(n/(b log u)) cells, and for
each cell, Bi simply stores all the keys hashed into
it; if Bi is full, the extra ones are discarded. The
cell selector πM (x) is simply the hash function used.
The cache-resident function ψM is irrelevant. The
function fM,B (which actually does not depend on
M) is

fM,B(x) =







1, if x ∈ B;
0, if x /∈ B and B is not full;
∗, if x /∈ B and B is full.

When a key is inserted or deleted, we simply update
the corresponding Bi, with cost 1.

3 Deterministic Data Structures

In this section, we first prove a lower bound for de-
terministic data structures over an insertion sequence
where each element is inserted independently, uni-
formly at random from [u].

Let D be as defined in Section 2. We assume
that the expected average query cost tq of D is no
more than 1 + δ at any time for some small constant
δ to be determined later, and try to bound the
expected amortized update cost tu from below. We

set parameters ρ = 4b
nσ2 and s = σ2

2ρ = nσ4

8b where

σ = min
{

1−2δ
11 , δ

2

}

.

We neglect the insertion cost for the first σn
elements. For the rest of the insertions, we divide
them into rounds, with each containing s elements,
and then try to lower bound the insertion cost of each
round.

Consider any particular round R, and let tR be
the ending time of R, i.e., the number of inserted
elements by the end of R. Note that according to our
construction of rounds, tR ≥ σn. Let M be the state
of the cache at time tR. Let Ai = {x | πM (x) = i} and
αi = |Ai|/u (note that Ai and αi are both determined
by M , but we omit the subscript M for ease of
presentation). Let Bpre

i and Bpost
i be the states of cell

i at the beginning and the end of R, respectively. Our
notations will refer to the time snapshot tR except
Bpre

i . The goal will be to show that many cells i have
Bpre

i 6= Bpost
i , thus those cells must be modified in

round R.

Preparatory lemmas. To pave the road to the
main proof, we will first formalize some intuitive
observations. We first eliminate the effects of the



memory-resident function ψM . More precisely we
show that with high probability, α0 has to be small,
meaning that there cannot be too many elements
whose membership queries can be answered directly
by ψM .

Lemma 3.1. At time tR, α0 ≤ σ with probability at

least 1 − 1/2Ω(b).

Proof : Let k be the number of elements that have
been inserted by time tR (k = tR ≥ σn). We
show that for any M such that α0 > σ, with high
probability, ψM will not evaluate the corresponding
A0 correctly. Consider a particular M , suppose the
multiset {ψM (x) | x ∈ A0} contains y “0”, z “1” with
y+ z = α0u (note that ψM (x) cannot be “∗” for any
x ∈ A0). Let K be the set of the k randomly inserted
elements. In order to correctly answer membership
queries for all x ∈ A0, the data structure has to
guarantee that

ψM (x) =

{

1, if x ∈ A0 ∩K;
0, if x ∈ A0 −K.

We can assume z ≤ k, otherwise ψM must not be
correct. For every x ∈ A0 such that ψM (x) = 0, x
cannot be inserted in the first k insertions for ψM to
be correct. Therefore the probability that ψM is a
valid evaluating function at the snapshot is no more
than (for u = Ω(n))

(

1 − y

u

)k

≤
(

1 −
(

α0 −
k

u

))k

≤
(

1 − σ

2

)σn

≤ e−
1
2σ2n.

Since there are at most 2m states of M , the proba-
bility that there is one M with α0 > σ that works is
at most

2m · e− 1
2σ2n ≤ 1/2Ω(b)

for n = Ω(mb), i.e., with probability at least 1 −
1/2Ω(b), M has to be one such that α0 ≤ δ. �

Define δ∗ = |{x | D(x) = ∗}|/u, i.e., the number
of “∗” (as a fraction of the universe) returned by the
data structure D (at time tR). Recall that ψM does
not return any “∗”, so each “∗” must be contributed
by some cell. Since we require tq ≤ 1+δ, there cannot
be too many “∗”. More formally:

Lemma 3.2. With probability at least 1/3 − 1/2Ω(b),

δ∗ ≤ 2δ + σ.

Proof : Since we require that at any time the expected
average query time of D over a random input is
no more than 1 + δ, and for any data structure
and a random input, the expected query time for
any element is at least

(

1 − 1/2Ω(b)
)

(1 − σ) (queries
answered by ψM cost 0 and by Lemma 3.1, α0 ≤ σ
with probability at least 1 − 1/2Ω(b)), we have that
at time tR, with probability at least 1/3, the average
query time of D is no more that 1+2δ. By Lemma 3.1
and since answering the query for x with D(x) = ∗
costs 2, it is easy to see that δ∗ ≤ 2δ + σ with
probability at least 1/3 − 1/2Ω(b). �

The basic idea of the proof. By Lemma 3.1, we
know that for the majority of the elements, querying
them needs to probe a cell. In particular, cell
i is responsible for the elements of Ai. We will
classify all the cells into five zones according to their
characteristics: the bad zone B, the easy zone E , the
old zone O, the strong zone S, and the weak zone

W . For any zone X , define AX =
⋃

i∈X Ai, and
αX =

∑

i∈X αi. We also define

δX = |{x ∈ AX | D(x) = ∗}|
/

u,

i.e., the number of “∗” (as a fraction of the universe)
returned by zone X for the elements X is responsible
for. Note that

∑

X δX = δ∗.
We first consider the bad zone, and defer the

definitions of the other zones to later. The bad zone

B contains the set of cells {i | αi > ρ}, namely, those
cells that are each responsible for a lot of elements.
The basic idea of our proof is the following: We will
first show that cells in the bad zone altogether can
only handle a small fraction of the universe. Then
the majority of the queries will be allocated to the
other zones, in which each cell is only responsible for
a small number of elements. Since the s elements
inserted in this round are randomly drawn from [u],
they will possibly cause changes in many cells of these
zones.

The bad zone. We first show that the bad zone can
only handle a small fraction of elements.

Lemma 3.3. At time tR, αB ≤ δB+σ with probability

at least 1 − 1/2Ω(b).

Proof : Let k be the number of elements that have
been inserted by time tR (k = tR ≥ σn). We first
consider a particular M at tR. We show that if
αB > δB+σ under thisM , then with high probability,
D cannot evaluate g(x) for all x ∈ AB correctly.

5



Suppose the multiset {D(x) | x ∈ AB} contains
w “∗”, y “0”, z “1” with w + y + z = αBu. We
have w = δBu and z ≤ k. Consider a random input
of k elements. Since there are at most 1/ρ cells Bi

with αi > ρ, there are at most 21/ρ·b possible states
for answering the membership queries of the set AB.
Similar to the proof of Lemma 3.1, the probability
that all x ∈ AB can be answered correctly at tR is no
more than (by the union bound)

21/ρ·b

(

1 −
(

αB − δB − k

u

))k

≤ 21/ρ·b
(

1 − σ

2

)σn

≤ 21/ρ·b · e− 1
2σ2n.

Since there are at most 2m different cache states, we
conclude that with probability at most

21/ρ·b · e− 1
2σ2n · 2m ≤ 1/2Ω(b),

there is one M with αB > δB + σ that works, i.e.,
with probability at least 1−1/2Ω(b), M has to be one
such that αB ≤ δB + σ. �

The other four zones. We have shown that a large
number of queries must be answered by probing the
other four zones. Below we will argue that a lot of
cells in these zones have to change in order to handle
this large number of queries. Let IR be the set of
elements inserted before R starts. These four zones
are defined as follows.

1. The easy zone E contains all cells i that are not
in B and for which

∣

∣

∣

{

x | x ∈ Ai, x 6∈ IR, fM,Bpre
i

(x) = 1
}
∣

∣

∣
≥ 1.

2. The old zone O contains all cells i that are not
in the previous zones and for which
∣

∣

∣

{

x | x ∈ Ai, x ∈ IR, fM,Bpre
i

(x) = 1
}∣

∣

∣
≥ n

σ · 1/ρ.

3. The strong zone S contains all cells i that are
not in the previous zones and for which
∣

∣

∣

{

x | x ∈ Ai, fM,Bpre
i

(x) = ∗
}∣

∣

∣
≥ (1 − 2σ)αiu.

4. The weak zone W contains the rest of the cells.

Note that these zones are defined at the end
snapshot tR by looking back fM,Bpre

i
(x), namely, how

the cell would respond under the current cache status
M if the cell content Bi stayed the same as the start
of the round R. If any of the s insertions in R conflicts
with fM,Bpre

i
(x), then cell i has to change. Obviously,

the number of cells changed is a lower bound on the
insertion cost. We will show that many cells have
to change for any M that satisfies the conditions in
Lemma 3.1, 3.2, and 3.3.

Expected total insertion cost of R. Before going
to the main proof, we first introduce a special bin-ball
game which will be used later.

In an (s, p, β) bin-ball game, we throw s balls
into r (for any r ≥ 1/p) bins independently at
random, following an arbitrary distribution, but the
probability that any ball goes to any particular bin is
no more than p. After a ball falling into a bin, with
probability at most β it will disappear. The cost of
the game is defined to be the number of nonempty
bins at the end of the process. We have the following
lemma with respect to such a game.

Lemma 3.4. If sp+ β < 1, then for any µ > 0, with

probability at least 1 − e−
µ2(1−sp−β)s

2 , the cost of an

(s, p, β) bin-ball game will be at least (1−µ)(1− sp−
β)s.

Proof : Imagine that we throw the s balls one by one.
Let Xj be the indicator variable denoting the event
that the j-th ball is thrown into an empty bin and
the ball does not disappear. The number of nonempty
bins in the end is thus X =

∑s
j=1Xj. These Xj ’s are

not independent, but no matter what has happened
previously for the first j − 1 balls, we always have
Pr[Xj = 0] ≤ sp+ β. This is because at any time, at
most s bins are nonempty. Let Yj (1 ≤ j ≤ s) be a
set of independent variables such that

Yi =

{

0, with probability sp+ β;
1, otherwise.

Let Y =
∑s

j=1 Yj . Each Yi is stochastically domi-
nated by Xi, so Y is stochastically dominated by X .
We have E[Y ] = (1 − sp − β)s and we can apply
Chernoff inequality on Y :

Pr [Y < (1 − µ)(1 − sp− β)s] < e−
µ2(1−sp−β)s

2 .

Therefore with probability at least 1− e−
µ2(1−sp−β)s

2 ,
we have X ≥ (1 − µ)(1 − sp− β)s. �

Lemma 3.5. With probability at least 1/5, at least

Ω(s) cells in the union of E ,S and W have to change

their contents during the s random insertions in R.



Proof : Let M be the collection of M such that
α0 ≤ σ, αB ≤ δB + σ and δB + δS ≤ δ∗ ≤ 2δ + σ.
By Lemma 3.1, 3.2, and 3.3, we know that D has to
use some M ∈ M at time tR with probability at least
1/3 − 1/2Ω(b) − 1/2Ω(b) ≥ 1/4.

Consider any particular M ∈ M. We will first
show that the old zone O is small. Remember that
each cell in O has many elements already inserted
before R. We claim that αO ≤ σ. Indeed, there
are at most n elements inserted before R, meaning

that there are at most n
/(

n
1/ρ·σ

)

= 1/ρ · σ cells in

O, thus covering at most a 1/ρ · σ · ρ = σ fraction
of membership queries over the universe (recall that
any cell i 6∈ B has αi ≤ ρ). We next analyze the cost
of the s insertions in two cases depending on the size
of the easy zone E .

Case A: αE > σ. In this case, we only consider
the easy zone. Intuitively, a cell in E is “predicting”
some elements to be inserted. More precisely, each
i ∈ E contains at least one x ∈ Ai that has not
been inserted at the beginning of the round and
fM,Bpre

i
(x) = 1. The probability that after s random

insertions, x still has not been inserted is no less
than 1 − s/u. If this happens, in order to correctly
answer all queries, we should set fM,Bpost

i
(x) = 0 or ∗,

meaning that with probability at least 1 − s/u, cell
Bi has to change in the round. By the Chernoff
inequality, we know that with probability at least

1 − e−2·( 1
2 )

2
· σ

ρ ≥ 1 − e−Ω(s),

the total number of cells that have to change during
the round is at least

(1 − s/u− 1/2) · σ
ρ
≥ Ω(s).

Case B: αE ≤ σ. In this case, we neglect the cost of
E , and only consider the strong zone S or the weak
zone W . By definition, the cells in S each have a lot of
“∗”, while those in W have fewer. So intuitively a cell
in S could handle many insertions without changing
its content. But since overall we do not have too
many “∗”, the capacity of S is limited anyway, unless
we are willing to change many cells in it. Thus, many
elements have to be handled by the weak zone W .
Since a cell in W has few “∗”, a random insertion is
very likely to force it to change. We formalize this
intuition below by considering two subcases.

B.1 αS > δS + 4σ. In this subcase we focus on
S. First note that by our definition, at tR,

only δSu queries in S could be answered by
“∗”. Let i1, i2, . . . , il be those cells in the S
whose contents are preserved during R, that is,
Bpre

it
= Bpost

it
(t = 1, 2, . . . , l), then we must have

l
∑

t=1

αit
≤ (1 + 3σ)δS ,

otherwise the number of “∗” answers will be
more than (1−2σ)(1+3σ)δSu > δSu. Therefore,
at least

αS − (1 + 3σ)δS
ρ

≥ σ

ρ
≥ s

cells in S have changed their contents during R.

B.2 αS ≤ δS + 4σ. In this subcase, we neglect zone
S and only consider zone W . Now the fraction
of elements that will be directed to W is at least
1−(α0+αB+αE +αO+αS) ≥ 1−(2δ+σ)−8σ ≥
2σ 1. We have the following observations. First,
for the s random insertions, by the Chernoff
bound, we know that with probability at least
1 − e−Ω(s), at least (2σ · s)/2 = σs elements
will be directed to zone W . Second, for a
random element x and a particular cell Bi in
W , conditioned upon that x falls into W , the
probability that x being directed to Bi is at most
ρ/(2σ). Third, it is easy to see that the number
of changed cells in W at the end of the round is at
least the number of cells Bi that contains at least
one new inserted element x with fM,Bpre

i
(x) = 0,

for the reason that if fM,Bpre
i

(x) = 0, then cell
Bi must change because fM,Bpost

i
(x) must not be

0 (it can be either 1 or ∗).
Now we bound the number of changed cells in W ,
thus the insertion cost of the round. Consider
any cell i in W . Since i is in neither the old
zone nor the strong zone, it is not hard to see
that for a random x, conditioned upon π(x) = i,

with probability at most n/(σ·1/ρ)
u + (1 − 2σ) ≤

1 − σ, we have fM,Bpre
i

(x) = ∗ or 1. For a
new inserted element, if fM,Bpre

i
(x) = ∗ or 1, we

say it disappears after insertion. Therefore, the
number of changed cells in W is at least the
cost of the

(

σs, ρ
2σ , 1 − σ

)

bin-ball game with

probability at least 1 − e−Ω(s). By Lemma 3.4
(setting µ = 1/2), with probability at least

1If σ = 1−2δ

11
<

δ

2
, the inequality is obvious. Otherwise

δ

2
≤ 1−2δ

11
, then δ ≤ 2

15
, and consequently αW ≥ 2

15
, which is

still at least δ = 2σ.
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1 − e−Ω(s), the cost of the bin-ball game is at
least

1

2
·
(

1 − σs · ρ
2σ

− (1 − σ)
)

· σs ≥ Ω(s).

To sum up, the analysis for either case holds with
probability 1 − e−Ω(s) for any particular M ∈ M.
Since there are at most 2m different M in M, we
know that the analysis holds with probability at
least 1 − 2m · e−Ω(s) for all M ∈ M. Finally, as
argued earlier, D has to use such an M ∈ M at tR
with probability at least 1/4, we conclude that with
probability at least

(

1 − 2m · e−Ω(s) − 1/4
)

≥ 1/5,
the total insertion cost of the round will be at least
Ω(s). �

Lemma 3.5 directly implies that the expected
cost of the round would be at least 1/5 ·Ω(s) = Ω(s).

Amortized insertion cost. Now we are in the
position to bound the amortized insertion cost. We
know that in total there are (1 − σ)n/s rounds, thus
the amortized cost per insertion is at least

Ω(s) · (1 − σ)n/s · 1/n ≥ Ω(1).

One can verify that the analysis above works for any
δ < 1/2, so we have the following.

Theorem 3.1. Suppose we insert a sequence of n
random elements into any deterministic, initially

empty data structure in the cell probe model with cell

size b and cache size m. If the expected total cost of

these insertions is n·tu, and the data structure is able

to answer a membership query with expected average

tq probes at any time, then we have the following

tradeoff: If tq < 1 + 1
2 , then tu ≥ Ω(1), provided

that n = Ω(mb) and u = Ω(n).

4 Randomized Data Structures

In this section, we will first show a transformation
similar to Yao’s minimax principle [21] that connects
the lower bound of a randomized data structure to
that of a deterministic data structure on random in-
puts with respect to the update cost. The main dif-
ference between our transformation and Yao’s min-
imax principle is that in the data structure setting,
the query guarantees do not directly carry over, that
is, the randomized data structure has an expected
query time tq does not mean that the corresponding
deterministic one has to have the same tq.

A minimax principle for data structures. Con-
sider a dynamic data structure problem. Let I be the

set of all possible update sequences, and D be the set
of all deterministic data structures. Let Q(D, I, t) be
the average query time (over all possible queries) of a
data structure D on an update sequence I at time t
(assuming one update per time unit). Let C≥t0(D, I)
be the total update cost of D on I after time t0. A
randomized data structure can be viewed as a proba-
bility distribution q over D; we also consider a prob-
ability distribution p on I. Let Ip denote a random
input chosen according to p and Dq denote a random
data structure chosen according to q. The minimax

principle for data structures states:

Theorem 4.1. Let α, β be any sufficiently small con-

stants. Let p be any probability distribution on I, and

let t0 be any time step. Suppose Ep[Q(D, Ip, t)] ≥ l
for all D ∈ D and all t ≥ t0. Consider any probability

distribution q on D such that for all t ≥ t0,

(4.2) EpEq[Q(Dq, Ip, t)] ≤ l + µ.

Let D
′ ⊆ D be the set of data structures D on which

the following holds for at least a (1 − β)-fraction of

t ∈ [t0, n]:

Ep[Q(D, Ip, t)] ≤ l + µ/(αβ).

Then we have

EpEq [C≥t0(Dq, Ip)] ≥ (1−α) min
D∈D′

Ep [C≥t0(D, Ip)] .

Proof : From (4.2) we have

1

n− t0 + 1

n
∑

t=t0

EpEq[Q(Dp, Iq, t)]

= Eq

[

1

n− t0 + 1

n
∑

t=t0

Ep[Q(Dq, Ip, t)]

]

≤ l + µ.

Combined with the condition Ep [Q(Dq, Ip, t)] ≥ l,
we know that with probability at least (1 − α), Dq

satisfies

1

n− t0 + 1

n
∑

t=t0

Ep[Q(Dq, Ip, t)] ≤ l + µ/α.

For each such Dq, we have Ep[Q(Dq, Ip, t)] ≤ l +
µ/(αβ) for at least (1−β) fraction of time steps t ≥ t0.
Therefore with probability at least 1 − α, Dq ∈ D

′.
It follows that (1 − α)minD∈D′ Ep[C≥t0(D, Ip)] is a
lower bound on the expected cost of Dq over the
random input I ∈ I chosen according to p after time
t0. �



The principle only looks at the data structure
after t0. This is because at the very beginning of
the update sequence, all information of the updates
can be kept in the cache, therefore, l has to be 0,
weakening the applicability of the theorem. With
this minimax principle, to prove a lower bound on
the update cost of a randomized data structure q on
a random input (hence also on the worst-case input),
we can fix an arbitrary update sequence distribution
p, and derive a lower bound on the expected update
cost of any deterministic data structure that holds a
weaker query guarantee for most time steps.

The lower bound. Now we use Theorem 4.1 and
the lower bound for deterministic data structures in
Section 3 to derive a lower bound for randomized
data structures. We only count the update cost of
the randomized data structure after time t0 = σn.

The input distribution p is still uniformly ran-
dom. Suppose that the randomized data structure
Dq fulfills the constraint that for any time t ≥ σn
and any random input sequence Ip,

(4.3) EpEq[Q(Dq, Ip, t)] ≤ 1 + δ.

In Section 3 we have shown that Ep[Q(D, Ip, t)] ≥
(

1 − 2Ω(b)
)

(1−σ) ≥ 1−δ for any D ∈ D and any time
step t ≥ σn. Setting α = β = 1/2 in Theorem 4.1,
we have
(4.4)

EpEq [C≥σn(Dq, Ip)] ≥ 1

2
min

D∈D′

Ep [C≥σn(D, Ip)] ,

where D
′ ⊆ D is the set of deterministic data struc-

tures such that for any D ∈ D
′, Ep[Q(D, Ip, t)] ≤

1 + 7δ holds for at least half of t ∈ [σn, n].
Now we try to use the results in Section 3 to

bound the the RHS of (4.4). Theorem 3.1 requires
the query guarantee for all t, but it is easy to deal
with the additional condition that only for half of
time steps, the query constraint is met. We modify
the construction of the rounds as follows: Instead of
constructing the rounds at fixed time instances, we
construct s groups of rounds by shifting the original
group of rounds 0, 1, . . . , s−1 time steps to the right,
respectively. By the pigeon hole principle, we know
that there are at least one group such that at least
half of the end snapshots of its rounds meet the query
constraint tq ≤ 1 + 7δ. Then we conclude that
minD∈D′ Ep [C≥σn(D, Ip)] = Ω(n) for any constant
δ < 1/14.

Theorem 4.2. Suppose we insert a sequence of n
uniformly random items into any randomized, ini-

tially empty data structure in the cell probe model

with cell size b and cache size m. If the expected total

update cost is n · tu, and the data structure is able to

answer a membership query with expected average tq
probes at any time, then we have the following trade-

offs: If tq < 1 + 1
14 , then tu ≥ Ω(1), provided that

n ≥ Ω(mb) and u = Ω(n).

5 Randomized Data Structures with Errors

The model with errors. We can easily extend our
model in Section 2 by allowing an error probability
ǫ. Formally, we say a randomized data structure
Dq answers queries with error probability ǫ if at
any time t, for any x ∈ U = [u], Dq(x) 6≈ g(x)
with probability at most ǫ. Note that here we have
made an implicit relaxation that if D returns ∗ for
some x, the query will always be answered correctly
by the second probe. We show in this section that
allowing a small constant probability of error does
not strengthen the model.

The lower bound. Set σ = min
{

1−2δ
11 , δ

2

}

as
before. Below we will prove a lower bound for any
randomized data structure with error probability at
most ǫ = σ2/40. We as previously divide a sequence
of n random insertions into rounds of size s. Consider
any particular round R and its end time snapshot tR,
let K (|K| = k ≥ σn) be the set of elements already
inserted by time tR and T be the set of elements
inserted in round R. Let D

′′ ⊆ D be the set of
data structures D such that any D ∈ D

′′ answers
membership queries mistakenly for at most

1. 9ǫ fraction of elements in U ;

2. 9ǫ fraction of elements in K; and

3. 9ǫ fraction of elements in T .

Since we require that the randomized data structure
Dq answer the membership queries for any x ∈ U
correctly with probability at least 1 − ǫ at any time,
thus at time tR for the universe U , with probability
at most 1/9, Dq errs for more than a 9ǫ fraction
of elements in U . The same argument holds for
sets K and T . Therefore, with probability at least
1−3·1/9 = 2/3, Dq ∈ D

′′. Let D
∗ ⊆ D

′′ be the set of
data structures D on which Ep[Q(D, Ip, t)] ≤ 1+11δ
holds for at least a 1/2-fraction of t ∈ [σn, n]. By
similar arguments in the proof of Theorem 4.1, we
can show that with probability at least 1/3, Dq ∈ D

∗.
Having these at hand, we can focus on those

deterministic data structures D ∈ D
∗, and try to

lower bound their amortized update costs. Similar
arguments as in Section 4 will give us the lower bound
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for randomized structures. We will prove a similar
result as Theorem 3.1 by making some modifications
to the proof in Section 3. Below we only discuss
places where modifications are needed.

We consider the effects of the error term on
the cache and the five zones one by one. Con-
sider the cache and the bad zone B first. We will
show that Lemma 3.1 and Lemma 3.3 still hold.
Let y = |{x | x ∈ A0, ψM (x) = 0}| and z =
|{x | x ∈ A0, ψM (x) = 1}|. We show again that for
any M such that α0 > σ, with high probability,
ψM will not evaluate the corresponding A0 correctly.
We can assume that z ≤ 10ǫu, otherwise the frac-
tion of erroneous elements in U must be more than
10ǫ− k/u > 9ǫ, contradicting our choice of D ∈ D

∗.
Now for every x ∈ A0 such that ψM (x) = 0, the
probability that x is inserted in the first k insertions
is at least y/u ≥ α0−10ǫ ≥ σ/2. Applying the Cher-
noff bound, we have that with probability at least
1 − e−Ω(σ2n), the number of erroneous elements is at
least σk/4, which is more than 9ǫk, the maximum
number of erroneous elements allowed for set K if
D ∈ D

∗. The lemma follows by applying a union
bound for all M . Using essentially the same argu-
ment, Lemma 3.3 also holds in the presence of errors.

Second, for the easy zone E , if αE ≤ σ, we
still neglect it. Otherwise, applying the arguments
in Section 3 we have that with high probability, at
least s/3 cells should be modified in the current
round if D answers all membership queries correctly.
Note that any D ∈ D

∗ allows at most 9ǫs erroneous
elements in T , we know that the update cost is at
least s/3 − 9ǫs ≥ Ω(s).

Third, it is not difficult to notice that the pres-
ence of errors will not affect the analysis for zones O
and S. Since by definition, αO ≤ ǫ and by the same
arguments in Section 3, we have that if αS > δS +4σ,
the cost of round R will be at least Ω(s).

Finally, if α0 ≤ σ, αB ≤ δB + σ, αO ≤ σ, αE ≤
σ, αS ≤ δS + 4σ, we consider the weak zone W (now
αW ≥ 2σ). The same arguments as in Section 3 show
that for any M , the update cost is at least

1

2
·
(

1 − σs · ρ
2σ

− (1 − σ)
)

· σs ≥ σ2

4
s

with high probability if all the membership queries of
elements directed to W should be answered correctly.
Since any D ∈ D

∗ allows at most 9ǫs erroneous
elements in T , we know that the update cost is at

least σ2

4 s− 9ǫs ≥ Ω(s).

Theorem 5.1. Let ǫ be some constant small enough.

Suppose we insert a sequence of n random elements

into any randomized, initially empty data structure in

cell probe model with cell size b bits and cache size m
bits. Let tu and tq be defined as before. If we require

that at any time, for any x ∈ U the data structure

has to answer its membership query correctly with

probability at least 1 − ǫ, then we have the following

tradeoffs: if tq < 1 + 1
22 , then tu ≥ Ω(1), provided

that n ≥ Ω(mb) and u = Ω(n).

6 Concluding Remarks

We have made the first step towards a long-standing
conjecture in external memory, that any membership
data structure (hence any dictionary) does not bene-
fit from larger block writes. If one considers the case
m = Θ(b), our result holds for all block sizes up to
b = O(

√
n). Even with such large blocks, we show

that any membership structure has to perform one
block write for every constant number of updates, if
an average query performance of tq = 1 + δ is to
be guaranteed. In this paper our journey stopped at
δ being a small constant. Although it seems small,
its significance can be appreciated if we compare it
with a standard hash table, which has δ exponentially
small in b. Nevertheless, there is still a long way to
the conjecture that supposedly holds for any constant
(even possibly some super-constant) tq.

We imagine that proving the conjecture in gen-
eral could be difficult. A weaker version is to prove
so for nonadaptive membership structures [6]. A non-
adaptive structure first probes the cache and then de-
cides the locations of all the other probes solely by
cache and the queried item. Such structures are espe-
cially interesting when parallel accesses are possible
in systems with multiple disks or multi-cores. Bloom
filters [4] and cuckoo hashing [16] are both well-known
examples of nonadaptive structures. We believe that
our model and techniques could be useful for proving
lower bounds for such structures.
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